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Abstract

It was demonstrated that, as a nonlinear implementation of Slepian-Wolf Coding (SWC), Distributed

Arithmetic Coding (DAC) outperforms traditional Low-Density Parity-Check (LPDC) codes for short

code length and biased sources. This fact triggers research efforts into theoretical analysis of DAC. In our

previous work, we proposed two analytical tools, Codebook Cardinality Spectrum (CCS) and Hamming

Distance Spectrum (HDS), to analyze DAC for Stationary Memoryless Binary Sources (SMBS) with

uniform distribution. This paper extends our work on CCS from uniform SMBS to biased SMBS.

We begin with the final CCS and then deduce each level of CCS backwards by recursion. The main

finding of this paper is that the final CCS of biased SMBS is not uniformly distributed over [0, 1). This

paper derives the final CCS of biased SMBS and proposes a numerical algorithm for calculating CCS

effectively in practice. All theoretical analyses are well verified by experimental results.
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I. INTRODUCTION

Slepian-Wolf Coding (SWC) [1] is the lossless form of Distributed Source Coding (DSC)

referring to separate compression and joint lossless reconstruction of two or more correlated

discrete sources. Since the SWC can be mapped into a communication problem over a “virtual

communication channel” [2], it is traditionally realized via channel codes, e.g., turbo codes

[3], Low-Density Parity-Check (LDPC) codes [4], more recently polar codes [5], etc. Though

channel coding has been recognized as a natural solution for the SWC problem, conventional

source coding, e.g., Arithmetic Coding (AC) [6], [7], has also been tried. There are mainly two

ideas for AC-based SWC, i.e., the Interval-Enlarging AC (IEAC) [8], [9], [10], which enlarges the

mapping intervals of source symbols, and the Bit-Puncturing AC (BPAC) [11], which punctures a

part of bits from AC bitstream regularly. We collectively refer to IEAC and BPAC as Distributed

AC (DAC). The most significant feature of DAC distinguishing itself from channel-coding-

based SWC is that DAC is a nonlinear code, while channel codes that are traditionally used

for SWC, e.g., LDPC codes, are linear codes. Consequently, DAC decoding is sub-optimal and

relatively complex, while state-of-the-art channel codes have optimal and low-complexity decoder

designs, e.g., the Belief-Propagation (BP) algorithm. However, DAC has better adaptability to

nonstationary source statistics and better performance for data blocks of short-to-medium length

[8], [10], where traditional channel codes usually perform poorly.

A. Improvements and Extensions of DAC

Since its appearance in 2007 [8], [9], [10], [11], DAC attracted substantial research attention

resulting in performance improvements and new applications.

The performance of DAC can be further improved. The decoding of DAC (including both

IEAC and BPAC) will create a tree with exponentially-increasing complexity. To maintain linear

complexity, after each decoding stage, the tree must be pruned. However, this pruning is based

on the partial metrics of paths, so there is a risk that the proper path is mis-pruned. In [12],

the coupled BPAC was proposed to handle this issue, which divides each source sequence into

two coupled sub-sequences that are AC encoded and punctured independently. At the decoder,

the bitstreams of two sub-sequences are decoded by two sub-decoders respectively. However,

since two sub-sequences are coupled, their sub-decoders can exchange information between each

other to avoid mis-pruning the proper path. Experiments show that with the coupled BPAC, better

performance can be achieved as sequence length increases, when source and side information
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are strongly correlated. Besides mis-pruning of proper path, another reason causing rate loss

of DAC is the existence of twin paths, i.e., two paths differing from each other only in leaf

nodes. This phenomenon was observed in [13]. Further, to remove twin paths, the block DAC

was proposed in [13], which avoids mapping the sequences with small Hamming distances

onto the same overlapped interval. Simulation results show that, for equally-likely memoryless

sources, blocked DAC can achieve lower decoding error rate than the original DAC and can

even outperform LDPC codes for short code lengths and highly correlated sources.

An important issue of DSC is that the minimum achievable rate of source compression

is unknown at the encoder. This problem can be solved by two means: Rate-Compatible

Coding and Decoder Correlation Estimation. On one hand, DAC can be extended to realize

rate-compatible coding. In [14], the rate-compatible IEAC is studied in presence of a feedback

channel. The encoder imitates decoder operations and stores all ambiguous symbols into a list.

If decoding failure is detected, e.g., by Cyclic Redundancy Check (CRC), the decoder sends a

request for a part of ambiguous symbols over the feedback channel. On receiving the requested

ambiguous symbols, the decoder tries again and may select the proper path. Depending on in

what order the ambiguous symbols are sent, there are three options: direct ordering, inverse

ordering, and hybrid ordering. Experiments show that the rate loss of rate-compatible IEAC

is negligible. On the other hand, decoder correlation estimation can be realized with DAC.

Correlation estimation in DSC plays the same role as noise estimation in channel coding. In

[15], a decoder-driven framework is proposed to estimate the unknown marginal and conditional

probabilities of the source (given side information), which are fed back to the transmitter to

drive the IEAC encoder. Compared with rate-compatible IEAC, an advantage of this framework

is smaller decoding delay.

DAC can be extended to address the SWC of sources with memory, as shown in [16],

where the conditional BPAC was proposed. First, the Markovian source is compressed with the

conditional AC [7], and then the bitstream is punctured. At the decoder, both Markovian memory

and correlated side information are made use of to aid the decoding of punctured bitstream.

In addition, when the correlation between source and side information is non-stationary, the

interleaving technique is used to avoid early mis-pruning of the proper path.

DAC can be extended to realize Distributed Joint Source-Channel Coding (DJSCC), as

shown in [17], where the Distributed Joint Source-Channel Arithmetic Coding (DJSCAC) was

proposed, which is an extension of IEAC by allowing the coexistence of overlapped intervals
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and forbidden intervals. The overlapped intervals can remove the symbol-domain redundancy

between the source and side information, while the forbidden intervals can counter the bit-

domain noises of transmission channel. Experimental results show that the DJSCAC is better

than parity-based turbo codes at relatively short block lengths.

DAC can serve as the SWC core for lossy DSC. In [18], the Nested Lattice Quantization

(NLQ) is concatenated with multi-level DAC to implement Wyner-Ziv Coding (WZC) [19]—the

asymmetric lossy DSC with decoder side information. The output of NLQ is first binarized and

then the DAC is applied on each bitplane. The bitstreams of all bitplanes are decoded jointly by

exploiting inter-bitplane dependencies and decoder side information. In addition, rate allocation

among different bitplanes is studied.

DAC can be extended from binary sources to non-binary sources. The DAC was originally

proposed for binary sources, so [20] proposed two non-binary DAC schemes: Multi-Interval

DAC (MI-DAC) and Huffman-Coded DAC (HC-DAC). The error rate and decoding complexity

of these two schemes are evaluated via computer simulations. The two schemes show similar

error probability, but the MI-DAC is of lower decoding complexity. In addition, both schemes

perform better when there is a strong correlation between source and side information.

B. Theoretical Analyses of DAC

However, it must be pointed out that most work on DAC summarized in sub-Sect. I-A is

heuristic. We notice that DAC is a nonlinear code, so its theoretical analysis is more involved

than that of linear codes, such as turbo codes, LDPC codes, and polar codes. Though some

theoretical analyses have been seen for IEAC in our prior work [21], [22], [23], [24], [25],

hardly any theoretical analysis is found for BPAC up to now. Actually, the analysis of BPAC is

much more difficult than that of IEAC, so this paper will still focus on IEAC as our prior work.

For simplicity, in the following by DAC, we refer to IEAC by default. Let us briefly overview

our related advances on this issue in this sub-section.

It is recognized that DAC is to some extent like syndrome coding as it partitions source space

into cosets or codebooks, so an important problem is how source space is partitioned (equally or

unequally)? Considering the difficulty of this problem, we begin with the asymptotic case that

block length is infinite. In the letter [21], the formula is deduced to calculate the relative size

of codebooks, which is exactly verified with experimental results. For the first time, it is found

that DAC partitions source space into codebooks of unequal sizes, which is quite different from
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AC. The full paper [22] is an extension of [21] by supplying strict proofs. Another contribution

of [22] is proving that codebook size increases exponentially as block length increases. Though

this conclusion coincides with our intuition, its strict proof is still necessary.

In [23], it is recognized that the non-uniform distribution of codebook sizes implies a rate loss

of DAC, so we deduce a formula to make use of the distribution of codebook sizes to improve

the DAC. A theoretical contribution of [23] is that it strictly proves the existence of twin paths

in the same codebook, as found in [13], and gives a loose lower bound of decoding error rate

for DAC. It is also shown that random permutation can remove twin paths.

The other important issue of DAC is how codewords are spaced (densely or sparsely) within

each codebook. This problem is answered by the Hamming Distance Spectrum (HDS) in [24],

which is a Probability Mass Function (PMF) of the Hamming distance between sibb codewords,

where sibb codewords are those codewords belonging to the same codebook (Note that DAC is a

many-to-one mapping that partitions source space into codebooks, each of which includes one or

more codewords). Different from the study on codebook size, which begins from infinite-length

blocks, the study on HDS begins directly from finite-length blocks. We deduce the formula for

calculating the HDS, which is exactly verified by experimental results.

The deduction of HDS in [24] is very complex, so it is simplified in [25]. Besides HDS, [25]

defines the Codebook Cardinality Spectrum (CCS), which is an ensemble of Probability Density

Functions (PDF). Remember that the AC encoder recursively shrinks the initial interval [0, 1)

according to source symbols and finally outputs an arbitrary number within the final interval as

the bitstream. Let [Li, Hi), where i ≥ 0, be the mapping interval after coding the i-th source

symbol, and U be the output real number in the final interval. Then [0, 1) = [L0, H0) ⊃ · · · ⊃

[Li, Hi) ⊃ · · · ⊃ [Ln, Hn) 3 U , where n is the length of source block. Let Ui , U−Li
Hi−Li ∈ [0, 1).

The level-i CCS is defined as the PDF of Ui. Especially, the PDF of U0 is called the initial CCS

and the PDF of Un is called the final CCS. Actually, the relative size of codebooks in [21], [22],

[23] is just the asymptotic form of initial CCS as block length n→∞. It is proved in [25] that

by carefully tuning coding parameters, the final CCS will always be a uniform function over

[0, 1). Then other levels of CCS can be deduced backwards by recursion.

In the original paper on DAC [8], it is found that if all symbols of each block are mapped

onto enlarged intervals, the performance of DAC is very poor. So the authors of [8] modify the

DAC by mapping the last few symbols of each block onto non-overlapped intervals as traditional

AC. However, no theoretical explanation is given to answer why such special handling can bring
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benefits. In [25], this problem is deeply studied. By tracing the change of HDS with the number

of ending symbols mapping onto non-overlapped intervals, it is reasonably explained why the

DAC can be improved by increasing the number of ending symbols [25].

