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ON THE ALGEBRAIC COMBINATORICS OF INJECTIONS

AND ITS APPLICATIONS TO INJECTION CODES
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Abstract. We consider the algebraic combinatorics of the set of injections from a k-element set
to an n-element set. In particular, we give a new combinatorial formula for the spherical functions
of the Gelfand pair (Sk × Sn,diag(Sk) × Sn−k). We use this combinatorial formula to give new
Delsarte linear programming bounds on the size of codes over injections.

1. Introduction

Let Sn denote the symmetric group on n elements and let Sk,n denote the set of injections (al-
ternatively, partial permutations) σ from [k] := {1, 2, · · · , k} to [n]. Note that Sn,n = Sn, so this
is a natural generalization of the symmetric group. The goals of this paper are two-fold. Firstly,
we investigate the algebraic combinatorics of injections. In particular, we investigate the injection

scheme [24, 26], an association scheme naturally associated with injections which is a simultaneous
generalization of the Johnson association scheme and the group association scheme of Sn. Secondly,
we apply this theory to analyze injections in the coding-theoretic sense. That is, we use the char-
acter table of the injection scheme to compute, for a wide range of parameters, upper bounds on
the number of partial permutations with prescribed minimum Hamming distance (or, in general,
allowed distance sets).

1.1. The Algebraic Combinatorics of Injections. Throughout this work, let Gk,n := Sk × Sn

and Kk,n := diag(Sk) × Sn−k. We shall investigate the algebraic combinatorics of Sk,n via the
Gelfand pair (Gk,n,Kk,n). The spherical functions of (Gk,n,Kk,n) have combinatorial significance,
as they describe the eigenvalues of a natural family of graphs defined over Sk,n, i.e., the character
table of the injection association scheme. We begin with a brief overview of previous work related
to the subject.

Diaconis and Shahshahani [13] observed that (Gk,n,Kk,n) is a Gelfand pair by showing the double
coset algebra C[Kk,n\Gk,n/Kk,n] is commutative. Later, Greenhalgh [21] found a closed expression
for the spherical functions of (Gk,n,Kk,n) evaluated at the double coset Kk,n\(k, k+1)/Kk,n, equiv-
alently, the eigenvalues of the graph over Sk,n where σ, σ′ is an edge if their respective mappings
agree on all but one symbol of the domain. Using this expression, he showed that the mixing time of
the uniform random walk on this graph is approximately (n− k) logn+ cn for some constant c > 0.

In quantum computing, the algebraic combinatorics of Sk,n has been used to show adversarial lower
bounds on the time-complexity of the Collision, Set-Equality, and Index-Erasure problems.

Research of P.J. Dukes is supported by NSERC grant 312595–2017. F. Ihringer is supported by a postdoctoral
fellowship of the Research Foundation - Flanders (FWO).
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These lower bounds are derived from properties of the dual characters and Krein parameters of the
injection scheme [2, 4, 24], and are expressed in terms of the spherical functions of (Gk,n,Kk,n).

Greenhalgh [21] posed the question of investigating the spherical functions of (Gk,n,Kk,n), as spher-
ical functions often correspond to interesting families of orthogonal polynomials (e.g., special func-
tions). For the case k = n−1, the so-called “unbalanced” pair (Sn−1×Sn, diag(Sn−1)), Strahov [29]
showed that many of the classical results in the theory of symmetric functions have unbalanced
analogues. In particular, he gave a Murnaghan-Nakayama type rule and a Jacobi-Trudi identity for
evaluating its spherical functions. Note that the “balanced” pair (Sn × Sn, diag(Sn)) recovers the
classical representation theory of Sn (see [25]).

Such expressions for the cases 2 ≤ k ≤ n − 2 are not known, and to what extent the classical
representation theory of the symmetric group carries over to these cases is an intriguing question.
Indeed, the absence of useful combinatorial formulas for the spherical functions of (Gk,n,Kk,n) has
been a major obstacle in each of the areas above.

We make some progress in this direction by giving a combinatorial formula for the spherical functions
of (Gk,n,Kk,n). The formula is significantly more revealing than the known formulas, and it is much
easier to compute. It can be used to estimate the eigenvalues and ranks of matrices in the Bose-
Mesner algebra of the injection scheme, in special cases, giving exact closed-form expressions (we do
not pursue this direction in this paper), and it also allows us to efficiently compute the character
tables of injection schemes for explicit parameters k and n.

1.2. Injection Codes. We now outline the coding-theoretic framework, starting first with the well-
studied case of permutations. The Hamming distance between two permutations σ, τ ∈ Sn is the
number of non-fixed points of στ−1, or, equivalently, the number of disagreements when σ and τ
are written as words in single-line notation. For example, 1234 and 3241 are at distance three. This
notion naturally generalizes to injections [17].

A permutation code PC(n, d) is a subset Γ of Sn such that the distance between any two distinct
elements of Γ is at least d. The language of classical coding theory is often used: elements of Γ are
words, n is the length of the code, and the parameter d is the minimum distance, although for our
purposes it is not important whether distance d is ever achieved. Permutation codes are also called
permutation arrays by some authors, where the words are written as rows of an n× |Γ| array.

The investigation of permutation codes essentially began with the articles [15, 19]. After some years
of inactivity, permutation codes enjoyed a resurgence, due in part to their applications to error-
correction over certain channels and in tandem with the ongoing development of computational
discrete optimization.

