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Source Resolvability and Intrinsic Randomness:
Two Random Number Generation Problems With

Respect to a Subclass of f -Divergences
Ryo Nomura , Member, IEEE

Abstract— This paper deals with two typical random number
generation problems in information theory. One is the source
resolvability problem (resolvability problem for short) and the
other is the intrinsic randomness problem. In the literature,
optimum achievable rates in these two problems with respect
to the variational distance as well as the Kullback-Leibler (KL)
divergence have already been analyzed. On the other hand,
in this study we consider these two problems with respect to
f -divergences. The f -divergence is a general non-negative mea-
sure between two probabilistic distributions on the basis of a
convex function f . The class of f -divergences includes several
important measures such as the variational distance, the KL
divergence, the Hellinger distance and so on. Hence, it is
meaningful to consider the random number generation problems
with respect to f -divergences. In this paper, we impose some
conditions on the function f so as to simplify the analysis,
that is, we consider a subclass of f -divergences. Then, we first
derive general formulas of the first-order optimum achievable
rates with respect to f -divergences. Next, we particularize our
general formulas to several specified functions f . As a result,
we reveal that it is easy to derive optimum achievable rates
for several important measures from our general formulas. The
second-order optimum achievable rates and optimistic optimum
achievable rates have also been investigated.

Index Terms—f -divergence, general source, intrinsic random-
ness, Kullback-Leibler divergence, information-spectrum meth-
ods, source resolvability, variational distance.

I. INTRODUCTION

IN THIS paper, we consider two typical fixed-length random
number generation problems: the source resolvability prob-

lem (the resolvability problem for short) and the intrinsic ran-
domness problem. The resolvability problem is formulated as
follows. Given an arbitrary general source X = {Xn}∞n=1 (the
target random number), we approximate it by using a discrete
uniform random number whose size is requested to be as small
as possible. A degree of approximation is measured by several
criteria. Han and Verdú [2], and Steinberg and Verdú [3]
have determined the first-order optimum achievable rates for
general sources with respect to the variational distance and the
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normalized Kullback-Leibler (KL) divergence. Nomura [4] has
studied the first-order optimum achievable rates for general
sources with respect to the unnormalized KL divergence. Uye-
matsu [5] has characterized the first-order optimum achievable
rates with respect to the variational distance by using the
smooth Rényi entropy. It should be emphasized that a close
relation to the fixed-length source coding problem has been
reported with respect to each criterion [2]–[4].

The second-order optimum achievable rates in the resolv-
ability problem have also been studied by several researchers.
Nomura and Han [6] have determined the second-order opti-
mum achievable rates for general sources and computed it
explicitly for mixed sources. They have considered the resolv-
ability problem with respect to the variational distance, while
Nomura [4] has shown the second-order optimum achievable
rates with the KL divergence.

On the other hand, the intrinsic randomness problem, which
is also one of typical random number generation problems, has
also been studied. The intrinsic randomness problem is for-
mulated as follows. By using a given arbitrary general source
X = {Xn}∞n=1 (the coin random number), we approximate a
discrete uniform random number whose size is requested to be
as large as possible. Also in the intrinsic randomness problem,
the optimum achievable rates with respect to several criteria
have been shown. Vembu and Verdú [7] have considered the
intrinsic randomness problem with respect to the variational
distance as well as the normalized KL divergence and derived
general formulas of the first-order optimum achievable rates
(cf. Han [8]). Uyematsu and Kunimatsu [9] have character-
ized the first-order optimum achievable rates with respect to
the variational distance by using the smooth Rényi entropy.
Hayashi [10] has considered the first- and second-order opti-
mum achievable rates with respect to the unnormalized KL
divergence.

Related works include works given by Liu et al. [11],
Yagi and Han [12], Kumagai and Hayashi [13], [14], and
Yu and Tan [15]. In [11], the channel resolvability problem
with respect to the Eγ-divergence has been considered. They
have also particularized their results in the case of the source
resolvability problem. Yagi and Han [16] have determined the
optimum variable-length resolvability rates with respect to
the variational distance as well as the KL divergence. Their
results are based on the smooth Rényi entropy. Kumagai and
Hayashi [13], [14] have determined the first- and second- order
optimum achievable rates for stationary memoryless sources
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in the random number conversion problem, which includes the
resolvability and intrinsic randomness problems considered in
this paper. In [13] and [14], an approximation measure related
to the Hellinger distance has been used. Yu and Tan [15] have
also considered the random number conversion problem with
respect to the Rényi divergence.

As we have mentioned above, several approximation mea-
sures have been employed in the resolvability problem and
the intrinsic randomness problem. In this paper, we focus on
the f -divergence as a measure of approximation. The
f -divergence is a general distance measure on the basis of
a convex function f [17], [18]. The class of f -divergences
includes several important measures such as the total varia-
tional distance, the KL-divergence, the Hellinger distance and
so on. Hence, it is meaningful to consider these two problems
with respect to f -divergences. In order to tackle these prob-
lems, we first impose some conditions on the function f . Then,
in both of these two problems we derive general formulas of
the first- and second-order optimum achievable rates. It should
be emphasized that the subclass of f -divergences considered
in this paper includes the half variational distance, the reverse
KL-divergence, the Hellinger distance, and the Eγ-divergence.
One of main contributions of the present paper is to provide the
unified viewpoint to the analysis in the resolvability problem
(or the intrinsic randomness problem) with respect to the sub-
class of f -divergences. In previous results, the analysis of the
optimum achievable rate in the resolvability problem (or the
intrinsic randomness problem) has been relied on the specified
approximation measure. On the other hand, our analysis does
not depend on the specified approximation measure. This is
an advantage to consider the class of f -divergences. It will
turn out that we can easily derive optimum achievable rates
with respect specified measures from our general formulas.
As a result, we establish the general formulas of the first- and
second-order optimum achievable rates for several important
measures that have not been considered yet. This is also one
of significant contributions of this paper.

This paper is organized as follows. In Section II, we describe
the problem setting and give some definitions of the optimum
first-order achievable rates. The subclass of f -divergences con-
sidered in this paper has also been introduced. In Section III
and IV, we show general formulas of the optimum first-order
achievable rates in the resolvability problem and the intrinsic
randomness problem, respectively. In Section V, we apply
general formulas to some specified functions f and compute
the optimum first-order achievable rates in each case. In
Section VI, we show general formulas of the optimum second-
order achievable rates. In Section VII, we discuss the resolv-
ability and intrinsic randomness problems in the optimistic
scenario. In Section VIII, we clarify the relationship to the
fixed length source coding problem. Finally, we provide some
concluding remarks on our results in Section IX.

II. PRELIMINARIES

We consider the general source defined as an infinite

sequence X =
{
Xn =

(
X

(n)
1 , X

(n)
2 , . . . , X

(n)
n

)}∞

n=1
of

n-dimensional random variables Xn, where each component

random variable X
(n)
i takes values in a countable set X .

Let PX(·) denote the probability distribution of the random
variable X . The uniform random number UM is defined by

PUM (i) =
1
M
, i ∈ UM := {1, 2, · · · ,M}. (1)

The f -divergence between two probabilistic distributions PZ

and PZ is defined as follows [17]. Let f(t) be a convex
function defined for t > 0 and f(1) = 0.

Definition 2.1 (f -Divergence [17]): Let PZ and PZ denote
probability distributions over a finite or countably infinite set
Z . The f -divergence between PZ and PZ is defined by

Df(Z||Z) :=
∑
z∈Z

PZ(z)f
(
PZ(z)
PZ(z)

)
, (2)

where we set 0 f
(

0
0

)
= 0, f(0) = limt→0 f(t), 0f(a

0 ) =
limt→0 tf(a

t ) = a limu→∞
f(u)

u .
We give some examples of f -divergences [17], [18]:
• f(t) = t log t: (Kullback-Leibler (KL) divergence)

Df(Z||Z) =
∑
z∈Z

PZ(z) log
PZ(z)
PZ(z)

=: D(Z||Z). (3)

• f(t) = − log t: (Reverse Kullback-Leibler divergence)

Df (Z||Z) =
∑
z∈Z

PZ(z) log
PZ(z)
PZ(z)

= D(Z||Z). (4)

• f(t) = (t− 1)2: (χ2-divergence)

Df (Z||Z) =
∑
z∈Z

(PZ(z) − PZ(z))2

PZ(z)
. (5)

• f(t) = 1 −√
t: (Hellinger distance)

Df (Z||Z) = 1 −
∑
z∈Z

√
PZ(z)PZ(z). (6)

• f(t) = |t− 1|: (Variational distance)

Df(Z||Z) =
∑
z∈Z

|PZ(z) − PZ(z)|. (7)

• f(t) = (1 − t)+ := max{1 − t, 0}: (Half variational
distance)

Df(Z||Z) =
1
2

∑
z∈Z

|PZ(z) − PZ(z)|

=
∑

z∈Z:PZ(z)>PZ(z)

(PZ(z) − PZ(z)) . (8)

• f(t) = (t− γ)+ : (Eγ-divergence) For any given γ ≥ 1,

Df(Z||Z) =
∑

z∈Z:PZ(z)>γPZ(z)

(PZ(z) − γPZ(z))

=: Eγ(Z||Z). (9)

The Eγ-divergence is a generalization of the half variational
distance defined in (8), because γ ≥ 1 is arbitrarily.

