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Abstract

A pair of sequences is called a Z-complementary pair (ZCP) if it has zero aperiodic autocorrelation

sums at each of the non-zero time-shifts within a certain region, called the zero correlation zone (ZCZ).

ZCPs are categorised into two types: Type-I ZCPs and Type-II ZCPs. Type-I ZCPs have the ZCZ around

the in-phase position and Type-II ZCPs have the ZCZ around the end-shift position. Till now only a

few constructions of Type-II ZCPs are reported in the literature, and all have lengths of the form 2m±1

or N + 1 where N = 2a10b26c and a, b, c are non-negative integers. In this paper, we propose a

recursive construction of ZCPs based on concatenation of sequences. Inspired by Turyn’s construction

of Golay complementary pairs, we also propose a construction of Type-II ZCPs from known ones. The

proposed constructions can generate optimal Type-II ZCPs with new flexible parameters and Z-optimal

Type-II ZCPs with any odd length. In addition, we give upper bounds for the PMEPR of the proposed

ZCPs. It turns out that our constructions lead to ZCPs with low PMEPR.
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I. INTRODUCTION

A PAIR of sequences is called a Golay complementary pair (GCP), if their aperiodic autocor-

relation sums (AACSs) are zero everywhere, except at the zero shift [1], [2]. GCPs were first

introduced by Golay in 1961 in the context of an optical problem in multislit spectrometry. Since

then, GCPs have found extensive engineering applications for its ideal correlation properties.

For example, GCPs are useful in inter-symbol interference channel estimation [3], [4], radar

waveform designs [5], [6], [7], asynchronous multi-carrier code-division multiple access (MC-

CDMA) communications [8], [9], and peak-to-mean envelope power ratio (PMEPR) control in

multi-carrier communications [10], [11].

The main drawback of the GCPs is their limited availability for various lengths. It was

conjectured that binary GCPs are available only for lengths of the form 2a10b26c where a, b, c

are non-negative integers [12]. By computer search, the conjecture has been verified for binary

GCPs of length up to 100 [12]. In search of binary sequence pairs of other lengths, Fan,

Yuan and Tu [13] proposed the concept of Z-complementary pair (ZCP) in 2007, which is

a pair of sequences whose aperiodic autocorrelation sums are zero not everywhere but within

a certain region called zero correlation zone (ZCZ). Based on their lengths, binary ZCPs are

categorised into two types: odd-length (OB-ZCPs) and even-length ZCPs (EB-ZCPs). It was

further conjectured by Fan, Yuan and Tu [13] that “For OB-ZCPs, the maximum zero correlation

zone is given by Zmax = (N + 1)/2, and for EB-ZCPs, given that the lengths N 6= 2a10b26c, the

ZCZ is upper bounded by N − 2.” In 2011 Li et al. [14] proved the conjecture for OB-ZCPs.

However, a systematic construction of OB-ZCPs was still unknown.

In 2014, Liu, Udaya and Guan [15] made remarkable progress towards this open problem and

proposed a systematic construction of OB-ZCPs. The generated optimal sequence pairs achieve

the maximum ZCZ of width (N + 1)/2 as well as the minimum AACSs magnitude of 2 at

each time-shift outside the ZCZ [15]. The construction of optimal OB-ZCPs in [15] was given

by applying the insertion method on binary Golay-Davis-Jedwab (GDJ) sequences. In 2014,

Liu, Udaya and Guan [16] also confirmed the conjecture for EB-ZCPs that Zmax ≤ N − 2.

Recently, a lot of work has been done for constructing EB-ZCPs (for example, see [17], [18],

[19]). Besides the lengths, in [15] Liu, Udaya and Guan further categorised ZCPs based on their

correlation properties: Type-I ZCPs are sequence pairs having zero AACSs at each time-shift

within the ZCZ around the in-phase position, while Type-II ZCPs are those having zero AACSs
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at each time-shift within the ZCZ around the end-shift position. Type-I ZCPs can be effectively

used in quasi-synchronous CDMA (QS-CDMA) systems [20], [21], [22], [23], [24], [25], [26],

which are tolerant of small-signal arrival delays. On the other hand, Type-II ZCPs are useful

in wide-band wireless communication systems where the minimum interfering-signal delay can

assume a large value. This is because the ZCZ of Type-II ZCP is designed for large time-

shifts, and thus the asynchronous interfering signals arriving at the receiver after large delays

can be rejected. A typical example of such a channel with large delays is the sparsely populated

rural and mountainous areas [25]. In some other important applications, like designing preamble

sequences in OFDMA systems [27], where PMEPR plays a very important role, Type-II ZCPs

may be advantageous over Type-I ZCPs because of its huge availability with flexible lengths.

Moreover, Type-I and Type-II ZCPs can also be used to construct complementary sets [28] and

Z-complementary sets [29].

Till now there are only a few constructions of Type-I and Type-II constructions reported in the

literature [15], [16], [17], [18], [19], [30], [31]. Note that most of the constructions are based on

GCPs and thereby have lengths of the form of 2a + 2v. Recently, based on generalized Boolean

functions, Chen [17] gave a direct construction of those Type-I ZCPs having lengths of the form

2m−1 + 2v and a ZCZ of width 2π(v+1)−1 + 2v, where π is a permutation over {1, 2, . . . ,m− 1}.

Adhikary et al. [30], [31] made further progress towards this problem and proposed a systematic

construction of Type-I and Type-II ZCPs of lengths of the form 2a10b26c + 1, by applying the

insertion method on binary GCPs. Very recently, Shen et al. [32] constructed Type-II ZCP of

length 2m + 3, by inserting 3 elements into GDJ sequences. An overview of known Type-II

binary ZCPs is given in Table I, together with their corresponding ZCZ width. For the definitions

of Z-optimality and optimality of binary ZCPs, see Definitions 6 and 7, respectively.

To the best of our knowledge, the maximum ZCZ width for binary Type-II ZCPs of lengths of

the form 10b+ 1, 26c+ 1 and 10b26c+ 1 are 4×10b−1 + 1, 12×26c−1 + 1 and 12×10b26c−1 + 1,

respectively. Furthermore, there is no construction of Type-II EB-ZCPs in the literature.

Motivated by the constructions reported in [15], [30], in search of ZCPs with larger ZCZ

widths, we propose an iterative construction of Type-II binary ZCPs of both even and odd

lengths. Our proposed construction can generate Z-optimal Type-II OB-ZCPs having lengths

of any odd length, and also optimal Type-II EB-ZCPs for certain cases. In fact, our proposed

construction can generate Type-II ZCPs with more flexible lengths which were unknown before.