For positive integers n ≥ d, we let M(n, d) denote the maximum size of a PC(n, d). It is easy to see
that M(n, 1) = M(n, 2) = n!, and that M(n, n) = n. The Singleton bound M(n, d) ≤ n!/(d − 1)!
holds. The alternating group An shows that M(n, 3) = n!/2. More generally, a sharply k-transitive
subgroup of Sn furnishes a permutation code of (maximum possible) size n!/(n− k)!. For instance,
the Mathieu groups M11 and M12 are maximum PC(11, 7) and PC(12, 7), respectively. On the other
hand, determination of M(n, d) absent any algebraic structure appears to be a difficult problem. A
table of bounds on M(n, d) can be found in [28].
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A relaxation known as an injection code was introduced in [17]. As the name suggests, one considers
the problem of packing, with resepect to Hamming distance, injections (alternatively partial permu-
tations), of a fixed length k using the alphabet [n] = {1, . . . , n}. Let M(n, k, d) denote the maximum
size of a family of such injections with pairwise Hamming distance at least d. For example, we have
M(n, k, k) = n from (for the lower bound) the cyclic shifts of, say, 12 · · · k and (for the upper bound)
the pigeonhole principle. The problem of determining M(n, k, d) is, like its counterpart for permu-
tations, challenging in general. However, as we illustrate in Section 5 to follow, there are various
closely related problems in combinatorics motivating further study of injection codes.

1.3. Outline. The outline of the paper is as follows. In Section 2, we review integer partitions and
tableaux, and generalize the Robinson-Schensted-Knuth correspondence to the setting of injections.
Then, in Section 3, we set up the algebraic combinatorics for injections. In particular, we introduce
the injection scheme, its associated Gelfand pair, and give a formula for its spherical functions in
terms of characters of symmetric groups. The main result of Section 4 pushes this to a purely
combinatorial description using a canonical basis for C[Sk,n] in terms of tableaux. In Section 5,
we state the Delsarte linear programming bound for injection codes in terms of characters for the
injection scheme. Our computations for parameters k ≤ n ≤ 15 are reported as tables of new or
improved bounds. Additionally, we offer some motivation for these bounds by noting several com-
binatorial problems closely connected with injection codes. We conclude with a few open problems
that naturally follow our work.

2. Tableaux and Injections

We give a brief overview of some tableau terminology, see [27] for a more detailed treatment. Let
λ = (λ1, λ2, · · · , λℓ) ⊢ n denote an (integer) partition of n ∈ N. Let ℓ(λ) denote the length of
λ, that is, the number of parts in the partition. To each λ ⊢ n, we may associate a tableau t, a
left-justified array of cells with ℓ rows and λi cells in ith row. Let λ⊤ denote the transpose partition,
that is, the partition obtained by interchanging the rows and columns of λ’s tableau. For any
µ = (µ1, µ2, · · · , µk) ⊢ m such that µi ≤ λi for all 1 ≤ i ≤ k, the skew-tableau λ/µ is the array of
cells obtained by removing the cells corresponding to µ from λ. A skew-tableau is a horizontal strip

if no two of its cells lie in the same column.

We say a tableau t of shape λ ⊢ n is a Young tableau if its cells are assigned a unique i ∈ [n]. A
Young tableau is standard if the cells are in ascending order from left to right in each row, and in
ascending order from top to bottom in each column. Let fλ denote the number of standard Young
tableau of shape λ ⊢ n. A tabloid {t} is a Young tableau such that cells in each row are unordered.
For any tabloid {t} with n cells, let row{t}(i) denote the index of the row of {t} that contains i ∈ [n],
and let colt(i) denote the index of the column of t that contains i ∈ [n].

A well-known fact is that the symmetric group Sn on n symbols admits the following representation-
theoretic count:

|Sn| =
∑

λ⊢n

(
fλ

)2
.(2.1)

An elegant combinatorial proof of this fact follows from Robinson-Schensted Correspondence, a well-
known combinatorial procedure that associates to each permutation σ ∈ Sn a unique pair of standard
Young tableaux of the same shape, and vice versa (see [27]).
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Knuth generalized this correspondence to a wider class of combinatorial objects called generalized

permutations, which are 2×m arrays of integers

(
i1 i2 · · · im
j1 j2 · · · jm

)

such that i1 ≤ · · · ≤ im and if ir = ir+1, then jr ≤ jr+1.

Robinson-Schensted-Knuth Correspondence (RSK) associates a pair of semistandard Young tableau
of the same shape to each generalized permutation, and vice versa (see [27]). We may encode an
injection 1 7→ j1, 2 7→ j2, · · · , k 7→ jk =: (j1, j2, · · · , jk) as a generalized permutation:

(
1 2 · · · k k + 1 · · · k + 1
j1 j2 . . . jk jk+1 · · · jn

)

,

where jk+1, · · · , jn ∈ [n] \ {j1, · · · , jk} are ordered from least to greatest. Applying the RSK al-
gorithm to the encoded injections associates to each injection a standard Young tableau P and a
semistandard Young tableau Q of the same shape λ ⊢ n. The subtableau of cells labeled k+ 1 in Q
form a horizontal strip on n − k cells. Removing this horizontal strip results in a standard Young
tableau of shape µ ⊢ k such that λ/µ is a horizontal strip, and so we arrive at the following theorem.

Theorem 2.1. RSK gives an explicit bijection between Sk,n and pairs (P,Q) where P is a standard
Young tableau of shape λ ⊢ n and Q is a standard Young tableau of shape µ ⊢ k such that λ/µ is a
horizontal strip.

For example, let n = 4 and k = 2. There are 4!/2! = 12 injections from [2] to [4]:

(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3).

Their respective unique pairs (P,Q) of standard Young tableau are listed from left to right as follows:

1 2 3 4 1 2 × ×
1 2 4
3

1 2 ×
×

1 2 3
4

1 2 ×
×

1 3 4
2

1 × ×
2

1 3 4
2

1 2 ×
×

1 3
2 4

1 2
× ×

1 2 4
3

1 × ×
2

1 4
2
3

1 ×
2
×

1 2
3 4

1 2
× ×

1 2 3
4

1 2 ×
×

1 3
2
4

1 ×
2
×

1 2
3
4

1 ×
2
× .

