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Abstract—The two-receiver broadcast channel with primary
and third party receivers is studied. The sender wishes to reliably
communicate a common (or public) message to both receivers as
well as individualized and confidential messages to the primary
receiver only. The third party receiver must be kept completely
ignorant of the confidential message but there are no secrecy
requirements associated to the individualized message. A trade-
off arises between the rates of the three messages: when one
of the rates is high, the other rates may need to back off to
guarantee the reliable transmission of all three messages. In
addition, the confidentiality requirement implies availability of
local randomness at the transmitter in order to implement a
stochastic encoding. This paper studies the trade-off between the
rates of the common, individualized and confidential messages
as well as that of the local randomness in the one-shot regime
of a quantum broadcast channel. We provide an achievability
region, by proving a conditional version of the convex-split
lemma combined with the position-based decoding, as well as
a (weak) converse region. We study the asymptotic behaviour of
our bounds and recover several well-known asymptotic results
in the literature, including simultaneous transmission of classical
and quantum information.

Index Terms—One-shot coding, channel coding, private capac-
ity, quantum capacity

I. INTRODUCTION

Consider a communication system in which a sender aims to
transmit a message reliably to a receiver while hiding it from
an eavesdropper. This model was introduced by Wyner under
the name “wiretap channel” [1]. The basic idea underlying
Wyner’s coding scheme is to generate a sufficiently large
number of random sequences and position them into bins la-
beled with the messages to be transmitted. To send a message,
a sequence from the message bin is randomly selected and
transmitted. In the original model of Wyner, the eavesdropper
is assumed to be at a physical disadvantage with respect
to the legitimate receiver, meaning that, upon transmission
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over the channel, the eavesdropper only receives what can be
regarded as a noisy version of the information received by the
legitimate receiver. This model is usually referred to as the
physically degraded wiretap channel. This channel description
was later enhanced by Csiszár and Körner [2] by introducing a
public message that is piggybacked on top of the confidential
message and that is to be reliably decoded by both receivers.
Furthermore, in this new model called broadcast channel with
confidential messages (BCC), the legitimate receiver has no
specific physical advantage over the eavesdropper. The coding
scheme of the BCC consists of superposition coding [3]
to encode the confidential message on top of the common
message in combination with Wyner’s codebook structure
with local randomness for equivocation. The most important
contribution of Csiszár and Körner consists of prepending a
prefixing stochastic map to the channel and using a then-new
single-letterization trick in the converse proof.

The implementation of the prefixing stochastic map is per-
formed from random numbers using a method such as channel
simulation [4]. This means that two sources of randomness are
required for BCC coding, one for random codeword selection
and another for channel simulation. Traditionally randomness
has been assumed to be an unlimited resource. In practice,
however, a limited randomness rate is reasonable, potentially
compromising the simultaneous reliability and secrecy cri-
teria. Csiszár and Körner [5] later proposed an alternative
description of the BCC where the message to be transmitted
consists of two independent parts, a confidential part defined
in the same sense as the original BCC and a non-secret
or individualized part, i.e. a message without any secrecy
requirement placed on it, potentially and partially playing the
role of a source of randomness.

The degraded wiretap channel when the randomness is
constrained and not necessarily uniform was studied in [6].
The general BCC model with rate-constrained randomness
was studied in [7] where the optimal rate region of the
common, individualized, confidential and dummy randomness
was determined for classical channels1. The achievability is
based on superposition coding and building a deterministic
codebook to replace the prefixing stochastic map. The idea
of using a deterministic encoder in the wiretap channel was
originally proposed in [8] in the contex of three-receiver
broadcast channel . It was shown in [7] that the randomness

1In [7], the non-secret or individualized message is referred to as private
message. We find the nomenclature “private message” to be rather inconsistent
for a message that need not be kept private and we instead use the word
“individualized”.
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needed to select a codeword following the scheme of [8]
is smaller than the randomness rate needed to simulate the
prefixing map. This shows that the direct concatenation of the
ordinary random encoding and channel prefixing with channel
simulation is in general suboptimal.

The quantum generalisation of the wiretap channel was
studied in [9] and [10], where the capacity for the transmission
of confidential classical information was given by a regularized
formula. The ability of the quantum channels to preserve quan-
tum superpositions gives rise to purely quantum information
processing tasks with no classical counterparts. The quantum
capacity, i.e., the ability of a quantum channel to transmit
qubits, is one such example. The unified task of transmission
of the classical and quantum information was studied in
[11] and simultaneously achievable rates were proven. The
protocol of [11] is conceptually related to the superposition
coding, where, for each classical message a different quantum
code is used and the capacity region is given in the form
of a regularized rate region. Subsequently, general trade-off
capacity theorems for three or more resources were proved
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21].

The unavailability of unlimited resources such as many
instances of channels or many copies of certain states in nature,
triggered a new area of research known as the information
theory with finite resources. This area has drawn significant
attention over the past years; see [22] for a survey. The extreme
scenario where only one instance of a certain resource such
as a channel use or a source state is available, is generally
called the one-shot regime and such a channel (res. source)
is called a single-serving channel (res. source). The one-shot
channel model is the most general model and its capacity
to accomplish several information-processing tasks has been
studied. The question of the number of bits that can be
transmitted with an error of at most ε > 0 by a single
use of a classical channel was answered in [23] where the
capacity was characterized in terms of smooth min- and max-
entropies. The same question for the quantum channels was
studied in [24] following a hypothesis-testing approach and
the capacity was characterized in terms of the general Rényi
entropies. In this context, a reformulation of a novel positive
operator-valued measurement (POVM) originally introduced
in [25] (see also [26]), was employed in [27] yielding an
achievability bound for the capacity of the classical-quantum
channels. The POVM construction as well as the converse
proof followed a hypothesis-testing procedure and the result
was governed by a smooth relative entropy quantity. This result
was rederived in [28] by deploying a coding scheme known
as position-based decoding [29]. While the position-based
decoding ensures the reliability of the transmitted messages,
the so-called convex-split lemma [30] also employed in [28]
guarantees confidentiality resulting in a capacity theorem for
the one-shot wiretap quantum channel.

Position-based decoding and the convex-split lemma are
governed by the quantities known as the smooth relative
entropies and can be regarded as generalizations of the packing
and covering lemmas, respectively. Another result on the one-
shot capacity of the quantum wiretap channel was given by
[31] where the reliability of the messages is ensured by em-

ploying the POVMs introduced in [27] and the confidentiality
of the messages is established by proving a novel one-shot
covering lemma analogous in approach to [32].

From a different perspective, [33] showed that two primitive
information-theoretic protocols, namely information reconcil-
iation and privacy amplification, can be used to directly con-
struct optimal two-terminal protocols for noisy channels with-
out being concerned about the internal workings of the primi-
tives. This approach yields achievability bounds for the public
and confidential capacities of classical-quantum channels and
their tightness also established by proving corresponding con-
verse bounds. The quantum capacity of a quantum channel
for one or a finite number of uses is studied in [34]. The
authors of the current paper with their colleagues in a former
work [35], unified the problems of one-shot transmission of
public and confidential information over quantum channels
and proposed a protocol for simultaneously achieviable public
and confidential rates as well as tight converse bounds. Later,
following the proof of the quantum capacity in [10], they
proved a one-shot result for the simultaneous transmission
of classical and quantum information [36], contributing to
the literature of the one-shot trade-off capacities [37], [38],
[39], [40]. Another coding scheme known as Marton coding
is known to yield tight achievability and converse regions for
the broadcast channel. However, since our scheme is based on
superposition coding, we do not use the ideas from Marton
coding. The interested reader may refer to [41], [42], [43].

This work grew out of an interest to understand the amount
of dummy randomness that is needed to accomplish the task
of secret message transmission in the most general channel
model. As mentioned earlier, in the asymptotic limit of a
memoryless classical channel, it is shown that non-secret
messages may compensate for the lack of enough dummy
randomness to secure certain confidential messages. This was
our main motivation: to understand the price of the dummy
randomness and how (much) it can be traded off for a non-
secret message. In this work, we consider a broader question
featuring our main goal, we study the problem of the trans-
mission of common, individualized and confidential messages
with randomness constrained encoder over a single use of
a two-receiver quantum broadcast channel. This problem in
the asymptotic setting of a memoryless classical channel was
studied in [7]. One additional contribution of [7] is the study of
the channel resolvability problem via superposition of classical
codewords. The quantum channel resolvability via superposi-
tions in the one-shot regime was studied in [44] in the context
of the Gelfand-Pinsker quantum wiretap channel. We leverage
these results to derive achievability bounds based on position-
based decoding and the convex-split lemma. The setup of our
problem, however, requires an extension of the position-based
decoding and convex-split lemma, which we refer to as the
conditional position-based decoding and conditional convex-
split lemma. The former leads to an operational interpreta-
tion of a recently-defined mutual information-like quantity
[45] whereas the latter gives rise to another novel mutual-
information like quantity and its operational interpretation. The
broad scope of the rate region developed in this paper enables
us to recover not only the classical result of [7], but also
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the case of simultaneous transmission of public and private
information [35], the simultaneous transmission of classical
and quantum information [11], [36] and the capacity region
of the quantum broadcast channel derived in [46].

The rest of the paper is organized as follows. We start
with definitions in Section II. Section III is devoted to the
description of the information-processing task, the definition
of the code for the task and our main results. We prove
an achievability region in Section IV and a converse region
in Section V. We give asymptotic analysis in Section VI.
We finally conclude the paper in Section VII. The proof of
the conditional convex-split lemma as well as several other
lemmas are given in the appendix.

II. MISCELLANEOUS DEFINITIONS

We use the following conventions throughout the paper.
The capital letters X,Y , etc. denote random variables whose
realizations and the alphabets are shown by the correspond-
ing small and calligraphic letters, respectively. The classical
systems associated to the random variables are denoted by the
same capital letters. Quantum systems A,B, etc. are associated
with (finite dimensional) Hilbert spaces HA,HB , etc. The
set of linear operators on H are denoted by L(H), the set
of positive semi-definite operators acting on H is denoted
by P(H), the set of normalized and subnormalized quantum
states is given by D(H) := {ρ ∈ P(H)|Trρ = 1} and
D≤(H) := {ρ ∈ P(H)|Trρ ≤ 1}, respectively, where Tr
indicates the trace operator. Multipartite systems are described
by tensor product Hilbert space HAB...D = HA ⊗HB ⊗ ...⊗
HD. We identify states with their density operators and use
superscripts to denote the systems on which the mathematical
objects are defined. For example if ρAB ∈ D(HAB), then
ρA = TrBρ

AB ∈ D(HA) is implicitly defined as its marginal
on A, where TrB is the partial trace operator. The identity
operator in L(HA) is denoted by 1A. For a pair of integers
i ≤ j, we define the discrete interval [i : j] := {i, i+ 1, ..., j}.
For Hermitian operators M and N , M ≤ N means that
(N −M) ∈ P(H).

Denoted by NA→B , a quantum channel is a completely
positive trace-preserving (CPTP) linear map taking input states
from D(HA) to output states belonging to D(HB). A quantum
broadcast channel NA→BC , refers to a quantum channel with
a single input and two outputs such that when the transmitter
inputs a quantum state in D(HA), one receiver obtains a
state in D(HB) while the other receiver obtains system C
in D(HC) . Throughout we assume the receiver obtaining B
system is the primary receiver and the receiver obtaining C
is a third party. It is also useful to personify the users of
the channel such that Alice is the user controlling the input
and Bob and Charlie are the recipients of the systems B and
C, respectively. According to the Stinespring dilation of the
CPTP map NA→BC (see for example [47]), there exists an
inaccessible environment F in HF and a unitary operator U
acting on A,C and F systems such that

NA→BC(ρA) = TrF {U(ρA ⊗ σC ⊗ ωF )U†}, (1)

where ρA is the input state and σC and ωF are some constant
states on systems C and F , respectively2. An additional trace
over C system gives the quantum channel from Alice to Bob
NA→B implying that the composite system E := CF plays
the role of an inaccessible environment for NA→B .

The von Neumann entropy and the quantum relative entropy
are defined as:

H(A)ρ := H(ρA) := −TrρA log ρA.

D(ρ‖σ) := Tr(ρ log ρ− ρ log σ),

if supp(ρ) ⊆ supp(σ) and +∞ otherwise,

respectively, where supp(ρ) is the support of ρ. Throughout
this paper, log denotes by default the binary logarithm. Con-
ditional entropy, mutual information and conditional mutual
information, H(A|B)ρ, I(A;B)ρ and I(A;B|C)ρ, are defined
as:

H(A|B)ρ := H(AB)ρ −H(B)ρ,

I(A;B)ρ := H(A)ρ +H(B)ρ −H(AB)ρ,

I(A;B|C)ρ := H(A|C)ρ −H(A|BC)ρ

= H(AC)ρ +H(BC)ρ −H(ABC)ρ −H(C)ρ.

The von Neumann entropy and the mutual information can be
defined as special cases of the quantum relative entropy; for
instance it can be seen that D(ρAB‖ρA ⊗ ρB) = I(A;B)ρ.

