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Enabling optimal access and error correction
for the repair of Reed-Solomon codes

Zitan Chen Min Ye Alexander Barg

Abstract

Recently Reed-Solomon (RS) codes were shown to possess a repair scheme that supports repair of failed
nodes with optimal repair bandwidth. In this paper, we extend this result in two directions. First, we propose
a new repair scheme for the RS codes constructed in [Tamo-Ye-Barg, IEEE Transactions on Information
Theory, vol. 65, May 2019] and show that our new scheme is robust to erroneous information provided by
the helper nodes while maintaining the optimal repair bandwidth. Second, we construct a new family of RS
codes with optimal access for the repair of any single failed node. We also show that the constructed codes
can accommodate both features, supporting optimal-access repair with optimal error-correction capability.

Going beyond RS codes, we also prove that any scalar MDS code with optimal repair bandwidth allows
for a repair scheme with optimal access property.

I. INTRODUCTION

The problem of efficient erasure correction in various classes of algebraic codes has recently attracted
renewed attention because of its links to applications of erasure coding for distributed storage. Compared to

the classic setting of erasure correction, efficient functioning of distributed storage systems critically depends

on the volume of communication exchanged between the nodes for the purposes of data recovery. The
constraint on the amount of communication, termed “repair bandwidth,” adds new features to the problem,

and has motivated a large amount of research in coding theory in the last decade.

Consider an pn, k, lq array code C over a finite field F , i.e., a collection of codewords c “ pc1, . . . , cnq,

where ci “ pci,0, ci,1, . . . , ci,l´1qT P F l, i “ 1, . . . , n. A node ci, i P rns can be repaired from a subset of

d ě k helper nodes tcj : j P Ru,R Ď rnsztiu, by downloading βipRq symbols of F if there are numbers

βij , j P R, functions fij : F
l Ñ F βij , j P R, and a function gi : F

ř

jPR
βij Ñ F l such that

ci “ giptfijpcjq, j P Ruq for all c “ pc1, . . . , cnq P C

and
ÿ

jPR

βij “ βipRq.

Codes that we consider form linear spaces over F . If C is not linear over F l, it is also called a vector code,

while if it is, it is called scalar to stress the linearity property. A code C is called MDS if any k coordinates
tcji , i “ 1, . . . , ku of the codeword suffice to recover its remaining n´k coordinates. In this paper we study

the repair problem of scalar MDS codes.

It is well known [1] that for any MDS code C (scalar or vector), any i P rns, and any R Ď rnsztiu of
cardinality |R| ě k, we have

βipRq ě
l

|R| ´ k ` 1
|R|. (1)

For an MDS code C, we define the minimum bandwidth of repair of a node from a d-subset R of helper
nodes as βpdq “ maxiPrns minRĂrnsztiu,|R|“d βipRq. It follows immediately from (1) that

β :“ βpdq ě
l

d ´ k ` 1
d. (2)
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An MDS code that attains the bound (2) with equality is said to afford optimal repair, and a repair scheme
that attains this bound is called optimal. Such codes are also termed minimium storage regenerating or MSR

codes, and the parameter l is called node size or sub-packetization. Multiple constructions of vector MDS

codes with optimal repair are available in the literature, including papers [2], [3], [4], [5], [6], [7].

The basic repair problem of MDS codes has been extended to the case that some of the helper nodes

provide erroneous information (or arbitrary nature). Suppose that a subset of e nodes out of d helpers provide
erroneous information and define βpd, eq to be the minimum number of symbols needed to repair a failed

node in the presence of such errors. It was shown [8], [9] that for d ě k ` 2e,

βpd, eq ě
dl

d ´ 2e ´ k ` 1
. (3)

A repair scheme that achieves this bound is said to have optimal error correction capability. Constructions

of MDS array codes with optimal error correction capability are presented, for instance, in [4].

Another parameter of erasure codes for distributed storage that affects the system performance is the
so-called access, or input-output cost of repair. Indeed, while the code may support parsimonious exchange

between the helper nodes and the repair center, generation of the symbols to be transmitted from the helper

node may require reading the entire contents of the node (trivial access), which increases delays in the system.
The smallest number of symbols accessed on each of the helper nodes in an MSR code is l{pd ´ k ` 1q,
and such codes are said to have the optimal access property. Advantages of having this property are well

recognized in the literature starting with [10], and a number of papers were devoted to constraints that it
imposes on the code parameters such as sub-packetization [11], [12]. Many families of MSR codes including

early constructions in [3], [13] as well as code families for general parameters in [4], [5], [14], [15] have
the optimal access property.