Remark 2.1: Since the relation∑
z∈Z

|PZ(z) − PZ(z)| = 2
∑

z∈Z:PZ(z)>PZ (z)

(PZ(z) − PZ(z))

(10)
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holds, the variational distance is expressed as an f -divergence
using the function f(t) = 2(1 − t)+.

Remark 2.2: The Eγ-divergence between two probabilistic
distributions PZ and PZ is defined as (9) [11], [18]. Since
a representation of f -divergence is unique up to an additive
term which is a constant multiple of (t−1), the function which
represents Eγ-divergence can be given as

f(t) = (t− γ)+ + (1 − t)
= (γ − t)+ + (1 − γ). (11)

This yields alternative expression of the Eγ-divergence as an
f -divergence using the function:

f(t) = (γ − t)+ + 1 − γ. (12)

The following key property holds for the f -divergence from
Jensen’s inequality [17]:

∑
z∈Z′

b(z)f
(
a(z)
b(z)

)
≥
(∑

z∈Z′
b(z)

)
f

(∑
z∈Z′ a(z)∑
z∈Z′ b(z)

)
. (13)

Thus, together with the fact that f(1) = 0, we immediately
have

Df(Z||Z) ≥ 0. (14)

As we have mentioned above, the f -divergence is a general
distortion measure, which includes important measures. In this
study, we assume the following conditions on the function f .

C1) The function f(t) is a monotonically decreasing
function of t. That is, for any pair of positive real
numbers (a, b) satisfying a < b it holds that

f(a) ≥ f(b). (15)

C2)

lim
u→∞

f(u)
u

= 0. (16)

C3) For any pair of positive real numbers (a, b), it holds
that

lim
n→∞

f
(
e−nb

)
ena

= 0. (17)

Remark 2.3: Notice here that functions f(t) = − log t,
f(t) = 1 − √

t, and f(t) = (1 − t)+ satisfy the above
conditions, while f(t) = t log t does not satisfy conditions
C1) and C2). Moreover, it is not difficult to check that (12)
satisfies these conditions.

Remark 2.4: From the definition of the f -divergence, C2)
means

0f
(a

0

)
= 0, (18)

for any a ∈ (0, 1].

III. SOURCE RESOLVABILITY PROBLEM

First, we consider the general formula of the first-order
optimum D-achievable rate in the resolvability problem. Let
us begin with the definition of the achievability.

Definition 3.1: R is said to be D-achievable with the given
f -divergence if there exists a sequence of mapping φn :
UMn → Xn such that

lim sup
n→∞

Df (Xn||φn(UMn)) ≤ D, (19)

lim sup
n→∞

1
n

logMn ≤ R. (20)

Definition 3.2 (First-Order Optimum Resolvability Rate):

S(f)
r (D|X)

:= inf {R |R is D-achievable with the given f -divergence} .
(21)

Remark 3.1: It should be noted that we does not employ
Df (φn(UMn)||Xn) but Df (Xn||φn(UMn)) as the one of
conditions in Def. 3.1. This is important to consider the
asymmetric measure such as the KL-divergence.

Remark 3.2: In this paper, we only consider the case that D
is in [0, f(0)) under the given f -divergence. This is because
D ≥ f(0) means that there exists no restriction about the
approximation error (for example, f(0) = 1 in the case of the
half variational distance and f(0) = ∞ in the case of the KL
divergence). This case leads the trivial result that the first-order
optimum resolvability rate equals to 0. Hence, we focus on the
case of D ∈ [0, f(0)). This remark is applicable throughout
the paper.

In order to show the general formula of the first-order opti-
mum resolvability rate, we introduce the information quantity
on the basis of the function f given 0 ≤ ε < f(0):

Kf (ε|X)

:= inf
{
R

∣∣∣∣lim sup
n→∞

f

(
Pr
{

1
n

log
1

PXn(Xn)
≤R

})
≤ ε

}
.

(22)

Remark 3.3: Because of the condition C1), the function
f
(
Pr
{

1
n log 1

PXn (Xn) ≤ R
})

monotonically increases as R
decreases. Hence, the above quantity is uniquely determined
given ε.

Remark 3.4: From the condition C1) and the definition that
f(1) = 0, it is not difficult to verify that

Kf (ε|X) ≤ Kf (0|X) ≤ H(X), (23)

for any 0 ≤ ε < f(0), where

H(X) :=inf
{
R

∣∣∣∣ limn→∞Pr
{

1
n

log
1

PXn(Xn)
>R

}
=0
}
,

(24)

is called the spectral sup-entropy rate of the source X [8].
Furthermore, if min{a|f(a) = 0} = 1 holds, then it holds
that

Kf (0|X) = H(X). (25)

The following theorem addresses the general formula of the
first-order optimum resolvability.
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Theorem 3.1 (First-Order Optimum Resolvability Rate):
Assuming that the function f satisfies conditions C1)–C3),
then for any 0 ≤ D < f(0) it holds that

S(f)
r (D|X) = Kf (D|X). (26)

Remark 3.5: This theorem shows that the first-order opti-
mum resolvability rate with the given f -divergence does not
depend on the behavior of the function f(t) in t > 1. This
means that for two functions f and g, if the restriction of f
to [0, 1] is the same as that of g, then they will lead the same
first-order optimum resolvability rate, that is, S(f)

r (D|X) =
S

(g)
r (D|X).
For example, if we set

f(t) = − log t, (27)

g(t) = (− log t)+ := max{− log t, 0}. (28)

Then, it holds that

Df(Xn||φn(UMn)) =
∑

x∈Xn

PX̃n(x) log
PX̃n(x)
PXn(x)

, (29)

Dg(Xn||φn(UMn))

=
∑

x∈Xn:PX̃n (x)>PXn (x)

PX̃n(x) log
PX̃n(x)
PXn(x)

, (30)

where we denote X̃n = φn(UMn). Theorem 3.1 means that
S

(f)
r (D|X) = S

(g)
r (D|X).

Proof of Theorem 3.1: The proof consists of two parts:
(Direct Part:) Letting R0 = Kf (D|X), we shall show that

R = (R0 + 2γ) is D-achievable with the given f -divergence
for any γ > 0. To do so, first we construct the mapping φn :
UMn → Xn.

Let Mn = enR = en(R0+2γ). We define the set Sn as
follows

Sn :=
{
x ∈ Xn

∣∣∣∣ 1n log
1

PXn(x)
≤ R0 + γ

}
. (31)

Index the elements in Sn as {x1,x2, . . .x|Sn|}. Since,

1 ≥
∑
x∈Sn

PXn(x) ≥ |Sn| e−n(R0+γ), (32)

holds, we have

|Sn| ≤ en(R0+γ). (33)

Furthermore, let PX
n denote the probability distribution over

Sn defined by

PX
n(x) =

{
PXn (x)

Pr{Xn∈Sn} x ∈ Sn,

0 otherwise.
(34)

For x1 set k0 = 0 and determine k1 such that

k1

Mn
≤ PX

n(x1),
k1 + 1
Mn

> PX
n(x1). (35)

Secondly, for x2 we determine k2 such that

k2 − k1

Mn
≤ PX

n(x2),
k2 − k1 + 1

Mn
> PX

n(x2). (36)

In the similar way, we repeat this operation to choose ki for
xi as long as possible. Suppose that this operation stops at

xi0 . Because of the construction of the mapping, i0 = |Sn|
holds.