The normalized trace distance between two states ρ and σ
is given as 1

2‖ρ−σ‖1 and the fidelity between them is defined
as:

F (ρ, σ) := ‖√ρ
√
σ‖1

The fidelity relates to the quantum relative entropy in the
following way [48]:

F 2(ρ, σ) ≥ 2−D(ρ‖σ). (2)

The (normalized) trace distance (res. fidelity) is a convex
(res. concave) function. Notice the following, for classical-
quantum states ρXA =

∑
x p(x) |x〉〈x| ⊗ ρAx and σXA =∑

x p(x) |x〉〈x| ⊗ σAx , we have:

1

2

∥∥ρA − σA∥∥
1
≤ 1

2

∥∥ρXA − σXA∥∥
1

=
∑
x

p(x)
1

2

∥∥ρAx − σAx ∥∥1.
(3)

The definition of the fidelity can be extended to subnormalized
states, where the generalized fidelity is defined for subnormal-
ized states τ, ν ∈ D≤(H) as follows [49]

F̄ (τ, ν) = F (τ, ν) +
√

(1− Trτ)(1− Trν).

It is easily seen that the generalized fidelity reduces to the
fidelity if at least one of the states is normalized. The general-
ized fidelity is used to define the purified distance as follows:

P(ρ, σ) :=
√

1− F̄ 2(ρ, σ).

2This can be equivalently shown via an isometric extension of the channel
V A→BCF
N defined as NA→BC(ρA) = TrF {V ρAV †} with V †V = 1

A,
V V † = ΠBCF where ΠBCF is a projection on the product Hilbert space
HB ⊗HC ⊗HF .
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It relates to the trace distance in the following way:

1

2
‖ρ− σ‖1 ≤ P(ρ, σ) ≤

√
‖ρ− σ‖1.

The purified distance satisfies several properties similar to
those of the trace distance, we list some of them below3.

Lemma 1 (see for example [50]):
• Monotonicity: For quantum states ρ, σ and any com-

pletely positive trace-preserving map E ,

P(E(ρ), E(σ)) ≤ P(ρ, σ).

• Triangle inequality: For quantum states ρ, σ and ω, it
holds that

P(ρ, σ) ≤ P(ρ, ω) + P(ω, σ).

• Invariance with respect to tensor product states: For
quantum states ρ, σ and ω, it holds that:

P(ρ⊗ ω, σ ⊗ ω) = P(ρ, σ).

The following can also be easily verified:

P
(∑

x

p(x) |x〉〈x| ⊗ ρAx ⊗ ωBx ,
∑
x

q(x) |x〉〈x| ⊗ σAx ⊗ ωBx
)

= P
(∑

x

p(x) |x〉〈x| ⊗ ρAx ,
∑
x

q(x) |x〉〈x| ⊗ σAx
)
.

Lemma 2 (Lemma 17 in [51]): Let ρ ∈ H and Π a projector
on H, then

P(ρ,ΠρΠ) ≤
√

2TrρΠ⊥ − (TrρΠ⊥)2,

where Π⊥ = 1−Π.
Lemma 3 (corollary 16 in [51]): Let ρAB = |ϕ〉〈ϕ|AB ∈

P(HAB) be a pure state, ρA = TrBρ
AB , ρB = TrAρ

AB and
let ΠA ∈ P(HA) be a projector in supp(ρA). Then, there
exists a dual projector ΠB on HB such that

(ΠA ⊗ (ρB)−
1
2 ) |ϕ〉AB = ((ρA)−

1
2 ⊗ΠB) |ϕ〉AB .

Lemma 4 ([50]): Let ρ, σ ∈ P(H), then
• For any ω ≥ ρ,∥∥√ω√σ∥∥

1
≥
∥∥√ρ√σ∥∥

1
.

• For any projector Π ∈ P(H),∥∥√ΠρΠ
√
σ
∥∥
1

=
∥∥√ρ√ΠσΠ

∥∥
1

=
∥∥√ΠρΠ

√
ΠσΠ

∥∥
1
.

Definition 1 (Hypothesis testing relative entropy [27],[34]):
Let {Λ,1−Λ} be the elements of a POVM that distinguishes
between quantum states ρ and σ such that the probability of
a correct guess on input ρ equals TrΛρ and a wrong guess on
σ is made with probability TrΛσ. Let ε ∈ (0, 1). Then, the
hypothesis testing relative entropy is defined as follows:

Dε
H(ρ‖σ) := max {− log2 TrΛσ : 0 ≤ Λ ≤ 1 ∧ TrΛρ ≥ 1− ε}.

3In this paper, without loss of generality, we work with normalized
quantum states and the definition of the generalized fidelity is mentioned
for completeness.

From the definition above, the hypothesis testing mutual
information for a bipartite state ρAB is defined as follows:

IεH(A;B)ρ := Dε
H(ρAB‖ρA ⊗ ρB).

Lemma 5 (Relation between the relative entropy and the
hypothesis testing relative entropy): For quantum states ρ
and σ and a parameter ε ∈ (0, 1), the following relation
exists between the hypothesis testing relative entropy and the
quantum relative entropy [27]:

Dε
H(ρ‖σ) ≤ 1

1− ε
(D(ρ‖σ) + hb(ε)),

where hb(ε) := −ε log ε − (1 − ε) log(1− ε) is the binary
entropy function. Another connection between the two relative
entropies is due to the quantum Stein’s lemma as given below
[52], [53]:

lim
n→∞

1

n
Dε

H(ρ⊗n‖σ⊗n) = D(ρ‖σ).

The followings are simple consequences of this lemma. For
a bipartite state ρAB ∈ D(HAB), we have

IεH(A;B)ρ ≤
1

1− ε
(I(A;B)ρ + hb(ε)), (4)

lim
n→∞

1

n
IεH(An;Bn)ρ⊗n = D(ρAB‖ρA ⊗ ρB) = I(A;B)ρ.

(5)

Definition 2 (Hypothesis testing conditional mutual informa-
tion [45]): Let ρXAB :=

∑
x p(x)|x〉〈x|X⊗ρABx , ρA−X−B :=∑

x p(x)|x〉〈x|X ⊗ ρAx ⊗ ρBx be two tripartite states classical
on X system. Let ε ∈ (0, 1). Then, the hypothesis testing
conditional mutual information is defined as:

IεH(A;B|X)ρ := Dε
H(ρXAB‖ρA−X−B).

From Lemma 5, the following relations can be obtained:

IεH(A;B|X)ρ ≤
1

1− ε
(I(A;B|X)ρ + hb(ε)), (6)

lim
n→∞

1

n
IεH(An;Bn|Xn)ρ⊗n = I(A;B|X)ρ. (7)

Notice that for states ρXAB :=
∑
x p(x)|x〉〈x|X ⊗ ρABx

and ρA−X−B :=
∑
x p(x)|x〉〈x|X ⊗ ρAx ⊗ ρBx , we have

D(ρXAB‖ρA−X−B) = I(A;B|X)ρ.
Definition 3 (Max-relative entropy [54]): For quantum states

ρ and σ, the max-relative entropy is defined as follows:

Dmax(ρ‖σ) := inf
{
λ ∈ R : ρ ≤ 2λσ

}
, (8)

where it is well-defined if supp(ρ) ⊆ supp(σ).
Lemma 6 ([54]): The max-relative entropy is monotonically

non-increasing with CPTP maps, i.e., for quantum states ρ, σ
and any CPTP map E , the following holds:

Dmax(E(ρ)‖E(σ)) ≤ Dmax(ρ‖σ).

Definition 4 (Smooth max-relative entropy [54]): For a
parameter ε ∈ (0, 1) and quantum states ρ and σ, the smooth
max-relative entropy is defined as:

Dε
max(ρ‖σ) := min

ρ′∈Bε(ρ)
Dmax(ρ′‖σ).
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From the smooth max-relative entropy, one can define a mutual
information-like quantity for a bipartite state ρAB as follows:

Dε
max(A;B)ρ := Dε

max(ρAB‖ρA ⊗ ρB)

= min
ρ′∈Bε(ρ)

Dmax(ρ′AB‖ρA ⊗ ρB). (9)

Lemma 7: For quantum states ρ and σ and a parameter
ε ∈ (0, 1), the following indicates the relation between the
smooth max-relative entropy and quantum relative entropy.

D
√
2ε

max(ρ‖σ) ≤ 1

1− ε
(D(ρ‖σ) + hb(ε)),

where hb(ε) := −ε log ε − (1 − ε) log(1− ε) is the binary
entropy function. Further relation between the two entropies
is given by the quantum Stein’s lemma [55]:

lim
n→∞

1

n
Dε

max(ρ⊗n‖σ⊗n) = D(ρ‖σ),

and consequently we have

lim
n→∞

1

n
Dε

max(An;Bn)ρ⊗n = D(ρAB‖ρA ⊗ ρB) = I(A;B)ρ.

Proof: The first inequality, the upper bound on the smooth
max-relative entropy, follows by a straightforward manipula-
tion of Proposition 4.1 in [56] and Lemma 5.

Definition 5: Let ρXAB :=
∑
x p(x)|x〉〈x|X ⊗ ρABx and

ρA−X−B :=
∑
x p(x)|x〉〈x|X ⊗ ρAx ⊗ ρBx be quantum states

classical on X and ε ∈ (0, 1), then

Dε
max(A;B|X)ρ := Dε

max(ρXAB‖ρA−X−B)ρ.

From Lemma 7, the following relations can be seen:

D
√
2ε

max(A;B|X)ρ ≤
1

1− ε
(I(A;B|X) + hb(ε)), (10)

and

lim
n→∞

1

n
Dε

max(An;Bn|Xn)ρ⊗n = D(ρXAB‖ρA−X−B) = I(A;B|X)ρ.

(11)

Definition 6 ([29]): For a bipartite state ρAB and a pa-
rameter ε ∈ (0, 1), a mutual information-like quantity can be
defined as follows:

Ĩεmax(A;B)ρ := inf
ρ′AB∈Bε(ρAB)

Dmax(ρ′AB‖ρ′A ⊗ ρB).

The following lemmas relate the aforementioned mutual
information-like quantity and the quantity defined in (9).

Lemma 8 ([29]): For a bipartite state ρAB and a parameter
ε ∈ (0, 1), the following relation holds:

Ĩ2εmax(A;B)ρ ≤ Dε
max(A;B)ρ + log2

(
3

ε2

)
.

Lemma 9: For a bipartite state ρAB and a parameter ε ∈
(0, 1), the following relation holds:

Dε
max(A;B)ρ ≤ Ĩεmax(A;B)ρ.

Proof: The proof is given in the appendix.
We define another mutual information-like quantity similar to
the one given by Definition 5.

Definition 7: Let ρXAB :=
∑
x p(x)|x〉〈x|X ⊗ ρABx and

ρA−X−B :=
∑
x p(x)|x〉〈x|X ⊗ ρAx ⊗ ρBx be quantum states

classical on X and ε ∈ (0, 1), then

Ĩεmax(A;B|X)ρ

:= min
ρ′∈Bε(ρ)

Dmax(ρ′XAB‖
∑
x

p′(x)|x〉〈x|X ⊗ ρ′Ax ⊗ ρBx ),

where TrBρ
′XAB =

∑
x p
′(x)|x〉〈x|X ⊗ ρ′Ax .

Remark 1: In the definition above, it is implied that the
minimization is in fact being performed over states which are
classical on subsystem X , leading to the conclusion that the
optimal state attaining the minimum is classical on X . Lemma
6.6 in [22] studied two important entropic quantities, namely
smooth conditional min- and max-entropies, and concluded
that smoothing respects the structure of the state ρXAB ,
meaning that the optimal state ρ′XAB ∈ Bε(ρXAB) will
be classical on subsystem X . Here we make an argument
showing that our definition is indeed a legitimate definition.
Let ρ̄XAB ∈ Bε(ρXAB) be the state attaining the minimum
in the quantity Ĩεmax(A;B|X)ρ if we do not restrict X
system to be classical. Let the pinching map be defined as
PX(.) =

∑
x |x〉〈x| (.) |x〉〈x| and define ρ′XAB = PX(ρ̄XAB).

Note that the pinching map does not affect ρXAB , and since
such maps are CPTP and unital, from the monotonicity of the
purified distance and also smooth max-relative entropy, we
will have ρ′XAB ∈ Bε(ρXAB) and Ĩεmax(A;B|X)ρ′XAB ≤
Ĩεmax(A;B|X)ρXAB , respectively.

Lemma 10: For quantum states ρXAB =
∑
x p(x) |x〉〈x| ⊗

ρABx and ρA−X−B :=
∑
x p(x)|x〉〈x|X ⊗ ρAx ⊗ ρBx and a

parameter ε ∈ (0, 1), we have:

Ĩ2εmax(A;B|X)ρ ≤ Dε
max(A;B|X)ρ + log

(
1

1−
√

1− ε2
+ 1

)
.

Proof: The proof is relegated to the appendix.
Lemma 11: 4 For quantum states ρXAB =

∑
x p(x) |x〉〈x|⊗

ρABx and ρA−X−B :=
∑
x p(x)|x〉〈x|X ⊗ ρAx ⊗ ρBx and a

parameter ε ∈ (0, 1), the following stands:

Dε
max(A;B|X)ρ ≤ Ĩεmax(A;B|X)ρ.