C. Motivations and Contributions

The theoretical analyses summarized in sub-Sect. I-B are limited to Stationary Memoryless

Binary Sources (SMBS) with uniform distribution. Compared to LDPC codes, DAC performs

better for short data blocks and biased sources [10]. Hence, the extension of CCS and HDS

from uniform SMBS to biased SMBS is important as it would potentially lead to short SWC

code designs. Unfortunately, this extension is not straightforward, and the main difficulty comes

from the fact that DAC behaves as channel coding for uniform SMBS, but it looks like Joint

Source-Channel Coding (JSCC) for biased SMBS, where the difference between channel coding

and JSCC is whether the length of output bitstream is fixed or not. Let R be the average

rate per symbol. For a binary source with bias probability p, the lengths of mapping intervals

for symbols 0 and 1 are proportional to (1 − p)R and pR, respectively. Then for each length-

n binary source block, the length of output bitstream is d−n0 log2 (1− p)R − n1 log2 p
Re =

d−R(n0 log2(1 − p) + n1 log2 p)e, where n0 is the number of 0’s and n1 is the number of 1’s

in the block, i.e., n = n0 + n1. It can be seen that if and only if (iff) p = 0.5, symbols 0 and

1 are mapped onto equal-length intervals, and the length of output bitstream is always dnRe,

irrespective of n0 and n1. Hence for uniform SMBS, the concept of codebook partitioning can be

directly borrowed from channel coding: DAC partitions source space Bn into 2dnRe codebooks.

However, if p 6= 0.5, symbols 0 and 1 are mapped onto unequal-length intervals, and the length

of output bitstream is variable (depending on n0 and n1). Thus for biased SMBS, it is impossible

to build the concept of codebook partitioning as done for channel coding.

This paper extends our prior work on CCS from uniform SMBS to biased SMBS. The main

contributions of this paper are as follows. First, we derive the algebraic form of the final CCS

for biased SMBS, and show that in contrast to uniform SMBS, the final CCS of biased SMBS

is not uniformly distributed over [0, 1). Second, we derive the backward-recursion formula for

other levels of CCS of biased SMBS. Finally, a numerical algorithm is proposed to calculate

effectively the CCS of biased SMBS in practice.

Note that the CCS of DAC for biased SMBS was first discussed in [26]. However, strictly

speaking, what addressed in [26] is actually not DAC because unequally-likely symbols are
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mapped onto equal-length intervals, which leads to a channel coding-like scheme, i.e., the length

of output bitstream is fixed, irrespective of n0 and n1, the numbers of symbols 0 and 1 in each

block. Hence, the analysis in [26] is based on a simpler assumption. In contrast to [26], in this

paper, unequally-likely symbols are mapped onto unequal-length intervals such that the length of

output bitstream depends on n0 and n1, leading to a JSCC-like scheme that requires a completely

new analysis approach to that taken in [26].

The rest of this paper is arranged as below. Sect. II outlines this paper. Sect. III shows some

properties of arithmetic sequences and geometric sequences, which lay a foundation for the proofs

of this paper. Sects. IV and V study two important issues of AC, i.e., bitstream termination and

fractional-bit rate loss, both of which have significant impacts on the final CCS of biased SMBS.

Sect. VI derives the final CCS, and Sect. VII deduces the backward-recursion formula of CCS.

A numerical algorithm for practically calculating CCS is also given in Sect. VII. Simulation

results are reported in Sect. VIII and finally, Sect. IX concludes this paper.

II. PAPER OUTLINE

This section will give an outline of this paper. First, we define some notations that will be

frequently used. Then we review the principle of DAC and define some important concepts.

Finally, we highlight some key steps of our proofs to be detailed in the following sections.

A. Notations

Let N be the set of natural numbers, Z the set of integers, Q the set of rational numbers,

and R the set of real numbers. Hence, N ⊂ Z ⊂ Q ⊂ R. Let [i : j] , {i, . . . , j} ⊂ Z be a

closed discrete interval and (i : j) , {(i + 1), . . . , (j − 1)} ⊂ [i : j] an open discrete interval.

Similarly, [i : j) and (i : j] denote two half-open discrete intervals. If I = [i : j) ⊂ Z, we define

aI + b , {ai + b, . . . , a(j − 1) + b}; if I = [l, h) ⊂ R, we define aI + b , [al + b, ah + b).

The hybrid scaling-shifting operation of other forms (open or closed) of discrete or continuous

intervals can be defined by analogy.

We use b·c, d·e, and b·e to denote the flooring, ceiling, and rounding functions, respectively.

If there is only one operand inside and the operand is a real number, {·} denotes the fractional

part of this real number. Thus, x = bxc+{x} ∈ R, where bxc ∈ Z and {x} ∈ [0, 1). If there are

two or more operands inside, {·} denotes the set formed by the operands inside, e.g., B = {0, 1}

is the binary set. Depending on the operand, | · | may denote the absolute value of a scalar,
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1

Fig. 1. Mapping from symbols to intervals. The left is for body and the right is for tail.

the cardinality of a set, the length of a continuous interval, or the support (i.e., the number of

nonzero elements) of a vector.

Let X denote a random variable whose realization is x ∈ X , where X is the alphabet of X .

Let f(X) denote a function of X whose realization is denoted by f(x). Let Xj
i , (Xi, . . . , Xj).

If i = 1, the subscript i can be dropped, i.e., Xj = Xj
1 . If i > j, Xj

i = ∅, e.g., X0 = ∅.

Correspondingly, xji denotes a realization of Xj
i . Similarly, xj = xj1 and xji = ∅ if i > j.

The Dirac delta function is denoted by δ(x). For a, b ∈ Z, gcd(a, b) denotes the greatest

common divisor and lcm(a, b) denotes the least common multiple. For a ∈ [0, 1] or a ∈ B and

b ∈ [0, 1] or b ∈ B, we define (a ◦ b) , ab+ (1− a)(1− b). Thus for a binary random variable

X with bias probability Pr(X = 1) = p ∈ [0, 1], we have Pr(X = x) = (x ◦ p), where x ∈ B.

The uniform function over interval I is denoted by

ΠI(x) ,

 1
|I| , x ∈ I

0, x /∈ I
. (1)

B. Overview on DAC

Let Xn be a block of n independent and identically-distributed (i.i.d.) binary random variables

with Pr(Xi = 1) = p for all i ∈ [1 : n]. The DAC divides Xn into body Xn−t and tail Xn
n−t+1,

where t is called tail length. The mapping from symbols 0 and 1 to intervals obeys the rules

0→ [0, (1− p)γ(i)) and 1→ [(1− pγ(i)), 1), where

γ(i) ,

 r, i ∈ [1 : (n− t)]

1, i ∈ [(n− t+ 1) : n]
. (2)

We call r the overlap factor of body symbols. The symbol-interval mapping can be visualized by

Fig. 1, where the left is for body and the right is for tail. Once the symbol-interval mapping rules

are set, the encoder shrinks interval [0, 1) repeatedly according to source symbols and output an

arbitrary number within the final interval. The overall code rate is then

R =
(n− t)r + t

n
H(p), (3)
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where H(p) , −p log2 p− (1− p) log2(1− p). Thus, each DAC bitstream can be parameterized

by (n, t, r, p). Especially, if p = 0.5, then H(p) = 1 and R = (n−t)r+t
n

. If t = 0, it is called

tailless DAC, and if t > 0, it is called tailed DAC.

The decoding is an inverse of encoding. For tail symbols, the decoding is the same as AC

because there is no ambiguous interval. For body symbols, if the bitstream

• falls into [0, 1− pr), then the 0-branch is created;

• falls into [(1− p)r, 1), then the 1-branch is created;

• falls into [1− pr, (1− p)r), then two branches are created.

The decoding will form an incomplete binary tree, and each path from the root node to a leaf

node corresponds to a binary sequence. Now we need the help of side information Y n, which

is correlated to the source Xn. If the max a posteriori decoder is used, then the path nearest (in

Hamming distance) to Y n will be output as the estimate of Xn.

C. Definitions

The DAC encoder repeatedly scales down the primitive interval [0, 1) according to Xn. After

coding X i, the lower and upper bounds of the resulting interval are functions of X i, so they are

denoted by l(X i) and h(X i), respectively. Let I(X i) , [l(X i), h(X i)). Obviously, I(Xn) ⊂

· · · ⊂ I(X0) = [0, 1). We define an important function:

η(a, b) , −(ar + b) log2 p− (((n− t)− a)r + (t− b)) log2 (1− p), (4)

where a ∈ [0 : (n − t)] and b ∈ [0 : t]. According to the symbol-interval mapping rules (the

detailed deduction can be found in sub-Sect. IV-A), it is easy to get − log2 |I(Xn)| = η(A,B),

where |I(Xn)| is the length of I(Xn), A , |Xn−t| is the support of Xn−t, and B , |Xn
n−t+1|

is the support of Xn
n−t+1. Finally, m ≥ n′ , dη(A,B)e bits Zm will be output.

Definition II.1 (Normalized Mapping Interval (NMI)). The NMI of Xn is defined as

N (Xn) , 2n
′I(Xn) = [2n

′
l(Xn), 2n

′
h(Xn)) ⊂ [0, 2n

′
). (5)

Definition II.2 (Fractional-Bit Rate Loss (FBRL)). Let X be an SMBS with bias probability

p compressed by an (n, t, r) DAC encoder. Let A , |Xn−t| and B , |Xn
n−t+1|. The FBRL is

τ(A,B) , dη(A,B)e − η(A,B) ∈ [0, 1). (6)
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According to the definition of FBRL, the length of N (Xn) is |N (Xn)| = 2τ(A,B) ∈ [1, 2), so

there may be one or two integers in N (Xn). Specifically, if we define `(Xn) , 2n
′
l(Xn), then

d`(Xn)e must belong to N (Xn), and d`(Xn)e+ 1 may or may not belong to N (Xn).

Definition II.3 (Prefix Bitstream and Overall Bitstream). We call Zm the prefix bitstream

of Xn because a potentially infinite-length bitstream z∞m+1 may follow Zm at the decoder. The

overall bitstream of Xn is defined as

u(Xn; z∞m+1) ,
m∑
j=1

Zj2
−j +

∞∑
j=m+1

zj2
−j ∈ I(Xn). (7)

Definition II.4 (Normalized Overall Bitstream (NOB)). The NOB of Xn is defined as

ϕ(Xn; z∞m+1) , 2n
′
u(Xn; z∞m+1) =

m∑
j=1

Zj2
n′−j +

∞∑
j=m+1

zj2
n′−j ∈ N (Xn). (8)

Definition II.5 (Projection of Bitstream). The projection of u(Xn; z∞m+1) onto [l, h) ⊆ [0, 1) is

defined as u(Xn;z∞m+1)−l
h−l . Especially, the projection of u(Xn; z∞m+1) onto I(X i) = [l(X i), h(X i))

is called the level-i self-projection of u(Xn; z∞m+1):

Ui ,
u(Xn; z∞m+1)− l(X i)

h(X i)− l(X i)
∈ [0, 1). (9)

Definition II.6 (Codebook Cardinality Spectrum (CCS)). The PDF of Ui is called the level-i

CCS and denoted by fi(u), where u ∈ [0, 1).