Now, we define the mapping φn : UMn → Xn by using i0
and ki(1 ≤ i ≤ i0) as follows

φn(j) =
{

xi ki−1 + 1 ≤ j ≤ ki, i < i0
xi0 otherwise

(37)

and set X̃n = φn(UMn).
Next, we evaluate the performance of this mapping φn.

From the setting of Mn, clearly we have

lim sup
n→∞

1
n

logMn ≤ R. (38)

Thus, it suffices to show that

lim sup
n→∞

Df (Xn||φn(UMn)) ≤ D. (39)

From the construction of the code, for all i satisfying 1 ≤
i ≤ i0 − 1 it holds that

PX̃n(xi) ≤ PX
n(xi) (40)

and
PX

n(xi) − PX̃n(xi) ≤ 1
Mn

. (41)

Furthermore, PX̃n(xi0) can be evaluated as follows.
From (41), it holds that

PX̃n(xi0 ) − PX
n(xi0)

=

(
1 −

i0−1∑
i=1

PX̃n(xi)

)
−
(

1 −
i0−1∑
i=1

PX
n(xi)

)

=
i0−1∑
i=1

PX
n(xi) −

i0−1∑
i=1

PX̃n(xi)

=
i0−1∑
i=1

(PX
n(xi) − PX̃n(xi))

≤ |Sn|
Mn

≤ e−nγ . (42)

Thus, noting that the condition C2) and Remark 2.4, the f -
divergence between PX̃n and PXn is evaluated as follows:

Df (Xn||φn(UMn))

=
i0∑

i=1

PX̃n(xi)f
(
PXn(xi)
PX̃n(xi)

)

=
i0∑

i=1

PX̃n(xi)f
(
PX

n(xi) Pr {Xn ∈ Sn}
PX̃n(xi)

)

≤
i0−1∑
i=1

PX̃n(xi)f
(
PX̃n(xi) Pr {Xn ∈ Sn}

PX̃n(xi)

)

+PX̃n(xi0 )f
(
PX

n(xi0 ) Pr {Xn ∈ Sn}
PX̃n(xi0 )

)

≤
i0−1∑
i=1

PX̃n(xi)f (Pr {Xn ∈ Sn})

+PX̃n(xi0 )f
(
PX

n(xi0 ) Pr {Xn ∈ Sn}
PX

n(xi0 ) + e−nγ

)
, (43)
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where the second equality is due to (34), the first and the last
inequality is due to C1) and (42), respectively.

Here, let the second term on the right hand side of (43)
denote An for short. Then, we can show that

An ≤ PX̃n(xi0 )f (Pr{Xn ∈ Sn}) + o(1). (44)

The proof appears in the appendix.
Hence, we have

lim sup
n→∞

Df (Xn||φn(UMn)) ≤ lim sup
n→∞

f(Pr {Xn∈Sn}).
(45)

Here, from the definition of R and Sn we obtain

lim sup
n→∞

f (Pr {Xn ∈ Sn})

= lim sup
n→∞

f

(
Pr
{

1
n

log
1

PXn(Xn)
≤ R0 + γ

})
≤ D, (46)

which completes the proof of the Direct Part.
(Converse Part:) In the proof of this part, we do not use C3).

Suppose that R is D-achievable with the given f -divergence,
then there exists a mapping φn such that

lim sup
n→∞

Df (Xn||φn(UMn)) ≤ D, (47)

lim sup
n→∞

1
n

logMn ≤ R. (48)

We fix this mapping φn and define the probability distribution
PX̃n by X̃n = φn(UMn). Define the set S�

n as

S�
n :=

{
x ∈ Xn

∣∣∣∣ 1n log
1

PXn(x)
≤ R+ 2γ

}
. (49)

For any set S, let Sc denote its complement. Since for ∀x ∈
(S�

n)c it holds that
1
n

log
1

PXn(x)
> R+ 2γ, (50)

we obtain

PXn(x) < e−n(R+2γ) (∀x ∈ (S�
n)c). (51)

On the other hand, (48) means that Mn ≤ en(R+γ) holds for
sufficiently large n. Here, define the set

Bn := {x ∈ Xn|PX̃n(x) > 0} , (52)

and index the element of Bn as Bn = {x1,x2, . . . ,x|Bn|}.
Then, from the property of the mapping φn, we obtain

|Bn| ≤Mn ≤ en(R+γ), (53)

for sufficiently large n. Thus, from the condition C2) we obtain

Df (Xn||φn(UMn))

=
∑

x∈Bn

PX̃n(x)f
(
PXn(x)
PX̃n(x)

)

≥ f (Pr {Xn ∈ Bn ∩ S�
n} + Pr {Xn ∈ Bn ∩ (S�

n)c})

≥ f

⎛
⎝Pr {Xn ∈ S�

n} +
∑

x∈Bn∩(S′
n)c

e−n(R+2γ)

⎞
⎠

= f
(
Pr {Xn ∈ S�

n} + |Bn ∩ (S�
n)c|e−n(R+2γ)

)
≥ f

(
Pr{Xn ∈ S�

n} + e−nγ
)
, (54)

for sufficiently large n, where the first inequality is due to (13)
and the second inequality is due to (51) and C1), and the last
inequality is due to (53) and C1).

Hence, from (47) we have

D ≥ lim sup
n→∞

Df (Xn||φn(UMn))

≥ lim sup
n→∞

f
(
Pr{Xn ∈ S�

n} + e−nγ
)

= lim sup
n→∞

f (Pr {Xn ∈ S�
n}) , (55)

from the continuity of the function f . Therefore, for the
D-achievable rate R it must hold that

lim sup
n→∞

f

(
Pr
{

1
n

log
1

PXn(Xn)
≤ R+2γ

})
≤ D. (56)

This inequality means that the converse part holds.
Remark 3.6: The proof of the direct part in Theorem 3.1

shows that the way of the construction of the optimum
mapping is always same irrespective of the given f -divergence
in the asymptotic sense. This observation is useful for the
construction of the mapping.

IV. INTRINSIC RANDOMNESS PROBLEM

In this section, we consider the intrinsic randomness prob-
lem. We first define the achievable rate in this problem.

Definition 4.1: R is said to be Δ-achievable with the given
f -divergence if there exists a sequence of mapping ϕn : Xn →
UMn such that

lim sup
n→∞

Df (ϕn(Xn)||UMn) ≤ D, (57)

lim inf
n→∞

1
n

logMn ≥ R. (58)

Definition 4.2 (First-Order Optimum Intrinsic Randomness
Rate):

S(f)
ι (Δ|X)

:=sup {R |R is Δ-achievable with the given f -divergence} .
(59)

Remark 4.1: In this paper, we employ the f -divergence:
Df (ϕn(Xn)||UMn) instead of Df (UMn ||ϕn(Xn))
(cf. Remark 3.1).

In order to characterize S(f)
ι (Δ|X), we introduce the quan-

tity which is an analogue of Kf (ε|X) defined in Section III.

Kf (ε|X)

:=sup
{
R

∣∣∣∣lim sup
n→∞

f

(
Pr
{

1
n

log
1

PXn(Xn)
≥R

})
≤ε
}
.

(60)

Remark 4.2: From the condition C1), the function

f

(
Pr
{

1
n

log
1

PXn(Xn)
≥ R

})
(61)

is a monotonically increasing function of R. Hence, Kf (ε|X)
is uniquely determined given ε.

Remark 4.3: From the condition C1) and the definition that
f(1) = 0, it is not difficult to verify that

Kf (ε|X) ≥ Kf (0|X) ≥ H(X), (62)
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for any 0 ≤ ε < f(0), where

H(X) = sup
{
R

∣∣∣∣ lim
n→∞Pr

{
1
n

log
1

PXn(Xn)
≥ R

}
=1
}
,

(63)

is called the spectral inf-entropy rate [8]. Furthermore,
if min{a|f(a) = 0} = 1 holds, then it holds that

Kf (0|X) = H(X). (64)

Then, we have the following theorem:
Theorem 4.1 (First-Order Optimum Intrinsic Randomness

Rate): Assuming that the function f satisfies C1) and C2),
then for any 0 ≤ Δ < f(0) it holds that

S(f)
ι (Δ|X) = Kf (Δ|X). (65)

Proof: The proof is a modification of the proof given by
Hayashi [10, Theorem 7]. The proof consists of two parts.