Proof: The proof is provided in the appendix.
Lemma 12: For quantum states ρXAB =

∑
x p(x) |x〉〈x| ⊗

ρABx and ρA−X−B :=
∑
x p(x)|x〉〈x|X ⊗ ρAx ⊗ ρBx and a

parameter ε ∈ (0, 1), it holds that:

lim
n→∞

1

n
Ĩεmax(An;Bn|Xn)ρ⊗n = I(A;B|X)ρ.

Proof: The proof follows from Lemma 10 and Lemma
11 as well as the fact given by (11).

The following lemma comes in handy in the proof of the
conditional convex-split lemma.

Lemma 13: For an ensemble of classical-quantum states
{ρXA1 , ..., ρXAn } and a probability mass function {p(i)}ni=1,

4Note that for our purposes in this paper, the upper bound given by Lemma
10 is enough; we prove this lemma further for sake of completeness of our
study.



6

let ρXA =
∑
i p(i)ρ

XA
i be the average state. Then for a state

θXA we have the following equality:

D(ρXA‖θXA) =

n∑
i=1

p(i)
(
D(ρXAi ‖θXA)−D(ρXAi ‖ρXA)

)
.

Proof: Proof is presented in the appendix.
Lemma 14 (Conditional convex-split lemma):

Consider the classical-quantum state ρXAB :=∑
x p(x)|x〉〈x|X ⊗ ρABx , define

∑
x p(x)|x〉〈x|X ⊗ ρAx ⊗ σBx

such that supp(ρBx ) ⊆ supp(σBx ) for all x. Let
k := Dmax(ρXAB‖

∑
x p(x)|x〉〈x|X ⊗ ρAx ⊗ σBx ). Define the

following state:

τXAB1...Bn :=
∑
x

p(x)|x〉〈x|X⊗(
1

n

n∑
j=1

ρABjx ⊗ σB1
x ⊗ ...⊗ σBj−1

x ⊗ σBj+1
x ⊗ ...⊗ σBnx

)
,

on n+2 systems X,A,B1, ..., Bn, where for ∀j ∈ [1 : n] and
x ∈ supp(p(x)) : ρ

ABj
x = ρABx and σBjx = σBx . We have the

following:

D
(
τXAB1...Bn

∣∣∣∣∑
x

p(x)|x〉〈x|X ⊗ ρAx ⊗ σB1
x ⊗ ...⊗ σBnx

)
≤ log

(
1 +

2k

n

)
.

In particular, for some δ ∈ (0, 1) and n = d 2
k

δ2 e the following
holds:

P (τXAB1...Bn ,
∑
x

p(x)|x〉〈x|X ⊗ ρAx ⊗ σB1
x ⊗ ...⊗ σBnx ) ≤ δ.

Proof: The proof is presented in the appendix.
In the following, we present a variation of the conditional
convex-split lemma which involves smooth conditional max-
relative entropy.

Corollary 1: Fix a ε > 0. Let ρXAB =
∑
x p(x) |x〉〈x|X ⊗

ρABx and
∑
x p(x) |x〉〈x|X ⊗ ρAx ⊗ σBx be quantum states

such that supp(ρBx ) ⊆ supp(σBx ) for all x. Define k :=
minρ′∈Bε(ρ)Dmax(ρ′XAB‖

∑
x p
′(x)|x〉〈x|X ⊗ ρ′Ax ⊗ σBx )

where the optimization takes place over states classical on X .
Further define the following state

τXAB1...Bn :=
∑
x

p(x)|x〉〈x|X⊗(
1

n

n∑
j=1

ρABjx ⊗ σB1
x ⊗ ...⊗ σBj−1

x ⊗ σBj+1
x ⊗ ...⊗ σBnx

)
,

on n + 2 systems X,A,B1, ..., Bn, where ∀j ∈ [1 : n] and
x ∈ supp(p(x)) : ρ

ABj
x = ρABx and σBjx = σBx . For δ ∈ (0, 1)

and n = d 2
k

δ2 e, the following holds true:

P (τXAB1...Bn ,
∑
x

p(x) |x〉〈x|X ⊗ ρAx ⊗ σB1
x ⊗ ...⊗ σBnx )

≤ 2ε+ δ.

Proof: Proof is presented in the appendix.

Fig. 1: Single-serving quantum broadcast channel with isomet-
ric extension V A→BCFN . Alice attempts to transmit a common
message M0 to Bob and Charlie and a private message M1

and a confidential message Ms to Bob only such that the
confidential message must be kept secret from Charlie. The
dummy randomness used by Alice for encryption is modeled
by a message Md.

Lemma 15 (Hayashi-Nagaoka operator inequality [25]): Let
T, S ∈ P(HA) such that (1 − S) ∈ P(HA). Then for all
constants c > 0, the following inequality holds:

1− (S + T )−
1
2S(S + T )−

1
2

≤ (1 + c)(1− S) + (2 + c+ c−1)T.

III. INFORMATION-PROCESSING TASK, CODE DEFINITION
AND MAIN RESULTS

Consider the quantum broadcast communication system
model depicted in Fig. 1. A quantum broadcast channel
NA→BC with isometric extension VA→BCFN connects a
sender in possession of A system (Alice) to two receivers,
a primary receiver (Bob) in possession of B and a third-party
receiver (Charlie) possessing C system and the communication
is surrounded by an inaccessible environment modeled as F
system. Alice attempts to send three messages simultaneously:
a common message M0 that is to be decoded by Bob and
Charlie, a private message M1 addressed to Bob with no
secrecy requirement and a confidential message Ms to Bob
that must not be leaked to Charlie. The obfuscation of the con-
fidential message is done by virtue of stochastic encoding, i.e.,
introducing local randomness into codewords in the encoding
process. It is convenient to represent this local randomness
as a dummy message Md taking its values according to some
distribution.

The encoder encodes the message triple (M0,M1,Ms) as
well as the dummy message Md into a quantum codeword ρA

and transmits it over the quantum channel. Upon receiving ρB

and ρC , Bob finds the estimates M̂0, M̂1, M̂s of the common,
individualized and confidential messages, respectively, while
Charlie finds the estimate M̃0 of the common message. To
ensure reliability and security, a tradeoff arises between the
rates of the messages. We study the one-shot limit on this
tradeoff.

Definition 8: A (2R0 , 2R1 , 2Rs) one-shot code C for the
quantum broadcast channel NA→BC consists of
• Three message sets [1 : 2R0 ], [1 : 2R1 ] and [1 : 2Rs ]

(common, individualized and confidential, respectively),
• A source of local randomness [1 : 2Rd ],
• An encoding operator E : M0 ×M1 ×Ms ×Md → A,

which maps a message triple (m0,m1,ms) ∈ [1 : 2R0 ]×
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[1 : 2R1 ]× [1 : 2Rs ] and a realization of the local source
of randomness md ∈ [1 : 2Rd ] to a codeword ρAm0,m1,ms ,

• A decoding POVM DB : B → (M0 ×M1 ×Ms) ∪ {?},
which assigns an estimate (m̂0, m̂1, m̂s) ∈ [1 : 2R0 ]×[1 :
2R1 ]× [1 : 2Rs ] or an error message {?} to each received
state ρBm0,m1,ms ,

• A decoding POVM DC : C →M0 ∪ {?} that assigns an
estimate m̃0 ∈ [1 : 2R0 ] or an error message {?} to each
received state ρCm0,m1,ms .

The (2R0 , 2R1 , 2Rs) one-shot code is assumed to be known
by all parties beforehand; likewise, the distribution of the
local randomness is assumed known to all parties, however,
its realization md is only accessible to Alice. Note that we
have included the source of local randomness in the definition
of the code to imply that it can be optimized over as part of
the code design. Nevertheless, we do not consider the effect of
non-uniform randomness in our analysis [6] and throughout we
assume that the dummy message Md is uniformly distributed
over [1 : 2Rd ]. We further assume that the message triple
(M0,M1,Ms) is uniformly distributed over [1 : 2R0 ] × [1 :
2R1 ]×[1 : 2Rs ] so that the rates of the common, individualized
and confidential messages are H(M0) = R0, H(M1) = R1

and H(Ms) = Rs, respectively. The reliability performance
of the code C is measured by its average probability of error
defined as follows:

P 1
error := Pr{(M̂0, M̂1, M̂s) 6= (M0,M1,Ms) or M̃0 6= M0},

(12)

while its secrecy level, i.e., an indication of Charlie’s ignorance
about the confidential message, is measured in terms of the
trace distance between Charlie’s received state and some
constant state as follows:

P 1
secrecy(m0) :=

1

2Rs

∑
ms

1

2
‖ρCm0,ms − σ

C
m0
‖1, (13)

where ρCm0,ms and σCm0
are the average states at C when m0

and ms are transmitted. Note that the secrecy requirement
indicates Charlie’s ignorance about the confidential message
ms on average conditioned on the fact that he has decoded
the common message m0 correctly.

A rate quadruple (R0, R1, Rs, Rd) is said to be ε-achievable
if there exist a one-shot code C satisfying the following
conditions:

P 1
error ≤ ε, (14)

∀m0 : P 1
secrecy(m0) ≤ ε, (15)

where ε ∈ (0, 1) characterizes both the reliability and secrecy
of the code. Then the ε-achievable rate region Rε(N ) is
defined to consist of the closure of the set of all ε-achievable
rate quadruples. In this paper, our main goal is to bound the
optimal rate region Rε(N ) by establishing achievability and
converse regions.

The following theorem presents our achievability region on
Rε(N ).

Theorem 1 (Achievability Region): Fix ε′, ε′′, δ1, δ2, δ3 and
η such that 0 < 3ε′+ 2

√
ε′ < 1, 0 < δ1, δ2, δ3 < ε′, 0 < ε′′ <√

2− 1, 0 < η < ε′′2. Consider a quantum broadcast channel

NA→BC . Let the random variables U ,V and X be distributed
such that U → V → X forms a Markov chain and define
classical-quantum state ρUVXA =

∑
u,v,x p(u, v, x) |u〉〈u|U ⊗

|v〉〈v|V ⊗ |x〉〈x|X ⊗ ρAx . Let R(in)(ρ) be the set of those
quadruples (R0, R1, Rs, Rd) satisfying the conditions given
by equations (16)-(20) on ρUVXBC = NA→BC(ρUVXA). Let
ε := max{ 4

√
ε′, 4
√
ε′′}. Then

⋃
R(in)(ρ) ⊆ Rε(N ) where the

union is over all ρUVXBC arising from the channel.
Proof: See Section IV.

Theorem 2 (Converse Region): Fix ε ∈ (0, 1). Let the ran-
dom variables U ,V and X be distributed such that U → V →
X forms a Markov chain and define classical-quantum state
ρUVXA =

∑
u,v,x p(u, v, x) |u〉〈u|U ⊗|v〉〈v|V ⊗|x〉〈x|X ⊗ρAx .

Let the state ρUVXBC be the result of the action of the
quantum broadcast channel NA→BC on the state ρUVXA.
Let R(co)(ρ) be the set of those quadruples (R0, R1, Rs, Rd)
satisfying the following conditions:

R0 ≤ min
[
IεH(U ;B)ρ, I

ε
H(U ;C)ρ

]
, (21)

R0 +R1 +Rs ≤ IεH(V ;B|U)ρ (22)

+ min
[
IεH(U ;B)ρ, I

ε
H(U ;C)ρ

]
,

Rs ≤ IεH(V ;B|U)ρ −D
√
2ε

max(V ;C|U)ρ, (23)

R1 +Rd ≥ D
√
2ε

max(V ;C|U)ρ +D
√
2ε

max(X;C|V )ρ, (24)

Rd ≥ D
√
2ε

max(X;C|V )ρ. (25)

Then Rε(N ) ⊆
⋃
R(co)(ρ) and the union is over all ρUVXBC

arising from the channel.
Proof: See Section V.

From the theorems above, the recent result by the same authors
on the simultaneous transmission of classical and quantum
information can be obtained. The slight difference between
the results stems from the fact that in [36], there is a single
criterion for the error probability and secrecy while in this
work separate criteria are considered.

Corollary 2 ([36]): Fix ε′, ε′′, δ1, δ3 and η such that 0 <
3ε′ + 2

√
ε′ < 1, 0 < δ1, δ3 < ε′, 0 < ε′′ <

√
2 − 1,

0 < η < ε′′2. Define ε := max{ 4
√
ε′, 4
√
ε′′}. Let Cε denote the

one-shot capacity region of the channel NA→BE for simul-
taneous transmission of classical and quantum information.
For a classical-quantum state ρUV A =

∑
u,v p(u, v) |u〉〈u| ⊗

|v〉〈v| ⊗ |ψv〉〈ψv|A, the following achievability bound holds:

C(in) ⊆ Cε,

where, denoting the one-shot rates of the classical and quan-
tum information by R1

c and R1
q , respectively, C(in) is the union

over all states ρUV BE arising from the channel, of rate pairs
(R1

c , R
1
q) obeying:

R1
c ≤ I

ε′−δ1
H (U ;B)ρ − log2

(
4ε′

δ21

)
,

R1
q ≤ I

ε′−δ3
H (V ;B|U)ρ − Ĩε

′′

max(V ;E|U)ρ

− log2

(
4ε′

δ23

)
− 2 log2

(
1

η

)
.