As a comparison with previous results, our results are given in Table I. We further list down the
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TABLE I: Existing and proposed binary Type-II ZCPs.

Ref. Length ZCZ width

Magnitude

outside

the ZCZ (v)

Remarks on

Z-optimality

Remarks on

optimality

[15] 2m + 1 2m−1 + 1 2 Z-optimal Optimal

[15] 2m − 1 2m−1 2 Z-optimal Optimal

[30]
2a10b26c + 1,

a ≥ 1
2a−110b26c + 1 2 Z-optimal Optimal

[30]
10b + 1,

b ≥ 1
4× 10b−1 + 1 2 Not Z-optimal Not optimal

[30]
26c + 1,

c ≥ 1
12× 26c−1 + 1 2 Not Z-optimal Not optimal

[30]
10b26c + 1,

b, c ≥ 1
12× 10b26c−1 + 1 2 Not Z-optimal Not optimal

[32] 2m + 3 2m−1 + 2 v ∈ {2, 6} Z-optimal Not optimal

Theorem 1
2N + 1,

N ∈ Z+
N + 1 2 ≤ v ≤ 2(2N − 1) Z-optimal

Optimal when

|ρa(τ) + ρb(τ)| = 1

Remark 3
2N − 1,

N ∈ Z+
N 2 ≤ v ≤ 2(2N − 3) Z-optimal Not optimal

Theorem 2
2kN + 2k−1,

N ∈ Z+, k ≥ 2
2kN + 2k−1 −N 4 ≤ v ≤ 2k(2N − 1)

Z-optimal

when N = 1
Not optimal

Theorem 3
3N,

N = 2a10b26c
3N − 1 2N Z-optimal

Optimal

when N = 1, 2

Theorem 3
14N,

N = 2a10b26c
14N − 1 4N Z-optimal

Optimal

when N = 1

Theorem 5
2N − 1,

N = 2a10b26c
N 2 Z-optimal Optimal

Theorem 6
2N + 1,

N = 2a10b26c
N + 1 2 Z-optimal Optimal

“best possible” ZCPs up to length 30 in Table II. The term “best possible”, means that the ZCPs

have the closest possible autocorrelation properties to those of the optimal Type-II ZCPs. Note

that the sequence pairs, whose lengths are given in bold letters in Table II, were not reported

before.

The rest of this paper is organized as follows. In Section II, we introduce some basic definitions

and preliminary results about ZCPs, and the peak-to-mean envelope power ratio (PMEPR) control

problem in code-keying MC communications. In Section III, we propose a generic construction

of Type-II ZCPs, which allows generating both OB-ZCPs and EB-ZCPs. In addition, we propose

a construction of optimal Type-II OB-ZCPs in Section IV. In Section V, we analyse the PMEPR

of the proposed ZCPs. Finally, Section VI concludes the paper by some future work.
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TABLE II: “Best possible” Type-II sequence pairs of length up to 30

N Type

(
a

b

)
|ρa(τ) + ρb(τ)|N−1

τ=0

2 GCP
(
++

+−

)
(4,0)

3 Optimal OB-ZCP
(
+++

++−

)
(6,2,0)

4 GCP
(
+++−
++−+

)
(8,03)

5 Optimal OB-ZCP
(
−−−++

−−+−−

)
(10,22,02)

6 Optimal EB-ZCP
(
++++−−
+++−++

)
(12, 4,04)

7 Optimal OB-ZCP
(
−−+−+−−
−−++−++

)
(14,23,03)

8 GCP
(
+++−++−+
+++−−−+−

)
(16,07)

9 Optimal OB-ZCP
(
+−+++++−−
+−++−−−++

)
(18,24,04)

10 GCP
(
++−+−+−−++

++−+++++−−

)
(20,09)

12 Z-optimal EB-ZCP
(
++++−−+++−++

++++−−−−−+−−

)
(24, 8,010)

14 EB-ZCP
(
−−+−+−−−−++−++

−−+−+−−++−−+−−

)
(28,43,010)

15 Optimal OB-ZCP
(
−++−+++++−+−+++

−++−+++−−+−+−−−

)
(30,27,07)

16 GCP
(
+++−++−++++−−−+−
+++−++−+−−−+++−+

)
(32,015)

17 Optimal OB-ZCP
(
−++++−+−+−++−−+++

−++++−+−−+−−++−−−

)
(34,28,08)

18 EB-ZCP
(
+−+++++−−+−++−−−++

+−+++++−−−+−−+++−−

)
(36,44,013)

19 Optimal OB-ZCP
(
+−+++++−−++−−+−+−++

+−+++++−−−−++−+−+−−

)
(22,29,09)

20 GCP
(
++−+−+−−++++−+++++−−
++−+−+−−++−−+−−−−−++

)
(20,09)

21 Optimal OB-ZCP
(
−++−+−+++−−++++++−−++

−++−+−+++−+−−−−−−++−−

)
(42,210,010)

24 Z-optimal EB-ZCP
(
++++−−+++−++++++−−−−−+−−
++++−−+++−++−−−−+++++−++

)
(48, 16,022)

26 GCP
(
++++−++−−+−+−+−−+−+++−−+++

++++−++−−+−+++++−+−−−++−−−

)
(52,025)

28 Z-optimal EB-ZCP
(
−−+−+−−−−++−++−−+−+−−++−−+−−
−−+−+−−−−++−++++−+−++−−++−++

)
(56,83,024)

30 Z-optimal EB-ZCP
(
+−++−+−+−++−−+−++−−+−−−+++−++−
+−++−+−+−++−+−+++−+−+++−−−+−−+

)
(60, 20,028)
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II. PRELIMINARIES

In this section, we recall some definitions and bounds of binary ZCPs. Before that, we fix

some notations which will be used throughout the paper.

• + and − denote 1 and −1, respectively.

• 0L and 1L denote length-L vectors whose elements are all 0 and 1, respectively.

• ←−c = (cN1−1, cN1−2, · · · , c0) denotes the reverse of sequence c = (c0, . . . , cN1−2, cN1−1).

• c || d denote the horizontal concatenation of sequences c and d.

• c ⊗ d denotes the Kroneker product of the sequences c and d of lengths N1 and N2,

respectively, i.e.,

c⊗ d = (c0d0, c0d1, · · · , c0dN2−1, · · · , cN1−1d0, cN1−1d1, · · · , cN1−1dN2−1).

