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On the Optimal Achievable Rates for Linear

Computation with Random Homologous Codes

Pinar Sen, Sung Hoon Lim, and Young-Han Kim

Abstract

The problem of computing a linear combination of sources over a multiple access channel is studied.

Inner and outer bounds on the optimal tradeoff between the communication rates are established when

encoding is restricted to random ensembles of homologous codes, namely, structured nested coset codes

from the same generator matrix and individual shaping functions, but when decoding is optimized with

respect to the realization of the encoders. For the special case in which the desired linear combination is

“matched” to the structure of the multiple access channel in a natural sense, these inner and outer bounds

coincide. This result indicates that most, if not all, coding schemes for computation in the literature

that rely on random construction of nested coset codes cannot be improved by using more powerful

decoders, such as the maximum likelihood decoder. The proof techniques are adapted to characterize

the rate region for broadcast channels achieved by Marton’s (random) coding scheme under maximum

likelihood decoding.

I. INTRODUCTION

Consider a multiple access channel (MAC) with two senders and one receiver, in which the receiver

wishes to reliably estimate a linear function of the transmitted sources from the senders (see Figure 1).

One trivial approach to this computation problem involves two steps: first recover the individual sources

and then compute the function from the recovered sources. When the problem is isolated to the first
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Fig. 1: Linear computation over two-sender multiple access channel

communication step of this plug-in approach, using the conventional random independently and identically

distributed (i.i.d.) code ensembles achieves the optimal rates of communicating independent sources [1],

[2]. For the problem as a whole, however, the use of random i.i.d. code ensembles is strictly suboptimal

even for a trivial MAC. As shown by Körner and Marton [3] for the problem of encoding a modulo-

two sum of distributed dependent binary sources, using the same random ensemble of linear codes at

multiple encoders can achieve strictly better rates than using independently generated ensembles of codes.

Building on this observation, Nazer and Gastpar [4] developed a channel coding scheme that uses the

same random ensemble of lattice codes at multiple encoders and showed that this structured coding

scheme outperforms conventional random coding schemes for computing a linear combination of the

sources over a linear MAC, even for independent sources. This influential work led to the development

of the compute–forward strategy for relay networks [5]–[7]. Over the past decade, the compute–forward

strategy based on lattice codes and its extensions have shown to provide higher achievable rates for

several communication problems over relay networks [5]–[11].

More recently, nested coset codes [12], [13] were proposed as more flexible alternatives for achieving

the desired linear structure at multiple encoders. In particular, Padakandla and Pradhan [13] developed a

fascinating coding scheme for the computation problem over an arbitrary MAC. In this coding scheme, a

coset code with a rate higher than the target (message) rate is first generated randomly. Next, in the shaping

step, a codeword of a desired property (such as type or joint type) is selected from a subset of codewords

(a coset of a subcode). Although reminiscent of the multicoding scheme of Gelfand and Pinsker [14]

for channels with state, and Marton’s coding scheme [15] for broadcast channels, this construction is

more fundamental in some sense, since the scheme is directly applicable even for classical point-to-point

communication channels. A similar shaping technique was also developed for lattice codes in [16]. For

multiple encoders, the desired common structure is obtained by using coset codes with the same generator

matrix. Recent efforts exploited the benefit of such constructions for a broader class of channel models,

such as interference channels [17], [18], multiple access channels [19], [20], and multiple access channels

with state [21].
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To develop a unified framework for the compute–forward strategy, Lim, Feng, Pastore, Nazer, and

Gastpar [22], [23] generalized the nested coset codes of the same generator matrix to asymmetric rate

pairs. We referred to this generalized version, together with the shaping step, as homologous codes [19],

[20], [24]. This terminology is motivated from its biological definition, i.e., the structures modified from

the same ancestry (underlying linear code) to adapt to different purposes (desired shape). Lim et al. [22],

[23] further analyzed simultaneous decoding of random ensembles of homologous codes and showed

that it can achieve rates higher than existing approaches to computation problems. For instance, when

adapted to the Gaussian MAC, the resulting achievable rates improve upon those of lattice codes [7].

With mathematical rate expressions in single-letter mutual information terms and with physical rate

performances better than those of lattice codes, homologous codes have a potential to bringing a deeper

understanding of the fundamental limits of the computation problem.

Several open questions remain, however. What is the optimal tradeoff between achievable rates for

reliable computation? Which scheme achieves this computation capacity region? The answers require

a joint optimization of encoder and decoder designs, which seems to be intractable as in many other

network information theory problems.

In this paper, we instead concentrate on the performance of the optimal maximum likelihood decoder

when the encoder is restricted to a given random ensemble of homologous codes. We characterize the

optimal rate region when the desired linear combination and the channel structure are “matched” (see

Definition 1 in Section III), which is the case in which the benefit of computation can be realized to

the fullest extent as indicated by [25]. This result, inter alia, implies that the suboptimal joint typicality

decoding rule proposed in [22], [23] achieves this optimal rate region. Thus, the performance of random

ensembles of homologous codes cannot be improved by the maximum likelihood decoder.

The main contribution lies in the outer bound on the optimal rate region (Theorem 3), which charac-

terizes the necessary condition that a rate pair must satisfy if the average probability of decoding error

vanishes asymptotically. The proof of this bound relies on two key observations. First, the distribution of

a given random ensemble of homologous codes converges asymptotically to the product of the desired

input distribution. Second, given the channel output, a relatively short list of messages can be constructed

that includes the actually transmitted message with high probability. The second observation, which is

adapted from the analysis in [26] for the optimal rate region of interference networks with random i.i.d.

code ensembles, seems to be a recurring path to establishing the optimal performance of random code

ensembles.

As hinted earlier, the construction of random ensemble of homologous codes has many similarities to

Marton’s coding scheme [15], one of the fundamental coding schemes in network information theory. As
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a result, adapting the proof techniques that we developed for homologous codes, we can establish an outer

bound on the optimal rate region for broadcast channels with Marton’s coding scheme (Proposition 2).

The resulting outer bound coincides with the inner bound that is achieved by simultaneous nonunique

decoding, thus characterizing the optimal rate region of a two-receiver general broadcast channel achieved

by a given random code ensemble.

The rest of the paper is organized as follows. Section II formally defines the computation problem.

Section III presents the main result of the paper—the optimal rate region achievable by a random ensemble

of homologous codes. The inner and the outer bounds on this region are presented in Sections IV and V,

respectively. Section VI discusses the optimal rate region for a broadcast channel achievable by Marton’s

coding scheme.

We adapt the notation in [27], [28]. The set of integers {1, 2, . . . , n} is denoted by [n]. For a length-n

sequence (row vector) xn = (x1, x2, . . . , xn) ∈ X
n, we define its type as π(x|xn) = |{i : xi = x}|/n for

x ∈ X . Upper case letters X,Y, . . . denote random variables. For ǫ ∈ (0, 1), we define the ǫ-typical set

of n-sequences (or the typical set in short) as T
(n)
ǫ (X) = {xn : |p(x)− π(x|xn)| ≤ ǫp(x), x ∈ X}. The

indicator function 1S : X → {0, 1} for S ⊆ X is defined as 1S(x) = 1 if x ∈ S and 0 otherwise. A

length-n row vector of all zeros is denoted by 0n, where the subscript is omitted when it is clear from

the context. We denote by Fq a finite field of size q, F∗
q is the set of nonzero elements in Fq, and Fd

q

is the d-dimensional vector space over Fq. The limit of a collection of sets {A(ǫ)} indexed by ǫ > 0 is

defined as

lim
ǫ→0
A(ǫ) :=

⋃

ǫ>0

⋂

0<γ<ǫ

A(γ)
(a)
=

⋂

ǫ>0

⋃

0<γ<ǫ

A(γ), (1)

which exists if (a) holds. The closure cl(A) of a setA ⊆ Rd denotes the smallest closed superset of A. We

use ǫn ≥ 0 to denote a generic sequence of n that tends to zero as n→∞, and use δi(ǫ) ≥ 0, i ∈ Z+,

to denote a continuous function of ǫ that tends to zero as ǫ → 0. Throughout the paper, information

measures are in logarithm base q.

II. FORMAL STATEMENT OF THE PROBLEM

Consider the two-sender finite-field input memoryless multiple access channel (MAC)

(X1 × X2, p(y |x1, x2),Y)

in Figure 1, which consists of two sender alphabets X1 = X2 = Fq, a receiver alphabet Y , and a

collection of conditional probability distributions pY |X1,X2
(y|x1, x2). Each sender j = 1, 2 encodes a

message Mj ∈ F
nRj

q into a codeword Xn
j = xnj (Mj) ∈ Fn

q and transmits Xn
j over the channel. Here

and henceforth, we assume without loss of generality that nR1 and nR2 are integers. The goal of



5

communication is to convey a linear combination of the codewords. Hence, the receiver finds an estimate

Ŵ n
a = ŵn

a(Y
n) ∈ Fn

q of

W n
a := a1X

n
1 ⊕ a2X

n
2

for a desired (nonzero) vector a = [a1 a2] over Fq. Formally, an (n, nR1, nR2) computation code for the

multiple access channel consists of two encoders that map xnj (mj), j = 1, 2, and a decoder that maps

ŵn
a(y

n). The collection of codewords Cn := {(xn1 (m1), x
n
2 (m2)) : (m1,m2) ∈ F

(nR1)×(nR2)
q } is referred

to as the codebook associated with the (n, nR1, nR2) code.

Remark 1: For simplicity of presentation, we consider the case X1 = X2 = Fq, but our arguments

can be extended to arbitrary X1 and X2 through the channel transformation technique by Gallager [29,

Sec. 6.2]. More specifically, given a pair of symbol-by-symbol mappings ϕj : Fq → Xj , j = 1, 2,

consider the virtual channel with finite field inputs, p(y|v1, v2) = pY |X1,X2
(y|ϕ1(v1), ϕ2(v2)), for which

a computation code is to be defined. The goal of the communication is to convey Wa := a1V
n
1 ⊕ a2V

n
2 ,

where V n
j = vnj (Mj) ∈ Fn

q is the virtual codeword mapped to message Mj at sender j = 1, 2. Our results

can be readily applied to this computation problem defined on the virtual channel.

The performance of a given computation code with codebook Cn is measured by the average probability

of error

P (n)
e (Cn) = P(Ŵ n

a 6= W n
a |Cn),

when M1 and M2 are independent and uniformly distributed. A rate pair (R1, R2) is said to be achievable

if there exists a sequence of (n, nR1, nR2) computation codes such that

lim
n→∞

P (n)
e (Cn) = 0

and

lim
n→∞

H(Mj |x
n
j (Mj), Cn) = 0, j ∈ {1, 2} with aj 6= 0. (2)

Note that without the condition in (2), the problem is trivial and an arbitrarily large rate pair is achievable.