Let ε ∈ (0, 1). Then the following converse holds:

Cε ⊆ C(co),
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R0 ≤ min
[
Iε
′−δ1

H (U ;B)ρ − log2

(
4ε′

δ21

)
, Iε
′−δ2

H (U ;C)ρ − log2

(
4ε′

δ22

)]
, (16)

R0 +R1 +Rs ≤ Iε
′−δ3

H (V ;B|U)ρ − log2

(
4ε′

δ23

)
+ min

[
Iε
′−δ1

H (U ;B)ρ − log2

(
4ε′

δ21

)
, Iε
′−δ2

H (U ;C)ρ − log2

(
4ε′

δ22

)]
,

(17)

Rs ≤ Iε
′−δ3

H (V ;B|U)ρ − Ĩε
′′

max(V ;C|U)ρ − log2

(
4ε′

δ23

)
− 2 log2

(
1

η

)
, (18)

R1 +Rd ≥ Ĩε
′′

max(V ;C|U)ρ + Ĩε
′′

max(X;C|V )ρ + 4 log2

(
1

η

)
, (19)

Rd ≥ Ĩε
′′

max(X;C|V )ρ + 2 log2

(
1

η

)
. (20)

where C(co) is the union over all states ρUV BE arising from
the channel, of rate pairs (R1

c , R
1
q) obeying

R1
c ≤ IεH(U ;B)ρ,

R1
q ≤ IεH(V ;B|U)ρ −D

√
2ε

max(V ;E|U)ρ.

Proof: The approach for the simultaneous transmission of
classical and quantum information is through finding the limits
on the simultaneous transmission of common and confidential
messages. From [10] it is well-known that the rate of the
confidential message can be translated into the rate of quantum
information. As hinted in the introductory part, when it comes
to transmission of quantum information, there is zero-tolerance
condition of copying quantum information; therefore the con-
fidential messages must be kept secret from the entire universe
but Bob, meaning that the output of the channel consists of a
system received by Bob and another inaccessible environment
E (which includes Charlie’s system). From Theorem 1 and
Theorem 2 onward, since there is no concern regarding the
rate of the dummy randomness, the last two inequalities in
both regions will be trivial. And the achievability part can be
seen from (16) and (18) and the converse part from (21) and
(23).

IV. ACHIEVABILITY

The achievability proof of the reliability condition (14) is
based on a combination of classical superposition coding and
position-based decoding whereas the secrecy condition (15) is
handled by a version of the convex-split lemma which relies
on superposition of codewords. This result is reminiscent of
the channel resolvability problem via superposition studied for
classical [7] and quantum [44] channels.

The proof of Theorem 1 follows from Lemma 16 and
Lemma 17 where the former proves an alternative rate region
and the latter shows the equivalence of the two regions.

Lemma 16: Fix ε′, ε′′, δ1, δ2, δ3 and η such that 0 <
3ε′ + 2

√
ε′ < 1, 0 < δ1, δ2, δ3 < ε′, 0 < ε′′ <

√
2 − 1,

0 < η < ε′′2 and define ε := max{ 4
√
ε′, 4
√
ε′′}. Let

the random variables U ,V and X be distributed such that
U → V → X forms a Markov chain. We further define
classical-quantum state ρUVXA =

∑
u,v,x p(u, v, x)|u〉〈u|U ⊗

|v〉〈v|V ⊗|x〉〈x|X⊗ρAx . Let R∗(ρ) be the set of those quadru-
ples (R0, R1, Rs, Rd) satisfying the following conditions on
ρUVXBC = NA→BC(ρUVXA):

R0 ≤ min[Iε
′−δ1

H (U ;B)ρ − log2

(
4ε′

δ21

)
, (26)

Iε
′−δ2

H (U ;C)ρ − log2

(
4ε′

δ22

)
],

R1 +Rs ≤ Iε
′−δ3

H (V ;B|U)ρ − log2

(
4ε′

δ23

)
, (27)

R1 ≥ Ĩε
′′

max(V ;C|U)ρ + 2 log2

(
1

η

)
, (28)

Rd ≥ Ĩε
′′

max(X;C|V )ρ + 2 log2

(
1

η

)
, (29)

Then
⋃
R∗(ρ) ⊆ Rε(N ) and the union is over all ρUVXBC

arising from the channel.
Proof: Let ε′, ε′′, δ1, δ2, δ3 and η be such that 0 < 3ε′ +

2
√
ε′ < 1, 0 < δ1, δ2, δ3 < ε′, 0 < ε′′ <

√
2− 1, 0 < η < ε′′2

and ε := max{ 4
√
ε′, 4
√
ε′′}.

Codebook generation: Fix a distribution p(u, v, x) such
that U → V → X . Alice, Bob and Charlie share ran-
domness in the form of 2R0 copies of the classical state
ρU

AUBUC :=
∑
u p(u)|u〉〈u|UA ⊗ |u〉〈u|UB ⊗ |u〉〈u|UC =∑

u p(u)|uuu〉〈uuu|UAUBUC as follows:

(ρU
AUBUC )⊗2

R0
= ρU

A
1 U

B
1 U

C
1 ⊗ ...⊗ ρU

A

2R0
UB

2R0
UC

2R0 ,

where Alice possesses UA systems, Bob UB systems and
Charlie has UC systems (the superscripts should not be
confused with the input A or output systems B and C of the
channel, here they indicate the party to whom the underlying
state belongs). We consider the shared state above to construct
the first layer of our code. Conditioned on each of the 2R0

states above, the parties are assumed to share 2Rs+R1 copies
of the state ρV

AV BV C

u =
∑
v p(v|u)|vvv〉〈vvv|V AV BV C , as

given below for the i-th state ρU
A
i U

B
i U

C
i :∑

u

p(u)|uuu〉〈uuu|U
A
i U

B
i U

C
i ⊗ (ρV

AV BV C

u )⊗2
Rs+R1

,

where Alice, Bob and Charlie are in possession of the V A, V B

and V C systems, respectively. The set [1 : 2Rs+R1 ] is
partitioned into 2Rs equal size bins. This constitutes the second
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layer of the code. Finally, conditioned on each of the 2Rs+R1

states above the parties will share 2Rd copies of the state
ρX

AXBXC

v :=
∑
x p(x|v)|xxx〉〈xxx|XAXBXC , as illustrated

below for the i-th state ρV
A
i V

B
i V

C
i :∑

u,v

p(u, v)|vvv〉〈vvv|V
A
i V

B
i V

C
i ⊗ (ρX

AXBXC

v )⊗2
Rd
,

where XA, XB and XC systems are owned by Alice, Bob
and Charlie, respectively. These states build the third layer
of the code. All states above are assumed to be available to
all parties before communication begins. In the following, to
avoid inefficient notation we may drop the superscripts if it
does not lead to ambiguity; for instance when we analyze
Bob’s error probability, it is obvious that we are dealing with
Bob’s systems or in the secrecy analysis those of Charlie are
dealt with.

Encoding: To send a message triple (m0,m1,ms), the
encoder first chooses a dummy message md ∈ [1 : 2Rd ]. In
the first layer, the encoder finds the m0-th state, i.e. ρU

A
m0 ,

then it looks for the ms-th bin, inside which it selects the
state associated to the individualized message m1; finally,
the encoder picks the md-th state ρX

A
md among those tied

to the state found in the preceding step. The encoder sends
the selected classical system through a modulator (a linear
operator V : X → D(HA) which maps the classical control
variable x ∈ X to a quantum state in the input Hilbert
space) resulting in a quantum codeword ρAx which will be
then transmitted over the channel5.

Decoding: Bob performs a two-phase decoding strategy
such that he finds the common message in the first phase
and then confidential and individualized messages in the
subsequent phase. The transmission of the m0-th common
message induces the following state on Bob’s side:

ρU1 ⊗ ...⊗ ρUm0
B ⊗ ...⊗ ρU2R0 , (30)

where ρUm0B =
∑
u p(u) |u〉〈u|Um0 ⊗ ρBu . Apparently Bob

has to be able to spot the location where the received system
B is tied to his U system. In other words, he should be able
to distinguish between states induced for different values of
the common message. Bob employs a position-based decoding
to solve the raised 2R0 -ary hypothesis testing problem. More-
over, for the common message m0, the selection of the pair
(ms,m1) will induce the following state on Bob’s side:

ρV(m0,1,1) ⊗ ...⊗ ρV(m0,ms,m1)B ⊗ ...⊗ ρV(m0,2
Rs ,2R1 ) , (31)

where ρV(m0,ms,m1)B =
∑
v p(v) |v〉〈v|V(m0,ms,m1) ⊗ ρBv . Bob

runs the second position-based POVM to solve the 2Rs+R1 -
ary hypothesis testing problem. Charlie also runs the position-
based decoding POVM to find out the transmitted common
message. The state induced at Charlie side comes about by
replacing B with C in (30).

Analysis of the probability of error: We first analyze
the error probability of the common message by studying

5Note that we have included the modulator in the definition of the code
meaning that it needs to be optimized over to get our capacity results.

Bob’s first decoder and the error analysis of Charlie can be
carried out along the same lines. It is worth pointing out
that although the messages encoded in the second layer might
include dummy randomness, Bob will still decode them. The
dummy messages in the third layer will not be decoded.

Reconsider the state in (30). To find out the transmitted com-
mon message, Bob has to distinguish between 2R0 different
states. As hinted before, this puts forward a 2R0 -ary hypothesis
testing problem. Let {TUB , I − TUB} be the elements of a
POVM that is chosen for discriminating between two states
ρUB and ρU ⊗ ρB . Further, we assume that the test operator
TUB decides correctly in favor of ρUB with probability at
least6 1 − (ε′ − δ1). Bob will use the following square-root
measurement to detect the common message:

Ωm0
:=

 2R0∑
m′0=1

Πm′0

− 1
2

Πm0

 2R0∑
m′0=1

Πm′0

− 1
2

,

where Πm0
:= 1

U1 ⊗ ...⊗ TUm0B ⊗ ...⊗ 1U2R0 and TUm0B

is the test operator. It can be easily checked that the set
{Ωm0

}m0
constitutes a valid POVM, i.e.

∑
m0

Ωm0
= 1.

Besides, direct calculation shows that Tr{Πm0
(ρU1 ⊗ ... ⊗

ρUm0
B ⊗ ... ⊗ ρU2R0 )} = Tr{TUm0

BρUm0
B} and for any

m′0 6= m0, Tr{Πm0
(ρU1 ⊗ ... ⊗ ρ

Um′0
B ⊗ ... ⊗ ρU2R0 )} =

Tr{Πm0
(ρUm0 ⊗ ρB)}.

Observe that the symmetric structure of the codebook gen-
eration and decoding leads to an average error probability that
is equal to the individual error probabilities. Therefore, we
might assume m0 = 1 was transmitted. Hence,

Pr(M̂0 6= 1|M0 = 1)

= Tr{(1− Ω1)(ρU1B ⊗ ...⊗ ρU2R0 )}
≤ (1 + c)Tr{(1−Π1)(ρU1B ⊗ ...⊗ ρU2R0 )}

+ (2 + c+ c−1)
∑
m0 6=1

Tr{Πm0
(ρU1B ⊗ ...⊗ ρU2R0 )}

≤ (1 + c)(ε′ − δ1) + (2 + c+ c−1)2R0−I
ε′−δ1
H (U ;B)ρ ,

where the first inequality follows from Lemma 15 and in the
second inequality, the first term is based on the assumption and
the second term follows from the definition of the hypothesis
testing mutual information (see Definition 1). The last expres-
sion is set equal to ε′ and the optimal value of c is derived as
c = δ1

2ε′−δ1 . Then, we will have

R0 = Iε
′−δ1
H (U ;B)ρ − log2

(
4ε′

δ21

)
.

In the same manner, it can be shown that the achievable
rate of the common message to Charlie equals R0 =
Iε
′−δ2
H (U ;C)ρUC − log2( 4ε′

δ22
).