Definition II.7 (Conditional CCS). The conditional PDF of Ui given Xi+1 is called the level-i

conditional CCS and denoted by fi(u|x), where u ∈ [0, 1) and x ∈ B.

According to the definition and properties of PDF, we have fi(u) = fi(u|x) = 0 for u /∈ [0, 1),

fi(u) ≥ 0 and fi(u|x) ≥ 0 for u ∈ [0, 1), and
∫ 1

0
fi(u)du =

∫ 1

0
fi(u|x)du = 1. Specifically, we

call f0(u) the initial CCS and fn(u) the final CCS.

D. Road Map of the Proofs

The main contributions of this paper are deriving the analytical form of CCS for theoretical

analyses (see Theorem VI.1, Corollary VI.1, and Theorem VII.1) and proposing a numerical

algorithm of CCS for empirical applications (see sub-Sect. VII-C). Our deduction mainly includes

three key issues.
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First, we determine decoder-appending bits z∞m+1. As shown by Def. II.5, the CCS is closely

linked with z∞m+1. Different z∞m+1 may cause different overall bitstream u(Xn; z∞m+1) and self-

projections Ui’s. The effect of z∞m+1 is especially significant for the final CCS fn(u). As analyzed

in Sect. IV, what bits can follow Zm depends on how AC bitstream is terminated. The classical

termination method in [7] is the most conservative in the sense that it allows arbitrary bits z∞m+1

to follow Zm, while ensuring u(Xn; z∞m+1) ∈ I(Xn) in any case. Instead, an alternative to the

classical termination is proposed in sub-Sect. IV-E of this paper, which is the most progressive

in the sense that it allows only z∞m+1 = 10 . . . to follow Zm to ensure u(Xn; z∞m+1) ∈ I(Xn). It

will be proved in Sect. IV that the most conservative termination will produce the longest prefix

bitstream Zm with m = n′ or n′ + 1; while the most progressive termination will produce the

shortest prefix bitstream Zm with m < n′. A prerequisite of the most progressive termination is

that the decoder must know m, while the most conservative termination has no such prerequisite.

For simplicity, the deduction of this paper will be based on the most progressive termination

and z∞m+1 is fixed to 10 . . . , where m is assumed to be known at the decoder. In this special

case, we shorten u(Xn; 10 . . . ) to u(Xn) and ϕ(Xn; 10 . . . ) to ϕ(Xn) for conciseness.

Second, we derive the analytical form of the final CCS fn(u). This is the most complex step

that is subject to three sub-problems.

• The first sub-problem is about how to explain ϕ(Xn), which is closely linked with the

used termination method. For the most progressive termination, ϕ(Xn) =
∑m

j=1 Zj2
n′−j +

2n
′−m−1. Since m < n′, we have ϕ(Xn) ∈ Z. Hence, ϕ(Xn) = d`(Xn)e or d`(Xn)e + 1,

where `(Xn) , 2n
′
l(Xn). To derive the analytical form of fn(u), we must know under

what cases, ϕ(Xn) = d`(Xn)e, and under what cases, ϕ(Xn) = d`(Xn)e+ 1. In addition,

we also need to know the probability of ϕ(Xn) = d`(Xn)e and the probability of ϕ(Xn) =

d`(Xn)e+ 1. All these questions will be answered in Sect. IV.

• The second sub-problem is about the distribution of FBRL τ(A,B), which will be solved

in Sect. V by exploiting the properties of arithmetic sequences.

• The third sub-problem is about the distribution of c(Xn) , d`(Xn)e − `(Xn), which will

be solved in sub-Sect. VI-B by exploiting the properties of geometric sequences.

After these three sub-problems are solved, the final CCS will be derived in sub-Sects. VI-C and

VI-D in two different cases, respectively.

Finally, after the final CCS fn(u) is obtained, fi(u) for i < n can be recursively deduced

backwards. The proof for this step is quite simple, as shown in Sect. VII.
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III. PRELIMINARIES

This section will give some properties of the Flooring, Ceiling, and Rounding (F/C/R) errors of

arithmetic sequences and geometric sequences that are necessary for the proofs in the following

sections. Before our discussion, the bijective relation between the fractional part of any real

number and its F/C/R errors will be revealed, so that the properties of fractional parts can be

directly extended to F/C/R errors. Then only the properties of fractional parts will be further

addressed. In addition, we also prove a property of binomial distribution.

A. Relation of F/C/R Error and Fractional Part

Let x = bxc + {x} ∈ R, where bxc ∈ Z and {x} ∈ [0, 1). Then the flooring error of x is

f , bxc − x = −{x}, the ceiling error of x is

c , dxe − x =

 1− {x}, 0 < {x} < 1

0, {x} = 0
, (10)

and the rounding error of x is

r , bxe − x =

 −{x}, 0 ≤ {x} < 0.5

1− {x}, 0.5 ≤ {x} < 1
. (11)

It is easy to get f ∈ (−1, 0], c ∈ [0, 1), and r ∈ (−0.5, 0.5]. Obviously, the F/C/R errors of

any real number are all linear bijective functions of its factional part, so F/C/R errors must have

the same properties as fractional parts. For example, if {x} is uniformly distributed (u.d.) over

[0, 1), then f , c, and r are also u.d. over [0, 1).

B. Uniform Distribution of Sequences

Let ω = (xi), i ∈ N, be a sequence of real numbers. Let C(I;n;ω) be the counting function

defined as the number of terms xi, 1 ≤ i ≤ n, for which {xi} ∈ I ⊆ [0, 1).

Definition III.1 (Definition 1.1 of [27]). The sequence ω = (xi), i ∈ N, is uniformly distributed

modulo 1 (u.d. mod 1) if for every pair of a and b with 0 ≤ a < b ≤ 1, we have

lim
n→∞

C([a, b);n;ω)

n
= b− a. (12)

Proposition III.1 (Lemma 1.1 and Example 2.1 of [27]). Let θ be an irrational number. Then

the sequence (α + iθ), i ∈ N, is u.d. mod 1 for any real constant α.
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Proposition III.2. Let d = l/k, where l, k ∈ Z and gcd(l, k) = 1. The sequence (α+ id), i ∈ N,

is u.d. mod 1 over the discrete space {β, β + 1/k, . . . , β + k−1
k
}, where β = {kα}

k
∈ [0, 1/k).

Proof. This is because ({α + id}), i ∈ N, is a periodic sequence with circle k.

Proposition III.3 (Corollary 4.1 and Corollary 4.2 of [27]). The sequence (αxi), i ∈ N, where

α is a non-zero real constant, is u.d. mod 1 for almost all non-integral x > 1, and the exceptional

set has Lebesgue measure zero.

C. Jointly Uniform Distribution of Sequences

Let a = (a1, . . . , as) and b = (b1, . . . , bs). If ai < bi for all i ∈ [1 : s], we say a < b. The

set of points x = (x1, . . . , xs) ∈ Rs such that a ≤ x < b is denoted by [a,b). Let ω = (xi),

i ∈ N, where xi = (xi,1, . . . , xi,s), be a sequence of real vectors. Let C(I;n;ω) be the number

of terms xi, 1 ≤ i ≤ n, for which {xi} ∈ I ⊆ [0, 1)s.

Definition III.2 (Definition 6.1 of [27]). The sequence ω = (xi), i ∈ N, is u.d. mod 1 in Rs if

for every interval hypercube [b, a) ⊆ [0, 1)s, we have

lim
n→∞

C([a,b);n;ω)

n
=

s∏
j=1

(bj − aj). (13)

Proposition III.4 (Theorem 6.3 of [27]). The sequence (xi), i ∈ N, where xi = (xi,1, . . . , xi,s),

is u.d. mod 1 in Rs iff for every non-zero lattice point h ∈ Zs \0, the sequence of real numbers

(yi), i ∈ N, where yi =
∑s

j=1 hjxi,j , is u.d. mod 1.

Definition III.3. We say that the sequence (xi), i ∈ N, is jointly u.d. mod 1 if for every s ∈ N,

the sequence (yi), i ∈ N, where yi = (xi, . . . , xi+s−1), is u.d. mod 1 in Rs.

Proposition III.5. If the sequence (xi), i ∈ N, is u.d. mod 1 and x is a transcendental number,

then the sequence (xi), i ∈ N, is jointly u.d. mod 1.

Proof. According to Prop. III.4, the sequence (yi), i ∈ N, where yi = (xi, . . . , xi+s−1), is u.d.

mod 1 in Rs iff for all non-zero lattice point h ∈ Zs \ 0, the sequence of real numbers (zi),

i ∈ N, where zi = xi
∑s

j=1 hjx
j−1, is u.d. mod 1. According to Prop. III.3, if the sequence (xi),

i ∈ N, is u.d. mod 1, then the sequence (αxi), i ∈ N, is also u.d. mod 1 if the real constant

α 6= 0. Thus, the sequence (xi), i ∈ N, is jointly u.d. mod 1 if α =
∑∞

j=1 hjx
j−1 6= 0 for every

non-zero lattice point h ∈ Z∞ \ 0, which implies that x is a transcendental number.
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D. Extensions of Uniform Distribution

Proposition III.6 (Example 2.9 of [27]). Let θ be an irrational number and d an arbitrary

(rational or irrational) real number. Then the sequence (α + iθ + jd), i, j ∈ N, is u.d. mod 1.

This property can be extended to more general cases.

Proposition III.7 (Extension of Prop. III.2). Let d1 = l1/k1 and d2 = l2/k2, where l1, k1, l2, k2 ∈

Z and gcd(l1, k1) = gcd(l2, k2) = 1. Then the 2D arithmetic sequence (α+ id1 + jd2), i, j ∈ N,

is u.d. mod 1 over the discrete space {β, β + 1/κ, . . . , β + κ−1
κ
}, where κ = lcm(k1, k2) and

β = {κα}
κ
∈ [0, 1/κ). This property can be extended to higher dimensional cases.

Proposition III.8 (Extension of Prop. III.3). The 2D power sequence (αxiyj), i, j ∈ N, where

α is a non-zero real constant, is u.d. mod 1 for almost all non-integral x > 1 and y > 1, and the

exceptional set has Lebesgue measure zero. This property holds in higher dimensional cases.

Proposition III.9 (Extension of Prop. III.5). If the 2D power sequence (xiyj), i, j ∈ N, is u.d.

mod 1 and α =
∑∞

i=1

∑∞
j=1 hi,jx

i−1yj−1 6= 0 for all non-zero lattice point h ∈ Z∞×∞ \ 0, then

the sequence (xiyj), i, j ∈ N, is jointly u.d. mod 1. This property can be further extended to

higher dimensional cases.

E. Equipartition Property of Binomial Distribution

Proposition III.10. Consider a binomial distribution with parameters n ∈ N and p ∈ (0, 1).