The theorem above gives a combinatorial proof of a natural generalization of equation (2.1).

Corollary 2.2. The number of injections from [k] to [n] can be counted as follows:

|Sk,n| =
∑

µ,λ

fµfλ

where the sum runs over pairs µ ⊢ k, λ ⊢ n such that λ/µ is a horizontal strip.

In the next section, we present the corroborating representation theory for the count above.
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3. Representation Theory and the Injection Scheme

Throughout this work, we assume a general understanding of group representation theory and the
theory of association schemes. We refer the reader to [16] and [20] for more detailed discussions.

3.1. Association Schemes and Finite Gelfand Pairs. Let X be a finite set of cardinality v.
An association scheme is a set of d + 1 binary v × v matrices A = {A0, A1, · · · , Ad} over a set X
that satisfy the following axioms:

(1) Ai ∈ A ⇒ A⊤
i ∈ A for all 0 ≤ i ≤ m,

(2) A0 = I where I is the identity matrix,

(3)
∑d

i=0 Ai = J where J is the all-ones matrix, and

(4) AiAj = AjAi =
∑d

k=1 pi,j(k)Ak and pi,j(k) ∈ Z for all 0 ≤ i, j ≤ d.

Moreover, if Ai = A⊤
i for all 0 ≤ i ≤ m, then we say the association scheme is symmetric.

The matrices A1, · · · , Ad are referred to as associates, and the constants pi,j(k) are the so-called
intersection numbers of the association scheme. Let vi denote the valency (rowsum) of the associate
Ai, and letmi denote themultiplicity (dimension) of the ith eigenspace for all 0 ≤ i ≤ m. The matrix
algebra generated by the identity matrix and its associates is the association scheme’s Bose-Mesner

algebra, and these matrices form a basis for this algebra. The character table of an association
scheme is a (d+ 1)× (d+ 1) matrix P whose rows are indexed by eigenspaces, columns indexed by
matrices of A, and defined such that Pi,j is the eigenvalue for the ith eigenspace of Aj . It turns
out that P is invertible, and so the dual character table Q of the association scheme is defined to
be Q = vP−1. The dual character table of the injection scheme will be central for obtaining linear
programming bounds on injection codes.

In general, one can determine the intersection numbers of an association scheme from its character
table by appealing to the following well-known relation; see, for instance, Chris Godsil’s notes [20].

Proposition 3.1. The intersection numbers satisfy

pij(k) =
1

vvk

d∑

h=0

mhPh,iPh,jPh,k.

Conversely, it is possible to find the eigenvalues from the intersection numbers by computing eigen-
values of ‘random’ linear combinations of intersection matrices Bk = [pij(k)], which can be shown
[12, p. 13] to furnish another basis for the Bose-Mesner algebra.

For association schemes that arise from groups, the entries of P can be determined via group
representation theory, i.e., in terms of the spherical functions of a finite Gelfand pair [3].

Theorem 3.2. [25] Let K ≤ G be a group. Then the following are equivalent.

(1) (G,K) is a Gelfand Pair;

(2) The induced representation 1 ↑GK
∼=

⊕d
i=1 Vi (equivalently, the permutation representation of

G acting on G/K) is multiplicity-free;
(3) The double-coset algebra C[K\G/K] is commutative.
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Moreover, a Gelfand pair is symmetric if KgK = Kg−1K for all g ∈ G.

Let (G,K) be a Gelfand pair, X := G/K, and define χi to be the character of Vi as in the second
statement of Theorem 3.2, with dimension di := χi(1). The functions ω

1, ω2, · · · , ωd ∈ C[X ] defined
such that

ωi(g) =
1

|K|

∑

k∈K

χi(g
−1k) ∀g ∈ G

are called the spherical functions and form an orthogonal basis for C[K\G/K]. We call the equation
above the projection formula, as ωi is the projection of χi onto the space of K-invariant functions.

The (left) K-orbits of X partition the cosets into (K\G/K)-double cosets, which correspond to
spheres Ω0,Ω1, · · · ,Ωd ⊆ G/K. It is helpful to think of spheres and spherical functions as the
spherical analogues of conjugacy classes and irreducible characters respectively. Indeed, the spherical
functions are constant on spheres, and it can be shown that the number of distinct spherical functions
equals the number of distinct irreducibles of C[X ], equivalently, the number of spheres of X .

We write ωi
j for the value of the spherical function ωi corresponding to the ith irreducible on the

double coset corresponding to Ωj .

Proposition 3.3. [3] Let (G,K) be a finite Gelfand pair and let P be the character table of the
corresponding association scheme. Then

Pi,j = |Ωj |ω
i
j.

3.2. The Injection Scheme. In this section we recall some basic facts about the injection scheme,
a symmetric association scheme defined over the set of injections. For proofs of the following basic
facts and a more detailed discussion of the injection scheme, we refer the reader to [24].1

The product G := Sk × Sn of two symmetric groups acts on an injection σ : [k] → [n] as (π, ρ) : σ 7→
ρ∗σ∗π−1, where (π, ρ) ∈ G and ∗ denotes the composition of functions. The stabilizer of the identity
injective function with respect to this action is the group Kk,n, i.e., the cosets Gk,n/Kk,n are in one-
to-one correspondence with injective functions. This action gives a permutation representation 1 ↑GK
that is multiplicity-free, i.e., (Gk,n,Kk,n) is a symmetric Gelfand pair. By the Littlewood-Richardson
rule, we have

1↑
Gk,n

Kk,n

∼=
⊕

µ⊢k,λ⊢n
λ/µ is a horiz. strip

µ⊗ λ.(3.1)

The orbitals of G acting diagonally on G/K ×G/K are in one-to-one correspondence with double
cosetsK\G/K. If we think of injections graphically as maximum matchings of the complete bipartite
graph Kk,n, then we observe that the double cosets and orbitals are in one-to-one correspondence
with graph isomorphism classes that arise from the multiunion of any injection with the identity
injection, i.e., a disjoint union of even paths and even cycles. In light of this, we use the notation
(λ|ρ) to denote the index of the orbital or double coset corresponding to the isomorphism class
containing a cycle of length 2λi for all 1 ≤ i ≤ ℓ(λ), and a path of length 2ρi for all 1 ≤ i ≤ ℓ(ρ).
Note that an isolated node is a path of length zero.