In an analogous way, the reliability analysis of the con-
fidential and the individualized messages goes as follows.
Before we delve into the error analysis of the confidential and
individualized messages, note from the gentle measurement

6For the sake of clarity, we choose to specify the error probability of the
test operator to be ε′−δ1 to ensure that the error probability of the code will
be larger than this and at most ε′.
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lemma [57] that the disturbed state fed into the second decoder
of Bob is impaired by at most 2

√
ε′; this should be taken into

account in final assessment of the error probability. Consider a
binary POVM with elements {QUV B ,1−QUV B}. The POVM
is to discriminate the states ρUV B =

∑
u p(u)|u〉〈u|U ⊗ ρV Bu

and ρV−U−B :=
∑
u p(u)|u〉〈u|U ⊗ ρVu ⊗ ρBu such that the

value of QUV B estimates the state to be ρUV B . Assume the
probability of failure to make a correct decision on ρUV B is
at most ε′ − δ3, i.e., Tr{(1 − Q)ρUV B} ≤ ε′ − δ3. Bob will
take the following square-root measurement POVM :

Θms,m1
:= 2Rs∑

m′s=1

2R1∑
m′1=1

Γm′s,m′1

− 1
2

Γms,m1

 2Rs∑
m′s=1

2R0∑
m′1=1

Γm′s,m′1

− 1
2

,

where Γms,m1
:= 1

V1,1 ⊗ ... ⊗ QUVms,m1B ⊗ ... ⊗ 1V2Rs ,2R1

and QUVms,m1B is the binary test operator. Observe that∑
ms,m1

Θms,m1
= 1. It is easy to show that for all ms,m1,

we have Tr{Γms,m1(
∑
u p(u)|u〉〈u|U⊗ρV1,1

u ⊗...⊗ρVms,m1B
u ⊗

...⊗ ρ
V B
2Rs ,2R1
u )} = Tr{QρUV B}. On the other hand, for any

m′s 6= ms or m′1 6= m1, Tr{Γms,m1(
∑
u p(u)|u〉〈u|U⊗ρV1,1

u ⊗
...⊗ ρ

Vm′s,m
′
1
B

u ⊗ ...⊗ ρ
V
2Rs ,2R1
u )} = Tr{QρV−U−B}. By the

symmetry of the random codebook construction, the average
error probability is the same as the error probability of any
pair (ms,m1), hence it suffices to find the error probability if
(ms = 1,m1 = 1) was sent. The analysis continues as shown
at the top of the next page.

where the first inequality is due to Lemma 15 and in the
second inequality, the first term comes from the assumption
about the accuracy of the test operator Q and the second term
uses the definition of the hypothesis testing conditional mutual
information, Definition 2. We choose the error probability be
less that or equal to ε′, so the optimal value of the constant
is set to c = δ3

2ε′−δ3 and eventually we will get the following
sum rate:

Rs +R1 = Iε
′−δ3
H (V ;B|U)ρ − log2

(
4ε′

δ23

)
.

Analysis of the secrecy: Our tool to study secrecy is
the conditional convex-split lemma. The dummy message
and perhaps the individualized message which take care of
confidentiality are encoded in the second and third layers as
superposition of shared states. The quantum channel resolv-
ability via superposition coding was studied in [44]. Given
the setup of our problem, here we should try to prove the
resolvability problem using convex-split lemma. We gave the
analysis for Charlie’s successful detection of the common
message; in the secrecy analysis we assume Charlie knows
the common message and the correct copy of the ρU used in
the first layer. The idea for secrecy is that Charlie’s systems
have to remain close to some constant state, no matter which
confidential message was transmitted.

For a given confidential message, the choice of the
individualized message will induce an average state on
Charlie’s V systems in the second layer where the dummy
message induces an average state on his X systems in

the third layer. Since the states in the second layer are
superposed to those in the third layer, both the individualized
message and the dummy message will help to induce
a state at Charlie’s side that should be close enough
to a target state. We first sketch the state induced by
the chosen individualized and dummy messages. For a
choice of the confidential message ms ∈ [1 : 2Rs ], the
induced state is as given by Eq. (32) (the subscripts of
variable V should be understood as the ordered pairs
(1, 1), ..., (1, 2R1), (2, 1), ..., (2, 2R1), ..., (ms,m1), ..., (2Rs , 2R1)
where the first component belongs to [1 : 2Rs ] and the second
component is in [1 : 2R1 ]):

In order to get an intuitive understanding of the equations
above, first we should think of the sources of the randomness
available in the protocol. Since the common message is already
known, the remaining sources of the randomness with respect
to the confidential message are the individualized and dummy
messages. Second, we should note where each source of the
randomness is being consumed. Equation (32) indicates that
the chosen confidential message is ms, equation (33) repre-
sents the uniform randomness imposed by the individualized
message (see the range of the variable j) and finally, equa-
tion (34) reflects the randomness introduced by the dummy
message (see the range of the variable i). All the messages
available to the encoder are potential sources of randomness
that can be used for secrecy purposes, i.e., to confuse a receiver
about other messages. In our setting, the common message is
decoded by Charlie and to hide the confidential message, there
is randomness coming from the individualized and dummy
messages. Note that with regard to the individualized message,
neither Alice’s encoding nor Bob’s decoding influence the role
it plays as a source of randomness. Moreover, as discussed
before, the individualized message may or may not contain
useful information for Bob; however, Bob will decode the
individualized message and then he can throw away its content.
In case the individualized message contains useful information
for Bob, by definition, we do not care if information about the
individualized message is leaked to Charlie.

Charlie not being able to detect the confidential message
amounts to his state being sufficiently close to the state given
by Eq. (35), where ρCu =

∑
v,x p(v, x|u)ρCx is considered the

constant state independent of the chosen confidential message.
Concerning the trace distance between the aforementioned
states, since the trace distance is invariant with respect to
tensor product states, we can remove the same terms from
both states. Eventually the expression given by Eq. (36) is the
distance required to be small enough. Note that in Eq. (36) the
expression being subtracted refers to the state associated to the
chosen confidential message given inside the brackets in (35).
We proceed to bound equation (36) from above by envisioning
an intermediate state which is, intuitively, closer to either of
the states involved in (36) than the two states themselves. We
define such an intermediate state as

∑
u p(u)|u〉〈u|U ⊗ ΞCu

where ΞCu is giveb by Eq. (37). Next, we have to bring in
the intermediate state. We do so by the triangle inequality as
shown by Eq. (38).

We now try to upper bound each term appearing on the
right-hand side. For the first term, simply by expanding the
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Pr((M̂s, M̂1) 6= (1, 1)|(Ms,M1) = (1, 1))

= Tr{(1−Θ1,1)(
∑
u

p(u)|u〉〈u|U ⊗ ρV1,1B
u ⊗ ...⊗ ρ

V
2Rs ,2R1
u )}

≤ (1 + c)Tr{(1− Γ1,1)(
∑
u

p(u)|u〉〈u|U ⊗ ρV1,1B
u ⊗ ...⊗ ρ

V
2Rs ,2R1
u )}

+ (2 + c+ c−1)
∑

(ms,m1)6=(1,1)

Tr{Γms,m1
(
∑
u

p(u)|u〉〈u|U ⊗ ρV1,1B
u ⊗ ...⊗ ρ

V
2Rs ,2R1
u )}

≤ (1 + c)(ε′ − δ3) + (2 + c+ c−1)2R1+Rs−I
ε′−δ3
H (V ;B|U)ρUVB ,

∑
u

p(u)|u〉〈u|U ⊗
([∑

v

p(v|u)|v〉〈v|V1,1 ⊗ (ρXv )⊗2
Rd
]
⊗ ...⊗

[∑
v

p(v|u)|v〉〈v|Vms−1,2R1 ⊗ (ρXv )⊗2
Rd
]
⊗

1

2R1

2R1∑
j=1

ΥC,j
u ⊗

[∑
v

p(v|u)|v〉〈v|Vms+1,1 ⊗ (ρXv )⊗2
Rd
]
⊗ ...⊗

[∑
v

p(v|u)|v〉〈v|V2Rs ,2R1 ⊗ (ρXv )⊗2
Rd
])
. (32)

where

ΥC,j
u :=

∑
v

p(v|u)|v〉〈v|Vms,1 ⊗ (ρXv )⊗2
Rd ⊗ ...⊗

∑
v

p(v|u)|v〉〈v|Vms,j ⊗ΨC
v ⊗ ...⊗

∑
v

p(v|u)|v〉〈v|Vms,2R1 ⊗ (ρXv )⊗2
Rd
,

(33)

and

ΨC
v :=

1

2Rd

2Rd∑
i=1

ρ
XC1
v ⊗ ...⊗ ρX

C
i C

v ⊗ ...⊗ ρ
XC

2Rd
v . (34)

∑
u

p(u)|u〉〈u|U⊗
((∑

v

p(v|u)|v〉〈v|V1,1 ⊗ (ρXv )⊗2
Rd
)
⊗ ...⊗

(∑
v

p(v|u)|v〉〈v|Vms−1,2R1 ⊗ (ρXv )⊗2
Rd
)

⊗
[(∑

v

p(v|u)|v〉〈v|Vms ⊗ (ρX
C

v )⊗2
Rd
)⊗2R1

⊗ ρCu
]
⊗ ...⊗

(∑
v

p(v|u)|v〉〈v|VRs,R1 ⊗ (ρXv )2
Rd
))
. (35)

1

2

∥∥∑
u

p(u)|u〉〈u|U ⊗ 1

2R1

2R1∑
j=1

ΥC,j
u −

∑
u

p(u)|u〉〈u|U ⊗
(∑

v

p(v|u)|v〉〈v|V ⊗ (ρXv )⊗2
Rd
)⊗2R1

⊗ ρCu
∥∥
1
, (36)

ΞCu :=
1

2R1

2R1∑
j=1

([∑
v

p(v|u)|v〉〈v|Vms,1 ⊗ (ρXv )⊗2
Rd
]
⊗ ... (37)

⊗
[∑

v

p(v|u)|v〉〈v|Vms,j ⊗ (ρX1
v ⊗ ...⊗ ρ

XRd
v ⊗ ρCv )

]
⊗ ...⊗

[∑
v

p(v|u)|v〉〈v|Vms,2R1 ⊗ (ρXv )⊗2
Rd
])
.

summation and subtracting equal terms from both side, the
argument follows as given by Eq. (39). Then immediately by
noting the Markov chain, the conditional convex-split lemma

asserts that if Rd = Ĩε
′′

max(X;C|V )ρ + 2 log2( 1
η ), then

P (
∑
u

p(u)|u〉〈u|U ⊗ 1

2R1

2R1∑
j=1

ΥC,j
u ,

∑
u

p(u)|u〉〈u|U ⊗ ΞCu )

≤ 2ε′′ + η.

and from the relation between the purified distance and the
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1

2

∥∥∑
u

p(u)|u〉〈u|U ⊗ 1

2R1

2R1∑
j=1

ΥC,j
u −

∑
u

p(u)|u〉〈u|U ⊗
(∑

v

p(v|u)|v〉〈v|V ⊗ (ρXv )⊗2
Rd
)⊗2R1

⊗ ρCu
∥∥
1

(38)

≤ 1

2

∥∥∑
u

p(u)|u〉〈u|U ⊗ 1

2R1

2R1∑
j=1

ΥC,j
u −

∑
u

p(u)|u〉〈u|U ⊗ ΞCu ‖1

+
1

2

∥∥∑
u

p(u)|u〉〈u|U ⊗ ΞCu −
∑
u

p(u)|u〉〈u|U ⊗
(
ρV

C

u ⊗ (ρX
C

v )⊗2
Rd
)⊗2R1

⊗ ρCu
∥∥
1
.

1

2

∥∥∑
u

p(u)|u〉〈u|U ⊗ (
1

2R1

2R1∑
j=1

ΥC,j
u − ΞCu )

∥∥
1

=
1

2

∑
u

p(u)
∥∥∥∑

v

p(v|u)|v〉〈v|V ⊗
( 1

2Rd

2Rd∑
i=1

ρXv ⊗ ...⊗ ρXiCv ⊗ ...⊗ ρX2Rd
v − ρX1

v ⊗ ...⊗ ρ
X

2Rd
v ⊗ ρCv

)∥∥∥
1
.

(39)

trace distance, we have

1

2

∥∥∥∑
u

p(u)|u〉〈u|U ⊗ (
1

2R1

2R1∑
j=1

ΥC,j
u − ΞCu )

∥∥∥
1
≤ 2ε′′ + η,

For the second term, from the invariance of the trace distance
with respect to tensor product states, we can trace out X sys-
tems from both expressions leading to the expression shown by
Eq. (40). Then the conditional convex-split lemma guarantees
the purified distance between states to be less than or equal
to (2ε′′ + η) if we choose R1 = Ĩε

′′

max(V ;C|U)ρ + 2 log2( 1
η ),

which in turn, implies that the trace distance between the states
is also less than or equal to (2ε′′ + η).

Derandomization: The proposed protocol relies upon
shared randomness among parties. In order to show that the
results also hold without assistance of shared randomness,
the code needs to be derandomized. Derandomization is a
standard procedure which can be done by expanding the states
and corresponding POVM’s and using a property of the trace
distance given by the equality in (3) (see [36], [28], [58]).
The only point that might be needed to be made here is the
structure of the test operators in Bob’s decoders (as well as
that of Charlie). Note than the test operators were described
generally as TUB and QUV B without specifying the nature
of the subsystems, i.e., whether each of U, V or B systems
are classical or quantum. For our purposes, it is sufficient
to consider the test operators as TUB :=

∑
u |u〉〈u|U ⊗ T

B

u

where T
B

u := 〈u|TUB |u〉. Likewise, we only need to have
QUV B :=

∑
u,v |u〉〈u|U ⊗ |v〉〈v|V ⊗ Q

B

u,v where Q
B

u,v :=

〈u, v|QUV B |v, u〉.
Expurgation: So far we have come to know that there

exists at least one code that satisfies the reliability criterion
in (14) and at least one codebook that satisfies the secrecy
requirement (15). We should use Markov inequality to find a
good code that satisfies both the reliability (14) and secrecy
(15) simultaneously. We have the average error probability
over all codes P 1

error ≤ 3ε′ + 2
√
ε′ (with 2

√
ε′ coming from

the gentle measurement lemma) and the secrecy over all code

P 1
secrecy ≤ 4ε′′ + 2η. From Markov inequality we know that

Pr(P 1
error ≥

4
√
ε′) ≤ 3(ε′)3/4 +2 4

√
ε′ and Pr(P 1

secrecy ≥
4
√
ε′′) ≤

4(ε′′)3/4 + 2(ε′′)7/4. Then there is a good code for which,
with high probability neither statement is true:

Pr(P 1
error ≤

4
√
ε′, P 1

secrecy ≤
4
√
ε′′)

≥ 1− (3(ε′)3/4 + 2
4
√
ε′)− (4(ε′′)3/4 + 2(ε′′)7/4).