The optimal-access repair and optimal error correction capability can be combined. According to (3), we

say that a code family/repair scheme have both properties if repair can be performed in the presence of
e errors, while the number of symbols accessed on each of the helper nodes equals 1{pd ´ 2e ´ k ` 1q
proportion of the contents of each of d helper nodes.

While the aforementioned papers mostly deal with vector codes, in this paper we focus on the repair
problem for scalar MDS codes, more specifically, for Reed-Solomon (RS) codes. This code family continues

to attract attention in multiple aspects of theoretical research (list decoding of variants of RS codes, locally
recoverable codes, to name a few) and it is also one of the most used coding methods in a vast variety of

practical systems. The first work to isolate and advance the repair problem for RS codes was [16] which

itself followed and developed the ideas in [17]. In [16], the authors view each coordinate of RS codes as
a vector over some subfield and characterize linear repair schemes of RS codes over this subfield. For RS

codes (and more generally for scalar codes), the node size l is defined as the degree of extension of the

symbol field over the subfield. Following [16], several papers attempted to optimize the repair bandwidth of
RS codes [18], [19], [20]. A family of optimal-repair RS codes in the case of repairing a single failed node

as well as multiple nodes was constructed in [21]. Later this construction was extended to the case of the

rack-aware storage model, resulting in a family of codes with optimal repair of a single node [15], and this
problem was addressed again in [22].

In this paper we address two problems related to RS repair, namely,

(i) repair schemes of RS codes with optimal error correction, and

(ii) RS codes with optimal-access repair.

Error correction during repair of failed storage nodes was previously only considered for vector codes [8],
[9], [4]. The problem of low-access RS codes was studied in [23]–[25]. In particular, the last of these works

analyzed the access (input/output) cost of the family of RS codes of [21], providing an estimate of this

parameter, but stopping short of achieving optimal access.

Our main results provide a solution to problems (i)-(ii). Specifically, we construct a repair scheme for RS

codes in [21] that has optimal error correction capability (i.e., attains the bound (3)), and we also construct

a family of RS codes with optimal access repair for any single failed node. Additionaly, we prove that the
constructed codes can be furnished with a repair scheme that supports both optimal error correction and

optimal-access repair.

Apart from this, we also show that any scalar MDS code with optimal repair of a single node from d
helpers, k ď d ď n´1, affords a repair scheme with optimal access, and this includes the RS codes in [21].
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While our arguments do not provide an explicit construction, we give a combinatorial search procedure,
showing that it exists for any scalar MSR code. The resulting optimal access codes have the same sub-

packetization as the original MDS codes.

The constructions are technically involved, and we begin in Sec. II with illustrating them in an example.

The three sections that follow it are devoted to the results described above.

II. A SIMPLE EXAMPLE

In this section, we construct an RS code together with a repair scheme that can recover its first node with

both optimal access and optimal error correction capability.

A. Preliminaries

1) : We begin with some standard definitions. Recall that a generalized RS code (GRS code) of length

n and dimension k over a finite field F is obtained by fixing a set of n distinct evaluation points Ω :“
tα1, α2, . . . , αnu Ă F and a vector pv1, . . . , vnq P pF˚qn with no zero coordinates. Then the GRS code is

the set of vectors

GRSF pn, k, v,Ωq “ tpv1fpα1q, v2fpα2q, . . . , vnfpαnqq : f P F rxs, deg f ă ku.

In particular, if pv1, . . . , vnq “ p1, . . . , 1q, then the GRS code is called the Reed-Solomon (RS) code and is

denoted by RSF pn, k,Ωq. It is a classic fact that the dual code pRSF pn, k,ΩqqK is GRSF pn, n ´ k, v,Ωq,
where v P pF˚qn is some vector. In particular, if c “ pc1, . . . , cnq P Fn is a vector such that

řn

i“1
cihpαiq “

0 for every polynomial hpxq of degree ď k ´ 1, then c is contained in a GRSF code of dimension n ´ k.
Rephrasing this, we have the following obvious proposition that will be frequently used below.

Proposition 1. Let c “ pc1, . . . , cnq P Fn and suppose that
řn

i“1
ciα

t
i “ 0 for all t “ 0, 1, . . . , k ´ 1. Then

the vector c is contained in a code GRSF pn, n ´ k, v,Ωq, where v P pF˚qn and Ω “ tα1, . . . , αnu.