Let C(λ|ρ) denote the sphere corresponding to the cycle-path type (λ|ρ). For example, we have
(1, 2, 3, 4) ∈ C(14|04), (2, 1, 3, 5) ∈ C(2,1|03,1), and (5, 6, 7, 8) ∈ C(∅|14). The following result gives a

1In [24], the scheme is called the k-partial permutation association scheme, as one may interpret injections as
partial permutations.
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simple count for the sizes of the spheres, analogous to the well-known formula for determining the
size of a conjugacy class in Sn.

Proposition 3.4. [24] For any cycle-path type (λ|ρ), the size of the (λ|ρ)-sphere is

|C(λ|ρ)| =
k!(n− k)!

∏k
i=0 i

ℓiℓi!ri!

where λ = (0ℓ0 , 1ℓ1 , · · · , kℓk)f, ρ = (0r0 , 1r1, · · · , krk), and ℓ(ρ) = r1 + · · ·+ rk.

Note that the orbitals can be represented as a set Ak,n := {A(λ|ρ)} of symmetric matrices that sum
to the all-ones matrix. In particular, we have

A(λ|ρ) =

{

1 if i ∪ j ∼= (λ|ρ),

0 otherwise,

for all injections i, j and cycle-path types (λ|ρ). We call Ak,n the injection scheme, or more precisely,
the (k, n)-injection scheme. Note that the valencies v(λ|ρ) are just the sizes of the spheres, and the
multiplicity m(λ|ρ) is the dimension of the irreducible representation corresponding to (λ|ρ). This
correspondence between cycle-path types and irreducible representations can be described as follows.

Recall that irreducible representation that appear in the permutation representation of G on injec-
tions is of the form α⊗β where β/α is a horizontal strip of size n− k. Consider a tableau of β such
that the cells of β/α are marked. Every column of α in β with a marked cell below it corresponds to
a part in ρ whereas an unmarked column corresponds to a part in λ. For instance, taking α = (2, 1)
and n = 7, we have the following cycle-path types for varying α⊗ β:

× ×
×

×
︸ ︷︷ ︸

(∅|02,2,1)

× × ×

×
︸ ︷︷ ︸

(1|03,2)

× × ×
×

︸ ︷︷ ︸

(2|03,1)

× × × ×

︸ ︷︷ ︸

(2,1|04)

.

Note that marked singleton columns correspond to paths of length zero (i.e., isolated nodes).

We are now in a position to give a formula for ω
(λ|ρ)
(µ|ν) for all cycle-path types. Let α ⊗ β be the

irreducible representation of G represented by the cycle-path type (λ|ρ). We may pick a double
coset representative (τ, σ) ∈ G of (µ|ν) such that τ = (), as the one-sided action of Sn on injections
is transitive. We have

ω
(λ|ρ)
(µ|ν) = ω(λ|ρ)(((), σ)) =

1

|K|

∑

k∈K

χα⊗β(((), σ)
−1k)

=
1

|K|

∑

(k1,k2)∈K

χα⊗β((k1, σ
−1k1k2))

=
1

k!(n− k)!

∑

k1∈Sk

χα(k1)
∑

k2∈Sn−k

χβ(σ
−1k1k2).

Note that the entries of the character table of any symmetric association scheme are algebraic
integers, and the characters of the symmetric group are integers; therefore, the projection formula
above shows that the entries of the character table of the injection scheme are integers. As an aside,
this gives a much simpler proof of the integrality of the spectra of so-called (n, k, r)-arrangement

graphs, which live in the Bose-Mesner algebra of Ak,n (see [9] for more details).

Although the projection formula gives an explicit way of computing the character table of Ak,n,
it is difficult to work with from both a computational and analytical point of view. It becomes
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prohibitively difficult to compute the character table of Ak,n using this formula for even modest
values of k, n, and it seems difficult to derive good expressions for the characters of Ak,n using this
formula. Indeed, we are unaware of any result that leverages the projection formula for spherical
functions to derive tractable expressions for the character tables of association schemes associated
with Gelfand pairs.

4. A Canonical Basis for the Injection Scheme

Let (ρ1, V1) and (ρ2, V2) be two representations of a group H , and let φ : V1 → V2 be a linear
transformation. We say that φ intertwines ρ1 and ρ2 if φρ1(h) = ρ2(h)φ for all h ∈ H .

Lemma 4.1 (Schur’s Lemma). If (ρ1, V1) and (ρ2, V2) are irreducible representations of H and φ
is an intertwining map for ρ1 and ρ2, then either φ is the zero map or it is an isomorphism.

Let C[Sk,n] be space of all complex-valued functions defined over injections Sk,n. Let {ei} defined
such that ei(j) = δi,j for all i, j ∈ Sk,n be the standard basis for this space. For any λ ⊢ n, let Mλ

be permutation representation of Sn acting on the set of all λ-tabloids. Let {e{t}} defined such that
e{t}({s}) = δ{t},{s} for any two λ-tabloids {t}, {s} be the standard basis for this space. The product

Mµ ⊗Mλ is a Gk,n-representation with basis {e{s} ⊗ e{t}} where {s},{t} range over all µ-tabloids
and λ-tabloids respectively.