For conciseness, we assume that n can be exactly divided by k. Then as n → ∞, we have

q0 = · · · = qk−1 = 1/k, where

qi ,
n/k−1∑
m=0

(
n

mk + i

)
pmk+i(1− p)n−mk−i. (14)

Proof. An (n, p) binomial process includes n independent Bernoulli trials with success probabil-

ity p. Let Xn be the number of successes in n consecutive Bernoulli trials and Yn = Xn mod k ∈

[0 : k). Then (. . . , Yn−1, Yn, Yn+1, . . . ) forms a 1-order time-homogeneous Markov chain with

transition matrix T = (ti,j)k×k, where ti,i = (1− p) for all i ∈ [0 : k), ti,i+1 = tk−1,0 = p for all

i ∈ [0 : (k− 1)), and ti,j = 0 in other cases. The steady state of (. . . , Yn−1, Yn, Yn+1, . . . ) exists

and its stationary distribution is π = (1/k, . . . , 1/k). Therefore, limn→∞ qi = πi = 1/k.
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IV. TERMINATION OF AC BITSTREAM

In this and the following sections, we will explain in detail how to obtain the analytical form

of CCS for biased SMBS. Our deduction includes two steps. First, the analytical form of the

final CCS is derived, and then, the backward-recursion formula of CCS is derived. However,

before doing so, it is necessary to address two important issues—Bitstream Termination and

FBRL. These two issues will be tackled in this and the next sections, respectively.

A. Normalized Mapping Interval (NMI)

Let I(X i) , [l(X i), h(X i)) be the interval of X i. Initially, I(X0) = I(∅) = [0, 1). Clearly,

I(X i) ⊂ I(X i−1). If Xi = 0, then l(X i) = l(X i−1) and |I(Xi)|
|I(Xi−1)| = (1− p)γ(i); if Xi = 1, then

h(X i) = h(X i−1) and |I(Xi)|
|I(Xi−1)| = pγ(i), where γ(i) is defined by (2). Thus, for i ∈ [1 : n],

|I(X i)| = (p ◦Xi)
γ(i) · |I(X i−1)| (15)

=
i∏

i′=1

(p ◦Xi′)
γ(i′) (16)

and

l(X i) = l(X i−1) +Xi(1− pγ(i))|I(X i−1)| (17)

=
i∑

i′=1

Xi′(1− pγ(i′))|I(X i′−1)|. (18)

From (16), we have η(A,B) = − log2 |I(Xn)|, where A = |Xn−t|, B = |Xn
n−t+1|, and η(·, ·)

is defined by (4). Thus I(Xn) = [l(Xn), l(Xn) + 2−η(A,B)). To uniquely indicate I(Xn), we

need m ≥ n′ , dη(A,B)e ≥ η(A,B) bits. Let us scale I(Xn) up by 2n
′ times to get the NMI

N (Xn) of Xn as defined by (5). Obviously,

N (Xn) = [`(Xn), `(Xn) + 2τ(A,B)), (19)

where τ(A,B) , n′ − η(A,B) ∈ [0, 1) as defined by (6) and

`(Xn) , 2n
′
l(Xn) = 2n

′
n∑
i=1

Xi(1− pγ(i))|I(X i−1)|

= 2τ(A,B)

n−1∑
i=0

Xi+1(1− pγ(i+1))
|I(X i)|
|I(Xn)|

. (20)
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`(xn) `(xn) + (2τ − 1) `(xn) + 1 `(xn) + 2τ

d`(xn)e d`(xn)e+ 1d`(xn)e

Ct(τ) + `(xn) Cs(τ) + `(xn)

N (xn)

Fig. 2. Example of `(xn), d`(xn)e, N (xn), Ct(τ) and Cs(τ), where τ(a, b) is shortened to τ .

B. Integers in NMI

Though arbitrary number in the NMI can be output, the analysis on final CCS will be simple

if the encoder output is just an integer in the NMI. As shown by (19), the length of NMI is

|N (Xn)| = 2τ(A,B) ∈ [1, 2). If τ(A,B) = 0, we have |N (xn)| ≡ 1 and there is only one integer

d`(Xn)e in the NMI N (Xn). However, if |N (Xn)| > 1, there may be one integer, i.e., d`(Xn)e,

or two integers, i.e., d`(Xn)e and d`(Xn)e + 1, in the NMI N (Xn). The following questions

are very important because they will impact the final CCS:

• If |N (Xn)| > 1, under what conditions, there is only one integer d`(Xn)e in the NMI, and

under what conditions, there are two integers d`(Xn)e and d`(Xn)e+ 1 in the NMI?

• If both d`(Xn)e and d`(Xn)e+ 1 belong to the NMI, which integer will be output?

• If both d`(Xn)e and d`(Xn)e+ 1 belong to the NMI, how possible will d`(Xn)e be output,

and how possible will d`(Xn)e+ 1 be output?

The first problem is closely linked with the ceiling error of `(Xn):

c(Xn) , d`(Xn)e − `(Xn) ∈ [0, 1). (21)

Proposition IV.1. For any xn ∈ Bn, if c(xn) ∈ Ct(τ(a, b)), there will be two integers d`(xn)e

and (d`(xn)e + 1) in its NMI N (xn); if c(xn) ∈ Cs(τ(a, b)), there is only one integer d`(xn)e

in its NMI N (xn), where |xn−t| = a, |xnn−t+1| = b, τ(a, b) is defined by (6), and Ct(τ) , [0, (2τ − 1)) ⊆ [0, 1)

Cs(τ) , [(2τ − 1), 1) ⊆ [0, 1)
. (22)

Proof. Given τ ∈ [0, 1), we have Ct(τ)∪Cs(τ) = [0, 1) and Ct(τ)∩Cs(τ) = ∅. We actually divide
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the space [0, 1) of ceiling error c(Xn) into two non-overlapping subspaces Ct(τ) and Cs(τ), as

shown by Fig. 2. If c(xn) ∈ Ct(τ(a, b)), we have d`(xn)e ∈ [`(xn), `(xn) + (2τ(a,b) − 1)) ⊂ N (xn)

d`(xn)e+ 1 ∈ [`(xn) + 1, `(xn) + 2τ(a,b)) ⊂ N (xn)
. (23)

Thus, there are two integers d`(xn)e and (d`(xn)e+ 1) in N (xn), as shown by the two yellow

circles in Fig. 2. If c(xn) ∈ Cs(τ(a, b)), we have d`(xn)e ∈ [`(xn) + (2τ(a,b) − 1), `(xn) + 1) ⊆ N (xn)

d`(xn)e+ 1 ∈ [`(xn) + 2τ(a,b), `(xn) + 2) 6⊂ N (xn)
. (24)

Thus, there is only one integer d`(xn)e in N (xn), as shown by the magenta triangle in Fig. 2.

We refer to Ct(τ(a, b)) as the conditional twin-integer subspace of c(Xn) and Cs(τ(a, b)) as

the conditional single-integer subspace of c(Xn), given |Xn−t| = a and |Xn
n−t+1| = b. If τ = 0,

we have Ct(τ) = ∅ and Cs(τ) = [0, 1). As τ increases from 0 to 1, Ct(τ) will change from ∅ to

[0, 1) and Cs(τ) will change from [0, 1) to ∅.

C. Interval Bounds

However, Prop. IV.1 is far from enough for answering the second and third questions in sub-

Sect. IV-B, because the output of a real AC encoder is subject to the used termination rule that

heavily depends on interval bounds h(xn) and l(xn). For conciseness, we let comb(h(xn), l(xn))

denote the combination of h(xn) and l(xn). Since |N (xn)| ∈ [1, 2), there are only three possible

patterns for comb(h(xn), l(xn)), as shown by Fig. 3, where n′ = dη(a, b)e, d is buffer depth

(in bits) for interval bounds, and n′′ ≥ 0 is the number of underflow bits. For simplicity, we

define ξα ,
∑∞

i′=n′+1 αi′2
n′−i′ ∈ [0, 1) and ξβ ,

∑∞
i′=n′+1 βi′2

n′−i′ ∈ [0, 1), where αi′ , βi′ ∈ B

for all i′ ∈ [(n′ + 1) : ∞). Obviously, ξβ = {`(xn)}. The following proposition is an alternate

of Prop. IV.1 that links comb(h(xn), l(xn)) with Cs(τ) and Ct(τ) defined by (22).

Proposition IV.2. For any xn ∈ Bn, if comb(h(xn), l(xn)) belongs to the N-pattern and c(xn) >

0, then c(xn) ∈ Cs(τ(a, b)); otherwise, c(xn) ∈ Ct(τ(a, b)).

Proof. The so-called N-pattern is defined by Fig. 3(a), which means |N (xn)| = 1+ξα−ξβ . Since

ξα, ξβ ∈ [0, 1), it is sure that 0 < |N (xn)| < 2. The condition for 1 ≤ |N (xn)| is 0 ≤ ξβ ≤ ξα.

Further, depending on ξβ , there are one or two integers in N (xn).
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2n
′
h(xn) = z1 · · · zn′−n′′−1

(d+n′′) bits︷ ︸︸ ︷
1

n′′ bits︷ ︸︸ ︷
0 · · · 0 .αn′+1 · · ·αn′+d−1 · · ·
↑ ↑

MSB 2-MSB
↓ ↓

`(xn) = z1 · · · zn′−n′′−1 0 1 · · · 1︸ ︷︷ ︸
n′′ bits︸ ︷︷ ︸

n′ bits

.βn′+1 · · ·βn′+d−1 · · ·

(a) comb(h(xn), l(xn)) ∈ N-Pattern, where 0 ≤ ξβ ≤ ξα.

2n
′
h(xn) = z1 · · · zn′−n′′−2

(d+n′′) bits︷ ︸︸ ︷
1

n′′ bits︷ ︸︸ ︷
0 · · · 0 0 .αn′+1 · · ·αn′+d−2 · · ·
↑ ↑

MSB 2-MSB
↓ ↓

`(xn) = z1 · · · zn′−n′′−2 0 1 · · · 1︸ ︷︷ ︸
n′′ bits

0

︸ ︷︷ ︸
n′ bits

.βn′+1 · · ·βn′+d−2 · · ·

(b) comb(h(xn), l(xn)) ∈ Z-Pattern, where 0 ≤ ξα < ξβ .

2n
′
h(xn) = z1 · · · zn′−n′′−2

(d+n′′) bits︷ ︸︸ ︷
1

n′′ bits︷ ︸︸ ︷
0 · · · 0 1 .αn′+1 · · ·αn′+d−2 · · ·
↑ ↑

MSB 2-MSB
↓ ↓

`(xn) = z1 · · · zn′−n′′−2 0 1 · · · 1︸ ︷︷ ︸
n′′ bits

1

︸ ︷︷ ︸
n′ bits

.βn′+1 · · ·βn′+d−2 · · ·

(c) comb(h(xn), l(xn)) ∈ O-Pattern, where 0 ≤ ξα < ξβ .