In the following, we first give the definition of aperiodic correlation, and then define the

deletion function.

Definition 1: For two length-N binary sequences c and d, their aperiodic cross-correlation

function is defined as

ρc,d(τ) =


∑N−1−τ

k=0 ckdk+τ , 0 ≤ τ ≤ N − 1,∑N−1−τ
k=0 ck+τdk, −(N − 1) ≤ τ ≤ −1,

0, |τ | ≥ N.

(1)

When c = d, the function ρc,d(τ) is called the aperiodic autocorrelation function (AACF) of c,

denoted by ρc(τ) for simplicity.

Definition 2: (Deletion Function) For a sequence c = (c0, c1, . . . , cN−1) and an integer r ∈

{0, 1, . . . , N − 1}, define V(c, r) as a deletion function of c as

V(c, r) =


(c1, c2, . . . , cN−1), if r = 0;

(c0, c1, . . . , cN−2), if r = N − 1;

(c0, c1, . . . , cr−1, cr+1, . . . , cN−1), otherwise,

where r denotes the deletion position.

In what follows, we give a series of definitions on a pair of sequences with desirable aperiodic

autocorrelation sums, and certain bounds on these sequence pairs.

Definition 3: A pair of sequences c and d of length N is called a Golay complementary pair

(GCP) if and only if

ρc(τ) + ρd(τ) = 0,
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for all 1 ≤ τ ≤ N − 1.

Definition 4: (Type-I binary ZCPs) A pair of binary sequences c and d of length N is called

a Type-I Z-complementary pair (ZCP) with ZCZ of width Z, if and only if

ρc(τ) + ρd(τ) = 0,

for all 1 ≤ τ ≤ Z − 1, and ρc(Z) + ρd(Z) 6= 0.

Definition 5: (Type-II binary ZCPs) A pair of binary sequences c and d of length N is called

a Type-II ZCP with ZCZ of width Z, if and only if

ρc(τ) + ρd(τ) = 0, for all N − Z + 1 ≤ τ ≤ N − 1, (2)

and ρc(N − Z) + ρd(N − Z) 6= 0.

Clearly, when Z = N , both Type-I and Type-II ZCPs become GCPs.

In the following lemma we recall the upper bounds of the ZCZ width for various types of

binary ZCPs.

Lemma 1: Let (c,d) be a binary ZCP of length N with ZCZ of width Z. Then

1) Z ≤ (N + 1)/2 if N is odd [15];

2) Z ≤ N − 2 if N is even and (c,d) is Type-I ZCP [16]; and

3) Z ≤ N − 1 if N is even and (c,d) is Type-II ZCP.

Note that bound 3) in Lemma 1 was obtained by exhaustive computer search. Based on the

bounds above, we have the following definition on the Z-optimality of ZCPs.

Definition 6: [15], [16] A binary ZCP is said to be Z-optimal if the upper bound of the ZCZ

width in Lemma 1 is achieved with equality.

The following lemma gives the lower bounds of the aperiodic autocorrelation sum magnitude

outside the ZCZ of a Z-optimal (Type-I and Type-II) binary ZCP.

Lemma 2: Let (c,d) be a binary ZCP of length N with ZCZ of width Z. Then we have the

following bounds for odd-length ZCPs and even-length ZCPs.

1) [15] If (c,d) is a Z-optimal Type-I OB-ZCP, then

|ρc(τ) + ρd(τ)| ≥ 2, for any (N + 1)/2 ≤ τ ≤ N − 1.

2) [16] If (c,d) is a Z-optimal Type-II OB-ZCP, then

|ρc(τ) + ρd(τ)| ≥ 2, for any 1 ≤ τ ≤ (N − 1)/2.
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3) [16] If (c,d) is a Type-I EB-ZCP and Z ≥ N/2, then

|ρc(Z) + ρd(Z)| ≥ 4.

4) If (c,d) is a Z-optimal Type-II EB-ZCP, then

|ρc(1) + ρd(1)| ≥ 4.

The lower bounds above define the optimality of ZCPs, which achieve the smallest possible

sum magnitude outside the ZCZ of Z-optimal binary ZCPs.

Definition 7: A Z-optimal Type-I OB-ZCP is called optimal if the lower bound 1) in Lemma 2

is met with equality. And a binary Z-optimal Type-II ZCP is called optimal if the lower bound

2) or 4) in Lemma 2 is met with equality.

Remark 1: The bounds in Lemma 1 may not be tight for all sequence length N . For example,

as pointed out by one of the anonymous reviewers, there is no Type-I EB-ZCPs with length larger

than 14 reported in the literature which can satisfy the upper bound in Lemma 1. Therefore it

would be possible to derive tigher bounds on ZCZ widths of ZCPs for certain sequence lengths.

In such cases, the bounds in Lemma 2 could be improved as well. Accordingly, the optimality

in Definitions 6 and 7 should be changed with respect to the new bounds.

III. A GENERAL CONSTRUCTION OF BINARY ZCPS

Infinite families of nontrivial (Type-I and Type-II) OB-ZCPs and Type-I EB-ZCPs were

obtained in [15] and [16], [17], [18], [19], respectively. However, there was no infinite family

of Type-II EB-ZCPs in the literature. In this section, we present a construction of ZCPs which

can generate infinite families of Z-optimal Type-II OB-ZCPs and EB-ZCPs. We first present an

example to show that an optimal Type-II EB-ZCP does exist.

Example 1: Suppose that

c = (+−+ + + + +−+ + +−−+),

d = (+−+ + + +−−−−−+ +−).
(3)

Then (c,d) is an optimal Type-II EB-ZCP since it is easily verified that

|ρc(τ) + ρd(τ)|13
τ=0 = (28, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). (4)

Now, we present a systematic construction of Type-II ZCPs in the following.
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Fig. 1: Tree representation of recursive Type-II ZCP construction.

Construction 1: Let a and b be two binary sequences of length N and N + 1, respectively.

Taking a and b as seed sequences, and we then initialize two sequence pairs (c1
0,d

1
0) and (c1

1,d
1
1)

as follows:

c1
0 = a || b, d1

0 = a || −b;

c1
1 = b || a, d1

1 = b || −a.
(5)

At the k-th iteration, we have 2k pairs (cki ,d
k
i ) for 0 ≤ i ≤ 2k − 1, given by

cki =


ck−1
b i

2
c || d

k−1
b i

2
c for i even,

dk−1
b i

2
c || c

k−1
b i

2
c for i odd.