Let {s} be a µ-tabloid and {t} be a λ-tabloid such that µ ⊢ k and λ ⊢ n. We say that {s}, {t}
covers an injection σ ∈ Sk,n if row{s}(i) = row{t}(σ(i)) for all 1 ≤ i ≤ k. For example, the injections
(1, 2, 3, 4, 5) in red and (2, 3, 6, 5, 4) in thick blue are covered by the tabloids in normal and bold
lettering below, whereas the injection (4, 3, 6, 5, 2) in dashed blue is not:

1 1 2 2 3 3 7 8

4 4 5 5

6

1 1 2 2 3 3 7 8

4 4 5 5

6
.

Let 1{s},{t} ∈ C[Sk,n] be the characteristic function of the set of injections covered by {s}, {t}. For

any µ ⊢ k, λ ⊢ n such that λ/µ is a horizontal strip, let φµ,λ : Mµ ⊗ Mλ → C[Sk,n] be the map
defined such that

φµ,λ(e{s} ⊗ e{t}) = 1{s},{t} for all {s}, {t},

then extending linearly. An injection σ is covered by {s}, {t} if and only if (τ, π)σ is covered by
({τs}, {πt}) for all (τ, π) ∈ Gk,n. This implies that

φµ,λ(τe{s} ⊗ πe{t}) = (τ, π)φµ,λ(e{s} ⊗ e{t}) for all (τ, π) ∈ Gk,n,

i.e., the linear map φµ,λ intertwines Mµ ⊗Mλ and C[Sk,n].

It is well-known that the λ-isotypic component of Mλ has multiplicity 1, and so the (µ⊗λ)-isotypic
component of Mµ ⊗Mλ has multiplicity 1. Let (ρµ,λ, Vµ ⊗ Vλ) be this Gk,n-irreducible. A basis for
ρµ,λ can be obtained by tensoring all pairs of standard µ-polytabloids and standard λ-polytabloids.
For each standard Young tableau t, let et denote the corresponding standard polytabloid.
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We say that an injection σ is aligned with respect to {s}, {t} if row{s}(i) = row{t}(σ(i)) and cols(i) =
colt(σ(i)) for all 1 ≤ i ≤ k. In the example above, the blue dashed injection (2, 3, 6, 5, 4) is not aligned
with the tabloids above, but the red injection (1, 2, 3, 4, 5) is.

Lemma 4.2. For each irreducible representation Vµ ⊗ Vλ of the induced representation 1↑
Gk,n

Kk,n
,

there exists a v ∈ Vµ ⊗ Vλ such that φµ,λ(v) 6= 0.

Proof. Let e be the identity injection. Consider the pair of standard Young tableaux s, t of shape
µ and λ respectively obtained by inserting the numbers 1, 2, · · · , k into the rows of s from left to
right, top to bottom, then taking t to be the standard Young tableau obtained from s by adding a
horizontal strip and labeling the cells k+1, k+2, · · · , n from left to right. For example, if µ = (3, 2, 1)
and λ = (4, 3, 2), then s and t are

1 2 3
4 5
6

1 2 3 9
4 5 8
6 7 .

Note that e is aligned with respect to {s}, {t}. Let Cs, Ct denote the column-stabilizers of s and t
respectively. It is clear that

es ⊗ et =
∑

π∈Cs,π′∈Ct

sgn(π) sgn(π′) e{πs} ⊗ e{π′t}.

Let v = es ⊗ et and f = φµ,λ(v). We have

f(e) =
∑

π∈Cs,π′∈Ct

sgn(π) sgn(π′) 1{πs},{π′t}(e).

If π ∈ Cs sends i to j such that 1 ≤ i, j ≤ k, then π′ ∈ Ct must also send i to j, otherwise {πs}, {π′t}
does not cover e. On the other hand, if π′ ∈ Ct sends i to j such that 1 ≤ i ≤ k and k + 1 ≤ j ≤ n,
then ({πs}, {π′t}) does not cover e for all π ∈ Cs, which implies that the cells of the horizontal strip
λ/µ are fixed points of every π′ ∈ Ct such that {πs}, {π′t} covers e. The foregoing implies that
sgn(π) sgn(π′) = 1 if and only if {πs}, {π′t} covers e. In particular, we have

f(e) =
∑

π∈Cs,π′∈Ct

sgn(π) sgn(π′) 1{πs},{π′t}(e) = |Cs|,

thus f = φµ,λ(v) 6= 0, as desired. �

Now let fs,t := φµ,λ where s, t are standard Young tableaux of shape µ ⊢ k and λ ⊢ n such that λ/µ
is a horizontal strip. Let F := {fs,t} where s and t range over all such standard Young tableaux. By
Lemma 4.2, φµ,λ is not the zero map, so by Schur’s Lemma, we have that φµ,λ is an isomorphism.
The elements of F are pairwise linearly independent, hence Corollary 2.2 implies that F is a basis.
Moreover, we have the property that basis functions in different isotypic components are orthogonal,
thus we arrive at the following theorem.

Theorem 4.3. The set F is a basis for C[Sk,n] such that 〈fq,r, fs,t〉 = 0 for all fq,r ∈ Vµ⊗λ and
fs,t ∈ Vµ′⊗λ′ such that λ/µ 6= λ′/µ′.

It would be interesting to refine the result above to a Fourier basis for C[Sk,n], that is, further require
that basis functions in the same isotypic component are orthogonal. Note that Young’s orthogonal
form furnishes such a basis for the case k = n (see [16]).
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Theorem 4.4 (Frobenius Reciprocity). Let ρ be an irreducible representation of a group H and
let K be a subgroup of H . The multiplicity of the ρ-isotypic component of 1↑HK is the dimension of
the subspace of K-invariant functions of the ρ-isotypic component.