(Direct Part:) Setting R0 = Kf (Δ|X), we show that R =
(R0 − 2γ) is Δ-achievable with the given f -divergence for
any γ > 0. To do so, we define the mapping ϕn : Xn → UMn

as follows.
Setting

Tn :=
{
x ∈ Xn

∣∣∣∣ 1n log
1

PXn(x)
≥ R0 − γ

}
, (66)

Bn := {x ∈ Xn |PXn(x) > 0} , (67)

we define

Mn = enR Pr{Xn ∈ Tn} = en(R0−2γ) Pr{Xn ∈ Tn}. (68)

Since, for ∀x ∈ Tn it holds that

PXn(x) ≤ e−n(R0−γ). (69)

we have

|Tn ∩Bn| ≥ Pr{Xn ∈ Tn}
e−n(R0−γ)

≥ Pr{Xn ∈ Tn}en(R0−γ)

> Mn. (70)

Thus, from the definition of Tn, for any i (1 ≤ i ≤Mn), there
exists a surjective mapping φn : Tn ∩Bn → UMn such that:

Pφn(Xn)(i)

Pr{Xn ∈ Tn} >
1
Mn

− e−n(R0−γ)

Pr{Xn ∈ Tn}
=

1
Mn

(
1 − e−nγ

)
. (71)

By using this mapping φn, we construct the mapping ϕn :
Xn → UMn such that

ϕn(x) =
{
φn(x) x ∈ Tn ∩Bn

1 otherwise,
(72)

and set ŨMn = ϕn(Xn).
We next evaluate the performance of ϕn. From the definition

of Mn, we clearly obtain

1
n

logMn ≥ R0 − 2γ +
1
n

log Pr{Xn ∈ Tn}
≥ R0 − 3γ, (73)

for sufficiently large n.1 Hence, in order to prove the direct
part it suffices to show

lim sup
n→∞

Df (ϕn(Xn)||UMn) = lim sup
n→∞

Df (ŨMn ||UMn)

≤ Δ. (74)

From the construction of ŨMn and (71), it holds that

PŨMn
(i) ≥ 1

Mn

(
1 − e−nγ

)
Pr {Xn∈Tn} . (75)

Then, from (75) and the monotonicity of the function f (C1)),
the f -divergence is upper-bounded by

Df (ŨMn ||UMn)

=
Mn∑
i=1

PUMn
(i)f

(
PŨMn

(i)

PUMn
(i)

)

≤
Mn∑
i=1

1
Mn

f

(
1

Mn
(1 − e−nγ) Pr {Xn∈Tn}

1
Mn

)

= f
(
(1 − e−nγ)Pr {Xn∈Tn}

)
≤ f

(
Pr {Xn∈Tn} − e−nγ

)
. (76)

Since the function f is continuous, we obtain

lim sup
n→∞

Df(ŨMn ||UMn) ≤ lim sup
n→∞

f(Pr {Xn∈Tn}). (77)

Therefore, from the definition of R0 we have

lim sup
n→∞

f (Pr {Xn ∈ Tn})

= lim sup
n→∞

f

(
Pr
{

1
n

log
1

PXn(Xn)
≥ R0 − γ

})
≤ Δ, (78)

which completes the proof.
(Converse Part:) Suppose that R is Δ-achievable with the

given f -divergence, then there exists a mapping ϕn satisfying

lim sup
n→∞

Df (ϕn(Xn)||UMn) ≤ Δ, (79)

lim inf
n→∞

1
n

logMn ≥ R. (80)

We fix this mapping ϕn and define the probability distrib-
ution ŨMn by ŨMn = ϕn(Xn). For any fixed γ > 0, define
the set T �

n as:

T �
n :=

{
x ∈ Xn

∣∣∣∣ 1n log
1

PXn(x)
≥ R− 2γ

}
. (81)

Then, for ∀x ∈ (T �
n)c it holds that

1
n

log
1

PXn(x)
< R− 2γ. (82)

Thus, we have

PXn(x) > e−n(R−2γ) (∀x ∈ (T �
n)c), (83)

from which it holds that

|(T �
n)c| < en(R−2γ). (84)

1From Remark 3.2, Pr{Xn ∈ Tn} > 0 holds for sufficiently large n.
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Here, define the set ϕn((T �
n)c) as

ϕn((T �
n)c) := {ϕn(x) |x ∈ (T �

n)c } . (85)

Thus, the set ϕn((T �
n)c) is the set of i constructing from at

least one x ∈ (T �
n)c. Then, the difference set UMn \ϕn((T �

n)c)
is the set of index i constructing only from x ∈ T �

n,
Then, from (84) and the definition of the mapping it holds

that
|ϕn((T �

n)c)| ≤ |(T �
n)c| ≤ en(R−2γ). (86)

Since (80) means that Mn ≥ en(R−γ) holds for sufficiently
large n, we obtain

|ϕn((T �
n)c)|

Mn
≤ en(R−2γ)

en(R−γ)
≤ e−nγ , (87)

for sufficiently large n. Thus, from the above inequality and
C2), we obtain

lim
n→∞

|ϕn((T �
n)c)|

Mn
f

(
Mn

|ϕn((T �
n)c)|

)
= 0. (88)

Hence, the f -divergence between ŨMn and UMn is
lower-bounded by

Df

(
ŨMn ||UMn

)

=
Mn∑
i=1

1
Mn

f

(
PŨMn

(i)
1

Mn

)

=
∑

i∈UMn\ϕn((T ′
n)c)

1
Mn

f

(
PŨMn

(i)
1

Mn

)

+
∑

i∈ϕn((T ′
n)c),1≤i≤Mn

1
Mn

f

(
PŨMn

(i)
1

Mn

)

≥ |UMn \ ϕn((T �
n)c)|

Mn
f

(∑
i∈UMn\ϕn((T ′

n)c) PŨMn
(i)

|UMn\ϕn((T ′
n)c)|

Mn

)

+
|ϕn((T �

n)c)|
Mn

f

(∑
i∈ϕn((T ′

n)c),1≤i≤Mn
PŨMn

(i)
|ϕn((T ′

n)c)|
Mn

)

≥ |UMn \ ϕn((T �
n)c)|

Mn
f

(
Pr {Xn ∈ T �

n}
|UMn\ϕn((T ′

n)c)|
Mn

)

+
|ϕn((T �

n)c)|
Mn

f

(
1

|ϕn((T ′
n)c)|

Mn

)

=
(

1 − |ϕn((T �
n)c)|

Mn

)
f

(
Pr{Xn ∈ T �

n}
1 − |ϕn((T ′

n)c)|
Mn

)

+
|ϕn((T �

n)c)|
Mn

f

(
Mn

|ϕn((T �
n)c)|

)

≥ (1 − e−nγ
)
f

(
Pr {Xn ∈ T �

n}
1 − e−nγ

)

+
|ϕn((T �

n)c)|
Mn

f

(
Mn

|ϕn((T �
n)c)|

)
=
(
1 − e−nγ

)
f (Pr {Xn ∈ T �

n} (1 + γ�))

+
|ϕn((T �

n)c)|
Mn

f

(
Mn

|ϕn((T �
n)c)|

)
, (89)

for sufficiently large n, where we set γ� = e−nγ

1−e−nγ and the
first inequality is due to (13), the second and last inequalities
are due to the condition C1).

Therefore, from (79) and (88) it holds that

Δ ≥ lim sup
n→∞

Df

(
ŨMn ||UMn

)
≥ lim sup

n→∞
f (Pr {Xn∈T �

n} (1 + γ�))

− lim sup
n→∞

e−nγf (Pr {Xn∈T �
n} (1 + γ�))

+ lim inf
n→∞

|ϕn((T �
n)c)|

Mn
f

(
Mn

|ϕn((T �
n)c)|

)
= lim sup

n→∞
f (Pr {Xn ∈ T �

n}) , (90)

where the last equality is due to the continuity of the
function f .

This means that for any Δ-achievable rate R it holds that

lim sup
n→∞

f

(
Pr
{

1
n

log
1

PXn(Xn)
≥ R− 2γ

})
≤ Δ, (91)

for any γ > 0. This completes the proof of the converse part.