(6)

and

dki =


ck−1
b i

2
c || −d

k−1
b i

2
c for i even,

dk−1
b i

2
c || −c

k−1
b i

2
c for i odd.

(7)

Remark 2: Figure 1 illustrates how Construction 1 generates sequence pairs recursively.
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Based on the construction above, we have the following theorems to obtain Z-optimal (optimal)

OB-ZCPs and EB-ZCPs.

Theorem 1: Let a and b be binary sequences of lengths N and N + 1, respectively. By

Construction 1, the sequence pairs at the initial step, (c1
0,d

1
0) and (c1

1,d
1
1) are Z-optimal Type-II

OB-ZCPs of length L = 2N + 1 with ZCZ of width Z = N + 1. In addition, for r = 0, 1, we

have

ρc1
r
(τ) + ρd1

r
(τ) =

 2(ρa(τ) + ρb(τ)), 1 ≤ τ ≤ N,

0, N + 1 ≤ τ ≤ 2N.
(8)

Proof: When r = 0, it is easy to see that

ρc1
r
(τ) =


ρa(τ) + ρb(τ) +

τ−1∑
k=0

aN−1−kbτ−1−k, 1 ≤ τ ≤ N,

2N−τ∑
k=0

akbk+τ−N , N + 1 ≤ τ ≤ 2N,

and

ρd1
r
(τ) =


ρa(τ) + ρb(τ)−

τ−1∑
k=0

aN−1−kbτ−1−k, 1 ≤ τ ≤ N,

−
2N−τ∑
k=0

akbk+τ−N , N + 1 ≤ τ ≤ 2N.

Hence, we have

ρc1
r
(τ) + ρd1

r
(τ) =

 2(ρa(τ) + ρb(τ)), 1 ≤ τ ≤ N,

0, N + 1 ≤ τ ≤ 2N,

i.e., the width of ZCZ is N +1. Similarly, we can prove that (8) holds for r = 1. This completes

the proof.

Remark 3: Let a and b be binary sequences of lengths N − 1 and N , respectively. Then

Theorem 1 will produce Z-optimal Type-II OB-ZCPs of length 2N − 1.

Theorem 2: Let a and b be binary sequences of lengths N and N + 1, respectively. By

Construction 1, at the k-th step of the iteration, sequence pairs (ckr ,d
k
r) are Type-II EB-ZCPs

of length L = 2kN + 2k−1 having the ZCZ of width Z = 2kN + 2k−1 − N when k ≥ 2 and

r = 0, 1, . . . , 2k − 1. In addition, we have

ρckr (τ) + ρdkr (τ) =

 2k(ρa(τ) + ρb(τ)), 1 ≤ τ ≤ N,

0, otherwise.
(9)
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Proof: When r = 0, k ≥ 2, it is easy to see that

ρckr (τ) =



ρck−1
r

(τ) + ρdk−1
r

(τ) + ρdk−1
r ,ck−1

r
(2k−1N + 2k−2 − τ),

for 1 ≤ τ ≤ 2k−1N + 2k−2 − 1;

ρck−1
r ,dk−1

r
(τ − (2k−1N + 2k−2)),

for 2k−1N + 2k−2 ≤ τ ≤ 2kN + 2k−1 − 1;

and

ρdkr (τ) =



ρck−1
r

(τ) + ρdk−1
r

(τ)− ρdk−1
r ,ck−1

r
(2k−1N + 2k−2 − τ),

for 1 ≤ τ ≤ 2k−1N + 2k−2 − 1;

−ρck−1
r ,dk−1

r
(τ − (2k−1N + 2k−2)),

for 2k−1N + 2k−2 ≤ τ ≤ 2kN + 2k−1 − 1.

Hence, we have

ρckr (τ) + ρdkr (τ) =

2(ρck−1
r

(τ) + ρdk−1
r

(τ)), for 1 ≤ τ ≤ 2k−1N + 2k−2 − 1;

0, for 2k−1N + 2k−2 ≤ τ ≤ 2kN + 2k−1 − 1.

(10)

From (8) and (10), it follows that

ρckr (τ) + ρdkr (τ) =

 2k(ρa(τ) + ρb(τ)), 1 ≤ τ ≤ N,

0, otherwise.

This completes the proof.

Remark 4: Note that the ZCZ width is independent of different selections of the seed sequences

a and b.

In the following, we show some illustrative examples.

Example 2: Let a = (++) and b = (+ + +), then according to Construction 1 and Figure 1,

we have at the initial step,

c1
0 = (+ + + + +),

d1
0 = (+ +−−−).

At the second iteration,

c2
0 = (+ + + + + + +−−−),

d2
0 = (+ + + + +−−+ ++).
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And at the third iteration,

c3
0 = (+ + + + + + +−−−+ + + + +−−+ ++),

d3
0 = (+ + + + + + +−−−−−−−−+ +−−−).

Clearly, we have ∣∣∣ρc1
0
(τ) + ρd1

0
(τ)
∣∣∣4
τ=0

= (10, 6, 2,02),∣∣∣ρc2
0
(τ) + ρd2

0
(τ)
∣∣∣9
τ=0

= (20, 12, 4,07),∣∣∣ρc3
0
(τ) + ρd3

0
(τ)
∣∣∣19

τ=0
= (40, 24, 8,017).

Hence, (c1
0,d

1
0) is a Z-optimal Type-II OB-ZCP of length 5 having a ZCZ of width 3. (c2

0,d
2
0)

is a Z-optimal Type-II EB-ZCP of length 10 having a ZCZ of width 8 and (c3
0,d

3
0) is a Type-II

EB-ZCP of length 20 having a ZCZ of width 18. It is worth noting that (c2
0,d

2
0) and (c3

0,d
3
0)

have large ZCZ ratios of 0.8 and 0.9, respectively.

Remark 5: Note that Z-optimal Type-II EB-ZCPs of length L = 2k + 2k−1 with ZCZ width

Z = 2k + 2k−1 − 1 can be generated by Theorem 2 when the length of the seed sequence a is

1 and k ≥ 2.

Example 3: Let a = (+) and b = (++), then according to Construction 1 and Figure 1, we

have at the initial step,

c1
0 = (+ + +),

d1
0 = (+−−).

At the second iteration,

c2
0 = (+ + + +−−),

d2
0 = (+ + +−++).