Let Qk,n denote the projection onto the space of Kk,n-invariant functions. For any µ ⊢ k, define
µ! := µ1!µ2! · · ·µℓ(µ)!.

Lemma 4.5. Let s, t be standard Young tableaux of shape µ ⊢ k and λ ⊢ n such that λ/µ is a
horizontal strip. If Qk,nfs,t 6= 0, then 1

(µ⊤)!
Qk,nfs,t is the (µ⊗ λ)-spherical function.

Proof. By construction, fs,t ∈ C[Sk,n] lives in the irreducible W ≤ C[Sk,n] that is isomorphic to
Vµ ⊗ Vλ. Because Qk,n sends W to W , we have that Qk,nfs,t ∈ W is a Kk,n-invariant function.
By Frobenius Reciprocity, the space of Kk,n-invariant functions of W has dimension 1; therefore, if
Qk,nfs,t 6= 0, then it is the (µ⊗λ)-spherical function up to scaling. To ensure that the (µ, λ)-spherical
function is 1 on the Kk,n\()/Kk,n double coset, we normalize by |Cs| = (µ⊤)!. �

We are now ready to give a proof of our formula for the spherical functions of (Gk,n,Kk,n). Let s, t
be the pair of standard Young tableaux as defined in the proof of Lemma 4.2.

Theorem 4.6. Let ωµ⊗λ be the (µ⊗ λ)-spherical function of the Gelfand pair (Gk,n,Kk,n). Then

ωµ⊗λ
(γ|ρ) =

1

|C(γ|ρ)|

∑

σ∈C(γ|ρ)

∑

π∈Ct

sgn(π) 1{s},{πt}(σ), and

Pµ⊗λ,(γ|ρ) =
∑

σ∈C(γ|ρ)

∑

π∈Ct

sgn(π) 1{s},{πt}(σ)

for all cycle-path types (γ|ρ). Moreover, .

Proof. An argument similar to the proof of Lemma 4.2 shows that Qk,nfs,t 6= 0, hence Qk,nfs,t =

ω(µ⊗λ) by the lemma above. In particular, we have

ωµ⊗λ
(γ|ρ) =

1

(µ⊤)!|C(γ|ρ)|

∑

π∈Cs,π′∈Ct

sgn(π) sgn(π′)|{σ ∈ C(γ|ρ) : {πs}, {π
′t} covers σ}|.

But note that Cs ≤ Ct, which gives us

ωµ⊗λ
(γ|ρ) =

1

(µ⊤)!|C(γ|ρ)|

∑

π∈Cs,τπ∈Ctπ

sgn(τ)|{σ ∈ C(γ|ρ) : {πs}, {τπt} covers σ}|.

Since {πs}, {τπt} covers σ if and only if {s}, {τt} covers σ, we may rewrite the above as

ωµ⊗λ
(γ|ρ) =

1

|C(γ|ρ)|

∑

π∈Ct

sgn(π)|{σ ∈ C(γ|ρ) : {s}, {πt} covers σ}|.

Rearranging completes the proof of the first part, and Proposition 3.3 proves the second part. �

To give a quick demonstration of the formula’s efficacy, let µ := (µ1 + n− k, µ2, · · · , µℓ(µ)) ⊢ n for

any µ ⊢ k, and consider the spherical function ωµ⊗µ. For any (γ|ρ) such that ρ has more than µ1

non-trivial paths, for each σ ∈ C(γ|ρ), there exist two cells cσ, c
′
σ in the same column of t that are

not in the image of σ. Each of these involutions (cσ, c
′
σ) are sign-reversing, showing that ωµ⊗µ

(γ|ρ) = 0,

which is hardly transparent from the projection formula. Indeed, the (µ ⊗ µ)-spherical functions
play a crucial role in [2, 24], and our formula may allow one to improve the results of [24].
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5. Code bounds

5.1. Delsarte’s linear programming bound. Consider an association schemeA = {A0, A1, . . . , Ad}
over X , as defined in Section 3.1.

For a subset Y ⊆ X , its characteristic function φ = φY ∈ {0, 1}X is defined in the usual way as

φ(x) =

{

1 if x ∈ Y ;

0 otherwise.

Assuming Y 6= ∅, its inner distribution vector a = aY = (a0, a1, . . . , ad) has entries

ai =
φ⊤Aiφ

φ⊤φ
,

representing the relative frequencies of ith associates among pairs of elements of Y .

The following observation is simple, yet has profound consequences.

Theorem 5.1 (Delsarte, [12]). For ∅ 6= Y ⊆ X , its inner distribution vector a satisfies

aQ ≥ 0,

where Q is the dual eigenmatrix.

A linear programming bound for association schemes is carried by Theorem 5.1 in the following
sense. For a set D of associate indices, a D-code is a subset Y ⊆ X such that any two distinct
elements of Y are ith associates for some i ∈ D. In other words, in terms of the distribution vector,
Y is a D-code if ai = 0 for i 6∈ D. Moreover, distribution vectors are normalized so that a0 = 1.
Consider the LP

maximize
∑

i

ai(5.1)

subject to aQ ≥ 0, a0 = 1 and ai = 0 for i ∈ D.

It follows from Theorem 5.1 and the above remarks that the cardinality of aD-code is upper bounded
by the solution of (5.1).

Using (5.1), Tarnanen [31] computed LP bounds on permutation codes for n ≤ 10 and various
allowed distance sets. This was extended by Bogaerts [6] to n ≤ 14. Here, the character table of
Sn takes the role of Q, and the set D is built to contain all λ ⊢ n such that n minus the number of
ones in λ belong to the allowed set of Hamming distances. For example, with n = 5 and Hamming
distances in {2, 4, 5}, we take D to consist of the associate indices

(2, 1, 1, 1), (2, 2, 1), (4, 1), (3, 2), (5).