We now define the random ensemble of computation codes referred to as homologous codes. Let

p = p(x1)p(x2) be a given input pmf on Fq × Fq, and let ǫ > 0. Suppose that the codewords xn1 (m1),

m1 ∈ FnR1
q , and xn2 (m2), m2 ∈ FnR2

q that constitute the codebook are generated according to the

following steps:

1) Let R̂j = D(pXj
‖Unif(Fq)) + ǫ, j = 1, 2, where D(·‖·) is the Kullback–Leibler divergence.

2) Randomly generate a κ × n generator matrix G, and two dither vectors Dn
1 and Dn

2 such that the

elements of G,Dn
1 , and Dn

2 are i.i.d. Unif(Fq) random variables, where κ = max{nR1+nR̂1, nR2+

nR̂2}.
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3) Given the realizations G, dn1 , and dn2 of the generator matrix and dithers, let

unj (mj , lj) = [mj lj 0] G+ dnj , mj ∈ F
nRj

q , lj ∈ F
nR̂j

q , j = 1, 2.

At sender j = 1, 2, assign a codeword xnj (mj) = unj (mj , Lj(mj)) to each message mj ∈ F
nRj

q

where Lj(mj) is a random variable that is drawn uniformly at random among all lj vectors satisfying

unj (mj, lj) ∈ T
(n)
ǫ (Xj) if there exists one, or among F

nR̂j

q otherwise.

With a slight abuse of terminology, we refer to the random tuple Cn := (G,Dn
1 ,D

n
2 , (L1(m1) : m1 ∈

FnR1
q ), (L2(m2) : m2 ∈ FnR2

q )) as the random homologous codebook. Each realization of the random

homologous codebook Cn results in one instance {(xn1 (m1), x
n
2 (m2)) : (m1,m2) ∈ FnR1

q × FnR2
q } of

such generated codebooks, which constitutes an (n, nR1, nR2) computation code along with the optimal

decoder. The random code ensemble generated in this manner is referred to as an (n, nR1, nR2; p, ǫ)

random homologous code ensemble, where p is the given input pmf and ǫ > 0 is the parameter used

in steps 1 and 3 in codebook generation. A rate pair (R1, R2) is said to be achievable by the (p, ǫ)-

distributed random homologous code ensemble if there exits a sequence of (n, nR1, nR2; p, ǫ) random

homologous code ensembles such that

lim
n→∞

ECn
[P (n)

e (Cn)] = 0

and

lim
n→∞

H(Mj |X
n
j (Mj), Cn) = 0, j ∈ {1, 2} with aj 6= 0. (3)

Here the expectation is with respect to the random homologous codebook Cn, i.e., (G,Dn
1 ,D

n
2 , (L1(m1) :

m1 ∈ FnR1
q ), (L2(m2) : m2 ∈ FnR2

q )). Given (p, ǫ), let R∗(p, ǫ) be the set of all rate pairs achievable by

the (p, ǫ)-distributed random homologous code ensemble. Given the input pmf p, the optimal rate region

R∗(p), when it exists, is defined as

R
∗(p) := cl

[

lim
ǫ→0

R
∗(p, ǫ)

]

.

III. MAIN RESULT

In this section, we present a single-letter characterization of the optimal rate region when the target

linear combination is in the following class.

Definition 1: A linear combination Wa = a1X1 ⊕ a2X2 for some a = [a1 a2] ∈ F2
q \ {0} is said to be

natural if

H(Wa |Y ) = min
b6=0

H(Wb |Y ), (4)

where b = [b1 b2] and Wb = b1X1 ⊕ b2X2 are over Fq.
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In words, a natural combination Wa is the easiest to recover at the receiver and thus, in some sense,

is the best linear combination that is matched to the channel structure.

We are now ready to present the optimal rate region for computing natural linear combinations.

Theorem 1: Given an input pmf p = p(x1)p(x2), the optimal rate region R∗(p) for computing a natural

combination Wa is the set of rate pairs (R1, R2) such that

Rj ≤ I(Xj ;Y |Xjc), (5a)

Rj ≤ I(X1,X2;Y )−min{Rjc , I(Xjc ;Wa, Y )} (5b)

for every j ∈ {1, 2} with aj 6= 0, where jc = {1, 2} \ {j}.

The rate region in (5) in Theorem 1, which we will denote as R∗∗(p), can be equivalently characterized

in terms of well-known rate regions for compute–forward and message communication. Let RCF(p) be

the set of rate pairs (R1, R2) such that

Rj ≤ H(Xj)−H(Wa |Y ), ∀j ∈ {1, 2} with aj 6= 0. (6)

Let RMAC(p) be the set of rate pairs (R1, R2) such that

R1 ≤ I(X1;Y |X2),

R2 ≤ I(X2;Y |X1),

R1 +R2 ≤ I(X1,X2;Y ).

Proposition 1: For any input pmf p = p(x1)p(x2) and any linear combination Wa,

R
∗∗(p) = RCF(p) ∪RMAC(p).

The proof of Proposition 1 is relegated to Appendix A.

We prove Theorem 1 in three steps: 1) we first present a general (not necessarily for natural combi-

nations) inner bound on the optimal rate region in Section IV, where we follow the results in [22], [23]

that studied the rate region achievable by random homologous code ensembles using a suboptimal joint

typicality decoding rule, 2) we then show by Lemma 1 in Section IV that this inner bound is equivalent

to R∗∗(p) in Proposition 1 if Wa is a natural combination, and 3) we present a general (not necessarily

for natural combinations) outer bound on the optimal rate region in Section V by showing that if a rate

pair (R1, R2) is achievable by the (p, ǫ)-distributed random homologous code ensemble for arbitrarily

small ǫ, then (R1, R2) must lie in R∗∗(p) in Theorem 1.
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IV. AN INNER BOUND

The computation performance of random homologous code ensembles was studied using a suboptimal

joint typicality decoder in [22], [23]. For completeness, we first describe the joint typicality decoding

rule and then characterize the rate region achievable by the (p, ǫ)-distributed random homologous code

ensemble under this joint typicality decoding rule. We then concentrate on an arbitrarily small ǫ to provide

an inner bound on the optimal rate region R∗(p). We will omit the steps that were already established

in [22], [23] and instead provide detailed references.

Upon receiving yn, the ǫ′-joint typicality decoder, ǫ′ > 0, looks for a unique vector s ∈ Fκ
q such that

s = a1[m1 l1 0]⊕ a2[m2 l2 0],

for some (m1, l1,m2, l2) ∈ FnR1
q × FnR̂1

q × FnR2
q × FnR̂2

q that satisfies

(un1 (m1, l1), u
n
2 (m2, l2), y

n) ∈ T
(n)
ǫ′ (X1,X2, Y ).

If the decoder finds such s, then it declares ŵn
a = sG⊕a1d

n
1 ⊕a2d

n
2 as an estimate; otherwise, it declares

an error.

To describe the performance of the joint typicality decoder, we define RCF(p, δ) for a given input pmf

p and δ ≥ 0 as the set of rate pairs (R1, R2) such that

Rj ≤ H(Xj)−H(Wa |Y )− δ, ∀j ∈ {1, 2} with aj 6= 0.

Similarly, we define R1(p, δ) as the set of rate pairs (R1, R2) such that

R1 ≤ I(X1;Y |X2)− δ, (7a)

R2 ≤ I(X2;Y |X1)− δ, (7b)

R1 +R2 ≤ I(X1,X2;Y )− δ, (7c)

R1 ≤ I(X1,X2;Y )−H(X2) + min
b1,b2∈F∗

q

H(Wb |Y )− δ, (7d)

and R2(p, δ) as the set of rate pairs (R1, R2) such that

R1 ≤ I(X1;Y |X2)− δ, (8a)

R2 ≤ I(X2;Y |X1)− δ, (8b)

R1 +R2 ≤ I(X1,X2;Y )− δ, (8c)

R2 ≤ I(X1,X2;Y )−H(X1) + min
b1,b2∈F∗

q

H(Wb |Y )− δ, (8d)
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where b = [b1 b2] and Wb = b1X1 ⊕ b2X2 are over Fq. Note that the region RCF(p) = RCF(p, δ = 0),

as defined in (6) in Section III. Similarly, let Rj(p) denote the region Rj(p, δ = 0) for j = 1, 2 in (7)

and (8).

We are now ready to state the rate region achievable by the random homologous code ensembles that

combines the inner bounds in [22, Theorem 1] and [23, Corollary 1].

Theorem 2: Let p = p(x1)p(x2) be an input pmf and δ > 0. Then, there exists ǫ′ < δ such that for

every ǫ < ǫ′ sufficiently small, a rate pair

(R1, R2) ∈ RCF (p, δ) ∪R1(p, δ) ∪R2(p, δ) (9)

is achievable by the (p, ǫ)-distributed random homologous code ensemble along with the ǫ′-joint typicality

decoder for computing an arbitrary linear combination Wa. In particular,

[RCF (p) ∪R1(p) ∪R2(p)] ⊆ R
∗(p). (10)

Proof: By [22, Theorem 1], for sufficiently small ǫ < ǫ′ < δ, the average probability of error for

the (p, ǫ)-distributed random homologous code ensemble paired with the ǫ′-joint typicality decoder tends

to zero as n→∞ if

(R1, R2) ∈ RCF (p, δ). (11)

Similarly, by [23, Corollary 1], the average probability of error tends to zero as n→∞ if

(R1, R2) ∈ R1(p, δ) ∪R2(p, δ). (12)

Combining (11) and (12) establishes (9).

We still need to show that the condition in (3) holds. Suppose that aj 6= 0. Let Gj denote the submatrix

that consists of the first (nRj +nR̂j) rows of G and Sj be the indicator variable such that Sj = 1 if Gj

is full rank. Then,

H(Mj |X
n
j (Mj), Cn) = H(Mj |X

n
j (Mj), G,Dn

1 ,D
n
2 , (L1(m1) : m1 ∈ F

nR1

q ), (L2(m2) : m2 ∈ F
nR2

q ))

≤ H(Mj |X
n
j (Mj), G,Dn

j , (Lj(mj) : mj ∈ F
nRj

q ))

= H(Mj |X
n
j (Mj), G, Sj ,D

n
j , (Lj(mj) : mj ∈ F

nRj

q ))

= H(Mj |X
n
j (Mj), G, Sj = 1,Dn

j , (Lj(mj) : mj ∈ F
nRj

q ))P(Sj = 1)

+H(Mj |X
n
j (Mj), G, Sj = 0,Dn

j , (Lj(mj) : mj ∈ F
nRj

q ))P(Sj = 0)

= H(Mj |X
n
j (Mj), G, Sj = 0,Dn

j , (Lj(mj) : mj ∈ F
nRj

q ))P(Sj = 0)

≤ nRj P(Sj = 0).
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Now, by Lemma 6 in Appendix B (with R← Rj + R̂j), the term nP(Sj = 0) tends to zero as n→∞

if Rj < H(Xj)− ǫ. Since this condition is satisfied if (9) holds, the proof of (9) follows.