At the third iteration,

c3
0 = (+ + + +−−+ + +−++),

d3
0 = (+ + + +−−−−−+−−).

Clearly, we have ∣∣∣ρc1
0
(τ) + ρd1

0
(τ)
∣∣∣2
τ=0

= (6, 2, 0),∣∣∣ρc2
0
(τ) + ρd2

0
(τ)
∣∣∣5
τ=0

= (12, 4,04),∣∣∣ρc3
0
(τ) + ρd3

0
(τ)
∣∣∣11

τ=0
= (24, 8,010).

DRAFT



13

Hence, (c1
0,d

1
0) is an optimal Type-II OB-ZCP of length 3 having a ZCZ of width 2. (c2

0,d
2
0)

is an optimal Type-II EB-ZCP of length 6 having a ZCZ of width 5 and (c3
0,d

3
0) is a Z-optimal

Type-II EB-ZCP of length 12 having a ZCZ of width 11.

Example 3 gives us a construction of Z-optimal Type-II EB-ZCPs. However, the length of

Z-optimal Type-II EB-ZCPs which are constructed through the above method is 2k + 2k−1, and

this makes the length very limited. By the following construction inspired by the well-known

Turyn’s construction, we can obtain Type-II ZCPs of length (2k + 2k−1)10b26c.

Theorem 3: Let (c,d), (e, f) be Type-II ZCPs of length N1, N2 with ZCZ of width Z1, Z2,

respectively. Then (u,v) is a Type-II ZCP of length N = N1N2 with ZCZ of width Z =

N1Z2 −N1 + Z1. Here (u,v) is given by the following formula:

(u,v) = (e⊗ c + d

2
+
←−
f ⊗ d− c

2
, f ⊗ c + d

2
−←−e ⊗ d− c

2
), (11)

where ⊗ denotes the Kronecker product. In particular, if (e, f ) is a GCP then (u,v) is a Type-II

ZCP of length N1N2 with ZCZ of width Z = N1N2 −N1 + Z1.

Proof: See Appendix.

Example 4: Let c = (+ + +) and d = (+−−), then (c,d) is a Type-II ZCP of length 3 with

ZCZ of width 2. Let (e, f) be a length-10 GCP as follows.

e = (+ +−+−+−−++),

f = (+ +−+ + + + +−−).

By Theorem 3, we obtain a length-30 Z-optimal Type-II ZCP (u,v), as shown in (12),

u = (+ + + + + +−−−+ + +−+ + + + +−+ +−+ + +−−+−−),

v = (+ +−+ +−−−+ + +−−−−+ +−−−−−−−+ + + + ++),
(12)

since it is computed that

|ρu(τ) + ρv(τ)|29
τ=0 = (60, 20,028).

IV. NEW FAMILIES OF OPTIMAL TYPE-II OB-ZCPS

In this section, we construct new families of optimal Type-II OB-ZCPs. According to Theorem

1, we have constructed Z-optimal Type-II OB-ZCP of any length. In Theorem 1, (8) shows that

the key of construction of optimal Type-II OB-ZCPs is to find a sequence pair (a,b) of length
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N and N + 1 with low AACSs. The following theorem gives a lower bound for the AACSs of

the above sequence pair (a,b).

Theorem 4: Let a and b be two binary sequences of lengths N and N + 1, respectively. Then

|ρa(τ) + ρb(τ)| ≥ 1, for all 1 ≤ τ ≤ N. (13)

Proof: Clearly, we have

ρa(τ) ≡ N − τ mod 2, for all 1 ≤ τ ≤ N,

and

ρb(τ) ≡ N + 1− τ mod 2, for all 1 ≤ τ ≤ N.

Therefore,

|ρa(τ) + ρb(τ)| ≡ 1 mod 2, for all 1 ≤ τ ≤ N.

Hence,

|ρa(τ) + ρb(τ)| ≥ 1, for all 1 ≤ τ ≤ N.

By exhaustive computer search, seed sequence pairs up to length N = 24 which can achieve

the bound derived in Theorem 4, are listed Table III.

Example 5: Let a = (+ + + + +−) and b = (+ +−−+−+). Then the sequence pair (a,b)

meets the bound in Theorem 4, i.e.,

|ρa(τ) + ρb(τ)|6τ=0 = (13,16).

Also, let

c = a || b,

d = a || −b.

According to Theorem 1, (c,d) is a length-13 optimal Type-II OB-ZCP having ZCZ width 7,

because

|ρc(τ) + ρd(τ)|12
τ=0 = (26,26,06).

It is important to note that optimal Type-II OB-ZCP of length 13 has not been previously reported

in the literature.

In what follows, we obtain optimal Type-II OB-ZCPs of lengths 2N±1, when N = 2a10b26c,

and a, b, c are non-negative integers.
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TABLE III: Some seed sequence pair of Lengths up to 24.

N

(
a
b

)
|ρa(τ) + ρb(τ)|N−1

τ=1

5
(

++++−
++−−+−

)
14

6
(

+++++−
++−−+−+

)
15

11
(

++++++−+−−+
+−+−−−+++−−+

)
110

12
(

++++++−++−−+
++−−−−++−+−+−

)
111

13
(

+−−−−+++−++−+
−−−−−−++−−+−+−

)
112

14
(
−−++++−−−+−−+−

++++−+++−+−+−−+

)
113

17
(
−+−+−−−+++++++−−+
+++−−++−++−++++−+−

)
116

18
(
−−++−−+−+−+++++−−−

+++−++++−+−++−++−−+

)
117

21
(
−−+−−+−++−−−+−+++−−−+
−++−−−−−−−−−+++−+−+−−+

)
120

22
(

+++−+−−−−+−−−++−+−−++−
+++−+−−−−−+−+−−−−++−−+−

)
121

23
(

+−−−+−−−+−−−++++−+−++−+
++−−−−+−++−++−−−−−+−−−+−

)
122

24
(
−+−−−−−+−+−−+++−+−−+−−−+
−+−−−+−−−−++−++−−−+++++−+

)
123

Theorem 5: Let (x,y) be a binary GCP of length N = 2a10b26c and (a,b) = (V(x, 0),y).

Suppose that

c = a || b,

d = a || −b.