Let E be an algebraic extension of F of degree s. The trace mapping trE{F is given by x ÞÑ 1` x|F | `

x|F |2 ` ¨ ¨ ¨ ` x|F |s´1

. For any basis γ0, . . . , γs´1 of E over F there exists a trace-dual basis δ0, . . . , δs´1,

which satisfies trE{F pγiδjq “ 1ti“ju for all pairs i, j. For an element x P E the coefficients of its expansion

in the basis pγiq are found using the dual basis, specifically, x “
řs´1

i“0
trE{F pxδiqγi. As a consequence, for

any basis pδiq the mapping E Ñ F s given by x ÞÑ ptrpxδiq, i “ 0, . . . , s ´ 1q is a bijection.

2) : Before we define the RS code that will be considered below, let us fix the parameters of the repair

scheme. We attempt to repair a failed node using information from d helper nodes. Suppose that at most e
of them provide erroneous information. Assume that d ´ 2e ě k, and let s :“ d ´ 2e ´ k ` 1. Let F be a

finite field of size |F | ě n ´ 1. Choose a set of distinct evaluation points Ω :“ tα1, α2, . . . , αnu such that

αi P F for all 2 ď i ď n and α1 is an algebraic element of degree s over F . Let E :“ F pα1q. Consider the
code

C :“ RSEpn, k,Ωq.

In this section we present a repair scheme of the code C that can repair the first node of C over the field F ;
in other words, we represent the coordinates of C as s-dimensional vectors over F in some basis of E over

F. Thus, the node size of this code is s. We note that the code C represented in this way is still a scalar

code.

The repair scheme presented below has the following two properties:

‚ the optimal error correction capability, i.e., the repair bandwidth achieves the bound (3) for any pair

pd, eq such that d ´ 2e “ s ` k ´ 1;

‚ in the absence of errors it has the optimal access property, i.e., the number of symbols accessed during
the repair process is d. Thus, in this case e “ 0 and s “ d ´ k ` 1.
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B. Repair scheme with optimal error correction capability

Let c “ pc1, c2, . . . , cnq P C be a codeword and suppose that c1 is erased. Since CK “ GRSEpn, n´k, v,Ωq
for some v P pE˚qn, we have

v1α
t
1
c1 ` v2α

t
2
c2 ` ¨ ¨ ¨ ` vnα

t
ncn “ 0, t “ 0, 1, . . . , n ´ k ´ 1,

or

v1α
t
1
c1 “ ´v2α

t
2
c2 ´ ¨ ¨ ¨ ´ vnα

t
ncn, t “ 0, 1, . . . , n ´ k ´ 1. (4)

Evaluating the trace tr “ trE{F on both sides of (4), we obtain the relation

trpv1α
t
1
c1q “ ´ trpv2α

t
2
c2q ´ ¨ ¨ ¨ ´ trpvnα

t
ncnq

“ ´αt
2
trpv2c2q ´ ¨ ¨ ¨ ´ αt

n trpvncnq, t “ 0, 1, . . . , n ´ k ´ 1, (5)

where the second equality follows from the fact that α2, . . . , αn P F . Therefore, knowing the values of
ptrpv2c2q, . . . , trpvncnqq enables us to compute trpv1α

t
1
c1q for all 0 ď t ď n ´ k ´ 1. Since degF pα1q “ s,

the elements 1, α1, . . . , α
s´1

1
form a basis of E over F . As a consequence, one can recover c1 from the

values of ttrpv1α
t
1
c1q : 0 ď t ď s ´ 1u. By definition, s ´ 1 “ d ´ 2e ´ k ď n ´ k ´ 1, so ttrpv1α

t
1
c1q :

0 ď t ď s ´ 1u Ď ttrpv1α
t
1
c1q : 0 ď t ď n ´ k ´ 1u. Combining this with (5), we see that the value c1 is

fully determined by the set of elements ptrpv2c2q, . . . , trpvncnqq.

Recalling our problem, we will show that in order to repair c1, it suffices to acquire the values trpviciq
from any d helper nodes provided that at least d ´ e “ pd ` s ` k ´ 1q{2 of these values are correct. This

will follow from the following proposition.

Proposition 2. Let fpxq P F rxs be the minimal polynomial of α1. For any s ă n ´ k and any c “
pc1, . . . , cnq P C the vectors pfpα2q trpv2c2q, . . . , fpαnq trpvncnqq are contained in an pn ´ 1, s ` k ´ 1q
GRS code over F.