The proof of (10) follows by taking the closure of the union of (9) over all δ > 0, which completes

the proof of Theorem 1.

The inner bound (10) in Theorem 1 is valid for computing an arbitrary linear combination, which

may not be equal to the rate region R∗∗(p) in Theorem 1 in general. For computing a natural linear

combination, however, the following lemma shows that the equivalent rate region in Proposition 1 is

achievable.

Lemma 1: If the desired linear combination Wa = a1X1 ⊕ a2X2 for (a1, a2) 6= (0, 0) is natural, then

[RCF(p) ∪R1(p) ∪R2(p)] = [RCF(p) ∪RMAC(p)].

The proof of Lemma 1 is relegated to Appendix C.

V. AN OUTER BOUND

We first present an outer bound on the rate region R∗(p, ǫ) for a fixed input pmf p and ǫ > 0. We

then discuss the limit of this outer bound as ǫ→ 0 to establish an outer bound on the rate region R∗(p).

Given an input pmf p and δ > 0, we define the rate region R∗∗(p, δ) as the set of rate pairs (R1, R2)

such that

Rj ≤ I(Xj ;Y |Xjc) + δ, (13a)

Rj ≤ I(X1,X2;Y )−min{Rjc , I(Xjc ;Wa, Y )}+ δ, (13b)

for every j ∈ {1, 2} with aj 6= 0, where jc = {1, 2} \ {j}. Note that R∗∗(p, δ = 0) is equal to R∗∗(p)

as defined in (5).

We are now ready to state the outer bound on the optimal rate region for computing an arbitrary linear

combination, which is also an outer bound on R∗(p) in Theorem 1 for computing a natural combination.

Theorem 3: Let p = p(x1)p(x2) be an input pmf and ǫ > 0. If a rate pair (R1, R2) is achievable by

the (p, ǫ)-distributed random homologous code ensemble for computing an arbitrary linear combination

Wa, then there exists a continuous δ′(ǫ) that tends to zero monotonically as ǫ→ 0 such that

(R1, R2) ∈ R
∗∗(p, δ′(ǫ)). (14)

In particular,

R
∗(p) ⊆ R

∗∗(p). (15)

Proof: We first start with an averaged version of Fano’s inequality for a random homologous code

ensemble Cn (recall the notation in Section II), the proof of which is relegated to Appendix D.
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Lemma 2: If

lim
n→∞

ECn
[P (n)

e (Cn)] = 0

and

lim
n→∞

H(Mj |X
n
j (Mj), Cn) = 0

for j ∈ {1, 2} with aj 6= 0, then for each j ∈ {1, 2} with aj 6= 0

H(Mj |Y
n,Mjc , Cn) ≤ nǫn

for some ǫn → 0 as n→∞.

We next define the indicator random variable

En = 1{(Xn
1 (M1),Xn

2 (M2))∈T
(n)

ǫ′
(X1,X2)}

(16)

for ǫ′ > 0. Since R̂i = D(pXi
‖Unif(Fq)) + ǫ, i = 1, 2, by the Markov lemma [22, Lemma 12] for

homologous codes, P(En = 0) tends to zero as n → ∞ if ǫ′ is sufficiently large compared to ǫ. Let

ǫ′ = δ1(ǫ), which still tends to zero as ǫ→ 0. Suppose that aj 6= 0. Then, for n sufficiently large,

nRj = H(Mj |Mjc , Cn)

(a)

≤ I(Mj ;Y
n |Mjc , Cn) + nǫn

≤ I(Mj , En;Y
n |Mjc , Cn) + nǫn

(b)

≤ 1 + I(Mj ;Y
n |Mjc , Cn, En) + nǫn

≤ 1 + I(Mj ;Y
n |Mjc , Cn, En = 0)P(En = 0) + I(Mj ;Y

n |Mjc , Cn, E = 1)P(En = 1) + nǫn

≤ 1 + nRj P(En = 0) + I(Mj ;Y
n |Mjc , Cn, En = 1) + nǫn

= 1 + nRj P(En = 0) +

n
∑

i=1

I(Mj ;Yi |Y
i−1,Mjc , Cn,Xjci, En = 1) + nǫn

≤ 1 + nRj P(En = 0) +

n
∑

i=1

I(Mj ,Xji, Y
i−1,Mjc , Cn;Yi |Xjci, En = 1) + nǫn

(c)
= 1 + nRj P(En = 0) +

n
∑

i=1

I(Xji;Yi |Xjci, En = 1) + nǫn, (17)

where (a) follows by Lemma 2, (b) follows since En is a binary random variable, and (c) follows since

(M1,M2, Y
i−1, Cn, En) → (X1i,X2i) → Yi form a Markov chain for every i ∈ [n]. To further upper

bound (17), we make a connection between the distribution of the random homologous codebook and

the input pmf p as follows.
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Lemma 3: Let (X,Y ) ∼ pX,Y (x, y) on Fq × Y and ǫ > 0. Let Xn(m) be the random codeword

assigned to message m ∈ FnR
q by an (n, nR; pX , ǫ) random homologous code ensemble. Further let Y n

be a random sequence distributed according to
∏n

i=1 pY |X(yi|xi). Then, for every (x, y) ∈ Fq × Y

(1− ǫ)pX,Y (x, y) ≤ P(Xi = x, Yi = y |Xn ∈ T (n)
ǫ (X)) ≤ (1 + ǫ)pX,Y (x, y),

where i = 1, 2, . . . , n.

The proof of Lemma 3 is relegated to Appendix E.

Back to the proof of Theorem 3, we are now ready to establish (13a). Combining (17) with Lemma 3

(with p(x)← p(x1)p(x2)), we have

nRj ≤ 1 + nRj P(En = 0) + n(I(Xj ;Y |Xjc) + δ2(ǫ)) + nǫn

(d)

≤ n(I(Xj ;Y |Xjc) + δ2(ǫ)) + 2nǫn, (18)

where (d) follows since P(En = 0) tends to zero as n→∞.

For the proof of (13b), we start with

nRj = H(Mj |Mjc , Cn)

(a)

≤ I(Mj ;Y
n |Mjc , Cn) + nǫn

= I(M1,M2;Y
n |Cn)− I(Mjc ;Y

n |Cn) + nǫn, (19)

where (a) follows by Lemma 2. Following arguments similar to (18), the first term in (19) can be bounded

as

I(M1,M2;Y
n |Cn) ≤ 1 + n(R1 +R2)P(En = 0) +

n
∑

i=1

I(M1,M2;Yi |Cn, Y
i−1, En = 1)

≤ nǫn +

n
∑

i=1

I(M1,M2, Cn, Y
i−1;Yi |En = 1)

= nǫn +

n
∑

i=1

I(M1,M2, Cn, Y
i−1,X1i,X2i;Yi |En = 1)

= nǫn +

n
∑

i=1

I(X1i,X2i;Yi |En = 1)

≤ nǫn + n(I(X1,X2;Y ) + δ3(ǫ)). (20)

To bound the second term in (19), we need the following lemma, which is proved in Appendix F.

Lemma 4: For every ǫ′′ > ǫ′ and for n sufficiently large,

I(Mjc ;Y
n |Cn) ≥ n[min{Rjc , I(Xjc ;Wa, Y )} − δ4(ǫ

′′)]− nǫn.
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Combining (19), (20), and Lemma 4 with ǫ′′ = 2δ1(ǫ), we have

nRj ≤ n(I(X1,X2;Y ) + δ3(ǫ))− n[min{Rjc , I(Xjc ;Wa, Y )} − δ5(ǫ)] + 2nǫn (21)

for n sufficiently large. Letting n→∞ in (18) and (21) establishes

Rj ≤ I(Xj ;Y |Xjc) + δ2(ǫ),

Rj ≤ I(X1,X2;Y )−min{Rjc , I(Xjc ;Wa, Y )}+ δ6(ǫ).

The proof of (14) follows by taking a continuous monotonic function δ′(ǫ) ≥ max{δ2(ǫ), δ6(ǫ)} that

tends to zero as ǫ→ 0. Letting ǫ→ 0 in (14) establishes (15), which completes the proof of Theorem 3.

VI. OPTIMAL ACHIEVABLE RATES FOR BROADCAST CHANNELS WITH MARTON CODING

In this section, we apply the techniques developed in the previous sections to establish the optimal rate

region for broadcast channels by Marton coding. Consider the two-receiver discrete memoryless broadcast

channel (DM-BC) (X , p(y1, y2|x),Y1 × Y2) in Fig. 2, where the sender communicates independent

messages M1 and M2 to respective receivers (see [15], [30], [31] for the formal definition of the

communication problem over the broadcast channel).

Decoder 1

Decoder 2

Encoder p (y1, y2|x)

Y n
1

Y n
2

Xn(M1,M2)

M̂1

M̂2

Fig. 2: Two-receiver broadcast channel

Let p = p(u1, u2) be a given pmf on some finite set U1×U2, and x(u1, u2) be a function from U1×U2

to X , and let ǫ > 0 and α ∈ [0 1]. The random ensemble of Marton codes [15] is generated according

to the following steps:

1) Let R̂1 = α(I(U1;U2)+10ǫH(U1, U2)) and R̂2 = α(I(U1;U2)+10ǫH(U1, U2)), where α := (1−α).

2) For each m1 ∈ [2nR1 ], generate auxiliary codewords un1 (m1, l1), l1 ∈ [2nR̂1 ], each drawn i.i.d. from

p(u1). Similarly, for each m2 ∈ [2nR2 ], generate auxiliary codewords un2 (m2, l2), l2 ∈ [2nR̂2 ], each

drawn i.i.d. from p(u2).

3) At the sender, for each message pair, (m1,m2) ∈ [2nR1 ] × [2nR2 ], find an index pair (l1, l2) ∈

[2nR̂1 ]× [2nR̂2 ] such that

(un1 (m1, l1), u
n
2 (m2, l2)) ∈ T

(n)
ǫ (U1, U2),
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and assign the codeword xn(m1,m2) as xi(m1,m2) = x(u1i(m1, l1), u2i(m2, l2)), i ∈ [n]. If there

are more than one such pair of (l1, l2), choose one of them uniformly at random; otherwise, choose

one uniformly at random from [2nR̂1 ]× [2nR̂2 ].

We refer to the random tuple Cn := ((Un
1 (m1, l1) : m1 ∈ [2nR1 ], l1 ∈ [2nR̂1 ]), (Un

2 (m2, l2) : m2 ∈

[2nR2 ], l2 ∈ [2nR̂2 ]), ((L1, L2, x)(m1,m2) : m1 ∈ [2nR1 ],m2 ∈ [2nR2 ])) as the Marton random codebook.