Fig. 3. Three patterns of binarized bounds of NMI, where n′ = dη(a, b)e, d is buffer depth (in bits) for binarized bounds, and
n′′ ≥ 0 is the number of underflow bits. The MSB stands for the Most Significant Bit and the 2-MSB stands for the 2-nd Most
Significant Bit. (a) N-pattern, where N means that there is No 2-MSB before the decimal point. (b) Z-pattern, where Z means
that both 2-MSBs are Zero. (c) O-pattern, where O means that both 2-MSBs are One.

• If ξβ > 0, then c(xn) > 0 and c(xn) ∈ Cs(τ(a, b)) as there is only one integer in N (xn):

d`(xn)e = z1 · · · zn′−n′′−1 1

n′′ bits︷ ︸︸ ︷
0 · · · 0 . (25)
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• If ξβ = 0, then c(xn) = 0 ∈ Ct(τ(a, b)) as there are two integers in N (xn):
d`(xn)e+ 1 = z1 · · · zn′−n′′−1 1

n′′ bits︷ ︸︸ ︷
0 · · · 0

d`(xn)e = z1 · · · zn′−n′′−1 0 1 · · · 1︸ ︷︷ ︸
n′′ bits

. (26)

The so-called Z-pattern is defined by Fig. 3(b), which means |N (xn)| = 2 + ξα − ξβ . Since

ξα, ξβ ∈ [0, 1), it is sure that 1 < |N (xn)|, and the condition for |N (xn)| < 2 is 0 ≤ ξα < ξβ .

Clearly, c(xn) > 0 and c(xn) ∈ Ct(τ(a, b)) as there are always two integers in N (xn):
d`(xn)e+ 1 = z1 · · · zn′−n′′−2 1

n′′ bits︷ ︸︸ ︷
0 · · · 0 0

d`(xn)e = z1 · · · zn′−n′′−2 0 1 · · · 1︸ ︷︷ ︸
n′′ bits

1
. (27)

The so-called O-pattern is defined by Fig. 3(c), which is actually an up-shifted form of the

Z-pattern. Thus c(xn) > 0 and c(xn) ∈ Ct(τ(a, b)) as there are always two integers in N (xn):
d`(xn)e+ 1 = z1 · · · zn′−n′′−2 1

n′′ bits︷ ︸︸ ︷
0 · · · 0 1

d`(xn)e = z1 · · · zn′−n′′−2 1 0 · · · 0︸ ︷︷ ︸
n′′ bits

0
. (28)

D. Classical Termination of AC Bitstream

Let Zm be the encoder output of Xn. At the decoder, Zm may be followed by z∞m+1 ∈ B∞. If

only ϕ(Xn; z∞m+1) ∈ N (Xn), the correctness of decoding can be guaranteed, where N (Xn) is

the NMI of Xn defined by (5) and ϕ(Xn; z∞m+1) is the NOB of Xn defined by (8). Further, to

simplify the analysis, we hope to explain ϕ(Xn; z∞m+1) as an integer. Unfortunately, as analyzed

below, though the classical termination in [7] can ensure ϕ(Xn; z∞m+1) ∈ N (Xn) for arbitrary

appending bits z∞m+1, it fails to explain ϕ(Xn; z∞m+1) as an integer in all cases.

A real AC codec is subject to a certain computation precision, so two d-bit integers, high and

low, are defined to store windowed binarized NMI bounds. The termination rule in [7] exploits

the second Most Significant Bits (2-MSBs) of high and low to remove the ambiguity of encoder

output when it is followed by arbitrary bits. Let MSBh, MSBl, 2-MSBh, and 2-MSBl be the MSB

or 2-MSB of high or low. As shown by the first column of Tab. I, depending on the combination

of 2-MSBh and 2-MSBl, the N-pattern defined in Fig. 3 can be further divided into three sub-

December 25, 2019 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY (REVISION) 20

TABLE I
FINAL VALUES OF WINDOWED BINARIZED INTERVAL BOUNDS AND ENCODER OUTPUT

high and low (d bits) encoder output [7] encoder output*

N0-pattern
(αn′+1 = βn′+1 = 0)

{
1. 0αn′+2 · · · αn′+d−1
0. 0βn′+2 · · · βn′+d−1

(n′+1) bits = d`(xn)e±0.5︷ ︸︸ ︷
z1 · · · zn′−n′′−1 0 1 · · · 1︸ ︷︷ ︸

n′′ bits

.1

N1-pattern
(αn′+1 = βn′+1 = 1)

{
1. 1αn′+2 · · · αn′+d−1
0. 1βn′+2 · · · βn′+d−1

(n′+1) bits = d`(xn)e︷ ︸︸ ︷
z1 · · · zn′−n′′−1 1 0 · · · 0︸ ︷︷ ︸

n′′ bits

.0
(n′−n′′−1) bits︷ ︸︸ ︷
z1 · · · zn′−n′′−1

NX-pattern
(αn′+1 = 1, βn′+1 = 0)

{
1. 1αn′+2 · · · αn′+d−1
0. 0βn′+2 · · · βn′+d−1

(n′+1) bits = d`(xn)e±0.5︷ ︸︸ ︷
z1 · · · zn′−n′′−1 0 1 · · · 1︸ ︷︷ ︸

n′′ bits

.1

or

z1 · · · zn′−n′′−1 1

n′′ bits︷ ︸︸ ︷
0 · · · 0 .0︸ ︷︷ ︸

(n′+1) bits = d`(xn)e(+1)

Z-pattern
{

1 0. αn′+1 · · · αn′+d−2
0 0. βn′+1 · · · βn′+d−2

z1 · · · zn′−n′′−2 0

n′′ bits︷ ︸︸ ︷
1 · · · 1 1.︸ ︷︷ ︸

n′ bits = d`(xn)e

(n′−n′′−2) bits︷ ︸︸ ︷
z1 · · · zn′−n′′−2

O-pattern
{

1 1. αn′+1 · · · αn′+d−2
0 1. βn′+1 · · · βn′+d−2

z1 · · · zn′−n′′−2 1

n′′ bits︷ ︸︸ ︷
0 · · · 0 0.︸ ︷︷ ︸

n′ bits = d`(xn)e

*The encoder output of the shortest termination.

patterns: N0-pattern (αn′+1 = βn′+1 = 0), N1-pattern (αn′+1 = βn′+1 = 1), and NX-pattern

(αn′+1 = 1 and βn′+1 = 0). For both N0-pattern and N1-pattern, we have 0 ≤ ξα − ξβ < 0.5;

while for the NX-pattern, we have 0.5 ≤ ξα − ξβ < 1. There are three cases:

• 2-MSBh = 2-MSBl = 0: It includes the N0-pattern and the Z-pattern. The encoder outputs

two bits 01 as ending bits.

• 2-MSBh = 2-MSBl = 1: It includes the N1-pattern and the O-pattern. The encoder outputs

two bits 10 as ending bits;

• 2-MSBh = 1 and 2-MSBl = 0: It corresponds to the NX-pattern. Either 01 or 10 can be

output, but [7] recommends to output 10 as ending bits.

In Tab. I, the second column lists the final states of high and low after coding xn, while the

third column lists the encoder output according to the termination rule in [7] for each pattern

defined in Fig. 3. For clarity, the decimal points are shown in the second and third columns of

Tab. I. It can be found that for both Z-pattern and O-pattern, the length of encoder output is

m = n′; but for the N-pattern, the length of encoder output is m = (n′ + 1). It is easy to verify

that no matter what bits z∞m+1 follow the encoder output Zm, the NOB ϕ(Xn; z∞m+1) always falls
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into the NMI N (Xn), ensuring the correctness of decoding. If z∞m+1 = 0 . . . , then

• For the Z-pattern, the O-pattern, and the N1-pattern, ϕ(xn; 0 . . . ) = d`(xn)e.

• For the N0-pattern, ϕ(xn; 0 . . . ) = d`(xn)e ± 0.5 (‘−’ for ξβ > 0 and ‘+’ for ξβ = 0).

• For the NX-pattern, if the ending bits are 10, then ϕ(xn; 0 . . . ) = d`(xn)e for ξβ > 0

and ϕ(xn; 0 . . . ) = d`(xn)e + 1 for ξβ = 0; if the ending bits are 01, then ϕ(xn; 0 . . . ) =

d`(xn)e ± 0.5 (‘−’ for ξβ > 0 and ‘+’ for ξβ = 0).

Hence, the classical termination in [7] will cause complex explanations of encoder output that

hinders our analysis on the final CCS. So we need a simpler termination rule.

E. Shortest Termination of AC Bitstream

The classical termination in [7] is based on such an assumption: The length of encoder output

m is unknown at the decoder, so it is unpredictable what bits will be appended to encoder output

at the decoder. However, most of data are nowadays packetized, so the length of encoder output

can easily be inferred at the decoder from the overhead information. Based on this assumption,

we propose a novel termination rule: The encoder just outputs all identical bits of binarized

h(xn) and l(xn). As shown by the fourth column of Tab. I, with this rule, the length of encoder

output is m = (n′ − n′′ − 1) for the N-pattern and m = (n′ − n′′ − 2) for both Z-pattern and

O-pattern. If only we append z∞m+1 = 10 . . . to Zm,

ϕ(Xn; 10 . . . ) ∈ [0 : 2n
′
) ∩N (Xn) ⊂ Z, (29)

i.e., the NOB is always an integer in the NMI. Actually, this method will produce the shortest

encoder output, thus we refer to it as the shortest termination. Though the encoder output

of the shortest termination is (n′′ + 2)-bits shorter than that of the classical termination, some

overhead bits are needed to convey the length of encoder output. In addition, with the classical

termination, there is no special demand on the appending bits; while with the shortest termination,

only z∞m+1 = 10 . . . can be appended to the encoder output Zm. From now on, only the

shortest termination with appending bits 10 . . . will be further considered. For conciseness,

ϕ(Xn; 10 . . . ) will be shortened to ϕ(Xn) and u(Xn; 10 . . . ) will be shortened to u(Xn).

Now we are ready to answer the second and third problems in sub-Sect. IV-B. The following

proposition answers the second problem in sub-Sect. IV-B.

Proposition IV.3. If c(xn) ∈ Cs(τ(a, b)), then ϕ(xn) = d`(xn)e. As for c(xn) ∈ Ct(τ(a, b)),
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• If c(xn) = 0 or comb(h(xn), l(xn)) ∈ Z-pattern, then ϕ(xn) = d`(xn)e+ 1;

• If comb(h(xn), l(xn)) ∈ O-pattern, then ϕ(xn) = d`(xn)e.

Proof. Please refer to (25), (26), (27), and (28), respectively.

