
ar
X

iv
:2

00
6.

12
82

0v
1 

 [
m

at
h.

N
T

] 
 2

3 
Ju

n 
20

20

A Note on the Cross-Correlation of

Costas Permutations

Domingo Gomez-Perez1 and Arne Winterhof2

1 Facultad de Ciencias Universidad de Cantabria,

Santander, Spain

E-mail: domingo.gomez@unican.es
2 Johann Radon Institute for

Computational and Applied Mathematics,

Austrian Academy of Sciences, Altenberger Str. 69,

4040 Linz, Austria

E-mail: arne.winterhof@oeaw.ac.at

Abstract

We build on the work of Drakakis et al. (2011) on the maximal cross-
correlation of the families of Welch and Golomb Costas permutations. In
particular, we settle some of their conjectures. More precisely, we prove
two results.

First, for a prime p ≥ 5, the maximal cross-correlation of the family
of the ϕ(p − 1) different Welch Costas permutations of {1, . . . , p − 1} is
(p − 1)/t, where t is the smallest prime divisor of (p − 1)/2 if p is not a
safe prime and at most 1+ p1/2 otherwise. Here ϕ denotes Euler’s totient
function and a prime p is a safe prime if (p− 1)/2 is also prime.

Second, for a prime power q ≥ 4 the maximal cross-correlation of a
subfamily of Golomb Costas permutations of {1, . . . , q−2} is (q−1)/t−1
if t is the smallest prime divisor of (q− 1)/2 if q is odd and of q− 1 if q is
even provided that (q−1)/2 and q−1 are not prime, and at most 1+ q1/2

otherwise. Note that we consider a smaller family than Drakakis et al.
Our family is of size ϕ(q−1) whereas there are ϕ(q−1)2 different Golomb
Costas permutations. The maximal cross-correlation of the larger family
given in the tables of Drakakis et al. is larger than our bound (for the
smaller family) for some q.
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1 Introduction

For a positive integer n, let π be a permutation of {1, . . . , n} satisfying

π(i + k)− π(i) 6= π(j + k)− π(j)

for any integers 1 ≤ k ≤ n−2 and 1 ≤ i < j ≤ n−k. Such a permutation is called
a Costas permutation of {1, . . . , n} and the corresponding (n× n)-permutation
matrix A = (aij)

n
i,j=1 defined by

aij = 1 if and only if π(i) = j

is called a Costas array of size n. These objects are crucial in some problems
arising from radar and sonar, see for example [5, Section 7.6] and [3].

The cross-correlation Cf1,f2(u, v) between two mappings

f1, f2 : {1, . . . , n} → {1, . . . , n}

at (u, v) ∈ Z
2, 1− n ≤ u, v ≤ n− 1, is the number of solutions

x ∈ {max{1, 1− u}, . . . ,min{n, n− u}}

of the equation
f1(x) + v = f2(x + u). (1)

For a family F of Costas permutations of {1, . . . , n}, themaximal cross-correlation

C(F) is
C(F) = max

u,v
max

f1,f2∈F

f1 6=f2

Cf1,f2(u, v).

Studying the maximal cross-correlation of a family of Costas permutations is not
only a very interesting mathematical problem, since families with small maximal
cross-correlation are of high practical importance, see [2] and references therein.

In this note, we study the maximal cross-correlation of two families of Costas
permutations, the family of Welch Costas permutations and a subfamily of
Golomb Costas permutations defined below. In particular, we will address some
open problems from [2].

Welch’s construction of Costas permutations is defined as follows, see [3, 5].
For a prime p > 2, let g be a primitive root modulo p and πg the permutation
of {1, . . . , p− 1} defined by

πg(i) ≡ gi mod p.

Then, for p ≥ 5, the family Wp of Welch Costas permutations of {1, . . . , p− 1}
is

Wp = {πg : g primitive root modulo p},

so that, |Wp| = ϕ(p− 1), where ϕ is Euler’s totient function.
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A prime p is a safe prime if (p− 1)/2 is also a prime, called Sophie Germain

prime. Therefore,

|Wp| =
p− 3

2
if p ≥ 7 is a safe prime

and |W5| = 2.
In this note we prove the following result on C(Wp).

Theorem 1. For a prime p ≥ 5, let t be the smallest prime divisor of (p− 1)/2.
Then, the maximal cross-correlation C(Wp) of the family of Welch Costas per-

mutations Wp of {1, . . . , p− 1} satisfies

C(Wp)

{

≤ 1 + ⌊(1 − 2/(p− 1))p1/2⌋ if p is a safe prime,
= (p− 1)/t otherwise.

Note that we can substitute each πg(i) by a shift πg(i + cg) and get the
same result. However, Wp must not contain two shifts for the same primitive
element g. In particular, for non-safe primes, Theorem 1 settles the first con-
jecture in Drakakis et al. [2, Conjecture 3]. We prove Theorem 1 in Section 2.