Each realization of the Marton random codebook Cn results in one instance {xn(m1,m2) : (m1,m2) ∈

[2nR1 ]× [2nR2 ]} of such generated codebooks, which constitutes an (n, nR1, nR2) code for the DM-BC

along with the optimal decoder. The random code ensemble generated in this manner is referred to as an

(n, nR1, nR2; p, α, ǫ) Marton random code ensemble, where p = p(u1, u2) is the given pmf, α ∈ [0 1]

is the parameter used in step (1), and ǫ > 0 is the parameter used in steps (1) and (3). A rate pair

(R1, R2) is said to be achievable by the (p, α, ǫ)-distributed Marton random code ensemble if there exits

a sequence of (n, nR1, nR2; p, α, ǫ) Marton random code ensembles such that

lim
n→∞

ECn
[P (n)

e (Cn)] = 0,

where the expectation is with respect to the Marton random codebook Cn. Given (p, α, ǫ), let R∗
BC(p, α, ǫ)

be the set of all rate pairs achievable by the (p, α, ǫ)-distributed Marton random code ensemble. Given

pmf p = p(u1, u2) and function x(u1, u2), the optimal rate region R∗
BC(p), when it exists, is defined as

R
∗
BC(p) := cl





⋃

α∈[0 1]

lim
ǫ→0

R
∗
BC(p, α, ǫ)



 .

We are now ready to state main result of this section.

Theorem 4: Given a pmf p(u1, u2) and a function x(u1, u2), the optimal rate region R∗
BC(p) for the

broadcast channel p(y1, y2|x) is the closure of the set of rate pairs (R1, R2) satisfying

R1 ≤ I(U1;Y1, U2)− αI(U1;U2), (22a)

R1 ≤ I(U1, U2;Y1)−min{R2; I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)}, (22b)

R2 ≤ I(U2;Y2, U1)− αI(U1;U2), (22c)

R2 ≤ I(U1, U2;Y2)−min{R1; I(U1;Y2, U2)− αI(U1;U2), I(U1, U2;Y2)}, (22d)

for some α ∈ [0 1].

We prove Theorem 4 by showing that given a pmf p(u1, u2), a function x(u1, u2), and α ∈ [0 1], the

rate region R∗
BC(p, α) := cl [limǫ→0 R∗

BC(p, α, ǫ)] is equal to the rate region characterized by (22), which

we will denote as R∗∗
BC(p, α). We take a two-step approach similar to Sections IV and V, and establish

the achievability and the converse on the rate region R∗
BC(p, α), respectively.



15

The achievability proof is relegated to Appendix G. For the converse, given a fixed pmf p = p(u1, u2),

α ∈ [0 1], and ǫ > 0, we define the rate region R∗∗
BC(p, α, δ) as the set of rate pairs (R1, R2) such that

R1 ≤ I(U1;Y1, U2)− αI(U1;U2) + δ, (23a)

R1 ≤ I(U1, U2;Y1)−min{R2; I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)}+ δ, (23b)

R2 ≤ I(U2;Y2, U1)− αI(U1;U2) + δ, (23c)

R2 ≤ I(U1, U2;Y2)−min{R1; I(U1;Y2, U2)− αI(U1;U2), I(U1, U2;Y2)}+ δ. (23d)

Note that the region R∗∗
BC(p, α, δ = 0) is equal to R∗∗

BC(p, α) as defined in (22).

Proposition 2: Let p = p(u1, u2) be a pmf, x(u1, u2) be a function, α ∈ [0 1], and ǫ > 0. If a rate

pair (R1, R2) is achievable by the (p, α, ǫ)-distributed Marton random code ensemble, then there exists

a continuous δ′(ǫ) that tends to zero monotonically as ǫ→ 0 such that

(R1, R2) ∈ R
∗∗
BC(p, α, δ

′(ǫ)). (24)

In particular,

R
∗
BC(p, α) ⊆ R

∗∗
BC(p, α). (25)

Proof: We first start with an averaged version of Fano’s inequality for a Marton random code

ensemble Cn. Consider a fixed codebook Cn = Cn. By Fano’s inequality,

H(Mj |Y
n
j , Cn = Cn) ≤ 1 + nRjP

(n)
e (Cn) j = 1, 2.

Taking the expectation over Marton random codebook Cn, it follows that

H(Mj |Y
n
j , Cn) ≤ 1 + nRj ECn

[P (n)
e (Cn)] ≤ nǫn, j = 1, 2 (26)

for some ǫn → 0 as n→∞ since ECn
[P

(n)
e (Cn)]→ 0.

We next define the indicator random variable

Ẽn = 1{(Un
1 (M1,L1),Un

2 (M2,L2))∈T
(n)
ǫ (X1,X2)}

. (27)

Since R̂1+ R̂2 = I(U1;U2)+10ǫH(U1, U2), P(Ẽn = 0) tends to zero as n→∞ by the mutual covering

lemma in [28, p. 208].



16

We are now ready to establish (23a). For n sufficiently large, we have

nR1 = H(M1 |M2, Cn)

(a)

≤ I(M1;Y
n
1 |M2, Cn) + nǫn

≤ I(M1, Ẽn;Y
n
1 |M2, Cn) + nǫn

(b)

≤ 1 + I(M1;Y
n
1 |M2, Cn, Ẽn) + nǫn

≤ 1 + I(M1;Y
n
1 |M2, Cn, Ẽn = 0)P(Ẽn = 0) + I(M1;Y

n
1 |M2, Cn, Ẽn = 1)P(Ẽn = 1) + nǫn

≤ 1 + nR1 P(Ẽn = 0) + I(M1;Y
n
1 |M2, Cn, Ẽn = 1) + nǫn

≤ 1 + nR1 P(Ẽn = 0) + I(M1, L2;Y
n
1 |M2, Cn, Ẽn = 1) + nǫn

≤ 1 + nR1 P(Ẽn = 0) + nR̂2 + I(M1;Y
n
1 |M2, L2, Cn, Ẽn = 1) + nǫn

= 1 + nR1 P(Ẽn = 0) + nR̂2 +

n
∑

i=1

I(M1;Y1i |Y
i−1
1 ,M2, L2, Cn, U2i, Ẽn = 1) + nǫn

≤ 1 + nR1 P(Ẽn = 0) + nR̂2 +

n
∑

i=1

I(M1, U1i, Y
i−1
1 ,M2, L2, Cn;Y1i |U2i, Ẽn = 1) + nǫn

(c)
= 1 + nR1 P(Ẽn = 0) + nR̂2 +

n
∑

i=1

I(U1i;Y1i |U2i, Ẽn = 1) + nǫn

(d)

≤ 1 + nR1 P(Ẽn = 0) + nR̂2 + n(I(U1;Y1 |U2) + δ2(ǫ)) + nǫn,

≤ 1 + nR1 P(Ẽn = 0) + nα(I(U1;U2) + δ1(ǫ)) + n(I(U1;Y1 |U2) + δ2(ǫ)) + nǫn,

(e)

≤ n(I(U1;Y1, U2)− αI(U1;U2) + δ3(ǫ)) + 2nǫn, (28)

where (a) follows by (the averaged version of) Fano’s inequality in (26), (b) follows since Ẽn is a binary

random variable, (c) follows since (M1,M2, Y
i−1
1 , Cn, Ẽn)→ (U1i, U2i)→ Y1i form a Markov chain for

every i ∈ [n], (d) follows by the memoryless property of the channel and by Lemma 9 in Appendix E

since the distribution of (Un
1 (M1, L1), U

n
2 (M2, L2)) is permutation invariant by construction, and (e)

follows since P(Ẽn = 0) tends to zero as n→∞.

For the proof of (23b), we start with

nR1 = H(M1 |M2, Cn)

(a)

≤ I(M1;Y
n
1 |M2, Cn) + nǫn

= I(M1,M2;Y
n
1 |Cn)− I(M2;Y

n
1 |Cn) + nǫn, (29)
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where (a) follows by (the averaged version of) Fano’s inequality in (26). Following arguments similar

to (28), the first term in (29) can be bounded as

I(M1,M2;Y
n
1 |Cn) ≤ 1 + n(R1 +R2)P(Ẽn = 0) +

n
∑

i=1

I(M1,M2;Y1i |Cn, Y
i−1
1 , Ẽn = 1)

≤ nǫn +

n
∑

i=1

I(M1,M2, Cn, Y
i−1
1 ;Y1i |Ẽn = 1)

= nǫn +

n
∑

i=1

I(M1,M2, Cn, Y
i−1
1 , U1i, U2i;Y1i |Ẽn = 1)

= nǫn +

n
∑

i=1

I(U1i, U2i;Y1i |Ẽn = 1),

≤ nǫn + n(I(U1, U2;Y1) + δ5(ǫ)). (30)

For the second term in (29), we need the following lemma, which is proved in Appendix H. This

lemma is a version of Lemma 4 for Marton random code ensembles.

Lemma 5: For every ǫ′ > ǫ and for n sufficiently large,

I(M2;Y
n
1 |Cn) ≥ n[min{R2, I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)} − δ6(ǫ

′)]− nǫn.

Combining (29), (30), and Lemma 5 with ǫ′ = 2ǫ, we have

nR1 ≤ n[I(U1, U2;Y1)−min{R2, I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)}+ δ7(ǫ)] + 2nǫn (31)

for n sufficiently large.

For (23c) and (23d), we can similarly establish for receiver 2

nR2 ≤ n(I(U2;Y2, U1)− αI(U1;U2) + δ4(ǫ)) + 2nǫn (32)

and

nR2 ≤ n[I(U1, U2;Y2)−min{R1, I(U1;Y2, U2)− αI(U1;U2), I(U1, U2;Y2)}+ δ8(ǫ)] + 2nǫn (33)

for n sufficiently large. The proof of (24) follows by letting n → ∞ in (28), (31), (32), and (33) and

taking a continuous monotonic function δ′(ǫ) ≥ max{δ3(ǫ), δ4(ǫ), δ7(ǫ), δ8(ǫ)} that tends to zero as

ǫ→ 0. Letting ǫ→ 0 in (24) establishes (25), which completes the proof of Proposition 2.

Remark 2: Marton coding we have analyzed involves two codewords. Marton’s original coding scheme [15]

uses rate splitting and superposition coding, and involves an additional codeword that carries messages

for both receivers (see also [28, Proposition 8.1]). Our technique can be similarly adapted to this general

version of Marton coding.
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VII. DISCUSSION

For the linear computation problem, the outer bound on the optimal rate region presented in Section V

is valid for any computation, not only for natural computation. The inner bound presented in Theorem 2,

however, matches with this outer bound only for natural computation. It is an interesting but difficult

problem to characterize the optimal rate region for an arbitrary linear computation problem. At this point,

it is unclear whether it is the inner or the outer bound that is loose. The extension of the results in this

paper to more than two senders is also a challenging question.