Let ε := max{ 4
√
ε′, 4
√
ε′′}. This parameter works for both

requirements and the results is concluded.

Lemma 17: We have
⋃
R(in)(ρ) ⊆ Rε(N ) and the union

is over all ρUVXBC arising from the channel.
Proof: To prove the lemma we need to show that

for all ρ arising from the channel Rin(ρ) ⊆ R∗(ρ).
While this can be proven in a standard way by Fourier-
Motzkin elimination (see for example appendix D of [59]),
we follow the approach of [7] to show the lemma. Note
that from the definition of Rε(N ), if a quadruple (R0 +
r0, R1 − r0 − rs + rd, Rs + rs, Rd − rd) ∈ Rε(N ) for
some r0, rs, rd ≥ 0, then (R0, R1, Rs, Rd) ∈ Rε(N ) as
well. Then one can find explicit values of (r0, rs, rd) such
that for any given (R0, R1, Rs, Rd) ∈ R(in)(ρ) we have
(R0 + r0, R1 − r0 − rs + rd, Rs + rs, Rd − rd) ∈ R∗(ρ).
In fact for R1 < Ĩε

′′

max(V ;C|U)ρ + 2 log2( 1
η ), the values

(r0, rs, rd) := (0, 0, Ĩε
′′

max(V ;C|U)ρ + 2 log2( 1
η ) − R1) can

be seen to satisfy equations (26) to (29) and thus imply
(R0 + r0, R1 − r0 − rs + rd, Rs + rs, Rd − rd) ∈ R∗(ρ).
This combined with Lemma 16 proves

⋃
R(in)(ρ) ⊆ Rε(N ).

V. CONVERSE

Consider the common message rate R0 bound from (21).
This bound was proved in [27] by relating the communi-
cation problem to a problem in binary hypothesis testing.
We briefly explain the approach here. From the definition
of the reliability given in (14) both Pr{M̃0 6= M0} ≤ ε
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1

2

∥∥∥∥∑
u

p(u)|u〉〈u|U ⊗
( 1

2R1

R1∑
j=1

(ρ
V C1
u ⊗ ...⊗ ρV

C
i C
u ⊗ ...⊗ ρ

V CR1
u )− ρV

C
1
u ⊗ ...⊗ ρ

V C
2R1
u ⊗ ρCu

)∥∥∥∥
1

(40)

and Pr{(M̂0, M̂1, M̂s) 6= (M0,M1,Ms)} ≤ ε must be
satisfied. We concentrate now on the fulfillment of the first
condition, i.e., Pr{M̃0 6= M0} ≤ ε. Consider the task
of distinguishing between two quantum states ρM̃0M0 =
1

2R0

∑
m0
|m0〉〈m0|M̃0 ⊗ |m0〉〈m0|M0 and ρM̃0 ⊗ ρM0 where

the former is the null hypothesis and the latter the alternative
hypothesis. It can be easily verified that Pr{M̃0 6= M0} ≤ ε
implies that the type I error is less that or equal to ε and
the type II error equals 2−R0 . Then from the definition of the
hypothesis-testing mutual information and the monotonicty of
the hypothesis testing relative entropy with CPTP maps, we
have R0 ≤ IεH(M0;B)ρ. Let U := M0, then the converse
follows. The proof of R0 ≤ IεH(M0;C)ρ follows the same
argument.

We now analyze the condition Pr{(M̂0, M̂1, M̂s) 6=
(M0,M1,Ms)} ≤ ε. Following a procedure similar to [36],
we expand this expression as follows:

ε ≥ Pr{(M̂0, M̂1, M̂s) 6= (M0,M1,Ms)}

=
∑

m0,m1,ms

p(m0)p(m1)p(ms)×

Pr{(M̂0, M̂1, M̂s) 6= (m0,m1,ms)|m0,m1,ms}

=
∑

m0,m1,ms

p(m0)p(m1)p(ms)×∑
(m′0,m

′
1,m
′
s)6=(m0,m1,ms)

p(m′0,m
′
1,m

′
s|m0,m1,ms)

≥
∑

m0,m1,ms

p(m0)p(m1)p(ms)×∑
m′0,

(m′1,m
′
s)6=(m1,ms)

p(m′0,m
′
1,m

′
s|m0,m1,ms)

=
∑

m0,m1,ms

p(m0)p(m1)p(ms)×∑
(m′1,m

′
s)6=(m1,ms)

p(m′1,m
′
s|m0,m1,ms)

=
∑
m0

p(m0)Pr{(M̂1, M̂s) 6= (M1,Ms)|M0 = m0}.

Notice that the final expression indicates the probability of
erroneous detection of (Ms,M1) when M0 is transmitted.
We find an upper bound on the sum rate of (Ms,M1) by
considering a binary hypothesis testing problem with null and
alternative hypotheses given respectively as follows:

ρM0M̂sM̂1MsM1 :=
1

2R0

∑
m0

|m0〉〈m0|M0 ⊗ ρM̂sM̂1MsM1
m0

,

ρM̂sM̂1−M0−MsM1 :=
1

2R0

∑
m0

|m0〉〈m0|M0 ⊗ ρM̂sM̂1
m0

⊗ ρMsM1
m0

,

where ρM̂sM̂1MsM1
m0

= 1
2Rs+R1

∑
msm1

|msm1〉〈msm1|M̂sM̂1⊗
|msm1〉〈msm1|MsM1 . It can be easily verified that type I error
is equivalent to

∑
m0

p(m0)Pr{(M̂1, M̂s) 6= (M1,Ms)|M0 =
m0} which is assumed to be less that or equal to ε. On the
other hand, the type II error can be written as follows:∑
m0,ms,m1

pM0
(m0)pMsM1

(ms,m1)pM̂sM̂1
(ms,m1)

=
1

2Rs+R1

∑
m0,ms,m1

pM0
(m0)pM̂sM̂1

(ms,m1) =
1

2Rs+R1
.

Then we have the following:

Rs +R1 ≤ IεH(Ms,M1; M̂s, M̂1|M0)ρ ≤ IεH(Ms,M1;B|M0)ρ,

where the first inequality stems from the definition of the con-
ditional hypothesis testing mutual information and the second
inequality is from monotonicity under CPTP maps. Identifying
the random variables V := (Ms,M1) and U := M0 concludes
the intended bound. So far we have dealt with the reliability
condition and have derived (21) and (22).

Next we turn our attention to the secrecy criterion. The
secrecy condition (13) requires that the state of the Charlie
and the confidential message become close to a product state
for every transmitted common message. In converse proof,
we consider a less strict criterion such that we demand the
aforementioned states to be close on average over the common
messages. i.e.

1

2

∥∥ρCM0Ms − 1

2R0

∑
m0

|m0〉〈m0|M0 ⊗ ρMs
m0
⊗ σCm0

∥∥
1

=
1

2R0+Rs

∑
m0,ms

1

2
‖ρCm0,ms − σ

C
m0
‖1 ≤ ε.

From the relation between the purified distance and the trace
distance, the purified distance between the above-mentioned
states is less that or equal to

√
2ε. Then from the definition

of the smooth conditional relative entropy, it is easily checked
that the following holds:

D
√
2ε

max(Ms;C|M0)ρ

:= D
√
2ε

max

(
ρM0MsC

∥∥ 1

2R0

∑
m0

|m0〉〈m0|M0 ⊗ ρMs
m0
⊗ σCm0

)
ρ

= 0.

Therefore, in the quantity D
√
2ε

max(Ms;C|M0)ρ = 0, we define
U := M0 and V := Ms to get D

√
2ε

max(V ;C|U)ρ = 0. Similarly,
we let V := M0 and X := Ms to get D

√
2ε

max(X;C|V )ρ = 0.
Finally the bound on the rate of the confidential message (23)
can be seen from the bound derived on Rs + R1 and the
preceding discussion.

VI. ASYMPTOTIC ANALYSIS

So far we have studied the scenario in which a quantum
channel is available only once and the transmission was



14

subject to some non-zero error and secrecy parameters. In
the asymptotic regime, however, a memoryless channel is
considered to be available for an unlimited number of uses;
if we denote the uses of the channel by n, the one-shot
scenario corresponds to n = 1 where in the asymptotic regime
n → ∞. Moreover, in the asymptotic regime, as long as the
achievability bounds and weak converses are concerned, the
error and secrecy parameters are assumed to be vanishing in
the limit of many channel uses, i.e., ε → 0 as n → ∞. The
following formally defines the rate region in the asymptotic
regime from the one-shot rate region defined before:

R∞(N ) := lim
ε→0

lim
n→∞

1

n
Rε(N⊗n), (41)

where the tensor power channel N⊗n indicates the n indepen-
dent uses of the channel N . In the following we first prove
a theorem then we will recover several well-known results as
corollaries.

Theorem 3: The asymptotic rate region R∞(N ) of the
broadcast channel NA→BC for simultaneous transmission of
common, individualized and confidential messages with a rate-
limited randomness encoder is given as follows:

R∞(N ) =

∞⋃
`=1

1

`
R(1)
∞ (N⊗`), (42)

where R(1)
∞ (N ) :=

⋃
ρUVXBC R

(2)
∞ (N ), in which R(2)

∞ (N ) is
the set of quadruples (R0, R1, Rs, Rd) satisfying the following
conditions:

R0 ≤ min
[
I(U ;B)ρ, I(U ;C)ρ

]
, (43)

R0 +R1 +Rs ≤ I(V ;B|U)ρ + min
[
I(U ;B)ρ, I(U ;C)ρ

]
,

(44)
Rs ≤ I(V ;B|U)ρ − I(V ;C|U)ρ, (45)

R1 +Rd ≥ I(V ;C|U)ρ + I(X;C|V )ρ, (46)
Rd ≥ I(X;C|V )ρ, (47)

where (R0, R1, Rs, Rd) denotes the rates of the common,
individualized, confidential and dummy messages, respectively
and

ρUVXBC =∑
u,v,x

p(u)p(v|u)p(x|v) |u〉〈u|U ⊗ |v〉〈v|V ⊗ |x〉〈x|X ⊗N (ρAx )

is the state arising from the channel.
Proof of Theorem 3: We need to show the direct part and

the converse. To establish the direct part, we appeal to our one-
shot achievability region and seek to show that the right-hand
side of equation (42) is contained inside the left-hand side,
i.e., the following:

∞⋃
`=1

1

`
R(1)
∞ (N⊗`) ⊆ R∞(N ).

From our achievability result, Theorem 1, if we use the channel
m times independently (memoryless channel), or equivalently

if we consider one use of the tensor power channel N⊗m, we
will have: ⋃

ρm

R(in)(ρm) ⊆ Rε(N⊗m), (48)

where R(in)(ρm) is the convex closure over all states ρm

arising from m uses of the channel, of the rate quadruples
(R0, R1, Rs, Rd) obeying the condition at the top of the next
page. where Um, V m and Xm refer to the random variables
drawn from the joint distributions p(u1, ..., um), p(v1, ..., vm)
and p(x1, ..., xm), respectively and B⊗m and C⊗m refer to
the m-fold tensor product of the Hilbert spaces HB and HC ,
respectively. Since we want to prove an achievability theorem,
we can assume that each sequence of random variables is
drawn from the corresponding distributions in an i.i.d. fashion,
i.e., p(u1, ..., um) =

∏m
i=1 p(ui), p(v1, ..., vm) =

∏m
i=1 p(vi)

and p(x1, ..., xm) =
∏m
i=1 p(xi). Therefore, the state over

which the above quantities are assessed, is ρ⊗m = ρ⊗ ...⊗ ρ.
The i.i.d. encoding assumption implies ρm = ρ⊗m and

enables us to simplify the entropic quantities in the asymptotic
limit of many channel uses. To see this, we divide both sides
of (48) by m and let m→∞:

lim
m→∞

1

m

⋃
ρ⊗m

R(in)(ρ⊗m) ⊆ lim
ε→0

lim
m→∞

1

m
Rε(N⊗m), (49)

This results in dividing the entropic quantities comprising
R(in)(ρ⊗m) by m and evaluate limits as m → ∞. All the
constant terms will vanish as m→∞ and from the asymptotic
i.i.d. behavior of the quantities given in (5), (7) and Lemma
12, we get the region R1

∞(N ). So far we have shown the
following:

R1
∞(N ) ⊆ lim

ε→0
lim
m→∞

1

m
Rε(N⊗m).