Golomb’s construction of Costas permutations is the following, see [1, 4, 5, 7].
For a prime power q > 2 and primitive elements g1 and g2 of the finite field Fq,
let πg1,g2 be the permutation of {1, . . . , q − 2} defined by

πg1,g2(i) = h if and only if gi1 + gh2 = 1.

For q ≥ 4 and fixed g2 we study the subfamily Gq of the family of Golomb Costas
permutations of {1, . . . , q − 2} defined by

Gq = {πg1,g2 : g1 primitive element of Fq}.

Then we have |G|q = ϕ(q − 1). In Section 3, we prove the following result on
C(Gq).

Theorem 2. For a prime power q ≥ 4, let t be the smallest prime divisor of

(q − 1)/2 if q is odd and of q−1 if q is even. Then, the maximal cross-correlation

C(Gq) of the family of Golomb Costas permutations Gq of {1, . . . , q−2} satisfies

C(Gq)







≤ 1 + ⌊(1− 2/(q − 1))q1/2⌋ if q is odd and t = (q − 1)/2,

≤ ⌊(1− 1/(q − 1))(1 + q1/2)⌋ if q is even and t = q − 1,
= (q − 1)/t− 1 otherwise.

Besides C(Gq), it is interesting to study the cross-correlation C(Lq) of the
larger set Lq of all Golomb Costas permutations

Lq = {πg1,g2 : g1, g2 primitive elements of Fq}

of size
|Lq| = ϕ(q − 1)2.
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The tables of [2] show that C(Lq) is larger than C(Gq) for some small values of
q. For example, for q = 59, we have C(L59) = 12 but C(G59) ≤ 8. However, for
all prime values of q with 61 ≤ q ≤ 271 and all strict prime powers 25 ≤ q ≤ 343,
the bound of Theorem 2 is also valid for C(Lq). It remains an open problem to
prove the conjecture that this bound holds for C(Lq) up to a few exceptions of
q with q ≤ 59.

2 Proof of Theorem 1

By [2, Theorem 1], we have

max
u∈Z

max
f1,f2∈W

f1 6=f2

Cf1,f2(u, 0) =
p− 1

t
.

Since t ≤
√

(p− 1)/2 if p is not a safe prime, it remains to prove the following
lemma, from which Theorem 1 follows immediately after verifying

p− 1

t
≥

√

2(p− 1) ≥ 1 + p1/2 for p ≥ 11

and that 5 and 7 are both safe primes.

Lemma 1. For any prime p ≥ 5 we have

max
u

max
v 6=0

max
f1,f2∈Wp

f1 6=f2

Cf1,f2(u, v) ≤ 1 +

⌊(

1−
2

p− 1

)

p1/2
⌋

.

Proof. The maximum in the statement can be bounded by the maximal
number N of solutions x ∈ F

∗
p of any equation of the form

axr ≡ x+v mod p, with av 6≡ 0 mod p, gcd(r, p−1) = 1, 1 < r < p−1, (2)

since, if g is a fixed primitive root modulo p, all other primitive roots modulo p
are of the form gr with gcd(r, p− 1) = 1. For fixed a and v with av 6≡ 0 mod p,
the number of solutions of (2) is

1

p− 1

∑

χ

∑

x∈F∗
p\{−v}

χ(axr)χ(x+ v)

by the orthogonality relations

1

p− 1

∑

χ

χ(x)χ(y) =

{

1, x = y,
0, x 6= y,

}

for all x, y ∈ F
∗
p,

where the sum runs through all multiplicative characters χ of Fp.
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The contribution of the trivial character χ0 is (p−2)/(p−1) and that of the
quadratic character η is −η(a)/(p− 1) by [5, Lemma 7.3.7]. Thus,

N ≤ 1 +
p− 3

p− 1
max
v∈F∗

p

max
χ6∈{χ0,η}

∣

∣

∣

∣

∣

∣

∑

x∈F∗
p

χ(xr(x + v)p−2)

∣

∣

∣

∣

∣

∣

≤ 1 +

(

1−
2

p− 1

)

p1/2

by the Weil bound, see for example [6, Theorem 5.41]. ✷

3 Proof of Theorem 2

For u = v = 0, we have, by [2, Theorem 3]

max
f1,f2∈Gq

f1 6=f2

Cf1,f2(0, 0) =
q − 1

t
− 1,

where t is the smallest prime divisor of (q − 1)/2 if q is odd and of q − 1 if q is
even.

Next we prove an upper bound for v = 0 and arbitrary u.