A more fundamental question is to establish a general outer bound on the capacity region of the

linear computation problem. When (X1,X2)→Wa → Y form a Markov chain and a1, a2 6= 0, we can

establish the following outer bound by using Fano’s inequality. If a rate pair (R1, R2) is achievable, then

R1 ≤ I(X1;Y |X2, Q), (34a)

R2 ≤ I(X2;Y |X1, Q), (34b)

R1 ≤ I(Wa;Y |Q)− I(X2;Wa |T,Q), (34c)

R2 ≤ I(Wa;Y |Q)− I(X1;Wa |T,Q), (34d)

R1 +R2 ≤ I(Wa;Y |Q) + I(X1,X2;Wa |T,Q)− I(X1;Wa |T,Q)− I(X2;Wa |T,Q) (34e)

for some p(q)p(x1|q)p(x2|q)p(t|x1, x2, q) such that Wa → (X1,X2) → T . Suppose that we set Q = ∅

and fix a pmf p = p(x1)p(x2) in (34). If the auxiliary random variable T = ∅, (34) reduces to the rate

region RCF(p) in Section III. If T = (X1,X2), (34) reduces to the rate region RMAC(p) in Section III.

Thus, we can conclude that this general outer bound recovers as extreme special cases the components

of the outer bound in Theorem 3 that was established for a random ensemble of homologous codes.

Whether and when both outer bounds coincide after taking time sharing and the union over all p is left

as another open problem.
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APPENDIX A

PROOF OF PROPOSITION 1

Fix pmf p = p(x1)p(x2). We first show that [RCF (p) ∪ RMAC(p)] ⊆ R∗(p). Suppose that the rate

pair (R1, R2) ∈ RCF (p). Then, for every j ∈ {1, 2} such that aj 6= 0, the rate pair (R1, R2) satisfies

Rj ≤ H(Xj)−H(Wa |Y )

≤ H(Xj)−H(Wa |Y,Xjc)

= I(Xj ;Y |Xjc),

and

Rj ≤ H(Xj)−H(Wa |Y )

= I(X1,X2;Y )− I(Xjc ;Wa, Y )

≤ I(X1,X2;Y )−min{Rjc , I(Xjc ;Wa, Y )},

which implies that (R1, R2) ∈ R∗(p). It follows that RCF (p) ⊆ R∗(p). Similarly, suppose that the rate

pair (R1, R2) ∈ RMAC(p). Then, for every j ∈ {1, 2} such that aj 6= 0, the rate pair (R1, R2) satisfies

Rj ≤ I(Xj ;Y |Xjc),

and

Rj ≤ I(X1,X2;Y )−Rjc

≤ I(X1,X2;Y )−min{Rjc , I(Xjc ;Wa, Y )},

which implies that (R1, R2) ∈ R∗(p). Therefore, RMAC(p) ⊆ R∗(p).

Next, we show that R∗(p) ⊆ [RCF (p)∪RMAC(p)]. Suppose that the rate pair (R1, R2) ∈ R∗(p) such

that Rjc > I(Xjc ;Wa, Y ) for each j ∈ {1, 2} with aj 6= 0. Then, (R1, R2) satisfies

Rj ≤ I(X1,X2;Y )− I(Xjc ;Wa, Y )

= H(Xj)−H(Wa |Y ),

for each j ∈ {1, 2} with aj 6= 0. Then, (R1, R2) ∈ RCF (p). It is easy to see that the rate pair (R1, R2) ∈

R∗(p) that satisfies Rjc ≤ I(Xjc ;Wa, Y ) for one or more j ∈ {1, 2} with aj 6= 0, is included in

RMAC(p). Thus, R∗(p) ⊆ [RCF (p) ∪RMAC(p)], which completes the proof.
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APPENDIX B

Lemma 6: Let G be an nR×n random matrix over Fq with R < 1 where each element is drawn i.i.d.

Unif(Fq). Then,

lim
n→∞

nP(G is not full rank) = 0.

Proof: Probability of choosing nR linearly independent rows can be written as

P(G is full rank) =

∏nR
j=1(q

n − qj−1)

(qn)nR

=

nR
∏

j=1

(1− qj−1−n)

≥ (1− q−n(1−R))nR.

Using this relation, we have

nP(G is not full rank) = n(1− P(G is full rank))

≤ n(1− (1− q−n(1−R))nR)

(a)

≤ n2Rq−n(1−R),

where (a) follows by Bernoulli’s inequality. Since R < 1, limn→∞ n2q−n(1−R) = 0, which completes

the proof.

APPENDIX C

PROOF OF LEMMA 1

Fix pmf p = p(x1)p(x2). We will show that if the condition in (4) holds, then RCF (p) ∪ R1(p) ∪

R2(p) = RCF (p)∪RMAC(p). By definition of the rate regions R1(p),R2(p) and RMAC(p), it is easy to

see that RCF (p)∪R1(p)∪R2(p) ⊆ RCF (p)∪RMAC(p) holds in general. Then, it suffices to show that

if the condition in (4) holds, then RMAC(p) ⊆ [RCF (p) ∪R1(p) ∪R2(p)]. Suppose that the condition

in (4) is satisfied. Let the rate pair (R1, R2) ∈ RMAC(p) be such that Rjc > I(Xjc ;Wa, Y ) for every

j ∈ {1, 2} with aj 6= 0. Then, (R1, R2) satisfies

Rj ≤ I(X1,X2;Y )− I(Xjc ;Wa, Y )

= H(Xj)−H(Wa |Y ),
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for each j ∈ {1, 2} with aj 6= 0, implying that (R1, R2) ∈ RCF (p). Now, let the rate pair (R1, R2) ∈

RMAC(p) be such that Rjc ≤ I(Xjc ;Wa, Y ) for some j ∈ {1, 2} with aj 6= 0. By condition (4), we

have

I(Xjc ;Wa, Y ) = I(X1,X2;Y )−H(Xj) +H(Wa |Y )

= I(X1,X2;Y )−H(Xj) + min
b6=0

H(Wb |Y )

≤ I(X1,X2;Y )−H(Xj) + min
b∈F̂1×2

q

H(Wb |Y ).

Then, the rate pair (R1, R2) ∈ R1(p) ∪R2(p), which completes the proof.

APPENDIX D

PROOF OF LEMMA 2

Suppose that aj 6= 0. Then,

H(Mj |Y
n,Mjc , Cn) = I(Mj ;W

n
a |Y

n,Mjc , Cn) +H(Mj |W
n
a , Y

n,Mjc , Cn). (35)

To bound the first term in (35), we need a version of Fano’s inequality for computation.

Lemma 7: If the average probability of error ECn
[P

(n)
e (Cn)] tends to zero as n→∞, then

H(W n
a |Y

n, Cn) ≤ nǫn

for some ǫn → 0 as n→∞.

Proof: For fixed codebook Cn = Cn, by Fano’s inequality

H(W n
a |Y

n, Cn = Cn) ≤ 1 + nP (n)
e (Cn).

Taking the expectation over the random homologous codebook Cn, we have

H(W n
a |Y

n, Cn) ≤ 1 + nECn
[P (n)

e (Cn)]
(a)

≤ nǫn,

where (a) follows since ECn
[P

(n)
e (Cn)] tends to zero as n→∞.

Combining (35) with Lemma 7, we have

H(Mj |Y
n,Mjc , Cn) ≤ nǫn +H(Mj |W

n
a , Y

n,Mjc , Cn)

(a)
= nǫn +H(Mj |W

n
a ,X

n
jc(Mjc), Y

n,Mjc , Cn)

(b)
= nǫn +H(Mj |W

n
a ,X

n
j (Mj),X

n
jc(Mjc), Y

n,Mjc , Cn)

≤ nǫn +H(Mj |X
n
j (Mj), Cn)

(d)

≤ 2nǫn

where (a) follows since Xn
jc(Mjc) is a function of (Mjc , Cn), (b) follows since aj 6= 0 and Xn

j (Mj) is

a function of (Xn
jc(Mjc),W

n
a ), and (d) follows since H(Mj |X

n
j (Mj), Cn) tends to zero as n→∞.
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APPENDIX E

PROOF OF LEMMA 3

Let i ∈ [n], and (x, y) ∈ Fq × Y . Then,

P(Xi = x, Yi = y |Xn ∈ T (n)
ǫ (X)) = P(Xi = x|Xn ∈ T (n)

ǫ (X))P(Yi = y |Xi = x,Xn ∈ T (n)
ǫ (X))

= P(Xi = x|Xn ∈ T (n)
ǫ (X))pY |X(y |x). (36)

We make a connection between the conditional distribution of Xi given {Xn ∈ T
(n)
ǫ (X)} and the input

pmf p(x). Therefore, we start with exploring the conditional distribution of Xi given {Xn ∈ T
(n)
ǫ (X)}.

Lemma 8: Let pX be a pmf on Fq, and ǫ > 0. Define T
(n)
ǫ (X,Θ) as the set of elements in T

(n)
ǫ (X)

with type Θ. Suppose Xn(m) = Un(m,L(m)) denote the random codeword assigned to message m by

(n, nR; pX , ǫ) random homologous code ensemble. Then,

Un(m,L)|{Un(m,L) ∈ T (n)
ǫ (X,Θ)} ∼ Unif(T (n)

ǫ (X,Θ)),

for every m ∈ FnR
q .

Proof: Without loss of generality, we drop index m. It suffices to show that the distribution of Un(L)

is permutation invariant. Let un, vn have the same type (typical or not) and let un = σ(vn) for some

permutation σ. Then, we have

P(Un(L) = un) =
∑

l

∑

G

P(L = l, G = G,Dn = un ⊖ lG)

(a)
=

∑

l

∑

G

P(L = l, G = σ(G),Dn = vn ⊖ lσ(G))

= P(Un(L) = vn),

where σ(G) is the matrix constructed by applying permutation σ to the columns of G, and (a) follows

since a permutation applied to a coset code preserves the type of each codeword.

Building on top of Lemma 8, we next establish that the conditional distribution of Xi given {Xn ∈

T
(n)
ǫ (X)} is close to the input pmf p(x).