Finally we consider m uses of the tensor power channel N⊗`
and let n = m`. Taking the limits as n → ∞ concludes the
direct part.

For the converse part, from Theorem 2 onward, if the
channel N gets used m independent times, we will have

Rε(N⊗m) ⊆
m⋃
`=1

⋃
ρ`

R(co)(N⊗`), (50)

where R(co)(N⊗`) consists of the rate quadruples
(R0, R1, Rs, Rd) obeying the following:

R0 ≤ min
[
IεH(U `;B⊗`)ρ` , I

ε
H(U `;C⊗`)ρ`

]
,

R0 +R1 +Rs ≤ IεH(V `;B⊗`|U `)ρ`
+ min

[
IεH(U `;B⊗`)ρ` , I

ε
H(U `;C⊗`)ρ`

]
,

Rs ≤ IεH(V `;B⊗`|U `)ρ` −D
√
2ε

max(V `;C⊗`|U `)ρ` ,

R1 +Rd ≥ D
√
2ε

max(V `;C⊗`|U `)ρ` +D
√
2ε

max(X`;C⊗`|V `)ρ` ,

Rd ≥ D
√
2ε

max(X`;C⊗`|V `)ρ` ,

where (ρUVXBC)` is the state inducing by ` independent
uses of the channel such that its classical systems, U `, V `

and X` correspond to the random variables drawn from the
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R0 ≤ min
[
Iε
′−δ1

H (Um;B⊗m)ρm − log2

(
4ε′

δ21

)
, Iε
′−δ2

H (Um;C⊗m)ρm − log2

(
4ε′

δ22

)]
,

R0 +R1 +Rs ≤ Iε
′−δ3

H (V m;B⊗m|Um)ρm − log2

(
4ε′

δ23

)
+ min

[
Iε
′−δ1

H (Um;B⊗m)ρm − log2

(
4ε′

δ21

)
, Iε
′−δ2

H (Um;C⊗m)ρm − log2

(
4ε′

δ22

)]
,

Rs ≤ Iε
′−δ3

H (V m;B⊗m|Um)ρm − Ĩε
′′

max(V m;C⊗m|Um)ρm − log2

(
4ε′

δ21

)
− 2 log2

(
1

η

)
,

R1 +Rd ≥ Ĩε
′′

max(V m;C⊗m|Um)ρm + Ĩε
′′

max(Xm;C⊗m|V m)ρm + 4 log2

(
1

η

)
,

Rd ≥ Ĩε
′′

max(Xm;C⊗m|V m)ρm + 2 log2

(
1

η

)
,

joint distributions p(u1, ..., u`), p(v1, ..., v`) and p(x1, ..., x`),
respectively and quantum systems B⊗` and C⊗` refer to
the `-fold tensor product of the Hilbert spaces HB and
HC , respectively. We can now consider t i.i.d. uses of the
superchannel N⊗m for large t. This means we evaluate the
region over “tensor product” states (ρm)⊗t and divide both
sides of (50) by t and let t→∞. By invoking the asymptotic
results from (5),(7) and (11), R(co)(N⊗`) can be seen to be
included in the following region:

R0 ≤ min
[
I(U `;B⊗`)ρ` , I(U `;C⊗`)ρ`

]
,

R0 +R1 +Rs ≤ I(V `;B⊗`|U `)ρ`+
min

[
I(U `;B⊗`)ρ` , I(U `;C⊗`)ρ`

]
,

Rs ≤ I(V `;B⊗`|U `)ρ` − I(V `;C⊗`|U `)ρ` ,
R1 +Rd ≥ I(V `;C⊗`|U `)ρ` + I(X`;C⊗`|V `)ρ` ,

Rd ≥ I(X`;C⊗`|V `)ρ` .

The proof will be completed by dividing both sides of (50) by
m and letting m→∞ as well as ε→ 0.

Corollary 3 (Theorem 1 in [11]): Consider the quantum
channel NA→B with an isometric extension V A→BE and
let ρURA =

∑
u p(u) |u〉〈u| ⊗ |φu〉 〈φu|RA be a classical-

quantum state in which R is a reference system. The capacity
region of simultaneous transmission of classical and quantum
information for the channel is given by

S∞(N ) =

∞⋃
`=1

1

`
S∞1 (N⊗`),

where S∞1 (N ) is the union, over all states of the form
ρURB =

∑
u p(u) |u〉〈u| ⊗ NA→B(|φu〉 〈φu|RA) arising from

the channel, of the rate pairs (R∞c , R
∞
q ) obeying:

R∞c ≤ I(U ;B)ρ,

R∞q ≤ I(R〉BU)ρ,

where R∞c and R∞q denote respectively the rates of the classi-
cal and quantum information and I(R〉BU)ρ := −H(R|BU)ρ
is the coherent information.

Proof: Following the discussion of Corollary 2 and The-
orem 3, we only need to argue that the coherent information

of the ensemble {p(u), |φu〉 〈φu|RBE} is equal to the rate of
the confidential message in Theorem 3, i.e., the following:

I(R〉BU)ρ = I(V ;B|U)ρ − I(V ;E|U)ρ.

We apply the Schmidt decomposition to the pure states
{|φu〉RBE}u with respect to the cut R|BE and then measure
the R system in a suitable orthonormal basis. This measure-
ment decoherifies the states such that the R system can be
shown by a classcial system, say V . Then the equality of the
coherent information and the confidential message rate can be
easily checked (see for example exercise 11.6.7 in [47]).

Corollary 4 (Theorem 3 of [7]): Let NX→(Y,Z)
C be a

classical channel taking inputs to outputs according to some
distribution p(y, z|x). Moreover, let R∞(NC) be the ca-
pacity region of NX→(Y,Z)

C for simultaneous transmission
of the common, individualized and confidential messages
with a rate-limited randomness encoder, defined similar to
(41). Then there exist random variables U and V satis-
fying p(u, v, x, y, z) =

∑
p(u, v)p(x|v)p(y, z|x) such that

R∞(NC) equals the union over all distributions of rate
quadruples (R0, R1, Rs, Rd) obeying:

R0 ≤ min
[
I(U ;Y )p, I(U ;Z)p

]
,

R0 +R1 +Rs ≤ I(V ;Y |U)p + min
[
I(U ;Y )p, I(U ;Z)p

]
,

Rs ≤ I(V ;Y |U)p − I(V ;Z|U)p,

R1 +Rd ≥ I(V ;Z|U)p + I(X;Z|V )p,

Rd ≥ I(X;Z|V )p,

where (R0, R1, Rs, Rd) denotes the rates of the common, in-
dividualized, confidential and dummy messages, respectively.

Proof: This is a simple corollary of Theorem 3. If we
assume the channel outputs B and C are classical, then we
know that all systems will be simultaneously diagonalizable
and the regularization is not needed. Letting Y := B and
Z := C finishes the proof.
In the following corollary we recover a result for quantum
broadcast channel without any secrecy requirement [46].

Corollary 5 (Theorem in [46]): Consider the quantum
broadcast channel NA→BC . The capacity region for the
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transmission of common and individualized messages of N ,
denoted by C∞(N ), is given as follows7:

C∞(N ) =

∞⋃
`=1

1

`
C∞1 (N⊗`),

where C∞1 (N ) is the union over all states ρUV BC arising from
the channel, of the rate pairs (R0, R1) obeying

R0 ≤ min
[
I(U ;B)ρ, I(U ;C)ρ

]
,

R0 +R1 ≤ I(V ;B|U)ρ + min
[
I(U ;B)ρ, I(U ;C)ρ

]
.

Proof: By dropping the secrecy requirement, the rate of
the confidential message in Theorem 3 will add up to that of
the individualized message. Note that this region is slightly
different in appearance compared to the Theorem 1 in [46].
However, the discussion leading to the equations (17) and (18)
in that paper indicates their equivalence: part (or whole) of
the common message may contain information intended for
Charlie such that Bob does not have any interest in learning
those information; this leads to a slightly different region
but the scenario and the rate region are essentially the same
in that in superposition coding Bob is supposed to decode
the common message in whole and maybe ignore its content
afterwards.

VII. CONCLUSION

We have studied the interplay between common, individual-
ized and confidential messages with rate-limited randomness
in the one-shot regime of a quantum broadcast channel. To es-
tablish our achievability results, we have proved a conditional
version of the convex-split lemma whereby we have shown
the channel resolvability problem in the one-shot regime via
superpositions. To assess the tightness of our achievability
region, we have also derived a (weak) converse region. By
evaluating our rate regions in the asymptotic i.i.d setting, we
recovered several well-known results in the literature.

APPENDIX A
PROOF OF LEMMAS

To prove Lemma 9, we need the following lemma.
Lemma 18: For quantum states ρAB and σB , there exists a

state ρ′A ∈ Bε(ρA) such that:

Dmax(ρAB‖ρ′A ⊗ σB) ≤ Dmax(ρAB‖ρA ⊗ σB).

Proof: Trivial.
Proof of lemma 9: In the result of Lemma 18, let ρ∗AB be

the optimizer in the definition of Ĩεmax(A;B)ρ, by substituting
this state we will have,

Dmax(ρ∗AB‖ρ′A ⊗ σB) ≤ Dmax(ρ∗AB‖ρ∗A ⊗ σB).

Let σB := ρB and choose ρ′A = ρA (this is possible since
P(ρA, ρ∗A) ≤ ε) and then

Dmax(ρ∗AB‖ρA ⊗ ρB) ≤ Dmax(ρ∗AB‖ρ∗A ⊗ ρB).

Then the result follows by definitions of the quantities.

7This is defined similar to (41).

We need the following lemma to prove Lemma 10.
Lemma 19: For quantum states

ρXAB =
∑
x p(x) |x〉〈x| ⊗ ρABx and σXAB =∑

x q(x) |x〉〈x| ⊗ σAx ⊗ σBx , there exists a state
ρ′XAB ∈ Bε(ρXAB) classical on X such that:

Dmax

(
ρ′XAB

∥∥∑
x

p′(x) |x〉〈x| ⊗ ρ′Ax ⊗ σxB
)

≤ Dmax

(
ρXAB

∥∥∑
x

q(x) |x〉〈x| ⊗ σAx ⊗ σBx
)

+ log

(
1

1−
√

1− ε2
+ 1

)
.

Proof: The proof is inspired by [29] and [60]. Let ρXABC

be a purification of ρXAB and ε > 0. Further let ΠBC ∈ HBC
be a projector that is defined as the dual projector of the min-
imum rank projector ΠXA with supp(ΠXA) ⊆ supp(ρXA).
The projector ΠXA is set to minimize

∥∥ΠXAΓXAΠXA
∥∥
∞

while fulfilling P (ρXABC , ρ̃XABC) ≤ ε in which ΓXA :=
(ρXA)−

1
2σXA(ρXA)−

1
2 and ρ̃XABC := ΠBCρXABCΠBC .

From Lemma 2, we know the following

P(ρXABC ,ΠBCρXABCΠBC) ≤
√

2TrΠBC
⊥ ρ− (TrΠBC

⊥ ρ)2

=
√

2TrΠXA
⊥ ρ− (TrΠXA

⊥ ρ)2.

If we let TrΠXA
⊥ ρ ≤ 1 −

√
1− ε2, then we will have

P (ρXABC , ρ̃XABC) ≤ ε since t 7→
√

2t− t2 is monotoni-
cally increasing over [0, 1]. Now we choose ΠXA to be the
projector onto the smallest eigenvalues of ΓXA such that
the aforementioned restriction holds, which in turn, results
in the minimization of

∥∥ΠXAΓXAΠXA
∥∥
∞. Let Π′XA de-

note the projector onto the largest remaining eigenvalue of
ΠXAΓXAΠXA. Notice that ΠXA and Π′XA commute with
ΓXA. Then we have the following:∥∥ΠXAΓXAΠXA

∥∥
∞ = Tr(Π′XAΓXA) = min

µXA

Tr(µXAΓXA)

TrµXA
,

where the minimization is over all operators in the support of
Π′XA+ΠXA

⊥ . Choosing µXA = (Π′XA+ΠXA
⊥ )ρXA(Π′XA+

ΠXA
⊥ ), we will have:∥∥ΠXAΓXAΠXA

∥∥
∞

≤ Tr{(Π′XA + ΠXA
⊥ )ρXA(Π′XA + ΠXA

⊥ )ΓXA}
Tr{(Π′XA + ΠXA

⊥ )ρXA(Π′XA + ΠXA
⊥ )}

≤ 1

1−
√

1− ε2
,

where from the fact that Π′XA and ΠXA
⊥ commute with ΓXA,

we have Tr{(Π′XA + ΠXA
⊥ )ρXA(Π′XA + ΠXA

⊥ )ΓXA} =
Tr{(Π′XA + ΠXA

⊥ )(ρXA)1/2ΓXA(ρXA)1/2} ≤
Tr{(ρXA)1/2ΓXA(ρXA)1/2} = TrσXA = 1.
Moreover, the definition of ΠXA implies that
Tr{(Π′XA + ΠXA