Then (c,d) is an optimal Type-II OB-ZCP of length 2N − 1 having ZCZ of width N .
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Proof: By the definition of AACF, we have

ρa(τ) =
N−2−τ∑
i=0

aiai+τ

=
N−1−τ∑
i=1

xixi+τ

=

(
N−1−τ∑
i=0

xixi+τ

)
− x0xτ

=ρx(τ)− x0xτ ,

for all τ = 0, 1, . . . , N − 1. As the sequence pair (x,y) is a GCP, then

ρa(τ) + ρb(τ) =ρx(τ) + ρy(τ)− x0xτ

=

 2N − 1, τ = 0,

−x0xτ , τ = 1, 2, . . . , N − 1.

Therefore, we have |ρa(τ) + ρb(τ)| = 1 for all τ = 1, 2, . . . , N − 1. According to Theorem 1,

(c,d) is an optimal Type-II OB-ZCP of length 2N − 1.

Theorem 6: Let (x,y) be a binary GCP of length N = 2a10b26c and

c = a || b,

d = a || −b.

Then (c,d) is an optimal Type-II OB-ZCP of length 2N + 1 where (a,b) is given by

a = x,

b = λ || y, where λ ∈ {+1,−1}.

Proof: By the definition of AACF, we have

ρb(τ) =
N−τ∑
i=0

bibi+τ

=

(
N−τ∑
i=1

bibi+τ

)
+ b0bτ

=

(
N−1−τ∑
i=0

yiyi+τ

)
+ λyτ−1

=ρy(τ) + λyτ−1,
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for all τ = 1, 2, . . . , N . As the sequence pair (x,y) is a GCP, then

ρa(τ) + ρb(τ) =ρx(τ) + ρy(τ) + λyτ−1

=

 2N + 1, τ = 0,

λyτ−1, τ = 1, 2, . . . , N.

Therefore, |ρa(τ) + ρb(τ)| = 1 for all τ = 1, 2, . . . , N . According to Theorem 1, (c,d) is an

optimal Type-II OB-ZCP of length 2N + 1 having a ZCZ of width N + 1.

Remark 6: We can also obtain Type-I OB-ZCPs via Construction 1 as follows. Let (x,y) be

a binary GCP of length N = 2a10b26c and

a = x,

b = y || λ, b̂ = y || −λ, where λ ∈ {+1,−1}.
(14)

Also let

c = a || b,

d = a || −b̂.
(15)

Then (c,d) is an optimal Type-I OB-ZCP of length 2N + 1.

Although the length of above optimal Type-I OB-ZCP has been reported in [30], [31], our

construction is a new method. Besides, it is easy to see that |ρa(τ)+ρb(τ)| = |ρa(τ)+ρb̂(τ)| = 1

for all τ = 1, 2, . . . , N .

Remark 7: Compared with the results in [15], [30], Theorem 5 can construct optimal Type-II

OB-ZCPs with more flexible parameters. The lengths of the optimal Type-II OB-ZCPs con-

structed in Theorem 5 are 2N−1, where N = 2a10b26c. With Theorem 3, these optimal Type-II

OB-ZCPs and EB-ZCPs can be used to generate EB-ZCPs with ZCZ of large width. For example,

we can obtain Z-optimal Type-II EB-ZCPs of length 3N or 14N using Theorem 3. Theorem

2 can generate Type-II EB-ZCPs of flexible lengths having large ZCZ widths. The result of

Theorem 6 is similar to the Type-II OB-ZCPs reported in [30]. In Table II we give a complete

list of “best possible” Type-II binary ZCPs up to length 30 till now, which can be constructed

by a systematic construction. Note that the lengths in the bold letter in Table II can only be

generated by our systematic construction.

Remark 8: We note that the seed sequence pairs with low AACSs, such as the pair used in

Example 5, widely exist. We have verified the existence of all binary seed sequence pairs with

low AACSs of lengths up to 24 by computer search. Some examples of seed sequence pairs
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with low AACSs up to 24, obtained by computer search, are shown in Table III. Based on Table

III and Theorems 5 and 6, we are able to construct optimal Type-II OB-ZCP of length 3 to 53.

V. PMEPR OF THE PROPOSED TYPE-II ZCPS

Sequences with low PMEPR are desirable in multi-carrier communications such as orthogonal

frequency division multiplexing (OFDM) systems. In this section, we shall discuss the PMEPR

of the proposed Type-II ZCPs. Before doing this, we give a short introduction to the definition

of PMEPR of sequences.

We first define the OFDM signal of a sequence c = (c0, c1, . . . , cL−1) to be the real part of

Sc(t) =
L−1∑
k=0

cke
2πj(fc+k∆f)t, 0 ≤ t ≤ 1

∆f
,

where j =
√
−1, fc denotes the carrier frequency and ∆f is the subcarrier spacing. Then, the

PMEPR of c (or its OFDM signal) is defined by

PMEPR(c) =
1

L
sup

0≤t< 1
∆f

|Sc(t)|2. (16)

For a pair of sequence pair (c,d), its PMEPR is defined as

PMEPR(c,d) = max{PMEPR(c),PMEPR(d)}. (17)

It turns out in [15] that

PMEPR(c,d) ≤ 2 +
2

L

L−1∑
τ=1

|ρc(τ) + ρd(τ)| (18)

which reveals a relationship between the PMEPR and autocorrelation of a sequence pair. Clearly,

for a GCP (c,d), one immediately has PMEPR(c,d) ≤ 2. Based on (18), upper bounds on

PMEPR of some known Type-I ZCPs were given (see [15] and [33] for example). In the sequel,

we shall discuss upper bounds for the PMEPR of the proposed Type-II ZCPs based on (18).

The following result follows directly from (18), (8) and (9).

Theorem 7: Let a and b be binary sequences of lengths N and N + 1, respectively. Then the

PMEPR of Type-II ZCP generated by Construction 1 is upper bounded by

2 +
4

2N + 1

N∑
τ=1

|ρa(τ) + ρb(τ)|. (19)
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Theorems 7 tells us the upper bound of the PMEPR of the sequences generated by Construction

1 is determined by the aperiodic autocorrelation sums of the seed sequences a and b. According

to Theorem 4, one has
N∑
τ=1

|ρa(τ) + ρb(τ)| ≥ N. (20)

We thus have following corollary.

Corollary 1: Let a,b be the seed sequences meeting the bound in (20). Then each Type-II

ZCP generated by Construction 1 has PMEPR upper bounded by 2 + 4N
2N+1

≈ 4.

Corollary 1 means that each optimal Type-II OB-ZCP constructed in Section IV of this paper

has PMEPR upper bounded by 4.