Lemma 9: Let ǫ > 0. Define T
(n)
ǫ (X,Θ) in a similar way to Lemma 8. Suppose that the distribution

of Xn is uniform within each type in the typical set, namely, for each type Θ

Xn |{Xn ∈ T (n)
ǫ (X,Θ)} ∼ Unif(T (n)

ǫ (X,Θ)). (37)

Then, conditional on the typical set, Xi’s have identical distribution that satisfies

(1− ǫ)p(x) ≤ P (Xi = x|Xn ∈ T (n)
ǫ (X)) ≤ (1 + ǫ)p(x), ∀x ∈ X .
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Proof: Let x ∈ X . For a type Θ, let Θx denote the empirical mode of x within type Θ. Then, for

every type Θ within the set T
(n)
ǫ (X), we have

P(Xi = x|Xn ∈ T (n)
ǫ (X,Θ)) =

∑

xn∈T
(n)
ǫ (X,Θ)

s.t. xi=x

P(Xn = xn |Xn ∈ T (n)
ǫ (X,Θ))

(a)
=

∑

xn∈T
(n)
ǫ (X,Θ)

xi=x

1

|T
(n)
ǫ (X,Θ)|

(b)
= Θx |T

(n)
ǫ (X,Θ)|

1

|T
(n)
ǫ (X,Θ)|

= Θx,

where (a) follows since Xn is conditionally uniform over T
(n)
ǫ (X,Θ), and (b) follows since T

(n)
ǫ (X,Θ)

is closed under permutation. Combining this observation with the fact that Θ is the type of a typical

sequence, we get

(1− ǫ)p(x) ≤ P(Xi = x|Xn ∈ T (n)
ǫ (X,Θ)) ≤ (1 + ǫ)p(x), ∀x ∈ X .

Since T
(n)
ǫ (X) is the disjoint union of T

(n)
ǫ (X,Θ) over all types, multiplying each side with P(Xn ∈

T
(n)
ǫ (X,Θ)) and then summing over Θ gives

(1− ǫ)p(x)P(Xn ∈ T (n)
ǫ (X)) ≤ P(Xi = x,Xn ∈ T (n)

ǫ (X)) ≤ (1 + ǫ)p(x)P(Xn ∈ T (n)
ǫ (X)),

for all x ∈ X . The claim follows from dividing each side by P(Xn ∈ T
(n)
ǫ (X)).

Back to the proof of Lemma 3, we have by Lemma 8 that the distribution of Xn satisfies the condition

in (37) in Lemma 9. Therefore, combining (36) with Lemma 9 completes the proof.

APPENDIX F

PROOF OF LEMMA 4

Let ǫ′′ > ǫ′. Suppose that aj 6= 0, and jc = {1, 2} \ {j}. First, by Lemma 7, we have

I(Mjc ;Y
n |Cn) ≥ I(Mjc ;W

n
a , Y

n |Cn)− nǫn.

Therefore, it suffices to prove that for n sufficiently large,

I(Mjc ;W
n
a , Y

n |Cn) ≥ n[min{Rjc , I(Xjc ;Wa, Y )} − δ4(ǫ
′′)− ǫn].

Similar to [26], we will show that given W n
a , Y

n, and Cn, a relatively short list L ⊆ F
nRjc

q can be

constructed that contains Mjc with high probability. Define a random set

L = {m ∈ F
nRjc

q : (Xn
jc(m),W n

a , Y
n) ∈ T

(n)
ǫ′′ (Xjc ,Wa, Y )}.



24

Define two eventsM1 = {M1 = M2 = 0} andM2 = {L1(M1) = L2(M2) = 0}. The indicator random

variable En is as defined in (16). By the symmetry of the codebook generation, for each m ∈ F
nRjc

q ,m 6=

Mjc , we have

P(m ∈ L, En = 1)

= P(m ∈ L, En = 1|M1,M2)

= P((Xn
jc(m),W n

a , Y
n) ∈ T

(n)
ǫ′′ , (Xn

1 (0),X2(0)) ∈ T
(n)
ǫ′ |M1,M2)

≤ P((Un
jc(m, l),W n

a , Y
n) ∈ T

(n)
ǫ′′ for some l ∈ F

nR̂jc

q , (Xn
1 (0),X2(0)) ∈ T

(n)
ǫ′′ |M1,M2)

≤
∑

l

∑

(xn
1
,xn

2
)∈

T
(n)

ǫ′′
(X1,X2)

∑

(un,wn,yn)∈

T
(n)

ǫ′′
(Xjc ,Wa,Y )

P





Un
jc(m, l) = un, a1D

n
1 ⊕ a2D

n
2 = wn, M1,

Dn
1 = xn1 ,D

n
2 = xn2 , Y

n = yn M2





=
∑

l

∑

(xn
1
,xn

2
)∈

T
(n)

ǫ′′
(X1,X2)

∑

(un,wn,yn)∈

T
(n)

ǫ′′
(Xjc ,Wa,Y )

P











Un
jc(m, l) = un,

a1D
n
1 ⊕ a2D

n
2 = wn, M1,M2

Dn
1 = xn1 ,D

n
2 = xn2











p(yn |xn1 , x
n
2 )

(a)

≤ qn(R̂1+R̂2)
∑

l

∑

(xn
1
,xn

2
)∈

T
(n)

ǫ′′
(X1,X2)

∑

(un,wn,yn)∈

T
(n)

ǫ′′
(Xjc ,Wa,Y )

P











Un
jc(m, l) = un,

a1D
n
1 ⊕ a2D

n
2 = wn,

Dn
1 = xn1 ,D

n
2 = xn2

M1











p(yn |xn1 , x
n
2 )

= qn(R̂1+R̂2)
∑

l

∑

(xn
1
,xn

2
)∈

T
(n)

ǫ′′
(X1,X2)

∑

(wn,yn)∈

T
(n)

ǫ′′
(Wa,Y )

∑

un∈

T
(n)

ǫ′′
(Xjc |wn,yn)

P





[m l]G⊕Dn
jc = un,

Dn
1 = xn1 ,D

n
2 = xn2



 p(yn |xn1 , x
n
2 )1{wn=a1x

n
1⊕a2x

n
2 }

= qn(R̂1+R̂2)
∑

l

∑

(xn
1
,xn

2
)∈

T
(n)

ǫ′′
(X1,X2)

∑

(wn,yn)∈

T
(n)

ǫ′′
(Wa,Y )

∑

un∈

T
(n)

ǫ′′
(Xjc |wn,yn)

q−3n p(yn |xn1 , x
n
2 )1{wn=a1xn

1⊕a2xn
2 }

≤ qn(R̂1+R̂2+R̂jc ) q−3n qn(H(Xjc |Wa,Y )+H(X1)+H(X2)+δ4(ǫ′′))

(b)

≤ q−n(I(Xjc ;Wa,Y )−δ4(ǫ′′)−3ǫ),

≤ q−n(I(Xjc ;Wa,Y )−δ4(ǫ′′)),

where (a) follows by [22, Lemma 11], and (b) follows by the construction of the random homologous

codebook Cn with R̂i = D(pXi
‖Unif(Fq))+ǫ. Since P(En = 1) tends to one as n→∞, for n sufficiently

large we have P(En = 1) ≥ q−ǫ. Therefore, for n sufficiently large, the conditional probability is bounded
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as follows

P(m ∈ L|En = 1) =
P(m ∈ L, En = 1)

P(En = 1)

≤ P(m ∈ L, En = 1)qǫ.

The expected cardinality of L given {En = 1} is then bounded as

E(|L| |En = 1) ≤ 1 +
∑

m6=Mjc

P(m ∈ L|En = 1)

≤ 1 + qn(Rjc−I(Xjc ;Wa,Y )+δ4(ǫ′′)+
ǫ

n
) (38)

= 1 + qn(Rjc−I(Xjc ;Wa,Y )+δ4(ǫ′′)+ǫn), (39)

for n sufficiently large. Define another indicator random variable Fn = 1{Mjc∈L}. Since ǫ′′ > ǫ′ and

P(En = 1) tends to one as n→∞, by the conditional typicality lemma in [28, p. 27], P(Fn = 1) tends

to one as n→∞. Then, for n sufficiently large, we have

H(Mjc |Cn,W
n
a , Y

n)

= H(Mjc |Cn,W
n
a , Y

n, En, Fn) + I(Mjc ;En, Fn |Cn,W
n
a , Y

n)

≤ H(Mjc |Cn,W
n
a , Y

n, En, Fn) + 2

≤ 2 + P(Fn = 0)H(Mjc |Cn,W
n
a , Y

n, Fn = 0, En) +H(Mjc |Cn,W
n
a , Y

n, Fn = 1, En)

≤ 2 + nRjc P(Fn = 0) +H(Mjc |Cn,W
n
a , Y

n, Fn = 1, En). (40)

For the last term in (40), we use the fact that if Mjc ∈ L, then the conditional entropy cannot exceed

log(|L|):

H(Mjc |Cn,W
n
a ,Y

n, Fn = 1, En)

(a)
= H(Mjc |Cn,W

n
a , Y

n, Fn = 1, En,L, |L|)

≤ H(Mjc |Fn = 1, En,L, |L|)

=

q
nRjc

∑

l=0

P(|L| = l, En = 1)H(Mjc |En = 1, Fn = 1,L, |L| = l)

+

q
nRjc

∑

l=0

P(|L| = l, En = 0)H(Mjc |En = 0, Fn = 1,L, |L| = l)

≤

q
nRjc

∑

l=0

P(|L| = l, En = 1)H(Mjc |En = 1, Fn = 1,L, |L| = l) + P(En = 0)nRjc
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≤

q
nRjc

∑

l=0

P(|L| = l, En = 1) log(l) + nRjc P(En = 0)

≤

q
nRjc

∑

l=0

P(|L| = l|En = 1) log(l) + nRjc P(En = 0)

= E[log(|L|)|En = 1] + nRjc P(En = 0)

(b)

≤ log(E[|L| |En = 1]) + nRjc P(En = 0)

(c)

≤ 1 + max{0, n(Rjc − I(Xjc ;Wa, Y ) + δ4(ǫ
′′) + ǫn)}+ nRjc P(En = 0)

≤ 1 + max{0, n(Rjc − I(Xjc ;Wa, Y ))} + nδ4(ǫ
′′) + nǫn + nRjc P(En = 0)

where (a) follows since the set L and its cardinality |L| are functions of (Cn,W
n
a , Y

n), (b) follows

by Jensen’s inequality, and (c) follows by (39) and the soft-max interpretation of the log-sum-exp

function [32, p. 72]. Substituting back gives

I(Mjc ;W
n
a , Y

n |Cn) = H(Mjc |Cn)−H(Mjc |Cn,W
n
a , Y

n)

= nRjc −H(Mjc |Cn,W
n
a , Y

n)

≥ nRjc − 2− nRjc P(Fn = 0)−H(Mjc |Cn,W
n
a , Y

n, Fn = 1, En)

≥ nRjc − 3− nRjc(P(En = 0) + P(Fn = 0))

−max{0, n(Rjc − I(Xjc ;Wa, Y ))} − nδ4(ǫ
′′)− nǫn

= n[min{Rjc , I(Xjc ;Wa, Y )} − δ4(ǫ
′′)− ǫn]− 3− nRjc(P(E = 0) + P(F = 0))

(a)
= n[min{Rjc , I(Xjc ;Wa, Y )} − δ4(ǫ

′′)− 2ǫn],

where (a) follows for large n since both probabilities P(En = 0) and P(Fn = 0) tend to zero as n→∞.