V. PARTICULARIZATION TO SEVERAL DISTANCE

MEASURES

In previous sections, we have derived the general formula of
the first-order optimum resolvability and intrinsic randomness
rates with respect to f -divergences. In this section, we focus
on the several specified functions f satisfying conditions
C1)–C3) and compute these rates by using Theorems 3.1
and 4.1. We use the notation

Df (Xn||X̃n) := Df (Xn||φn(UMn)), (92)

Df (ŨMn ||UMn) := Df (ϕn(Xn)||UMn), (93)

for convenience.
Remark 5.1: Since the function f(t) = t log t (which indi-

cates the KL divergence) does not satisfy C1) and C2), we can
not apply Theorems 3.1 and 4.1 into the case of the KL
divergence:

Df (Xn||X̃n) = D(Xn||X̃n)

=
∑

x∈Xn

PXn(x) log
PXn(x)
PX̃n(x)

, (94)

Df (ŨMn ||UMn) = D(ŨMn ||UMn)

=
∑

1≤i≤Mn

PŨMn
(i) log

PŨMn
(i)

PUMn
(i)
. (95)

The resolvability problem with respect to the KL divergence of
this direction has not been considered yet, while Nomura [4]
has considered the problem with respect to D(X̃n||Xn)
(which is indicated by f(t) = − log t) and Steinberg and
Verdú [3] have considered the problem with respect to the
normalized KL divergence: 1/nD(X̃n||Xn) (cf. Han [8]). On
the other hand, in the intrinsic randomness problem, Hayashi
[10, Theorem 7] has studied the problem with respect to
1/nD(ŨMn ||UMn) as well as D(UMn ||ŨMn).



NOMURA: SOURCE RESOLVABILITY AND INTRINSIC RANDOMNESS: TWO RANDOM NUMBER GENERATION PROBLEMS 7595

We introduce the following quantities given 0 ≤ ε < 1 so
as to express first-order optimum achievable rates.

H(ε|X)

:=inf
{
R

∣∣∣∣lim sup
n→∞

Pr
{

1
n

log
1

PXn(Xn)
>R

}
≤ε
}
, (96)

H(ε|X)

:=sup
{
R

∣∣∣∣lim sup
n→∞

Pr
{

1
n

log
1

PXn(Xn)
<R

}
≤ε
}
. (97)

These quantities are called the ε-spectral sup-entropy rate and
the ε-spectral inf-entropy rate, respectively [8].

A. Half Variational Distance

We first consider the case of f(t) as f(t) = (1− t)+ which
indicates

Df (Xn||X̃n) =
1
2

∑
x∈Xn

|PXn(x) − PX̃n(x)| , (98)

Df (ŨMn ||UMn) =
1
2

∑
1≤i≤Mn

∣∣∣PŨMn
(i) − PUMn

(i)
∣∣∣ . (99)

In this special case, we obtain the following corollary:
Corollary 5.1: For f(t) = (1 − t)+, it holds that

S(f)
r (D|X) = H(D|X), (100)

S(f)
ι (D|X) = H(D|X). (101)

Proof: In the case of f(t) = (1− t)+, Kf (D|X) reduces
to

Kf (D|X)

=inf

{
R

∣∣∣∣∣lim sup
n→∞

(
1−Pr

{
1
n

log
1

PXn(Xn)
≤ R

})+

≤D
}

=inf
{
R

∣∣∣∣lim sup
n→∞

Pr
{

1
n

log
1

PXn(Xn)
> R

}
≤ D

}
=H(D|X). (102)

Similarly, we obtain

Kf (Δ|X) = H(Δ|X). (103)

Hence, from Theorems 3.1 and 4.1 we obtain the corollary.
The former result in the above corollary coincides with the

result given by Steinberg and Verdú [3, Theorem 4] (see, also
Han [8, Theorem 2.4.1]) while the latter one coincides with
the result given by Vembu and Verdú [7, Theorem 1], and Han
[8, Theorem 2.4.2].

B. Reverse Kullback-Leibler Divergence

Secondly, we consider the case of f(t) = − log t, which
indicates

Df (Xn||X̃n) = D(φn(UMn)||Xn)

=
∑

x∈Xn

PX̃n(x) log
PX̃n(x)
PXn(x)

, (104)

Df(ŨMn ||UMn) = D(UMn ||ϕn(Xn))

=
∑

1≤i≤Mn

PUMn
(i) log

PUMn
(i)

PŨMn
(i)
. (105)

In this case, we obtain the following corollary:
Corollary 5.2: For f(t) = − log t, it holds that

S(f)
r (D|X) = H(1 − e−D|X),
S(f)

ι (D|X) = H(1 − e−D|X). (106)

Proof: From Theorem 3.1, we have

Kf (D|X)

= inf
{
R

∣∣∣∣lim sup
n→∞

f

(
Pr
{

1
n

log
1

PXn(Xn)
≤ R

})
≤ D

}

= inf
{
R

∣∣∣∣lim sup
n→∞

− log Pr
{

1
n

log
1

PXn(Xn)
≤ R

}
≤ D

}

= inf
{
R

∣∣∣∣lim sup
n→∞

Pr
{

1
n

log
1

PXn(Xn)
> R

}
≤ 1 − e−D

}
= H

(
1 − e−D|X) . (107)

Similarly from Theorem 4.1, we have

Kf (D|X) = H
(
1 − e−D|X) . (108)

Hence, the corollary holds.
The former result in the above corollary coincides with the

result given by Nomura [4, Theorem 3.1] while the latter one
coincides with the result given by Hayashi [10, Theorem 7].

C. Hellinger Distance

We consider the case of f(t) = 1 −√
t, which indicates

Df (Xn||X̃n) = 1 −
∑

x∈Xn

√
PXn(x)PX̃n(x), (109)

Df (ŨMn ||UMn) = 1 −
∑

1≤i≤Mn

√
PŨMn

(i)PUMn
(i). (110)

In this case, we have the corollary:
Corollary 5.3: For f(t) = 1 −√

t, we have

S(f)
r (D|X) = H(2D −D2|X), (111)

S(f)
ι (D|X) = H(2D −D2|X). (112)

Proof: From Theorem 3.1, we obtain

Kf (D|X)

= inf
{
R

∣∣∣∣lim sup
n→∞

f

(
Pr
{

1
n

log
1

PXn(Xn)
≤ R

})
≤ D

}

= inf

{
R

∣∣∣∣∣
lim sup

n→∞

(
1 −

√
Pr
{

1
n

log
1

PXn(Xn)
≤ R

})
≤ D

}

= H
(
2D −D2|X) . (113)

Similarly, we have from Theorem 4.1

Kf (Δ|X) = H
(
2Δ − Δ2|X) . (114)

Hence, the corollary holds.
Remark 5.2: Kumagai and Hayashi [13], [14] have consid-

ered the first- and second- order optimum achievable rates in
the random number conversion problem with respect to the
approximation measure related to the Hellinger distance. It
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should be emphasized that they have focused on stationary
memoryless sources while Corollary 5.3 is valid for general
sources.

D. Eγ-Divergence

Finally, we consider the case of f(t) = (γ − t)+ + 1 − γ,
which indicates

Df (Xn||X̃n)

=
∑

x∈Xn:PXn (x)>γPX̃n(x)

(PXn(x) − γPX̃n(x)) . (115)

Df (ŨMn ||UMn)

=
∑

1≤i≤Mn:PŨMn
(i)>γPUMn

(i)

(
PŨMn

(i) − γPUMn
(i)
)
.

(116)

In this case, we obtain the corollary:
Corollary 5.4: For f(t) = (γ − t)+ + 1 − γ, we have

S(f)
r (D|X) = H(D|X),
S(f)

ι (D|X) = H(D|X). (117)

Proof: Noting that γ ≥ 1, from Theorem 3.1, we obtain

Kf (D|X)

= inf
{
R

∣∣∣∣lim sup
n→∞

f

(
Pr
{

1
n

log
1

PXn(Xn)
≤ R

})
≤ D

}

= inf

{
R

∣∣∣∣∣
lim sup

n→∞

(
γ−Pr

{
1
n

log
1

PXn(Xn)
≤R

}
+1−γ

)
≤ D

}

= H(D|X). (118)

Similarly, we have from Theorem 4.1

Kf (Δ|X) = H(Δ|X). (119)

Hence, the corollary holds.
Remark 5.3: The above corollary shows that both of opti-

mum achievable rates with respect to the Eγ-divergence does
not depend on γ, which means that these rates coincides
with the optimum achievable rates with respect to the half
variational distance (cf. Corollary 5.1).