Example 6: Let (c,d) be the optimal type-II OB-ZCP of length 13 in Example 5. Note that

(c,d) is constructed from the seed sequence a = (+ + + + +−) and b = (+ + − − + − +)

meeting the bound in 20. It is easy to check that PMEPR(c) = 2.4276 and PMEPR(d) = 2.4276

which verifies the result in Corollary 1.

Theorem 8: Let (c,d) be a Type-II ZCP of length N1 with ZCZ of width Z1, (e, f) a GCP of

length N2. Let (u,v) be the Type-II ZCP generated from (c,d) and (e, f) in Theorem 3. Then

PMEPR(u,v) ≤ UB(c,d) (21)

where

UB(c,d) = 2 +
2

N1

N1−Z1∑
h=1

|ρc(h) + ρd(h)| (22)

is an upper bound of the PMEPR of (c,d).

Proof: According to Theorem 3, (u,v) is a Type-II ZCP of length N = N1N2 and ZCZ

width Z = N1(Z2 − 1) + Z1. We then have
N−1∑
τ=1

|ρu(τ) + ρv(τ)| =
N−Z∑
τ=1

|ρu(τ) + ρv(τ)| = N2

N1−Z1∑
h=1

|ρc(h) + ρd(h)| (23)

where the second identity follows from (24) and the assumption that (e, f) is a GCP. This together

with (18) further leads to

PMEPR(u,v) ≤ UB(c,d).

Note that UB(c,d) in (22) is an upper bound of the PMPER of (c,d) due to (18). This completes

the proof.
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The following result follows directly from Theorem 8 and Corollary 1.

Corollary 2: Let (e, f) be a GCP and (u,v) be the Type-II ZCP in Theorem 3. Then we have

• PMEPR(u,v) < 4 when (c,d) is the Type-II ZCP generated by Construction 1 from the

seed sequences a,b meeting the bound in (20);

• PMEPR(u,v) ≤ 2 + 4
3
≈ 3.33 when c = (+ + +),d = (+−−); and

• PMEPR(u,v) ≤ 2 + 8
14
≈ 2.57 when c = (+ − + + + + + − + + + − −+),d =

(+−+ + + +−−−−−+ +−).

Example 7: In Table IV, we list the PMEMR of some ZCPs generated by the construction

in Theorem 3. Herein, (u3,N2 ,v3,N2) (resp., (u14,N2 ,v14,N2) denotes the Type-II ZCP generated

from GCP of length N2 and ZCP (c,d) given by c = (+ + +),d = (+ − −) (resp., c =

(+−+ + + + +−+ + +−−+),d = (+−+ + + +−−−−−+ +−)). It can be seen from

the table that the PMEPR of these sequences are very close to the bounds in Corollary 2.

TABLE IV: PMEPR of some Type-II ZCPs in Theorem 3.

Length of GCP N2 PMEPR(u3,N2) PMEPR(v3,N2) PMEPR(u14,N2) PMEPR(v14,N2)

1 3.0000 1.6667 2.5714 2.4119

2 2.8452 2.6667 2.1373 2.5137

4 3.0000 1.7387 2.5714 2.5102

8 3.2545 3.0740 2.5243 2.5456

10 3.3333 3.0200 2.4851 2.5570

16 3.0312 3.2919 2.5714 2.5102

20 3.1834 3.3159 2.5669 2.5549

26 3.2902 3.2291 2.5542 2.5545

32 3.3290 3.1483 2.5714 2.5373

40 3.3333 3.0446 2.5624 2.5570

52 3.3064 3.3189 2.5682 2.5549

64 3.2902 3.3201 2.5714 2.5689

80 3.2037 3.2667 2.5669 2.5695

Remark 9: ZCPs with good PMEPR properties can be regarded as potential alternatives of

GCPs in practical applications (see [27] for an application scenario) since they can exist for

more lengths. Note that compared to the systematic constructions of Type-I ZCPs with low

PMEPR, available in the literature, Type-II ZCPs are available with more flexible lengths. For

example, for sequence lengths N ∈ {N1 ×N2 : N1 = 5, 11, 13, 14, N2 = 2a10b26c, a, b, c > 0},

no Type-I ZCPs were reported in the literature. According to Theorem 3 and Corollary 2, Type-II
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ZCPs with low PMEPR exist for such lengths. Therefore, Type-I ZCPs and Type-II ZCPs are

two different ways of providing potential sequences with flexible lengths and low PMEPR for

practical applications.

VI. CONCLUDING REMARKS

In this paper, some properties and construction of optimal binary ZCPs are studied. Our

motivation is the fact that all currently known binary GCPs have even-lengths of the form

2a10b26c only. We target at finding optimal binary sequence pairs of any length, which have the

closest correlation property to that of GCPs. More precisely, we proposed a new method which

horizontally concatenates sequences a and b of different lengths to construct the optimal binary

ZCPs. Note that our construction is generic because in our construction N can be any number.

Based on the new method, we constructed optimal and Z-optimal OB-ZCPs with more flexible

parameters. The main contributions of this paper are listed in the following:

1) For even length of Type-II binary ZCPs, we proved that the width of its ZCZ can achieve

N − 1, in which case the ZCP is called a Z-optimal Type-II EB-ZCP. We constructed the

optimal Type-II EB-ZCPs of lengths 6× 2a10b26c and 14× 2a10b26c through Example 1,

Theorem 2 and Theorem 3, where a, b, c are non-negative integers.

2) We proposed a new recursive construction of Type-II EB-ZCPs. By the construction, we

can also generate ZCPs with large ZCZ ratio and flexible parameters.

3) By horizontally concatenating of sequence pair of different lengths, we constructed optimal

Type-II OB-ZCPs of length 2N ± 1, where N is the Golay number, i.e. N = 2a10b26c.

4) By horizontally concatenating of sequence pair of different lengths, we constructed Z-

optimal Type-II OB-ZCPs of length 2N ± 1, where N can be any number.

5) We gave upper bounds for the PMEPR of ZCPs from the proposed constructions. It turns

out that our constructions can generated Type-II ZCPs with low PMEPR.

6) Our construction can also be extended to obtain optimal Type-I OB-ZCPs. Although the

length of generated Type-I OB-ZCP has been reported before, our construction is a new

method. One of our near future work is to explore how to construct optimal Type-I ZCPs

with new lengths from Type-II ones.

We conclude the present paper by proposing the following open questions:

1) Are there any systematic constructions of optimal Type-II OB-ZCPs in lengths other than

the ones discussed in this paper?
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2) Are there more optimal Type-II EB-ZCPs, except for the lengths 6 and 14?