With this in mind, we abuse notation and henceforth letD simply denote our set of allowed Hamming
distances.

For the injection scheme Ak,n, we implemented (5.1) for 3 ≤ k < n ≤ 15, with the exception of a few
parameter pairs (k, n) at the larger end of this triangle, which are presently out of reach. Whereas
character tables for the symmetric group, and even for An−1,n using [29], can be computed recur-
sively for moderately large n, the character table for general k and n is presently more challenging
computationally, even with our combinatorial formula from Section 4. On the other hand, the LP
itself is comparatively easy to solve (and check numerically), even for parameters near the upper
end of our range.
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n k d M ≤
7 6 4 199
8 6 3 1513

7 4 1462
9 7 4 2846

8 4 12096
5 2417

10 7 3 27308
8 4 26206

5 5039
9 4 92418

5 19158
6 4991

11 8 4 52646

n k d M ≤
11 9 4 256682

5 47073
10 4 936332

5 185560
6 42068

12 8 3 602579
9 4 584327
10 4 2699260

5 471981
11 4 10241521

5 1922527
6 411090

13 9 4 1185053

n k d M ≤
13 12 4 123235550

5 23347599
6 4687470
7 910371

14 13 4 1621775700
5 309490273
6 58903464
7 10510496
8 2117618

15 14 4 23358981663
5 4130012797
6 804830167
7 138132435
8 24260981

Table 1. Upper bounds on M(n, k, d) via linear programming.

In what follows, we let M(n, k,D) denote the maximum size of a D-code in the injection scheme
Ak,n, where D contains the allowed Hamming distances. We briefly describe a few natural distance
sets D and discuss some related combinatorial problems. Tables of LP bounds accompany these
different categories of codes.

5.2. Classical minimum distance codes. For the purpose of detecting and correcting errors,
the distance sets typically considered in coding theory model a minimum allowed distance; that is,
one takes D = {d, d + 1, . . . } for some integer d. Following the notation used in [11, 17, 31], we
write M(n, k, d) in place of M(n, k, {d, d+ 1, . . . }) for the maximum size of an injection code with
minimum Hamming distance d. Some basic observations and bounds on M(n, k, d) can be found in
[17]. A basic recursive upper bound is as follows.

Proposition 5.2 (Singleton bound). M(n, k, d) ≤ n!/(n− k + d− 1)! = |Sk−d+1,n|.

For r > 0, let br be the size of the (any) ball of radius r in Sk,n. In [17] br is determined as

⌊r⌋
∑

j=0

(
k

j

) j
∑

i=0

(−1)i
(
j

i

)
(n− k + j − i)!

(n− k)!
.

A standard argument then gives the sphere packing bound for injections.

Proposition 5.3 (Sphere packing bound). M(n, k, d) ≤
|Sk,n|

b(d−1)/2
.

Additional bounds on M(n, k, d) are motivated by interest in the permutation code case, both
for applications to powerline communication [11, 23] and as an extremal problem of independent
combinatorial interest. Indeed, equality in the Singleton bound is equivalent to existence of an
ordered design; see [10, Section VI.38] and [17] for more information.

The case d = k − 1 has special significance for its connection with latin squares. Colbourn, Kløve
and Ling [11] showed that the existence of r mutually orthogonal latin squares of order n imply a
permutation code of length n and minimum distance n− 1 of size rn. Here, the code permutations
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correspond to the n level sets occurring among each of the r squares. With this same construction, it
is easy to see that the existence of r mutually orthogonal k×n latin rectangles impliesM(n, k, k−1) ≥
rn. It follows that an upper bound on M(n, k, k − 1) induces an upper bound on the number of
mutually orthogonal k × n latin rectangles.

Example 5.4. There exist a set of four mutually orthogonal incomplete 6×6 latin squares missing
a common 2 × 2 subsquare. This implies the existence of four 4 × 6 latin rectangles which are
mutually orthogonal in the sense that superimposing any two produces no repeated pairs. It follows
that M(6, 4, 3) ≥ 24; in fact, M(6, 4, 3) = 27 was shown in [17].

Table 1 presents those upper bounds on M(n, k, d) we found which improve the Singleton bound
and the sphere packing Bound for k < n ≤ 12, all k ≤ 10 with n ≤ 15, k = n − 1 < 15, and
(n, k) ∈ {(13, 9), (14, 9)}. There is no entry for (n, k) = (14, 9) as the LP bound is never better than
one of the two trivial bounds.

While building and verifying our table of code bounds, we noticed that Bogaerts’ claim in [6] of
there being no improvements via (5.1) to the Singleton bound for permutation codes (k = n) with
14 ≤ n ≤ 16 is incorrect. The correct values can be found in Table 2.

n d M(n, d) ≤
11 4 3326400

6 158617
7 36718

12 4 39916800

5 6141046

6 1766160

7 361395
13 4 411555972

5 75789397
6 21621600

7 4163390

8 879527

n d M(n, d) ≤
14 4 5298680543

5 918752861
6 255869198
7 53744475
8 9901953
9 2083046

15 4 78702624000
5 12053059200
6 3511921683
7 773606486
8 130245681
9 23627561

Table 2. LP upper bounds on permutation codes with minimum distance d.
Bounds which are obtained in [6], but not due the LP bound, are cursive. Bounds
which are correctly the LP bound in [6] are bold.

5.3. Equidistant codes and general distance sets. An equidistant permutation array, or EPA(n, d)
is a subset Γ ⊆ Sn with the property that any two distinct elements have Hamming distance exactly
d. In other words, an EPA(n, d) is a {d}-code in (the conjugacy scheme of) Sn. The problem of
determining bounds on these objects dates back to the 1970s, beginning with a question of Bolton
in [8]. A concise survey on equidistant permutation arrays can be found in [10, Section VI.44.5].
To our knowledge, the more general problem of equidistant injection codes has not been considered.
However, Huczynska [23] has considered equidistant families for the ‘constant composition’ varia-
tion in which permutations are replaced by codewords having every element in [n] occurring equally
often.