Remark 5.4: Liu et al. [11] have dealt with the source
resolvability problem with respect to the Eγ-divergence.
However, our achievability (Definitions 3.1 and 3.2) differs
with that in [11, Definition 14]. Hence, Corollary 5.4 and
Remark 5.3 have not been provided in [11].

VI. SECOND-ORDER OPTIMUM ACHIEVABLE RATE

So far, we have considered the first-order optimum achiev-
able rates in two random number generation problems. In this
section, we consider the second-order optimum achievable
rates in these problems.

A. General Formula

We first define the second-order achievability in the resolv-
ability problem.

Definition 6.1: L is said to be (D,R)-achievable with the
given f -divergence if there exists a sequence of mapping φn :
UMn → Xn such that

lim sup
n→∞

Df (Xn||φn(UMn)) ≤ D, (120)

lim sup
n→∞

1√
n

log
Mn

enR
≤ L. (121)

Definition 6.2 (Second-Order Optimum Resolvability Rate):

S(f)
r (D,R|X) := inf {L |L is (D,R)-achievable

with the given f -divergence} . (122)

In order to characterize the general formula of the
second-order optimum resolvability rate Sf (D,R|X),
we define the information spectrum quantity (123), shown at
the bottom of the next page, on the basis of the function f .

Then, the following theorem holds:
Theorem 6.1 (Second-Order Optimum Resolvability Rate):

Assuming that the function f satisfies conditions C1)–C3),
then for any 0 ≤ D < f(0) it holds that

S(f)
r (D,R|X) = Kf (D,R|X). (125)

Proof: The proof is similar to the proof of Theorem 3.1.

We next consider the case of the intrinsic randomness
problem.

Definition 6.3: L is said to be (Δ, R)-achievable with the
given f -divergence if there exists a sequence of mapping ϕn :
Xn → UMn such that

lim sup
n→∞

Df (ϕn(Xn)||UMn) ≤ Δ, (126)

lim inf
n→∞

1√
n

log
Mn

enR
≥ L. (127)

Definition 6.4 (Second-Order Optimum Intrinsic Random-
ness Rate):

S(f)
ι (Δ, R|X) := sup {L |L is (Δ, R)-achievable with

the given f -divergence} . (128)

In order to characterize S
(f)
ι (Δ, R|X), we introduce the

quantity (124), shown at the bottom of the next page, which
is an analogue to Kf (ε,R|X) defined in (123).

Then, we have the theorem:
Theorem 6.2 (Second-Order Optimum Intrinsic Random-

ness Rate): Assuming that the function f satisfies C1) and
C2), then for any 0 ≤ D < f(0) it holds that

S(f)
ι (Δ, R|X) = Kf (Δ, R|X). (129)

Proof: The proof proceeds in parallel with the proof of
Theorem 4.1.
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B. Particularizations to Several Distance Measures

Analogously to Section V, we compute S(f)
r (D,R|X) and

S
(f)
ι (Δ, R|X) for the specified function f satisfying C1)-C3),

by using Theorems 6.1 and 6.2. To do so, we define two
information theoretic quantities as follows:

H(ε,R|X)

:= inf
{
L

∣∣∣∣lim sup
n→∞

Pr
{

1
n

log
1

PXn(Xn)
>R+

L√
n

}
≤ ε

}
,

(130)

H(ε,R|X)

:= sup
{
L

∣∣∣∣lim sup
n→∞

Pr
{

1
n

log
1

PXn(Xn)
<R+

L√
n

}
≤ε
}
.

(131)

Remark 6.1: The second-order optimum coding rate in the
fixed-length source coding is characterized by H(ε,R|X),
while H(ε,R|X) is used to characterize the second-order
optimum rate in the intrinsic randomness problem with respect
to the variational distance [10].

We obtain the following corollary:
Corollary 6.1: It holds that

S(f)
r (D,R|X)

=

⎧⎪⎪⎨
⎪⎪⎩

H(D,R|X) f(t) = (1 − t)+,
H(1 − e−D, R|X) f(t) = − log t,
H(2D −D2, R|X) f(t) = 1 −√

t,
H(D,R|X) f(t) = (γ − t)+ + 1 − γ.

(132)

S(f)
ι (Δ, R|X)

=

⎧⎪⎪⎨
⎪⎪⎩

H(Δ, R|X) f(t) = (1 − t)+,
H(1 − e−Δ, R|X) f(t) = − log t,
H(2Δ − Δ2, R|X) f(t) = 1 −√

t,
H(Δ, R|X) f(t) = (γ − t)+ + 1 − γ.

(133)

Proof: The proof is similar to the proof of Corollaries 5.1-
5.4.

The second-order optimum resolvability rates in the case
of the variational distance and the KL-divergence have been
already given by Nomura and Han [6, Theorem 3.1] and
Nomura [4, Theorem 5.1], respectively. The second-order opti-
mum intrinsic randomness rates in the case of the variational
distance and the KL-divergence have been given by Hayashi
[10, Theorems 3 and 7].

Remark 6.2: From these results, the information theoretic
quantities H(ε,R|X) and H(ε,R|X) play essential roles to
analyze the second-order optimum achievable rates. It should
be emphasized that H(ε,R|X) as well as H(ε,R|X) have
been computed for several tractable sources. For example,
H(ε,R|X) and H(ε,R|X) have been explicitly calculated

by Hayashi [10] for the stationary memoryless source and by
Nomura and Han [6] for mixed sources.

VII. OPTIMISTIC OPTIMUM ACHIEVABLE RATE

A. Source Resolvability

In previous sections, we have considered the first- and
second-order optimum resolvability and intrinsic randomness
rates. In this section, we establish analogous theorems in
the optimistic sense. The notion of the optimistic optimum
rates has first been introduced by Vembu et al. [19] in the
source-channel coding framework. Then, several researchers
have developed the optimistic coding scenario in other infor-
mation theoretic problems [10], [20]–[22]. In particular,
Hayashi [10] has considered the first- and second-order opti-
mum intrinsic randomness rates with respect to the variational
distance and the KL divergence in the optimistic scenario.
In this subsection, we develop the notion of the optimistic
optimum rates to the resolvability problem with respect to f -
divergences.

Definition 7.1: R is said to be optimistically D-achievable
with the given f -divergence if there exists a sequence of
mapping φn : UMn → Xn such that for any ν > 0

Df (Xni ||φni(UMni
)) ≤ D + ν, (134)

1
ni

logMni ≤ R+ ν. (135)

holds for some subsequence n1 < n2 < · · · .
Definition 7.2 (Optimistic First-Order Optimum Resolvabil-

ity Rate):

T (f)
r (D|X) := inf {R |R is optimistically D-achievable

with the given f -divergence} . (136)

We similarly define the second-order achievability in the
optimistic scenario.

Definition 7.3: L is said to be optimistically (D,R)-
achievable with the given f -divergence if there exists a
sequence of mapping φn : UMn → Xn such that for any
ν > 0

Df (Xni ||φni(UMni
)) ≤ D + ν, (137)

1√
ni

log
Mni

eniR
≤ L+ ν, (138)

holds for some subsequence n1 < n2 < · · · .
Definition 7.4 (Optimistic Second-Order Optimum Resolv-

ability Rate):

T (f)
r (D,R|X) := inf {L |L is optimistically

(D,R)-achievable with the given f -divergence} . (139)

Remark 7.1: One may consider that we can define different
quantities as follows:

Kf (ε,R|X) := inf
{
L

∣∣∣∣lim sup
n→∞

f

(
Pr
{

1
n

log
1

PXn(Xn)
≤ R+

L√
n

})
≤ε
}
. (123)

Kf (ε,R|X) := sup
{
L

∣∣∣∣lim sup
n→∞

f

(
Pr
{

1
n

log
1

PXn(Xn)
≥R+

L√
n

})
≤ε
}
. (124)



7598 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 12, DECEMBER 2020

Definition 7.5: R is said to be type I D-achievable with
the given f -divergence if there exists a sequence of mapping
φn : UMn → Xn such that

lim inf
n→∞ Df (Xn||φn(UMn)) ≤ D, (144)

lim sup
n→∞

1
n

logMn ≤ R. (145)

Definition 7.6:

T †(f)
r (D|X) := inf {R |R is type I D-achievable

with the given f -divergence} . (146)

Definition 7.7: R is said to be type II D-achievable with
the given f -divergence if there exists a sequence of mapping
φn : UMn → Xn such that

lim sup
n→∞

Df (Xn||φn(UMn)) ≤ D, (147)

lim inf
n→∞

1
n

logMn ≤ R. (148)

Definition 7.8:

T ‡(f)
r (D|X) := inf {R |R is type II D-achievable

with the given f -divergence} . (149)

Then, it is not difficult to check that

T (f)
r (D|X) = T †(f)

r (D|X) = T ‡(f)
r (D|X). (150)

The similar relationship also holds for the optimistic second-
order optimum resolvability rates as well as the optimistic
intrinsic randomness rates in the subsequent subsection.