Hence, the encoder output of the shortest termination is always an integer (d`(xn)e+1 or

d`(xn)e), simplifying our analysis. Let po denote the conditional probability of ϕ(Xn) = d`(Xn)e

and pz the conditional probability of ϕ(Xn) = d`(Xn)e+ 1, given c(Xn) ∈ Ct(τ(A,B)), i.e., pz , Pr(ϕ(Xn) = d`(Xn)e+ 1 | c(Xn) ∈ Ct(τ(A,B)))

po , Pr(ϕ(Xn) = d`(Xn)e | c(Xn) ∈ Ct(τ(A,B)))
. (30)

The following proposition answers the third problem in sub-Sect. IV-B.

Proposition IV.4. limn→∞
pz
po

= 1.

Proof. According to Prop. IV.2, if c(Xn) ∈ Ct(τ(A,B)), there are three cases: c(Xn) = 0,

comb(h(Xn), l(Xn)) ∈ Z-pattern, or comb(h(Xn), l(Xn)) ∈ O-pattern. Compared with other

two cases, the case c(Xn) = 0 is negligible because it is a very strict condition, rarely fulfilled.

Since the O-pattern is just an up-shifted version of the Z-pattern, by Prop. IV.3, we have

lim
n→∞

pz
po

= lim
n→∞

Pr(comb(h(Xn), l(Xn)) ∈ Z-pattern)

Pr(comb(h(Xn), l(Xn)) ∈ O-pattern)
= 1. (31)

V. FRACTIONAL-BIT RATE LOSS

Let X be an SMBS with bias probability p, compressed by an (n, t, r) DAC encoder. Let

A , |Xn−t| and B , |Xn
n−t+1|. As analyzed in Sect. II-C, to uniquely indicate I(Xn), at least

η(A,B) ∈ R bits are needed in theory, where η(·, ·) is defined by (4). However, since the output

of a real-world DAC encoder must contain a whole number of bits, at least dη(A,B)e ∈ Z

bits are needed in practice, which will cause the FBRL τ(A,B) as defined by (6). Since X

is memoryless, A and B are mutually independent. Hence, A obeys the (n − t, p) binomial

distribution, while B obeys the (t, p) binomial distribution: p
A

(a) , Pr(A = a) =
(
n−t
a

)
pa(1− p)n−t−a

p
B

(b) , Pr(B = b) =
(
t
b

)
pb(1− p)t−b

, (32)

where a ∈ [0 : (n− t)] and b ∈ [0 : t]. This section will deduce the distribution of τ(A,B).
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A. Space of FBRL

Before answering how τ(A,B) is distributed, we must know its space. Let us rewrite (4) as

η(a, b) = −((n− t)r + t) log2 (1− p) + (ar + b) log2
1−p
p

= η(0, 0) + ard+ bd, (33)

where d = log2
1−p
p

. Clearly, η(a, b)’s form a 2D arithmetic sequence with common differences

rd and d, so the space of τ(A,B) depends on the values of rd and d:

• Birational Case (d ∈ Q and rd ∈ Q): Let d = l/k and rd = lr/kr, where l, k, lr,

kr ∈ Z and gcd(k, l) = gcd(kr, lr) = 1. According to Prop. III.7, we have τ(a, b) ∈

{τ̇ , τ̇ + 1
κ
, . . . , τ̇ + κ−1

κ
}, where κ = lcm(kr, k) and τ̇ = {κη(0,0)}

κ
∈ [0, 1

κ
).

• Irrational Case (d /∈ Q and/or rd /∈ Q): According to Prop. III.6, we have τ(a, b) ∈ [0, 1).

B. Distribution of FBRL

Let f
T
(τ), where τ ∈ [0, 1), denote the PDF of τ(A,B) and let d = log2

1−p
p

. Depending on

the values of d and rd, f
T
(τ) has two different forms.

Proposition V.1. Let d = l/k ∈ Q and rd = lr/kr ∈ Q, where l, k, lr, kr ∈ Z and gcd(l, k) =

gcd(lr, kr) = 1. Let κ = lcm(k, kr) and τ̇ = {κη(0,0)}
κ

. Then as (n− t)→∞ and t→∞,

f
T
(τ) =

1

κ

κ−1∑
λ=0

δ(τ − τ̇ − λ
κ
). (34)

Proof. Given Xn = xn, the conditional PDF of τ(A,B) is δ(τ − τ(a, b)), where a = |xn−t| ∈

[0 : (n− t)] and b = |xnn−t+1| ∈ [0 : t]. Note the difference between τ and τ(·, ·), that is τ is a

scalar value, while τ(·, ·) is a function. Then

f
T
(τ) =

∑
xn∈Bn

Pr(Xn = xn)δ(τ − τ(a, b)). (35)

Since X is an SMBS, it is obvious that Pr(Xn = xn) = pa+b(1 − p)n−a−b, where a = |xn−t|

and b = |xnn−t+1|, and further

f
T
(τ) =

n−t∑
a=0

t∑
b=0

p
A

(a)p
B

(b)δ(τ − τ(a, b)). (36)
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As proved in Sect. V-A, τ(a, b) ∈ {τ̇ , · · · , τ̇ + κ−1
κ
}. By the equipartition property of binomial

distribution shown by Prop. III.10 proved in Sect. III-E, as (n− t)→∞ and t→∞, τ(A,B)

will be uniformly distributed over its discrete space.

Corollary V.1. If d /∈ Q and/or rd /∈ Q, then f
T
(τ) = Π[0,1)(τ) as (n− t)→∞ and t→∞.

Proof. Since the irrational case is the asymptotic form of the birational case as κ → ∞, it is

obvious that this corollary holds.

VI. ANALYTICAL FORM OF FINAL CCS

We are now ready to study the CCS of biased SMBS. The proposed methodology is similar

to that used for uniform SMBS [25]: We begin with the final CCS and then recursively deduce

other levels of CCS backwards until the initial CCS. However, in contrast to the final CCS of

uniform SMBS, which is always a uniform function after carefully tuning parameters, the final

CCS of biased SMBS is very complex. We devote this whole section to the final CCS of biased

SMBS. For simplicity, we shorten u(Xn; z∞m+1), where z∞m+1 = 10 . . . , to u(Xn) below.

A. Decomposition of Final CCS

Let us define

φ(Xn) , 2−τ(A,B)(ϕ(Xn)− `(Xn)), (37)

where ϕ(Xn) is defined by (8), `(Xn) is defined by (20), A = |Xn−t| and B = |Xn
n−t+1|.

According to (9), we have

Un =
u(Xn)− l(Xn)

h(Xn)− l(Xn)
=

2n
′
u(Xn)− 2n

′
l(Xn)

2n′(h(Xn)− l(Xn))
= φ(Xn). (38)

Therefore,

fn(u) =
∑
xn∈Bn

Pr(Xn = xn)δ(u− φ(xn))

=
n−t∑
a=0

t∑
b=0

pA(a)pB(b)ga,b(u), (39)
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Ct(τ) Cs(τ)0 2τ − 1 1

0 1− 2−τ 2−τ 1Ut0(τ) Us(τ) Ut1(τ)

φ(xn) :

c(xn) :

Fig. 4. Mapping from Ct(τ) and Cs(τ) to Ut0(τ), Us(τ), and Ut1(τ), where τ(a, b) is shortened to τ .

where

ga,b(u) ,
1(

n−t
a

)(
t
b

) ∑
xn−t:|xn−t|=a

∑
xnn−t+1:|xnn−t+1|=b

δ(u− φ(xn)). (40)

Evidently,
∫ 1

0
ga,b(u)du = 1 and ga,b(u) is the conditional PDF of Un given |Xn−t| = a and

|Xn
n−t+1| = b. We call ga,b(u) the conditional final CCS.

B. Conditional Final CCS

Proposition VI.1. If the sequence ω(p, r) = (p−i(1− p)−jp−kr(1− p)−lr), i, j, k, l ∈ N, is u.d.

mod 1, then c(Xn) will be u.d. over [0, 1) as (n− t)→∞ and t→∞.

Proof. For i ∈ [(n− t) : n],

|I(X i)|
|I(Xn)|

= p−|X
n
i+1| · (1− p)−((n−i)−|Xn

i+1|) ≥ 1, (41)

where |Xn
i+1| denotes the number of non-zero elements of Xn

i+1. Further, for i ∈ [0 : (n− t)],

|I(X i)|
|I(Xn)|

= p−r|X
n−t
i+1 | · (1− p)−r((n−t−i)−|X

n−t
i+1 |) · |I(Xn−t)|

|I(Xn)|
≥ 1. (42)

Obviously, p−1 > 1, (1− p)−1 > 1, p−r > 1, and (1− p)−r > 1. It is shown by (20) that `(Xn)

is actually the weighted sum of partial terms randomly drawn from the sequence ω(p, r). Thus,

if the sequence ω(p, r) is u.d. mod 1, `(Xn) will be u.d. mod 1 as (n−t)→∞ and t→∞.
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Proposition VI.2. If the sequence ω(p, r) = (p−i(1− p)−jp−kr(1− p)−lr), i, j, k, l ∈ N, is u.d.

mod 1, then as (n− t)→∞ and t→∞, we have ga,b(u) = ψτ(a,b)(u), where

ψτ (u) ,


2τ−1, u ∈ [0, (1− 2−τ )) ∪ [2−τ , 1)

2τ , u ∈ [(1− 2−τ ), 2−τ )

0, u /∈ [0, 1)

. (43)

Proof. Based on the space division of c(Xn) defined by (22), we further divide the space [0, 1)

of Un = φ(Xn) into three non-overlapping subspaces:
Ut0(τ) , 2−τCt(τ) = [0, (1− 2−τ ))

Us(τ) , 2−τCs(τ) = [(1− 2−τ ), 2−τ )

Ut1(τ) , 2−τ (Ct(τ) + 1) = [2−τ , 1)

. (44)

Clearly, |Ut0(τ)| = |Ut1(τ)| = (1 − 2−τ ) ∈ [0, 0.5) and |Us(τ)| = (21−τ − 1) ∈ (0, 1]. The

mapping from Ct(τ) and Cs(τ) to Ut0(τ), Us(τ), and Ut1(τ) can be well illustrated by Fig. 4.

Given |xn−t| = a and |xnn−t+1| = b,

• If c(xn) ∈ Ct(τ(a, b)), then ϕ(xn) = d`(xn)e or d`(xn)e + 1, and φ(xn) = 2−τ(a,b)c(xn) ∈

Ut0(τ(a, b)) or φ(xn) = 2−τ(a,b)(c(xn) + 1) ∈ Ut1(τ(a, b)). This mapping can be exampled

with the arrowed lines between magenta circles in Fig. 4.

• If c(xn) ∈ Cs(τ(a, b)), then ϕ(xn) ≡ d`(xn)e and φ(xn) = 2−τ(a,b)c(xn) ∈ Us(τ(a, b)). This

mapping can be exampled with the arrowed lines between green triangles in Fig. 4.

Let us pay attention to the following three points:

• According to Prop. VI.1, as (n− t)→∞ and t→∞, c(Xn) will be u.d. over [0, 1).

• According to Prop. IV.4, given c(xn) ∈ Ct(τ(a, b)), as (n − t) → ∞ and t → ∞, the

probability of ϕ(Xn) = d`(Xn)e is equal to that of ϕ(Xn) = d`(Xn)e+ 1.