Lemma 2. We have

max
u

max
f1,f2∈Gq

f1 6=f2

Cf1,f2(u, 0) ≤
q − 1

t
− 1

if t 6∈ {(q − 1)/2, q − 1} and

max
u

max
f1,f2∈Gq

f1 6=f2

Cf1,f2(u, 0) ≤ 2

otherwise.

Proof. Since
Cf1,f2(−u, 0) = Cf2,f1(u, 0)

we may assume u ≥ 1. Let f1 and f2 be defined by f1(x) = h if and only if
gx1 + gh2 = 1 and f2(x) = h if and only if gxr1 + gh2 = 1, respectively, for some
integer r with gcd(r, q − 1) = 1 and 1 < r < q − 1. Then, the number of
solutions x of (1) with v = 0 (and n = q − 2) is the number of integers x in the
range 1 ≤ x ≤ q − 2− u such that

gx1 = g
(x+u)r
1 ,

that is, x satisfies
(r − 1)x ≡ −ur mod (q − 1).
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Put d = gcd(r− 1, q− 1) and let a be the inverse of (r− 1)/d modulo (q− 1)/d.
There is no solution if d does not divide u. Otherwise, the solutions are those
x with

x ≡ −a(u/d)r mod (q − 1)/d. (3)

We have at most d such solutions x with 1 ≤ x ≤ q − 2. Obviously, we have
d ≤ (q − 1)/t. The result follows immediately if d < (q − 1)/t. It remains to
study the case d = (q − 1)/t. Then either

u ≥ d = (q − 1)/t ≥ (q − 1)1/2 ≥ t

or
for q odd, t = (q − 1)/2 and d = 2

and
for q even, t = q − 1 and d = 1.

In the fist case, the solutions x of (3) are of the form x = x0+kt with 1 ≤ x0 ≤ t
and 0 ≤ k ≤ d− 1. However, k = d− 1 is not possible since

x0 + (d− 1)t > q − 1− t > q − 2− (q − 1)1/2 ≥ q − 2− d ≥ q − 2− u

and there are at most d − 1 = (q − 1)/t − 1 solutions. In the remaining cases
we have at most 2 solutions. ✷

For v 6= 0, analogously to Lemma 1, we get the following bound.

Lemma 3. For odd q, we have

max
u

max
v 6=0

max
f1,f2∈Gq

f1 6=f2

(u, v) ≤ 1 +

⌊(

1−
2

q − 1

)

q1/2
⌋

and, for even q,

max
u

max
v 6=0

max
f1,f2∈Gq
f1 6=f2

(u, v) ≤

⌊(

1−
1

q − 1

)

(

1 + q1/2
)

⌋

.

Proof. Again, let f1(x) = h whenever gx1 + gh2 = 1 and f2(x) = h whenever
grx1 + gh2 = 1 for some r with gcd(r, q − 1) = 1 and 1 < r < q − 1. Then, (1)
implies

gv2(1− gx1 ) = 1− g
r(x+u)
1 .

Substituting y = 1− gx1 , a = gv2 and b = gru1 , we get

ay = 1− b(1− y)r.

Note that a 6= 1 since v 6= 0 and y 6∈ {0, 1} since 1 ≤ x ≤ q− 2. Hence, we have
to estimate the number N of solutions of equations of the form

b(1− y)r = 1− ay, y ∈ F
∗
q \ {1},
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for any a ∈ F
∗
q \ {1} and b ∈ F

∗
q . We can represent N by character sums

N =
1

q − 1

∑

χ

∑

y∈F∗
q\{1}

χ(b)χ((1 − y)r(1 − ay)q−2).

The contribution of the trivial character is (q − 2)/(q − 1) and, for odd q, that
of the quadratic character is −χ(b)/(q − 1). For the remaining characters, the
absolute value of the inner sum is at most q1/2. Collecting these facts, the result
follows. ✷

Theorem 2 is proved by combining Lemmas 2 and 3, after verifying that
t < (q − 1)/2 implies the following results.

For any odd q, we have t ≤
√

q−1
2 , and thus

1 + q1/2 ≤
q − 1

t
− 1 for any odd q ≥ 27.

For the remaining odd q with q ≤ 25, the following refinement holds,

1 +

⌊(

1−
2

q − 1

)

q1/2
⌋

≤
q − 1

t
− 1.

For even q ≥ 4, by Mihăilescu’s Theorem (former Catalan conjecture), q− 1
is not a perfect square and thus q − 1 ≥ t(t+ 2), that is, t ≤ −1 + q1/2.

If q = 2r with an odd r, then

1 + ⌊q1/2⌋ < 1 + q1/2 ≤
q − 1

t
.

If q = 2r with an even r, then t = 3 and

1 + q1/2 ≤
q − 1

3
− 1 for q ≥ 64.

In the remaining case, that is q = 16, the more precise bound of Lemma 3 equals
(q − 1)/t− 1 = 4. ✷
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