In order to show general formulas of the optimistic first and
second-order optimum resolvability rates, we introduce two
information quantities (140) and (141), shown at the bottom
of the page, on the basis of the function f given 0 ≤ ε < f(0).

Then, we have the following theorem.
Theorem 7.1: Assuming that the function f satisfies condi-

tions C1)-C3), then for any 0 ≤ D < f(0) it holds that

T (f)
r (D|X) = K

∗
f (D|X), (151)

T (f)
r (D,R|X) = K

∗
f (D,R|X). (152)

Proof: In view of (150), the proof proceeds in
parallel with proofs of Theorems 3.1 and 6.1 in
which lim supn→∞Df(Xn||φn(UMn)) is replaced by
lim infn→∞Df(Xn||φn(UMn)).

B. Intrinsic Randomness

We next consider the case of the intrinsic randomness
problem in the optimistic scenario.

Definition 7.9: R is said to be optimistically Δ-achievable
with the given f -divergence if there exists a sequence of
mapping ϕn : Xn → UMn such that for any ν > 0

Df (ϕni(X
ni)||UMni

) ≤ Δ + ν, (153)
1
ni

logMni ≥ R− ν, (154)

for some subsequence n1 < n2 < · · · .
Definition 7.10 (Optimistic First-Order Optimum Intrinsic

Randomness Rate):

T (f)
ι (Δ|X)

:=sup {R |R is Δ-achievable with the given f -divergence} .
(155)

Definition 7.11: L is said to be optimistically (Δ, R)-
achievable with the given f -divergence if there exists a
sequence of mapping ϕn : Xn → UMn such that for any
ν > 0

Df (ϕni(X
ni)||UMni

) ≤ Δ + ν, (156)

1√
n

log
Mni

eniR
≥ L− ν, (157)

for some subsequence n1 < n2 < · · · .
Definition 7.12 (Optimistic Second-Order Optimum Intrin-

sic Randomness Rate):

T (f)
ι (Δ, R|X) := sup {L |L is optimistically

(Δ, R)-achievable with the given f -divergence} . (158)

In order to characterize T
(f)
ι (Δ|X) and T

(f)
ι (Δ, R|X),

we introduce two quantities (142) and (143), shown at the
bottom of the page. Then, we have the theorem.

Theorem 7.2: Assuming that the function f satisfies C1)
and C2), then for any 0 ≤ Δ < f(0) it holds that

T (f)
ι (Δ|X) = K∗

f (Δ|X), (159)

T (f)
ι (Δ, R|X) = K∗

f (Δ, R|X). (160)

Proof: The proof is similar to proofs of Theorems 4.1
and 6.2.

Particularizations of Theorems 7.1 and 7.2 can be consid-
ered similarly in Sections V and VI (cf. Theorem 8.2 below).

K
∗
f (ε|X) := inf

{
R

∣∣∣∣lim inf
n→∞ f

(
Pr
{

1
n

log
1

PXn(Xn)
≤ R

})
≤ ε

}
. (140)

K
∗
f (ε,R|X) := inf

{
L

∣∣∣∣lim inf
n→∞ f

(
Pr
{

1
n

log
1

PXn(Xn)
≤ R+

L√
n

})
≤ ε

}
. (141)

K∗
f (ε|X) := sup

{
R

∣∣∣∣lim inf
n→∞ f

(
Pr
{

1
n

log
1

PXn(Xn)
≥ R

})
≤ ε

}
. (142)

K∗
f (ε,R|X) := sup

{
L

∣∣∣∣lim inf
n→∞ f

(
Pr
{

1
n

log
1

PXn(Xn)
≥ R+

L√
n

})
≤ ε

}
. (143)
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VIII. DISCUSSION

A. Alternative Expressions of Optimum Achievable Rates

From results in Section V, one may wonder whether
first-order optimum achievable rates in the resolvability prob-
lem and the intrinsic randomness problem are always charac-
terized by using H(ε|X) and H(ε|X). In order to give the
positive answer to this question, we assume the following
condition.

C4) The function f is a strictly decreasing function in
t ∈ (0, 1].

Then, we obtain:
Theorem 8.1: Assuming that the function f satisfies

C1)–C4), it holds that

S(f)
r (D|X) = H(1 − f−1(D)|X), (161)

S(f)
ι (D|X) = H(1 − f−1(D)|X). (162)

Proof: It is clear from Theorems 3.1 and 4.1, and the
condition C4).

This theorem shows a kind of duality between these two
random number generation problems. It should be emphasized
that in the case of the variational distance, this duality has
already been reported [8]. It is not difficult to check that
functions f(t) = − log t, f(t) = 1−√

t, f(t) = (1− t)+, and
f(t) = (γ−t)+ + 1 − γ satisfy C4).

Furthermore, in the case of D = 0 we have

H(1 − f−1(D)|X) = H(0|X) = H(X), (163)

H(1 − f−1(D)|X) = H(0|X) = H(X), (164)

under the condition C4), where H(X) and H(X) are defined
in (24) and (63), respectively. This means that, under condition
C1)–C4) the optimum 0-achievable rates are equal irrespective
of the function f .

On the other hand, for 0 ≤ ∀D < f(0) the following
relations hold

H(X) ≤ H(1 − f−1(D)|X) ≤ H(X), (165)

H(X) ≤ H(1 − f−1(D)|X) ≤ H(X). (166)

If the strong converse property holds for the source X, then
H(X) = H(X) holds [8]. Thus, we have the following
corollary.

Corollary 8.1: Assuming that the function f satisfies
C1)–C4) and the source X has the strong converse property,
it holds that

S(f)
r (D|X) = S(f)

ι (D|X) = H(X). (0 ≤ ∀D < f(0))
(167)

We also obtain the second-order optimum achievable rates
as follows:

Theorem 8.2: Assuming that the function f satisfies
C1)–C4), it holds that

S(f)
r (D,R|X) = H(1 − f−1(D), R|X), (168)

S(f)
ι (D,R|X) = H(1 − f−1(D), R|X), (169)

where H(ε,R|X) and H(ε,R|X) are defined in (130)
and (131).

Proof: We obtain the theorem from Theorems 6.1 and 6.2,
and the condition C4).

Similarly, in the optimistic scenario, following quantities
given 0 ≤ ε < 1 have important roles.

H
∗
(ε|X)

:= inf
{
R

∣∣∣∣lim inf
n→∞ Pr

{
1
n

log
1

PXn(Xn)
> R

}
≤ ε

}
,

(170)

H∗(ε|X)

:= sup
{
R

∣∣∣∣lim inf
n→∞ Pr

{
1
n

log
1

PXn(Xn)
< R

}
≤ ε

}
,

(171)

H
∗
(ε,R|X)

:= inf
{
L

∣∣∣∣lim inf
n→∞ Pr

{
1
n

log
1

PXn(Xn)
> R+

L√
n

}
≤ ε

}
,

(172)

H∗(ε,R|X)

:= sup
{
L

∣∣∣∣lim inf
n→∞ Pr

{
1
n

log
1

PXn(Xn)
<R+

L√
n

}
≤ ε

}
.

(173)

Then, we obtain the following theorem by using the similar
argument to proofs of Theorems 8.1 and 8.2.

Theorem 8.3: Assuming that the function f satisfies
C1)–C4), it holds that

T (f)
r (D|X) = H

∗
(1 − f−1(D)|X), (174)

T (f)
ι (D|X) = H∗(1 − f−1(D)|X), (175)

T (f)
r (D,R|X) = H

∗
(1 − f−1(D), R|X), (176)

T (f)
ι (D,R|X) = H∗(1 − f−1(D), R|X). (177)

Notice here that H
∗
(ε|X), H∗(ε|X), H

∗
(ε,R|X),

H∗(ε,R|X) have been computed explicitly for the stationary
memoryless sources [10], [20].