Proof. Let T :“ t0, 1, . . . , n ´ k ´ s ´ 1u. Since αi P F, i “ 2, . . . , n by definition we have fpαiq ‰ 0 for

all such i. Next, degpfq “ s, and thus for all t P T

pv1α
t
1
fpα1q, v2α

t
2
fpα2q, . . . , vnα

t
nfpαnqq P CK.

This implies that for all t P T

v1α
t
1
fpα1qc1 ` v2α

t
2
fpα2qc2 ` ¨ ¨ ¨ ` vnα

t
nfpαnqcn “ 0,

but fpα1q “ 0, so taking the trace, we obtain

αt
2
fpα2q trpv2c2q ` ¨ ¨ ¨ ` αt

nfpαnq trpvncnq “ 0, t P T. (6)

By Proposition 1, this implies that the vectors pfpα2q trpv2c2q, . . . , fpαnq trpvncnqq are contained in a GRS

code of length n ´ 1 with n ´ s ´ k parities.

The GRS code identified in this proposition can be punctured to any subset R of d coordinates, retaining

the dimension and the MDS property. This means that the punctured code is capable of correcting any

e “ pd´s´k`1q{2 errors. Therefore, as long as no more than e helper nodes provide incorrect information,
we can always recover ptrpv2c2q, . . . , trpvncnqq by acquiring a subset ttrpvij cij q, j “ 1, . . . , du from any

d helper nodes and correcting the errors based on any decoding procedure of the underlying MDS code.

Finally note that the case s “ n ´ k can be added trivially because then d “ n ´ 1 and e “ 0, so all the
helper nodes provide accurate information, and no error correction is required (or possible).

C. Optimal access property

Following the discussion in the first part of this section, we show that the code C “ RSEpn, k,Ωq defined

above supports optimal-access repair of the node c1. In this part we assume that the helper nodes provide
accurate information about their contents, and we do not attempt error correction.
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To represent the code, we choose a pair of trace-dual bases pbiq, pb˚
i q of E over F, where we assume w.l.o.g.

that b0 “ 1. Next, represent the ith coordinate of the code, i P t1, . . . , nu, using the basis pv´i
i bm,m “

0, . . . , s ´ 1q, where pv1, . . . , vnq is defined by the code CK. Namely, for a codeword c P C we have

ci “ v´1

i

s´1
ÿ

m“0

ci,mb˚
m, (7)

where ci,m P F for all m “ 0, 1, . . . , s ´ 1. We assume that each storage node contains the vector

pci,0, ci,1, . . . , ci,s´1q.

As discussed above, the value c1 can be recovered from any d-subset of the set of elements ttrpviciq, j “
2, . . . , nu. Further, for all i “ 2, . . . , n and m “ 0, . . . , s ´ 1 we have trpvicibmq “ ci,m, so in particular,

trpviciq “ ci,0.

Thus, to repair c1 it suffices to access and download a single symbol ci,0 from the chosen subset of d helper

nodes. According to the bound (1), the minimum number of symbols downloaded from a helper node for
optimal repair is the p1{sqth proportion of the node’s contents. Overall this shows that the repair scheme

considered above has the optimal access property.

The above discussion sets the stage for constructing RS codes with optimal-access repair for each of
the n coordinates. Namely, we took a basis 1, b1, . . . , bs´1 of E over F and represented each ci in the

basis pv´1

i b˚
i q. The only element of the helper coordinate that we access and download is ci,0. For more

complicated constructions of RS codes, e.g., the ones constructed in [21] and below in the paper, we assume
that E is an l-degree extension of F . The known repair schemes require to download elements of the form

trpvicia0q, trpvicia1q, . . . , trpviciapl{sq´1q, where a0, a1, . . . , apl{sq´1 are linearly independent over F . In
this case, we can extend the set a0, a1, . . . , apl{sq´1 to a basis pbiq of E over F. Following the approach in

(7), we store the code coordinate ci as the vector of its coefficients pci,0, ci,1, . . . , ci,l´1q in the dual basis

pb˚
i , i “ 0, . . . , l ´ 1q of the basis pbiq. Since ci,m “ trpviciamq for all m “ 0, 1, . . . , l{s ´ 1, this choice

of the basis enables one to achieve optimal access. This idea underlies the construction presented below in

Sec. IV-A.