APPENDIX G

PROOF OF ACHIEVABILITY FOR THEOREM 4

Let α ∈ [0 1] and ǫ > 0. Consider an (n, nR1, nR2; p, α, ǫ) Marton random code ensemble. We use the

nonunique simultaneous joint typicality decoding rule in [33] to establish the achievability. Let ǫ′ > ǫ.

Upon receiving ynj at receiver j = 1, 2, the ǫ′-joint typicality decoder j looks for a unique mj ∈ [2nRj ]

such that

(un1 (m1, l1), u
n
2 (m2, l2), y

n
j ) ∈ T

(n)
ǫ′ (U1, U2, Yj),

for some l1 ∈ [2nR̂1 ], l2 ∈ [2nR̂2 ] and mjc ∈ [2nRjc ], where jc denotes {1, 2} \ j. If the decoder j = 1, 2

finds such mj , then it declares mj as an estimate; otherwise, it declares an error.
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We analyze the probability of error. It suffices to consider decoder 1, which declares an error if one

or more of the following events occur

E0 = {(U
n
1 (M1, l1), U

n
2 (M2, l2)) /∈ T (n)

ǫ (U1, U2) for every (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]},

E1 = {(U
n
1 (M1, L1), U

n
2 (M2, L2), Y

n
1 ) /∈ T

(n)
ǫ′ (U1, U2, Y1)},

E2 = {(U
n
1 (m1, l1), U

n
2 (m2, l2), Y

n
1 ) ∈ T

(n)
ǫ′ (U1, U2, Y1) for some m1 6= M1,

for some (m2, l1, l2) ∈ [2nR2 ]× [2nR̂1 ]× [2nR̂2 ]}.

By the union of events bound, P
(n)
e (Cn) ≤ P(E0)+P(E1∩E

c
0)+P(E2∩E

c
0). Since R̂1+R̂2 = I(U1;U2)+

10ǫH(U1, U2), by the mutual covering lemma in [28, p. 208], the probability P(E0) tends to zero as

n→∞. By the conditional typicality lemma in [28, p. 27], the probability P(E1 ∩ E
c
0) tends to zero as

n→∞. The last term can be bounded by two ways. First, by the symmetric codebook generation,

P(E2 ∩ E
c
0) ≤ P(E2)

= P(E2 |M1 = M2 = 1)

≤ P((Un
1 (m1, l1), Y

n
1 ) ∈ T

(n)
ǫ′ (U1, Y1) for some m1 6= 1, for some l1 ∈ [2nR̂1 ]|M1 = 1),

which tends to zero as n → ∞ if R1 + R̂1 ≤ I(U1;Y1) − δ(ǫ′) by the packing lemma in [28]. Letting

R̂1 = α(I(U1;U2) + 10ǫH(U1, U2)), we have

R1 ≤ max{0, I(U1;Y1)− αI(U1;U2)− 2δ(ǫ′)}. (41)

Secondly, we can decompose the event E2 = E21 ∪ E22 such that

E21 = {(U
n
1 (m1, l1), U

n
2 (M2, l2), Y

n
1 ) ∈ T

(n)
ǫ′ (U1, U2, Y1) for some m1 6= M1,

for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]},

E22 = {(U
n
1 (m1, l1), U

n
2 (m2, l2), Y

n
1 ) ∈ T

(n)
ǫ′ (U1, U2, Y1) for some m1 6= M1, for some m2 6= M2,

for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]}.

We start with bounding P(E22) as follows:

P(E22) = P(E22 |M1 = M2 = 1)

= P((Un
1 (m1, l1), U

n
2 (m2, l2), Y

n
1 ) ∈ T

(n)
ǫ′ (U1, U2, Y1) for some m1 6= 1, for some m2 6= 1,

for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]|M1 = M2 = 1)

(a)

≤
∑

m1 6=1

∑

l1

∑

m2 6=1

∑

l2

∑

(un
1
,un

2
,yn

1
)

∈T
(n)

ǫ′
(U1 ,U2,Y1)

p(yn1 |M1 = M2 = 1)2−n(H(U1)+H(U2)−δ(ǫ′))



28

≤
∑

m1 6=1

∑

l1

∑

m2 6=1

∑

l2

2−n(H(U1)+H(U2)−H(U1,U2|Y1)−2δ(ǫ′))

≤ 2n(R1+R2+R̂1+R̂2)2−n(H(U1)+H(U2)−H(U1,U2|Y1)−2δ(ǫ′)),

where (a) follows since given {M1 = M2 = 1}, the pair (Un
1 (m1, l1), U

n
2 (m2, l2)) for m1 6= 1,m2 6= 1

is i.i.d. with respect to the product pmf p(u1)p(u2) and is independent from Y n
1 . Substituting R̂1+ R̂2 =

I(U1;U2)+ 10ǫH(U1, U2), it follows that P(E22) tends to zero as n→∞ if R1+R2 ≤ I(U1, U2;Y1)−

3δ(ǫ′).

We next bound the probability P(E21 ∩ E
c
0). Define the events M1 := {M1 = M2 = 1} and M2 :=

{L1 = L2 = 1}. By the symmetric codebook generation,

P(E21 ∩ E
c
0) = P(E21 ∩ E

c
0 |M1,M2),

which can be bounded as

P(E21 ∩ E
c
0 |M1,M2)

≤
∑

m1 6=1

∑

l1,l2

P((Un
1 (m1, l1), U

n
2 (1, l2), Y

n
1 ) ∈ T

(n)
ǫ′ , (Un

1 (1, 1), U
n
2 (1, 1)) ∈ T

(n)
ǫ |M1,M2)

≤
∑

m1 6=1

∑

l1

P((Un
1 (m1, l1), U

n
2 (1, 1), Y

n
1 ) ∈ T

(n)
ǫ′ , (Un

1 (1, 1), U
n
2 (1, 1)) ∈ T

(n)
ǫ |M1,M2)+

∑

m1 6=1

∑

l1

∑

l2 6=1

P((Un
1 (m1, l1), U

n
2 (1, l2), Y

n
1 ) ∈ T

(n)
ǫ′ , (Un

1 (1, 1), U
n
2 (1, 1)) ∈ T

(n)
ǫ |M1,M2). (42)

The first summation term in (42) can be bounded as

∑

m1 6=1

∑

l1

P((Un
1 (m1, l1), U

n
2 (1, 1), Y

n
1 ) ∈ T

(n)
ǫ′ , (Un

1 (1, 1), U
n
2 (1, 1)) ∈ T

(n)
ǫ |M1,M2)

≤
∑

m1 6=1

∑

l1

∑

(un
1

,un
2
)

∈T
(n)
ǫ

∑

(ũn
1
,yn

1
)

∈T
(n)

ǫ′
(U1,Y1|un

2
)

P(Un
1 (m1, l1) = ũn1 , U

n
1 (1, 1) = un1 , U

n
2 (1, 1) = un2 , Y

n
1 = yn1 |M1,M2)

(a)
=

∑

m1 6=1

∑

l1

∑

(un
1
,un

2
)

∈T
(n)
ǫ

∑

(ũn
1

,yn
1

)

∈T
(n)

ǫ′
(U1,Y1|un

2
)

P(Un
1 (m1, l1) = ũn1 , U

n
1 (1, 1) = un1 , U

n
2 (1, 1) = un2 |M1,M2)p(y

n
1 |u

n
1 , u

n
2 )

(b)

≤ 2n(R̂1+R̂2)
∑

m1 6=1

∑

l1

∑

(un
1

,un
2
)

∈T
(n)

ǫ′

∑

(ũn
1
,yn

1
)

∈T
(n)

ǫ′
(U1,Y1|un

2
)

P(Un
1 (m1, l1) = ũn1 , U

n
1 (1, 1) = un1 , U

n
2 (1, 1) = un2 |M1)p(y

n
1 |u

n
1 , u

n
2 )

(c)

≤ 2n(R̂1+R̂2)
∑

m1 6=1

∑

l1

∑

(un
1
,un

2
)

∈T
(n)

ǫ′

∑

(ũn
1
,yn

1
)

∈T
(n)

ǫ′
(U1,Y1|un

2
)

p(yn1 |u
n
1 , u

n
2 )2

−n(2H(U1)+H(U2)−δ(ǫ′))

≤ 2n(R̂1+R̂2)
∑

m1 6=1

∑

l1

∑

(un
1
,un

2
)

∈T
(n)

ǫ′

2n(H(U1|Y1,U2)+δ(ǫ′))2−n(2H(U1)+H(U2)−δ(ǫ′))
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≤ 2n(R̂1+R̂2)
∑

m1 6=1

∑

l1

2n(H(U1,U2)+δ(ǫ′))2n(H(U1|Y1,U2)+δ(ǫ′))2−n(2H(U1)+H(U2)−δ(ǫ′))

≤ 2n(R1+2R̂1+R̂2+H(U1,U2)+H(U1|Y1,U2)−2H(U1)−H(U2)+3δ(ǫ′))

= 2n(R1+2R̂1+R̂2−I(U1;U2)−I(U1;Y1,U2)+3δ(ǫ′)),

where (a) follows since given (M1,M2) the tuple Un
1 (m1, l1) → (Un

1 (1, 1), U
n
2 (1, 1)) → Y n

1 form a

Markov chain, (b) follows by [22, Lemma 11], and (c) follows since the tuple (Un
1 (m1, l1), U

n
1 (1, 1), U

n
2 (1, 1))

is independent of the event M1 and is i.i.d. with respect to the product pmf p(u1)p(u1)p(u2).

Similarly, the second summation term in (42) can be bounded as

∑

m1 6=1

∑

l1

∑

l2 6=1

P((Un
1 (m1, l1), U

n
2 (1, l2), Y

n
1 ) ∈ T

(n)
ǫ′ , (Un

1 (1, 1), U
n
2 (1, 1)) ∈ T

(n)
ǫ |M1,M2)

≤ 2n(R1+2R̂1+2R̂2−2I(U1;U2)−I(U1,U2;Y1)+3δ(ǫ′)).

Therefore, P(E21 ∩ E
c
0) tends to zero as n→∞ if R1 +2R̂1 + R̂2 ≤ I(U1;U2) + I(U1;Y1, U2)− 3δ(ǫ′)

and R1+2R̂1+2R̂2 ≤ 2I(U1;U2)+ I(U1, U2;Y1)− 3δ(ǫ′). Letting R̂1 = α(I(U1;U2)+10ǫH(U1, U2))

and R̂2 = α(I(U1;U2) + 10ǫH(U1, U2)) results in R1 ≤ I(U1;Y1, U2) − αI(U1;U2) − 4δ(ǫ′) and

R1 ≤ I(U1, U2;Y1)− 4δ(ǫ′).