• Both c(xn)→ 2−τ(a,b)c(xn) and c(xn)→ 2−τ(a,b)(c(xn) + 1) are linear bijective mappings.

Based on the above analyses, as (n− t)→∞ and t→∞,

• ga,b(u) is piecewise uniform over Ut0(τ(a, b)), Us(τ(a, b)), and Ut1(τ(a, b)), respectively;

• ga,b(u) ≡ µ for all u ∈ Ut0(τ(a, b)) ∪ Ut1(τ(a, b)) and ga,b(u) ≡ 2µ for all u ∈ Us(τ(a, b)),

where µ is a constant that can be obtained by making use of
∫ 1

0
ga,b(u)du = 1, i.e.,

µ =
1

|Ut0(τ(a, b))|+ 2|Us(τ(a, b))|+ |Ut1(τ(a, b))|
= 2τ(a,b)−1. (45)

Hence, as (n− t)→∞ and t→∞, ga,b(u) = ψτ(a,b)(u), where u ∈ [0, 1) and τ ∈ [0, 1).
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C. Final CCS in Birational Case

Theorem VI.1. Let d = log2
1−p
p

. Assume d = l/k and rd = lr/kr, where l, k, lr, kr ∈ Z and

gcd(l, k) = gcd(lr, kr) = 1. Let τ(a, b) , dη(a, b)e − η(a, b), κ , lcm(k, kr), and τ̇ = {κη(0,0)}
κ

.

If the sequence ω(p, r) is u.d. mod 1, then as (n− t)→∞ and t→∞,

fn(u) =
1

κ

κ−1∑
λ=0

ψτ̇+λ
κ
(u). (46)

Proof. According to Prop. VI.2 and (39), we can obtain

fn(u) =
n−t∑
a=0

t∑
b=0

pA(a)pB(b)ψτ(a,b)(u). (47)

According to Prop. V.1, as (n− t)→∞ and t→∞, τ(a, b) will be u.d. over {τ̇ , . . . , τ̇ + κ−1
κ
}.

Hence, we can obtain (46).

To get an intuitive impression of fn(u) in the birational case, the reader may refer to Fig. 7 in

Sect. VIII-B. To facilitate the analysis, it is necessary to further simplify (46). As shown by (43),∫ 1

0
ψτ (u)du = 1 and ψτ (u) is symmetric around u = 0.5 (excluding u = 0 and u = 1). Thus

fn(u) is also symmetric around u = 0.5 (excluding u = 0 and u = 1). Hence, we consider fn(u)

only over u ∈ [0.5, 1) below. In the birational case, according to (46), for u ∈ [0.5, 1), fn(u)

has κ jump points at u ∈ {2−τ̇ , 2−τ̇+1/κ, · · · , 2−τ̇+(κ−1)/κ}, which divide the interval [0.5, 1)

into (κ + 1) segments given by Rj , [2max(−1,−τ̇+(j−1)/κ), 2min(0,−τ̇+j/κ)), where 0 ≤ j ≤ κ.

It is easy to show that for 2 ≤ j ≤ (κ − 1), |Rj| = 21/κ|Rj−1|. According to (46), we have

fn(u) = 2τ̇θκ(j) for u ∈ Rj , where

θκ(j) ,
1

κ

(
2−1

j−1∑
α=0

2−α/κ +
κ−1∑
α=j

2−α/κ

)

=
2−j/κ

κ(2− 2(κ−1)/κ)
=

2−j/κ

2κ(1− 2−1/κ)
. (48)

The following properties of θκ(j) can be easily proved:

• θκ(j) is strictly decreasing w.r.t. j, i.e., θκ(0) > · · · > θκ(κ);

• θκ(0) = 2θκ(κ) = 1
2κ(1−2−1/κ)

;

• θκ(j + 1) = 2−1/κθκ(j) and θκ(j + 1)− θκ(j) = −2−j/κ

2κ
.

Uniform SMBS When p = 0.5, we have η(a, b) ≡ nR and τ(a, b) ≡ τ̄ , (dnRe − nR) for
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all (a, b) ∈ [0 : (n − t)] × [0 : t], where R = (n−t)r+t
n

. We have τ̇ = τ̄ and κ = 1. Hence,

fn(u) = ψτ̄ (u). In particular, if τ̄ = 0, then fn(u) = Π[0,1)(u).

For uniform SMBS, in our prior work [21], [22], [23], [24], [25], only the special case τ̄ = 0

is considered to simplify the analysis. This is a reasonable assumption in practice because the

output of an (n, t, r) DAC encoder is almost fixed-length for any uniform SMBS (if we ignore

the effect of underflow). This point can be explained in more detail as below.

If the uniform SMBS X is compressed by an (n, t, r) DAC encoder, then the length of output

bitstream is dnRe and the FBRL is τ̄ = dnRe − nR, where R = (n−t)r+t
n

. If τ̄ > 0, then we

can replace the (n, t, r) encoder with an (n, t, r′) encoder, where r′ = dnRe−t
n−t > r. With this

new DAC encoder, the length of output bitstream is dnR′e = nR′ = dnRe and the FBRL is

τ̄ ′ = (dnR′e − nR′) = 0, where R′ = (n−t)r′+t
n

= dnRe/n > R. It can be seen that, for the

uniform SMBS, by using a different DAC encoder, the FBRL can always be removed, while the

length of output bitstream remains unchanged.

D. Final CCS in Irrational Case

Corollary VI.1. In the case that d /∈ Q and/or rd /∈ Q, if the sequence ω(p, r) is u.d. mod 1,

then as (n− t)→∞ and t→∞, we have

fn(u) =
log2 e

1 + |1− 2u|
. (49)

Proof. We take fn(u) in the irrational case as the asymptotic form of fn(u) in the birational

case as κ→∞. According to Theorem VI.1, for any u = 2−τ̇+j/κ ∈ [0.5, 1),

lim
κ→∞

f ′n(2−τ̇+j/κ) = lim
κ→∞

fn(2−τ̇+(j+1)/κ)− fn(2−τ̇+j/κ)

2−τ̇+(j+1)/κ − 2−τ̇+j/κ

= lim
κ→∞

2τ̇ (θκ(j + 1)− θκ(j))
2−τ̇+(j+1)/κ − 2−τ̇+j/κ

= − lim
κ→∞

1

2κ(21/κ − 1)
· lim
κ→∞

1

(2−τ̇+j/κ)2

= − 1

2 ln 2
· lim
κ→∞

1

(2−τ̇+j/κ)2
. (50)

Hence, limκ→∞ f
′
n(u) = − 1

(2 ln 2)u2
and further limκ→∞ fn(u) = 1

(2 ln 2)u
. Finally, by symmetry,

we can get the final CCS fn(u) in the irrational case as given by (49).
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U0 ← · · · ← Ui−1 ← Ui ← Ui+1 ← · · · ← Un−1 ← Un
↑ · · · ↑ ↑ ↑ · · · ↑
X1 · · · Xi Xi+1 Xi+2 · · · Xn

Fig. 5. Backward-recursion deduction of Ui.

E. Discussion on General Cases

We have deduced the analytical form of the final CCS if the sequence ω(p, r) is u.d. mod 1.

As shown by Prop. III.3, the sequence ω(p, r) is almost always u.d. mod 1, and the exceptional

set has Lebesgue measure zero. Now we wonder what will happen if the sequence ω(p, r) is not

u.d. mod 1? We guess that (46) and (49) still hold even if the sequence ω(p, r) is not u.d. mod

1. We cannot prove this point, but it is verified by a lot of experiments. For example, if we set

p−1 to golden ratio 1+
√

5
2

or silver ratio (1 +
√

2), which are two exceptions of Prop. III.3, the

final CCS obtained by experiments still coincides well with (46) or (49).

VII. CALCULATION OF CCS

After knowing the final CCS fn(u), the remaining problem is how to get fi(u) for i < n. This

section will give the recursive formula for deducing fi(u) backwards. Based on the recursive

formula, a numerical algorithm is also proposed to calculate fi(u) in practice.

A. Backward Recursive Formula of CCS

Theorem VII.1. Let u′ , (u− x(1− pγ(i)))(x ◦ p)−γ(i) and

fi−1(u|x) , (x ◦ p)−γ(i)fi(u
′). (51)

Once fn(u) is known, fi(u) for i ∈ [0 : n) can be recursively deduced backwards by

fi(u) = (1− p)fi(u|0) + pfi(u|1). (52)

Proof. By substituting (15) and (17) into (9), we can obtain

Ui =
u(Xn)−

(
l(X i−1) +Xi(1− pγ(i))|I(X i−1)|

)
(Xi ◦ p)γ(i)|I(X i−1)|

, (53)
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which is followed by

(Xi ◦ p)γ(i)Ui =
u(Xn)− l(X i−1)−Xi(1− pγ(i))|I(X i−1)|

|I(X i−1)|

=
u(Xn)− l(X i−1)

|I(X i−1)|
−Xi(1− pγ(i))

= Ui−1 −Xi(1− pγ(i))

⇒ Ui−1 = (Xi ◦ p)γ(i) · Ui +Xi · (1− pγ(i)), (54)

showing that Ui−1 depends on both Xi and Ui. Fig. 5 well illustrates how Ui can be calculated

by backward recursion using (54). According to (54),

• If Xi = 0, then Ui−1 = (1− p)γ(i)Ui. Since fi−1(u|0) is the conditional PDF of Ui−1 given

Xi = 0, according to the property of PDF, we have

fi−1(u|0) = (1− p)−γ(i)fi(u(1− p)−γ(i)). (55)

• If Xi = 1, then Ui−1 = pγ(i)Ui + (1− pγ(i)). Since fi−1(u|1) is the conditional PDF of Ui−1

given Xi = 1, according to the property of PDF, we have

fi−1(u|1) = p−γ(i)fi((u− (1− pγ(i)))p−γ(i)). (56)

The general form for (55) and (56) is just (51). Finally, we have

fi(u) = Pr(Xi = 0)fi(u|0) + Pr(Xi = 1)fi(u|1). (57)

By substituting Pr(Xi = 1) = p into (57), we get (52).

B. Final Body CCS

We call fn−t(u) the final body CCS. It is interesting to know whether the asymptotic form of

fn−t(u) as t→∞ exists. If it does exist, then we have the following corollary.

Corollary VII.1. As t→∞, we have fn−t(u) = Π[0,1)(u).

Proof. According to (52), as t→∞,

fn−t(u) = fn−t(u(1− p)−1) + fn−t((u− (1− p))p−1). (58)
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Now let v = u
1−p . Then (58) becomes

fn−t(v(1− p)) = fn−t(v) + fn−t((1− p)(v − 1)p−1). (59)

For all v ∈ [0, 1), (v − 1) < 0 and thus fn−t((1− p)(v − 1)p−1) ≡ 0. Hence, for all v ∈ [0, 1),

fn−t(v) = fn−t(v(1− p)) = fn−t(v(1− p)k), (60)

where k ∈ N. Since limk→∞(1− p)k = 0, we have fn−t(u) ≡ fn−t(0) for all u ∈ [0, 1). Finally,

by exploiting
∫ 1

0
fn−t(u)du = 1, it is clear that fn−t(u) = Π[0,1)(u) as t→∞.