As a particular case, distance k/2 for injections of even length k may be especially interesting for
possible connections with Hadamard matrices.
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n k d M ≤ Triv
5 3 2 5 6

4 3 6 7
7 3 2 8 9

4 2 9 10
5 3 14 15
6 3 13 14

4 26 30
8 6 3 20 21

4 37 40
7 4 30 32

5 45 52
9 6 3 28 29

4 42 45
7 3 26 30
8 3 20 21

4 40 44
6 59 72

10 4 3 18 19
6 3 35 36

4 47 49
7 3 40 42

4 77 78
5 83 87

n k d M ≤ Triv
10 8 3 30 33

6 92 107
9 3 22 23

4 47 58
5 92 95
7 75 96

11 4 3 20 21
6 3 42 43

4 53 54
7 3 49 52

4 94 100
5 87 93

8 3 48 52
6 142 143

9 3 33 38
6 117 119
7 108 141
8 60 61

10 4 52 67
5 108 132
6 187 189
8 93 123

n k d M ≤ Triv
12 5 2 23 24

6 2 26 27
3 49 50

7 3 60 61
4 104 114
5 92 96

8 3 66 67
6 146 156

9 3 53 57
4 115 116
7 166 191

10 3 38 43
4 114 119
5 199 201
6 212 214
7 166 168
8 126 180
9 76 77

11 3 28 29
4 56 75
5 120 150
6 393 394
7 317 324
9 112 153

Table 3. Upper bounds on M = M(n, k, {d}) for equidistant injection codes. The
column with heading ‘Triv’ contains a trivial upper bound given by (5.2); that is,
the floor of |Sk,n| divided by the LP bound for M(n, k, {d}c).

Table 3 presents various upper bounds on M(n, k, {d}) for 2 ≤ d < k < n ≤ 10, that is, upper
bounds on the size of a family of injections in Sk,n at pairwise distance exactly d.

Studying various other sets of allowed distances is natural in many situations. Delsarte showed [12]
that the solution MLP (D) to (5.1) satisfies a clique-coclique bound

(5.2) MLP(D)MLP(D
c) ≤ |X |,

where Dc denotes the complement of D. In particular, it follows from (5.2) that code bounds in
the minimum distance case can be obtained from applying the LP (5.1) to the pairwise maximal

distance case. As an example, Tarnanen [31] and Dukes and Sawchuk [18] compute LP bounds for
some small allowed distances, such as D = {2, 3}, which hold for general n.

Even dropping the condition that allowed distances form an interval is not without some precedent
in other contexts: set systems with intersection conditions modulo a prime, arcs in finite geometries,
or the independence number of relation graphs in an association scheme.

We offer a (contrived) example for injections with a distance set which is not an interval. Recall
that in ‘eventown’, with population N , there is a family C of clubs with the property that |C ∩C′|
is even for any C,C′ ∈ C . Berlekamp [5] showed that the number of clubs satisfies |C | ≤ 2⌊N/2⌋.
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Problem. The N citizens of eventown are electing a mayor from a selection of n candidates. Each
ballot consists of a ranked list of k of the candidates. Is it possible for every two ballots to agree in
an even number of places? The answer is yes if N ≤ M(n, k,D), where D = {2, 4, 6, . . .}.

In Table 4, we present a sample of upper bounds found on M(n, k,D) for small n, k and sets of
distances D ⊆ [k]. We only list entries for which Equation (5.2) is not satisfies with equality, that is

MLP(D)MLP(D
c) < |X |.

Recently, Aljohani, Bamberg, and Cameron defined the concepts of synchronizing and separating

for association schemes [1]. In our language, the injection scheme is non-separating if

M(n, k,D)M(n, k,Dc) = |X |

for one non-trivial D. Table 4 implies that the injection scheme is non-separating for (n, k) ∈
{(5, 3), (6, 3), (7, 3)} if we limit ourselves to distance-sets and not all possible graphs.

6. Future Work and Open Questions

6.1. Representation Theory. Our main question is to what extent the representation theory of
the symmetric group (i.e., the Gelfand pair (Sn × Sn, diag(Sn))) carries over to the Gelfand pair
(Gk,n,Kk,n). Indeed, we believe there are stronger connections to the representation theory of the
symmetric group yet to be shown.

For example, following [25, I.7] and letting

C′ :=
⊕

k,n : k≤n

C[Kk,n\Gk,n/Kk,n],

one can define a natural bilinear multiplication on C′ so that it is a commutative and associative
graded C-algebra. Classically, the characteristic map ch : C → Λ is an isometric isomorphism
between the commutative and associative graded algebra C generated by all irreducible characters
of symmetric groups and the ring of symmetric functions Λ. It would be particularly interesting to
find an analogous characteristic map ch′ : C′ → Λ′ to a suitable polynomial ring Λ′ such that its
vector space (Λ′)k of degree-k polynomials has dimension equal to the number of cycle-types of Sk,n.

Finally, we suspect there are other Lie and q-analogues of (Gk,n,Kk,n) that might be worth investi-
gating, which would likely require different techniques than the ones presented here.

6.2. Coding Theory. It is of interest to determine when M(n, k,D) can achieve its LP upper
bound. For D = {d, d+ 1, . . . , n}, a few constructions can be found in [17], but essentially nothing
is known for other distance sets D. In another direction, one can also investigate the behavior of
the LP bound itself. A look at Table 1 suggests that for fixed k, the LP bound is non-trivial only
for a finite number of values of n.

As noted earlier, our data suggests that the injection scheme is usually separating except for maybe
a few exceptional cases. It would be interesting to show this formally.
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