Combining with (41), the probability of error at Decoder 1 tends to zero as n→∞ if

R1 ≤ max{0, I(U1;Y1)− αI(U1;U2)− 4δ(ǫ′)}, (43)

or

R1 ≤ I(U1;Y1, U2)− αI(U1;U2)− 4δ(ǫ′), (44a)

R1 +R2 ≤ I(U1, U2;Y1)− 4δ(ǫ′). (44b)

Repeating similar steps, the probability of error at Decoder 2 tends to zero as n→∞ if

R2 ≤ max{0, I(U2;Y2)− αI(U1;U2)− 4δ(ǫ′)}, (45)

or

R2 ≤ I(U2;Y2, U1)− αI(U1;U2)− 4δ(ǫ′), (46a)

R1 +R2 ≤ I(U1, U2;Y2)− 4δ(ǫ′). (46b)

If we denote the set of rate pairs satisfying (43) or (44) as RBC,1(p, α, δ(ǫ
′)), and denote the set

of rate pairs satisfying (45) or (46) as RBC,2(p, α, δ(ǫ
′)), then the rate region RBC,1(p, α, δ(ǫ

′)) ∩
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RBC,2(p, α, δ(ǫ
′)) is achievable by the ǫ′-typicality decoders. Define the rate regions RBC,j(p, α) :=

RBC,j(p, α, δ(ǫ
′) = 0), j = 1, 2. Let ǫ′ = 2ǫ. Taking ǫ→ 0 and then taking the closure implies

RBC,1(p, α) ∩RBC,2(p, α) ⊆ R
∗
BC(p, α).

The achievability proof follows from the next lemma that provides an equivalent characterization for the

rate region in Theorem 4.

Lemma 10: For any input pmf p = p(u1, u2), function x(u1, u2), and α ∈ [0 1],

R
∗∗
BC(p, α) = RBC,1(p, α) ∩RBC,2(p, α).

Proof: Fix pmf p = p(u1, u2), function x(u1, u2) and α ∈ [0 1]. It suffices to show that the rate

region RBC,1(p, α) is equivalent to the set of rate pairs (R1, R2) that satisfy (22a)-(22b). We first show

that any rate pair in RBC,1(p, α) satisfies (22a)-(22b). Suppose that the rate pair (R1, R2) ∈ RBC,1(p, α),

which implies that

R1 ≤ I(U1;Y1, U2)− αI(U1;U2),

and

R1 ≤ max{0, I(U1;Y1)− αI(U1;U2), I(U1, U2;Y1)−R2}

= I(U1, U2;Y1)−min{I(U1, U2;Y1), I(U2;Y1, U1)− αI(U1;U2), R2}.

Therefore, (R1, R2) satisfies (22a)-(22b).

For the other direction, suppose that the rate pair (R1, R2) satisfies (22a)-(22b). Assume also that

R2 < min{I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)}. It then follows that

R1 ≤ I(U1;Y1, U2)− αI(U1;U2),

R1 ≤ I(U1, U2;Y1)−R2.

So, (R1, R2) ∈ R̃(p, α). If instead R2 ≥ min{I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)}, then

R1 ≤ I(U1;Y1, U2)− αI(U1;U2),

R1 ≤ I(U1, U2;Y1)−min{I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)} = max{0, I(U1;Y1)− αI(U1;U2)}.

Therefore, (R1, R2) ∈ RBC,1(p, α), which completes the proof of the lemma.
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APPENDIX H

PROOF OF LEMMA 5

Let ǫ′ > ǫ. First, by (the averaged version of) Fano’s lemma in (26), we have

I(M2;Y
n
1 |Cn) ≥ I(M2;M1, Y

n
1 |Cn)− nǫn.

Therefore, it suffices to prove that for n sufficiently large,

I(M2;M1, Y
n
1 |Cn) ≥ n[min{R2, I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)} − δ(ǫ′)− 2ǫn],

for some δ(ǫ′) that tends to zero as ǫ→ 0.

Similar to [26], we will show that given M1, Y
n
1 and Cn, a relatively short list L ⊆ [2nR2 ] can be

constructed that contains M2 with high probability. Define a random set

L = {m2 ∈ [2nR2 ] : (Un
1 (M1, l1), U

n
2 (m2, l2), Y

n
1 ) ∈ T

(n)
ǫ′ (U1, U2, Y1)

for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]}.

Define the events M1 = {M1 = M2 = 1} and M2 = {L1 = L2 = 1}. The indicator random variable

Ẽn is as defined in (27). By the symmetry of the codebook generation, for each m2 6= M2 ∈ [2nR2 ] we

start with

P(m2 ∈ L, Ẽn = 1)

= P(m2 ∈ L, Ẽn = 1|M1,M2)

(a)
= P((Un

1 (1, l1), U
n
2 (m2, l2), Y

n
1 ) ∈ T

(n)
ǫ′ for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ],

(Un
1 (1, 1), U

n
2 (1, 1)) ∈ T

(n)
ǫ |M1,M2)

(b)

≤
∑

l2

∑

(un
1

,un
2
)∈

T
(n)
ǫ (U1,U2)

∑

(ũn
2
,yn

1
)∈

T
(n)

ǫ′
(U2,Y1|un

1
)

P(Un
1 (1, 1) = un1 , U

n
2 (1, 1) = un2 , U

n
2 (m2, l2) = ũn2 , Y

n
1 = yn1 |M1,M2)

+
∑

l1 6=1

∑

l2

∑

(un
1
,un

2
)∈

T
(n)
ǫ (U1,U2)

∑

(ũn
1
,ũn

2
,yn

1
)∈

T
(n)

ǫ′
(U1,U2,Y1)

P





Un
1 (1, 1) = un1 , U

n
2 (1, 1) = un2 , M1,

Un
1 (m1, l1) = ũn1 , U

n
2 (m2, l2) = ũn2 , Y

n
1 = yn1 M2



 (47)

where (b) follows by the union of events bound and by decomposing the event in (a) onto two sets:

{l1 = 1} and {l1 6= 1}. Two summation terms on the right hand side of (47) can be bounded using

techniques similar to those in the achievability proof (see Appendix G) for Theorem 4 to get

P(m2 ∈ L, Ẽn = 1) ≤ 2−n(I(U2;Y1,U1)−αI(U1;U2)−4δ(ǫ′)) + 2−n(I(U1,U2;Y1)−4δ(ǫ′)).
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Since P(Ẽn = 1) tends to one as n → ∞, for n sufficiently large, P(m2 ∈ L|Ẽn = 1) ≤ P(m2 ∈

L, Ẽn = 1)qǫ. The expected cardinality of L given {Ẽn = 1} is then bounded as

E(|L| |Ẽn = 1) ≤ 1 +
∑

m2 6=M2

P(m2 ∈ L|Ẽn = 1)

≤ 1 + 2n(R2−I(U2;Y1,U1)+αI(U1;U2)+4δ(ǫ′)+ ǫ

n
) + 2n(R2−I(U1,U2;Y1)+4δ(ǫ′)+ ǫ

n
)

= 1 + 2n(R2−I(U2;Y1,U1)+αI(U1;U2)+4δ(ǫ′)+ǫn) + 2n(R2−I(U1,U2;Y1)+4δ(ǫ′)+ǫn) (48)

for n sufficiently large.

Define another indicator random variable F̃n = 1{M2∈L}. Since ǫ′ > ǫ and P(Ẽn = 1) tends to one as

n → ∞, by the conditional typicality lemma in [28, p. 27], P(F̃n = 1) tends to one as n → ∞. Then,

for n sufficiently large, we have

H(M2 |Cn,M1, Y
n
1 ) = H(M2 |Cn,M1, Y

n
1 , Ẽn, F̃n) + I(M2; Ẽn, F̃n |Cn,M1, Y

n
1 )

≤ H(M2 |Cn,M1, Y
n
1 , Ẽn, F̃n) + 2

≤ 2 + P(F̃n = 0)H(M2 |Cn,M1, Y
n
1 , Ẽn, F̃n = 0) +H(M2 |Cn,M1, Y

n
1 , Ẽn, F̃n = 1)

≤ 2 + nR2 P(F̃n = 0) +H(M2 |Cn,M
n
1 , Y

n
1 , Ẽn, F̃n = 1).

For the last term, we use the fact that if M2 ∈ L, then the conditional entropy cannot exceed log(|L|):

H(M2 |Cn,M1, Y
n
1 , Ẽn, F̃n = 1)

(a)
= H(M2 |Cn,M1, Y

n
1 , Ẽn, F̃n = 1,L, |L|)

≤ H(M2 |Ẽn, F̃n = 1,L, |L|)

=

2nR2
∑

l=0

P(|L| = l, Ẽn = 1)H(M2 |Ẽn = 1, F̃n = 1,L, |L| = l)

+

2nR2
∑

l=0

P(|L| = l, Ẽn = 0)H(M2 |Ẽn = 0, F̃n = 1,L, |L| = l)

≤
2nR2
∑

l=0

P(|L| = l, Ẽn = 1)H(M2 |Ẽn = 1, F̃n = 1,L, |L| = l) + nR2 P(Ẽn = 0)

≤
2nR2
∑

l=0

P(|L| = l, Ẽn = 1) log(l) + nR2 P(Ẽn = 0)

≤
2nR2
∑

l=0

P(|L| = l|Ẽn = 1) log(l) + nR2 P(Ẽn = 0)

= E[log(|L|)|Ẽn = 1] + nR2 P(Ẽn = 0)
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(b)

≤ log(E[|L| |Ẽn = 1]) + nR2 P(Ẽn = 0)

(c)

≤ max{0, n(R2 − I(U2;Y1, U1) + αI(U1;U2) + 4δ(ǫ′) + ǫn), n(R2 − I(U1, U2;Y1) + 4δ(ǫ′) + ǫn)}

+ nR2 P(Ẽn = 0)

≤ n ·max{0, R2 − I(U2;Y1, U1) + αI(U1;U2), R2 − I(U1, U2;Y1)}+ n4δ(ǫ′) + nǫn + nR2 P(Ẽn = 0),

where (a) follows since the set L and its cardinality |L| are functions of (Cn,M1, Y
n
1 ), (b) follows

by Jensen’s inequality, and (c) follows by (48) and the soft-max interpretation of the log-sum-exp

function [32, p. 72]. Substituting back gives

I(M2;M1, Y
n
1 |Cn) = H(M2 |Cn)−H(M2 |Cn,M1, Y

n
1 )

= nR2 −H(M2 |Cn,M1, Y
n
1 )

≥ nR2 − 2− nR2 P(F̃n = 0)−H(M2 |Cn,M
n
1 , Y

n
1 , Ẽn, F̃n = 1)

≥ nR2 − 2− nR2 P(F̃n = 0)− n4δ(ǫ′)− nǫn − nR2 P(Ẽn = 0)

− n ·max{0, R2 − I(U2;Y1, U1) + αI(U1;U2), R2 − I(U1, U2;Y1)}

(a)
= n[min{R2, I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)} − 4δ(ǫ′)− 2ǫn],

where (a) follows since both of the probabilities P(Ẽn = 0) and P(F̃n = 0) tend to zero as n→∞.
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