Immediately following Corol. VII.1, the initial CCS of the classic AC is f0(u) = Π[0,1)(u) as

n→∞ [21], [22], because the DAC degenerates into the classic AC when t = n.

C. Numerical Algorithm for Calculating CCS

In practice, it is more convenient to calculate fi(u) numerically using an algorithm similar to

that proposed for uniform SMBS in [22]. To begin with, the interval [0, 1) is discretized into

N equal-length cells. If N is sufficiently large, fi(u) for u ∈ [0, 1) can be approximated by

fi(
k
N

) for k ∈ [0 : N). For simplicity, fi( kN ) will be abbreviated to fi(k) below. In a similar

way, fi(k|0) and fi(k|1) are defined as the discretized fi(u|0) and fi(u|1), respectively. Then,

the proposed numerical algorithm for calculating CCS has the following steps:

1) Initialization: Depending on the values of p and r, fn(k) is set in different way. In the

birational case, fn(k) is set by (46); in the irrational case, fn(k) is set by (49).

2) Calculation of fi(k|0): We discretize (55) to calculate fi(k|0):

f̃i−1(k|0) = (1− p)−γ(i)fi(bk(1− p)−γ(i)e). (61)

where b·e denotes the rounding operation. Note that a constraint must be imposed on k to

guarantee bk(1− p)−γ(i)e ≤ (N − 1) in (61). For simplicity, we force k(1− p)−γ(i) ≤ (N − 1),

which results in k ≤ (N − 1)(1 − p)γ(i). Hence, the domain of k in (61) is [0 : H0], where

H0 = b(N − 1)(1− p)γ(i)c. It is easy to verify

bk(1− p)−γ(i)e ≤ bH0(1− p)−γ(i)e ≤ (N − 1). (62)
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As for k ∈ (H0 : N), we have f̃i(k|0) = 0. Since fi(k|0) is a discretized version of fi(u|0),∑N−1
k=0 fi(k|0) = N must hold. Hence, f̃i(k|0) must be normalized as below

fi(k|0) =
Nf̃i(k|0)∑N−1
k′=0 f̃i(k

′|0)
. (63)

3) Calculation of fi(k|1): We discretize (56) to calculate fi(k|1):

f̃i−1(k|1) = p−γ(i)fi(b(k −N(1− pγ(i)))p−γ(i)e). (64)

A constraint must be imposed on k to guarantee b(k − N(1 − pγ(i)))p−γ(i)e ≥ 0 in (64). To

simplify the analysis, we force (k −N(1− pγ(i))) ≥ 0, which is followed by k ≥ N(1− pγ(i)).

Hence, the domain of k in (64) is [L1 : N), where L1 = dN(1− pγ(i))e. It is easy to verify

b(k −N(1− pγ(i)))p−γ(i)e ≥ b(L1 −N(1− pγ(i)))p−γ(i)e ≥ 0. (65)

As for k ∈ [0 : L1), we have f̃i(k|1) = 0. Again,
∑N−1

k=0 fi(k|1) = N must hold because fi(k|1)

is a discretized version of fi(u|1). Thus, f̃i(k|1) must be normalized as below

fi(k|1) =
Nf̃i(k|1)∑N−1
k′=0 f̃i(k

′|1)
. (66)

4) Calculation of fi(k): On knowing fi(k|0) and fi(k|1), we discretize (52) to get fi(k):

fi(k) = (1− p)fi(k|0) + pfi(k|1). (67)

Since fi(k|0) and fi(k|1) have been normalized in (63) and (66),
∑N−1

k=0 fi(k) = N holds always

and thus there is no need to normalize fi(k).

VIII. SIMULATION RESULTS

This section presents some simulation results to verify the above analyses. The analytical

CCS is obtained by implementing the above-given equations and algorithms in MATLAB. The

empirical CCS is obtained by the same method as used in [22]. First, a number of source blocks

are generated according to a specific probability distribution, each of which is encoded and

then decoded along the proper path by a DAC codec. During the decoding, the bitstream self-

projection is calculated and discretized. Finally, the discretized bitstream self-projection of each

specific level is counted to obtain the corresponding CCS. A 32-bit DAC codec is used in the
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Fig. 6. Examples to illustrate the impact of FBRL τ̄ on the CCS of uniform SMBS, where empiric stands for the CCS obtained
by a practical DAC codec. (a) The final CCS, where analytic stands for the CCS obtained by (46). (b) Evolution of CCS, where
analytic stands for the CCS obtained by (52).

following simulations and 220 blocks are generated for each CCS. For both analytical CCS and

empirical CCS, the interval [0, 1) is discretized into 28 = 256 cells.

A. CCS of Uniform SMBS

Before studying the CCS of biased SMBS, let us first show the impact of FBRL τ̄ on the CCS

of uniform SMBS. Fig. 6(a) verifies the correctness of (46). We fix t = 0 and r = 0.5. Two code

lengths 128 and 129 are tested. For n = 128, τ̄ = 0 and thus the final CCS fn(u) = Π[0,1)(u); for

n = 129, τ̄ = 0.5 and hence there are two jump points at u = 1−2−τ̄ ≈ 0.3 and u = 2−τ̄ ≈ 0.7.

Fig. 6(b) verifies the correctness of (52) for n = 129. We select two typical levels of CCS,

fn−1(u) and f0(u). It can be seen that the analytical results coincide well with the empirical

results. By comparing Fig. 6(b) with the results in [22], we can find that as n→∞, the initial

CCS f0(u) when τ̄ > 0 is the same as that when τ̄ = 0.

B. Final CCS of Biased SMBS—Birational Case

Fig. 7 gives some examples to verify the analyses on the final CCS of biased SMBS in the

birational case, i.e., d = log2
1−p
p
∈ Q and rd ∈ Q.

Fig. 7(a) verifies the correctness of (46) for tailless DAC. Since b = |xnn−t+1| ≡ 0 for tailless

DAC, we shorten η(a, b) to η(a) and τ(a, b) to τ(a). We set r = 0.25 and p = 0.2, so d = 2 and
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Fig. 7. Examples of the final CCS of biased SMBS when d = log2
1−p
p
∈ Q and rd ∈ Q, where empiric stands for the CCS

obtained by a practical DAC codec and analytic stands for the CCS obtained by (46). (a) Tailless DAC. (b) Tailed DAC.

rd = 1
2
, resulting in κ = 2 and τ(a) ∈ {τ̇ , τ̇ + 1

2
}. Two code lengths are tested. For n = 128,

η(0) ≈ 10.30, so τ̇+ 1
2

= τ(0) ≈ 0.7 and τ̇ ≈ 0.2. Hence in [0, 0.5), there are two jump points at

u ≈ (1−2−0.2) ≈ 0.1294 and (1−2−0.7) ≈ 0.3844. For n = 256, η(0) ≈ 20.6, so τ̇ = τ(0) ≈ 0.4

and τ̇ + 1
2
≈ 0.9. Hence in [0, 0.5), there are two jump points at u ≈ (1− 2−0.4) ≈ 0.2421 and

(1−2−0.9) ≈ 0.4641. By symmetry, we can get two other jump points in [0.5, 1). These deductions

are confirmed by Fig. 7(a).

Fig. 7(b) verifies the correctness of (46) for tailed DAC. We set r = 0.5 and p ≈ 0.4425, so

d = 1
3

and rd = 1
6
, resulting in κ = 6 and τ(a, b) ∈ {τ̇ , τ̇ + 1

6
, · · · , τ̇ + 5

6
}. In addition, we set

n = 256 and t = 64, so η(0, 0) ≈ 134.873 and τ̇ = τ(0, 0) ≈ 0.127. Thus in [0, 0.5), there are

six jump points at u ≈ 0.0843, 0.1842, 0.2732, 0.3525, 0.4231, and 0.4861. By symmetry, we

can get six other jump points in [0.5, 1). These deductions are confirmed by Fig. 7(b).

C. Final CCS of Biased SMBS—Irrational Case

Fig. 8 gives some examples to verify the analyses on the final CCS of biased SMBS in the

irrational case, i.e., d = log2
1−p
p

/∈ Q and/or rd /∈ Q. We set r = 0.5 and p = 0.3. Figs. 8(a)

and 8(b) present the results for tailless and tailed DAC, respectively. In Fig. 8(a), two code

lengths 256 and 128 are tested, while in Fig. 8(b), two combinations of n and t are tested:

(n, t) = (256, 64) and (128, 32). It can be seen that the correctness of (49) is well confirmed for

both tailless and tailed DAC.
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Fig. 8. Examples of the final CCS of biased SMBS when d = log2
1−p
p

/∈ Q or rd /∈ Q, where empiric stands for the CCS
obtained by a practical DAC codec and analytic stands for the CCS obtained by (49). (a) Tailless DAC. (b) Tailed DAC.
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Fig. 9. Examples to demonstrate the backward evolution of CCS for biased SMBS, where empiric stands for the CCS obtained
by a practical DAC codec and analytic stands for the CCS obtained by (52). (a) Tailless DAC. (b) Tailed DAC.

D. CCS Evolution of Biased SMBS

Fig. 9 gives some examples to verify the analyses on the backward evolution of CCS, where

n = 256, r = 0.5, and p = 0.3. Fig. 9(a) confirms the correctness of (52) for tailless DAC,

where two typical levels of CCS, i.e., fn−1(u) and f0(u), are presented. Fig. 9(b) confirms the

correctness of (52) for tailed DAC with t = 64, where three typical levels of CCS, i.e., fn−1(u),

fn−t(u), and f0(u), are presented. As shown by Fig. 9(b), the final body CCS fn−t(u) does tend
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to be uniform over [0, 1) as t → ∞. By comparing Fig. 9(a) with Fig. 9(b), we conclude that:

Though fn−1(u) of tailed DAC is quite different from that of tailless DAC, the initial CCS f0(u)

of tailed DAC as (n− t)→∞ is the same as that of tailless DAC as n→∞.

IX. CONCLUSION

This paper extends our prior work on CCS from uniform SMBS to biased SMBS. Both tailless

DAC and tailed DAC are investigated in this paper. An important finding is that in contrast to

uniform SMBS, for biased SMBS, the final CCS cannot be converted into the uniform function

over [0, 1) by carefully tuning coding parameters. We give the analytical form of the final CCS for

both birational and irrational cases, and deduce the recursive formula for the backward evolution

of CCS. A numerical algorithm is also proposed for calculating CCS effectively in practice. All

analyses are verified by simulation results. How to apply the CCS of biased SMBS to decoder

design will be our next work in the future.

The results in this paper can be reproduced by running the source codes released in [28].
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