APPENDIX

PROOF OF THEOREM 3

We need the following lemma to prove the theorem.

Lemma 3: Let (c,d) be a Type-II ZCP of length N with ZCZ of width Z, then so is (c,
←−
d ).

Proof: By the definition of AACF, we have

ρ←−
d

(τ) =
N−1−τ∑
i=0

←−
di
←−−
di+τ

=
N−1−τ∑
i=0

dN−1−idN−1−(i+τ)

=
N−1−τ∑
t=0

dt+τdt

=ρd(τ).

Therefore, we have

ρb(τ) + ρ←−
d

(τ) = ρb(τ) + ρd(τ) = 0,

for all N − Z + 1 ≤ τ ≤ N − 1, and ρb(N − Z) + ρ←−
d

(N − Z) 6= 0.
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Proof of Theorem 3:

By the Euclidean division theorem, we have τ = kN1 + h where 0 ≤ k ≤ N2 − 1, 0 ≤ h ≤

N1 − 1. By the definition of AACF, we have

ρu(τ) =

N2−1−k∑
m=0

[(
em +

←−
f m

2

)(
em+k +

←−
f m+k

2

)
ρc(h) +

(
em −

←−
f m

2

)(
em+k −

←−
f m+k

2

)
ρd(h)

+

(
em +

←−
f m

2

)(
em+k −

←−
f m+k

2

)
ρc,d(h) +

(
em −

←−
f m

2

)(
em+k +

←−
f m+k

2

)
ρd,c(h)

+

(
em +

←−
f m

2

)(
em+k+1 +

←−
f m+k+1

2

)
ρc(N1 − h)

+

(
em −

←−
f m

2

)(
em+k+1 −

←−
f m+k+1

2

)
ρd(N1 − h)

+

(
em +

←−
f m

2

)(
em+k+1 −

←−
f m+k+1

2

)
ρd,c(N1 − h)

+

(
em −

←−
f m

2

)(
em+k+1 +

←−
f m+k+1

2

)
ρc,d(N1 − h)

]
Therefore, we have

ρu(τ) =
ρc(h)

4

(
ρe(k) + ρ←−

f
(k) + ρ

e,
←−
f

(k) + ρ←−
f ,e

(k)
)

+
ρd(h)

4

(
ρe(k) + ρ←−

f
(k)− ρ

e,
←−
f

(k)− ρ←−
f ,e

(k)
)

+
ρc,d(h)

4

(
ρe(k)− ρ←−

f
(k)− ρ

e,
←−
f

(k) + ρ←−
f ,e

(k)
)

+
ρd,c(h)

4

(
ρe(k)− ρ←−

f
(k) + ρ

e,
←−
f

(k)− ρ←−
f ,e

(k)
)

+
ρc(N1 − h)

4

(
ρe(k + 1) + ρ←−

f
(k + 1) + ρ

e,
←−
f

(k + 1) + ρ←−
f ,e

(k + 1)
)

+
ρd(N1 − h)

4

(
ρe(k + 1) + ρ←−

f
(k + 1)− ρ

e,
←−
f

(k + 1)− ρ←−
f ,e

(k + 1)
)

+
ρc,d(N1 − h)

4

(
ρe(k + 1)− ρ←−

f
(k + 1)− ρ

e,
←−
f

(k + 1) + ρ←−
f ,e

(k + 1)
)

+
ρd,c(N1 − h)

4

(
ρe(k)− ρ←−

f
(k + 1) + ρ

e,
←−
f

(k + 1)− ρ←−
f ,e

(k + 1)
)
,
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and

ρv(τ) =
ρc(h)

4

(
ρe(k) + ρ←−

f
(k)− ρ

e,
←−
f

(k)− ρ←−
f ,e

(k)
)

+
ρd(h)

4

(
ρe(k) + ρ←−

f
(k) + ρ

e,
←−
f

(k) + ρ←−
f ,e

(k)
)

− ρc,d(h)

4

(
ρe(k)− ρ←−

f
(k)− ρ

e,
←−
f

(k) + ρ←−
f ,e

(k)
)

− ρd,c(h)

4

(
ρe(k)− ρ←−

f
(k) + ρ

e,
←−
f

(k)− ρ←−
f ,e

(k)
)

+
ρc(N1 − h)

4

(
ρe(k + 1) + ρ←−

f
(k + 1)− ρ

e,
←−
f

(k + 1)− ρ←−
f ,e

(k + 1)
)

+
ρd(N1 − h)

4

(
ρe(k + 1) + ρ←−

f
(k + 1) + ρ

e,
←−
f

(k + 1) + ρ←−
f ,e

(k + 1)
)

− ρc,d(N1 − h)

4

(
ρe(k + 1)− ρ←−

f
(k + 1)− ρ

e,
←−
f

(k + 1) + ρ←−
f ,e

(k + 1)
)

− ρd,c(N1 − h)

4

(
ρe(k)− ρ←−

f
(k + 1) + ρ

e,
←−
f

(k + 1)− ρ←−
f ,e

(k + 1)
)
.

Therefore, we have

ρu(τ) + ρv(τ)

=
ρc(h)

2

(
ρe(k) + ρ←−

f
(k)
)

+
ρd(h)

2

(
ρe(k) + ρ←−

f
(k)
)

+
ρc(N1 − h)

2

(
ρe(k + 1) + ρ←−

f
(k + 1)

)
+
ρd(N1 − h)

2

(
ρe(k + 1) + ρ←−

f
(k + 1)

)
=

1

2

[(
ρc(h) + ρd(h)

)(
ρe(k) + ρ←−

f
(k)
)

+
(
ρc(N1 − h) +

ρd(N1 − h)
)(
ρe(k + 1) + ρ←−

f
(k + 1)

)]
. (24)

This together with the definition of Type-II ZCP and Lemma 3 means that

• ρu(τ) + ρv(τ) 6= 0 for τ = (N2 − Z2)N1 +N1 − Z1 (i.e., k = N2 − Z2 and h = N1 − Z1);

and

• ρu(τ) + ρv(τ) = 0 for all τ > (N2−Z2)N1 +N1−Z1 (i.e., k > N2−Z2 or (k = N2−Z2

and h > N1 − Z1)).

Therefore, the ZCZ width of (u,v) is Z = N1(Z2 − 1) + Z1. This completes the proof of the

theorem.
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