B. Relation to ε-Fixed Length Source Coding

We consider the fixed length source coding as follows. Let
ξn : Xn → UMn , ψn : UMn → Xn be an encoder and a
decoder, respectively, for the source X. The decoding error
probability is εn := Pr {Xn 
= ψn(ξn(Xn))}. This code is
called an (n,Mn, εn) code.

Definition 8.1: R is said to be ε-achievable if there exists
an (n,Mn, ε) code such that

lim sup
n→∞

εn ≤ ε, lim sup
n→∞

1
n

logMn ≤ R. (178)

Definition 8.2 (Optimum ε-Fixed Length Source Coding
Rate):

Rfl(ε|X) := inf{R|R is ε-achievable}. (179)

Then, the following theorem is well-known.
Theorem 8.4 (Steinberg and Verdú [3]):

Rfl(ε|X) = H(ε|X). (180)

From the above theorem and Theorem 3.1 we immediately
have:
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Corollary 8.2: Assuming that the function f satisfies
C1)–C4), it holds that

S(f)
r (D|X) = Rfl(1 − f−1(D)|X). (181)

The above corollary, together with Corollary 8.3 below,
reveals a relationship between the ε-fixed length source coding
and the source resolvability with respect to the f -divergence.

Remark 8.1: The relationship between the fixed length
source coding with the correct decoding exponent D and the
resolvability with respect to the normalized KL divergence
has been clarified by Steinberg and Verdú [3]. It should be
noted that they have demonstrated this relationship, directly [3,
Theorem 9]. That is, they have shown that the optimum fixed
length code can be constructed from the optimum mapping
in the resolvability problem with respect to the normalized
KL divergence and vice versa. On the other hand, we have
revealed the relationship in our setting, via the information
quantity H(ε|X).

The similar relationship in the optimistic scenario can also
be shown.

Definition 8.3: R is said to be optimistically ε-achievable
if there exists an (n,Mn, ε) code such that for any ν > 0

εni ≤ ε+ ν,
1
ni

logMni ≤ R+ ν, (182)

for some subsequence n1 < n2 < · · · .
Definition 8.4 (Optimistic Optimum ε-Fixed Length Source

Coding Rate):

R∗
fl(ε|X) := inf{R|R is optimistically ε-achievable}. (183)

Then, it is known that
Theorem 8.5 (Chen and Alajaji [20], Hayashi [10]):

R∗
fl(ε|X) = H

∗
(ε|X), (184)

where H
∗
(ε|X) is defined in (170).

Thus, we have the following corollary.
Corollary 8.3: Assuming that the function f satisfies

C1)–C4), it holds that

T (f)
r (D|X) = R∗

fl(1 − f−1(D)|X). (185)

IX. CONCLUDING REMARKS

We have so far considered the first- and second-order
optimum achievable rates in two random number generation
problems with respect to a subclass of f -divergences. We
have demonstrated the general formulas of the optimum
achievable rates with respect to the given f -divergence by
using the information spectrum approach. We have also shown
that we can easily derive the results on specified functions f
from our general formulas. In our analyses, four information
quantities H(ε|X), H(ε,R|X), H(ε|X) and H(ε,R|X) have
important roles. We can compute these values for several
tractable sources by using previous results [3], [6], [8], [10].

In this paper, we have considered the f -divergence
Df (Xn||φn(UMn)) in the case of the resolvability problem
and Df (ϕn(Xn)||UMn) in the case of intrinsic randomness
problem. As a result, a kind of duality of these problems

has been revealed. On the other hand, we can consider the
resolvability problem with respect to Df (φn(UMn)||Xn) as
well as the intrinsic randomness problem with respect to
Df (UMn ||ϕn(Xn)). However, in order to treat these problems
it seems we need some novel techniques, which remain to
be studied. In actual, Hayashi [10] has shown that in the
intrinsic randomness problem the optimum achievable rates
with respect to the KL divergences 1/nD(ϕn(Xn)||UMn)
has completely different behavior to the optimum rates with
respect to 1/nD(UMn ||ϕn(Xn)).

When we consider the practical situation, it is important
to discuss how to construct the random number generation
mapping. Proofs of Theorems 3.1 and 4.1 indicate that the
way of the construction of the optimum mapping is always
same irrespective of the given f -divergence in each of two
problems. This observation is quite useful, because we can
construct the mapping without considering the approximation
measure. Furthermore, as we have mentioned in Remark 3.5,
our results show that the first- and second-order optimum
resolvability and intrinsic randomness rates with the given f -
divergence does not depend on the behavior of the function
f(t) in t > 1. This is also interesting from the practical and
theoretical points of view.

One of extensions of the setting in this paper is to consider
the channel resolvability problem or the channel intrinsic
randomness problem [2], [23]–[25]. When we consider the
channel resolvability (or the intrinsic randomness) problem,
the random coding technique is standard to show the exis-
tence of the mapping. It is interesting to discuss the random
coding technique, when we consider the f -divergence as the
approximation measure. This extension is one of our future
works.

Finally, the condition C3) has only been needed to show
Direct Part in the resolvability problem. To consider the
necessity of this condition is also a future work.

APPENDIX

PROOF OF (44)

We shall show (44) in the proof of Theorem 3.1. First of
all, we have

PX̃n(xi0 )f
(
PX

n(xi0) Pr {Xn ∈ Sn}
PX

n(xi0) + e−nγ

)

≤ (PX
n(xi0) + e−nγ

)
f

(
PX

n(xi0 ) Pr {Xn ∈ Sn}
PX

n(xi0 ) + e−nγ

)

≤ PX
n(xi0)f

(
(1 − e−nγ)PX

n(xi0 ) Pr {Xn ∈ Sn}
PX

n(xi0 )

)

+e−nγf

(
e−nγPX

n(xi0 ) Pr {Xn ∈ Sn}
e−nγ

)
≤ PX

n(xi0)f
(
(1 − e−nγ) Pr {Xn ∈ Sn}

)
+e−nγf (PX

n(xi0 ) Pr {Xn ∈ Sn}) , (186)

where the second inequality is due to (13). Here, noting that
xi0 ∈ Sn and (34), the second term of the right-hand side of
the above inequality is upper bounded by

e−nγf (PX
n(xi0 ) Pr{Xn∈Sn})=e−nγf (PXn(xi0 ))

≤e−nγf
(
e−n(R0+γ)

)
, (187)
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from which, together with (17), we obtain

lim
n→∞

(
e−nγf (PX

n(xi0 ) Pr {Xn ∈ Sn})
)

= 0. (188)

This means that

PX̃n(xi0 )f
(
PX

n(xi0) Pr {Xn ∈ Sn}
PX

n(xi0) + e−nγ

)
≤ PX

n(xi0)f
(
(1 − e−nγ) Pr {Xn ∈ Sn}

)
+ o(1) (189)

holds.
Next, we evaluate the first term of the right-hand side

of (189). From (15), we have

PX
n(xi0)f

(
(1 − e−nγ) Pr {Xn ∈ Sn}

)
≤ PX

n(xi0 )f
(
Pr {Xn ∈ Sn} − e−nγ

)
. (190)

Here, from the construction of the mapping it holds that

PX
n(xi0 ) − PX̃n(xi0 )

=

(
1 −

i0−1∑
i=1

PX
n(xi)

)
−
(

1 −
i0−1∑
i=1

PX̃n(xi)

)

=
i0−1∑
i=1

PX̃n(xi) −
i0−1∑
i=1

PX
n(xi)

=
i0−1∑
i=1

(PX̃n(xi) − PX
n(xi)) ≤ 0. (191)

Substituting (191) into (190) yields

PX
n(xi0 )f

(
(1 − e−nγ) Pr {Xn ∈ Sn}

)
≤ PX̃n(xi0 )f

(
Pr {Xn ∈ Sn} − e−nγ

)
≤ PX̃n(xi0 )f (Pr {Xn ∈ Sn}) + o(1), (192)

because of the continuity of the function f .
Therefore, from (189) and (192), we obtain

PX̃n(xi0 )f
(
PX

n(xi0 ) Pr {Xn ∈ Sn}
PX

n(xi0 ) + e−nγ

)
≤ PX̃n(xi0 )f (Pr {Xn ∈ Sn}) + o(1). (193)

This completes the proof.
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