⊥ )ρXA} ≥ 1 −
√

1− ε2. Let
γ := Dmax

(
ρXAB

∥∥∑
x q(x) |x〉〈x| ⊗ σAx ⊗ σBx

)
and

σX−B :=
∑
x |x〉〈x| ⊗ σBx . For state ρ̃XABC introduced

above, we can write this as shown at the top of the next page.
Define the positive semi-definite operator κXA := ρXA− ρ̃XA
and Let ρ̄XAB := ρ̃XAB + κXA ⊗ σX−B . It can be easily
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Dmax(ρ̃XAB‖
∑
x

p(x) |x〉〈x| ⊗ ρAx ⊗ σBx )

= log
∥∥(∑

x

p(x) |x〉〈x| ⊗ ρAx ⊗ σBx
)− 1

2 ρ̃XAB
(∑

x

p(x) |x〉〈x| ⊗ ρAx ⊗ σBx
)− 1

2
∥∥
∞

= log
∥∥(∑

x

p(x) |x〉〈x| ⊗ ρAx ⊗ σBx
)− 1

2 TrC{ΠBCρXABCΠBC}
(∑

x

p(x) |x〉〈x| ⊗ ρAx ⊗ σBx
)− 1

2
∥∥
∞

= log
∥∥(σX−B)−

1
2 TrC{(ρXA)−

1
2 ⊗ΠBCρXABC(ρXA)−

1
2 ⊗ΠBC}(σX−B)−

1
2

∥∥
∞

= log
∥∥(σX−B)−

1
2 (ρXA)−

1
2 ΠXAρXAB(ρXA)−

1
2 ΠXA(σX−B)−

1
2

∥∥
∞

≤ log 2γ
∥∥(σX−B)−

1
2 (ρXA)−

1
2 ΠXA(

∑
x

q(x) |x〉〈x| ⊗ σAx ⊗ σBx )(ρXA)−
1
2 ΠXA(σX−B)−

1
2

∥∥
∞

= log 2γ
∥∥(ρXA)−

1
2 ΠXA

∑
x

q(x) |x〉〈x| ⊗ σAx ⊗ (σBx )−
1
2σBx (σBx )−

1
2 (ρXA)−

1
2 ΠXA

∥∥
∞

= log 2γ
∥∥(ρXA)−

1
2 ΠXA

∑
x

q(x) |x〉〈x| ⊗ σAx ⊗ 1B(ρXA)−
1
2 ΠXA

∥∥
∞

= γ + log
∥∥ΠXAΓXAΠXA

∥∥
∞

≤ Dmax

(
ρXAB

∥∥∑
x

q(x) |x〉〈x| ⊗ σAx ⊗ σBx
)

+ log
1

1−
√

1− ε2
.

checked that ρ̄XA = ρXA. Moreover, in the following we
show that P (ρ̄XAB , ρXAB) ≤ ε:

F (ρ̄XAB , ρXAB) ≥
∥∥√ρ̃XAB√ρXAB∥∥

1
+ 1− TrρXAB

≥
∥∥√ρ̃XABC√ρXABC∥∥

1
+ 1− TrρXAB

= 1− TrΠBC
⊥ ρBC

≥
√

1− ε2.

The first inequality follows from Lemma 4 and the
fact that by construction ρ̃XAB ≤ ρ̄XAB , therefore∥∥√ρ̃XAB√ρXAB∥∥

1
≤
∥∥√ρ̄XAB√ρXAB∥∥

1
. The second

inequality follows from the fact that fidelity is monotonically
non-decreasing with respect to CPTP maps. The equality stems
from Lemma 4 and the last inequality is the assumption. And
finally from the relation between the purified distance and the
fidelity the desired inequality follows. We continue as shown at
the top of the next page, where in the first inequality we have
used ρ̄XAB ≤ ρ̃XAB + ρXA ⊗ σB and in the final inequality
we have used the fact that 2γ ≥ TrρXAB = 1. Now similar
to Remark 1, a pinching map is applied to the left hand-hand
side to conclude from the monotonicity of the max-relative
entropy that X system is classical.

Proof of Lemma 10: From the result given in
Lemma 19 onward, let ρ∗XAB be the optimizer for
Dε

max

(
ρXAB

∥∥∑
x q(x) |x〉〈x| ⊗ σAx ⊗ σBx

)
. We argued that

this state will be classical on X . Then there exists a state
ρ̄XAB ∈ Bε(ρ∗XAB) classical on X such that

Dmax

(
ρ̄XAB

∥∥∑
x

p̄(x) |x〉〈x| ⊗ ρ̄Ax ⊗ σxB
)

≤ Dmax

(
ρ∗XAB

∥∥∑
x

q(x) |x〉〈x| ⊗ σAx ⊗ σBx
)

+ log

(
1

1−
√

1− ε2
+ 1

)
.

From the triangle inequality for the purified distance it is
seen that ρ̄XAB ∈ B2ε(ρXAB). Choosing q(x) = p(x), σAx =
ρAx , σ

B
x = ρBx for all x, finishes the job.

To prove Lemma 11, we need to following lemma.
Lemma 20: Let ρXAB and σB be a quantum states. There

exists a state ρ′XAB ∈ Bε(ρ) classical on X such that:

Dmax(ρXAB‖
∑
x

p′(x) |x〉〈x| ⊗ ρ′Ax ⊗ σBx )

≤ Dmax(ρXAB‖
∑
x

p(x) |x〉〈x| ⊗ ρAx ⊗ σBx ).

Proof: Trivial.
proof of Lemma 11: Let ρ∗XAB be the optimizer in the

definition of the PSCMMI. By substituting it in Lemma 20,
we will have:

Dmax(ρ∗XAB‖
∑
x

p′(x) |x〉〈x| ⊗ ρ′Ax ⊗ σBx )

≤ Dmax(ρ∗XAB‖
∑
x

p∗(x) |x〉〈x| ⊗ ρ∗Ax ⊗ σBx ).

Let ρ′XA = ρXA and σB = ρB . Then the result follows from
the definition of the quantities.

Proof of Lemma 13: Similar to Lemma 11 in [30], the
proof follows by straightforward calculation as shown with the
chain starting by Eq. (51).

Proof of Lemma 14: The proof is similar to the proof
of its uncontional version [30]. For the convenience sake, we
let σB−jx := σB1

x ⊗ ...σ
Bj−1
x ⊗ σBj+1

x ⊗ ...⊗ σBnx and σB+j
x :=

σB1
x ⊗ ... ⊗ σBnx . By adopting this notation, we can see that
τXAB1...Bn = 1

n

∑n
j=1

∑
x p(x)|x〉〈x|X ⊗ ρABx ⊗ σB−jx . We

use Lemma 13 to get equations (52) and (53).
From the invariance of the relative entropy with respect

to tensor product states, the term inside the summation in
(52) equals D

(∑
x p(x)|x〉〈x|X ⊗ ρABjx

∥∥∑
x p(x)|x〉〈x|X ⊗
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Dmax

(
ρ̄XAB

∥∥ρ̄XA ⊗ σX−B) = log
∥∥(ρ̄XA)−

1
2 ⊗ (σX−B)−

1
2 ρ̄XAB(ρ̄XA)−

1
2 ⊗ (σX−B)−

1
2

∥∥
∞

= log
∥∥(ρXA)−

1
2 ⊗ (σX−B)−

1
2 ρ̄XAB(ρXA)−

1
2 ⊗ (σX−B)−

1
2

∥∥
∞

≤ log
(∥∥(ρXA)−

1
2 ⊗ (σX−B)−

1
2 ρ̃XAB(ρXA)−

1
2 ⊗ (σX−B)−

1
2

∥∥
∞ + 1

)
≤ log

(
2γ

1

1−
√

1− ε2
+ 1

)
≤ Dmax

(
ρXAB

∥∥∑
x

q(x) |x〉〈x| ⊗ σAx ⊗ σBx
)

+ log

(
1

1−
√

1− ε2
+ 1

)
,

∑
i

p(i)
(
D(ρXAi ||θXA)−D(ρXAi ||ρXA)

)
(51)

=
∑
i

p(i)
(
Tr{ρXAi log ρXAi } − tr{ρXAi log θXA} − Tr{ρXAi log ρXAi }+ Tr{ρXAi log ρXA}

)
= Tr{

∑
i

p(i)ρXAi log ρXA} − Tr{
∑
i

p(i)ρXAi log θXA} = Tr{ρXA log ρXA} − Tr{ρXA log θXA}

= D(ρXA||θXA).

D
(
τXAB1...Bn

∥∥∑
x

p(x)|x〉〈x|X ⊗ ρAx ⊗ σB+j
x

)
=

1

n

∑
j

D
(∑

x

p(x)|x〉〈x|X ⊗ ρABjx ⊗ σB−jx

∥∥∑
x

p(x)|x〉〈x|X ⊗ ρAx ⊗ σB+j
x

)
(52)

− 1

n

∑
j

D
(∑

x

p(x)|x〉〈x|X ⊗ ρABjx ⊗ σB−jx

∥∥τXAB1...Bn
)
. (53)

ρAx ⊗ σ
Bj
x

)
. Besides, from the monotonicity of the quan-

tum relative entropy, by applying TrB1,...Bj−1,Bj+1,...,Bn{.}
to the term inside summation in (53), it is lower bounded
by D

(∑
x p(x)|x〉〈x|X ⊗ ρ

ABj
x

∥∥τXABj) where τXABj :=∑
x p(x)|x〉〈x|X⊗

(
1
nρ

ABj
x +(1− 1

n )(ρAx⊗σ
Bj
x )
)
. Let k be such

that ρXABj ≤ 2k
∑
x p(x)|x〉〈x|X ⊗ ρAx ⊗σ

Bj
x . Therefore, we

will have ρXABj ≤ (1 + 2k−1
n )

∑
x p(x)|x〉〈x|X ⊗ ρAx ⊗ σ

Bj
x .

Consider the chain at the top of the next page, where the
inequality comes from the fact that if A and B are positive
semidefinite operators and A ≤ B, then logA ≤ logB.
Plugging the findings above into (52) and (53) yields:

D
(
τXAB1...Bn

∥∥∑
x

p(x)|x〉〈x|X ⊗ ρAx ⊗ σB+j
x

)
≤ 1

n

∑
j

D
(
ρXABj

∥∥∑
x

p(x)|x〉〈x|X ⊗ ρAx ⊗ σBjx
)

− 1

n

∑
j

D
(
ρXABj

∥∥∑
x

p(x)|x〉〈x|X ⊗ ρAx ⊗ σBjx
)

+ log

(
1 +

2k − 1

n

)
≤ log

(
1 +

2k

n

)
.

By choosing n = d 2
k

δ2 e, it follows that

D
(
τXAB1...Bn

∥∥∑
x p(x)|x〉〈x|X ⊗ ρAx ⊗ σ

B+j
x

)
≤

log
(
1 + δ2

)
. From Pinsker’s inequality (2), we also can see

that F 2
(
τXAB1...Bn ,

∑
x p(x)|x〉〈x|X⊗ρAx⊗σ

B+j
x

)
≥ 1

1+δ2 ≥
1−δ2. From definition of the purified distance, it can be easily
seen that P

(
τXAB1...Bn ,

∑
x p(x)|x〉〈x|X ⊗ ρAx ⊗σ

B+j
x

)
≤ δ.

Proof of Corollary 1: Let ρ̃XAB be the optimal state
achieving the minimum for k. Then from the conditional
convex-split lemma we know that:

P (τ̃XAB1...Bn ,
∑
x

p̃(x)|x〉〈x|X ⊗ ρ̃Ax ⊗ σB1
x ⊗ ...⊗ σBnx ) ≤ δ,

(54)

where

τ̃XAB1...Bn :=
∑
x

p̃(x)|x〉〈x|X

⊗
( 1

n

n∑
j=1

ρ̃ABjx ⊗ σB1
x ⊗ ...⊗ σBj−1

x ⊗ σBj+1
x ⊗ σBnx

)
.

From the concavity of the fidelity as well as its invariance with
respect to tensor product states, the following can be seen:

P (τ̃XAB1...Bn , τXAB1...Bn) ≤ P (ρ̃XAB , ρXAB) ≤ ε. (55)

Analogously, we have Eq. (56). Then the desired result is
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D
(
ρXABj

∥∥τXABj) = Tr
{
ρXABj log ρXABj

}
− Tr

{
ρXABj log τXABj

}
≥ Tr

{
ρXABj log ρXABj

}
− Tr

{
ρXABj log

(∑
x

p(x)|x〉〈x|X ⊗ ρAx ⊗ σBjx

)}
− log

(
1 +

2k − 1

n

)
= D

(
ρXABj

∥∥∑
x

p(x)|x〉〈x|X ⊗ ρAx ⊗ σBjx
)
− log

(
1 +

2k − 1

n

)
,

P (
∑
x

p̃(x)|x〉〈x|X ⊗ ρ̃Ax ⊗ σB1
x ⊗ ...⊗ σBnx ,

∑
x

p(x)|x〉〈x|X ⊗ ρAx ⊗ σB1
x ⊗ ...⊗ σBnx ) ≤ P (ρ̃XA, ρXA) ≤ ε. (56)

inferred by applying the triangle inequality to (54), (55) and
(56).
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