D. Optimal access with error correction

Thus far, we have assumed that errors are absent for optimal-access repair. To complete the picture,

we address the case of codes with both optimal access and optimal error correcting capability for the
repair of node c1. It is easily seen that both properties can be combined. Indeed, since trpviciq “ ci,0
for all i “ 2, . . . , n, and since by Proposition 2 these elements form a codeword of a GRS code, it is

immediately clear that c1 can be repaired with optimal error correction capability and optimal access. To
enable this property for any ci, below we add extra features to the general repair scheme with optimal access.

Specifically, error correction and optimal access are based on two different structures supported by the code.

We show that it is possible to realize the error-correction structure in an extension field located between the
base field and the symbol field of the code. Further reduction to the base field enables us to perform repair

with optimal access. These ideas are implemented in detail in Sec. IV-B below.

III. ENABLING ERROR CORRECTION FOR REPAIR OF RS CODES OF [21]

In this section we propose a new repair scheme for the optimal-repair family of RS codes of [21] that

supports the optimal error correction capability.

A. Preliminaries

We begin with briefly recalling the definition of the subfamily of RS codes of [21]. The construction

depends on the number of helper nodes d used for the purpose of repair of a single node, k ď d ď n ´ 1.

Definition 1 ([21]). Let p be a prime, let s :“ d ´ k ` 1, and let p1, . . . , pn be distinct primes that satisfy

the condition pi ” 1 mod s, i “ 1, . . . , n, Let C :“ RSKpn, k,Ωq be a Reed-Solomon code, where

‚ Ω “ tα1, . . . , αnu, where αi, i “ 1, . . . , n is an algebraic element of degree pi over Fp,

‚ K “ Fpβq, where β is an algebraic element of degree s over F :“ Fppα1, . . . , αnq.
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As shown in [21], this code supports optimal repair of any node i from any set of d helper nodes in
rnsztiu. Below we use this construction, choosing the value of s based not only on the number of helpers

but also on the target number of errors tolerated by the repair procedure.

In this section we consider an RS code C given by Def. 1, where we take s “ d´2e´k`1. For this code

we will present a new repair scheme that has the property of optimal error correction. This repair scheme

as well as the original repair scheme developed in [21] rely on the following lemma:

Lemma 3 ([21], Lemma 1). Let F be a finite field. Let r be a prime such that r ” 1 mod s for some s ě 1.
Let α be an element of degree r over F and β be of degree s over the field F pαq. Let K “ F pα, βq be the

extension field of degree rs. Consider the F -linear subspace S of dimension r with the basis

E :“ tβuαu`qs | u “ 0, . . . , s ´ 1; q “ 0, . . . , r´1

s
´ 1u

ď

!
s´1
ÿ

u“0

βuαr´1

)

.

Then S ` Sα ` ¨ ¨ ¨ ` Sαs´1 “ K, and this is a direct sum.

Without loss of generality, we only present the repair scheme for the first node c1, and all the other nodes

can be repaired in the same way (this is different from the previous section where the code was designed
to support optimal repair only of the node c1). The scheme is complicated, and we take time to develop it,

occasionally repeating similar arguments more than once rather than compressing the presentation.

The repair of c1 is conducted over the field F1 :“ Fppα2, α3, . . . , αnq. It is clear that F “ F1pα1q and
K “ Fpβq, where degF1

pα1q “ p1 and deg
F
pβq “ s. Below we use tr “ trK{F1

to denote the trace mapping

from K to F1.

Define the set

E1 :“ tβuα
u`qs
1

| u “ 0, . . . , s ´ 1; q “ 0, . . . , p1´1

s
´ 1u

ď

!
s´1
ÿ

u“0

βuα
p1´1

1

)

. (8)

Clearly, |E1| “ p1, and we write the elements in E1 as e0, e1, . . . , ep1´1. Then Lemma 3 implies that the

set of elements

teiα
j
1
: i “ 0, . . . , p1 ´ 1, j “ 0, . . . , s ´ 1u (9)

forms a basis of K over F1.

Let CK “ GRSKpn, n ´ k, v,Ωq be the dual code. For every codeword pc1, . . . , cnq P C we have

v1α
t
1
c1 ` v2α

t
2
c2 ` ¨ ¨ ¨ ` vnα

t
ncn “ 0, t “ 0, 1, . . . , n ´ k ´ 1.

Multiplying by ei on both sides of the equation and evaluating the trace, we obtain the relation

trpeiv1α
t
1
c1q “ ´

n
ÿ

j“2

trpeivjα
t
jcjq

“ ´
n

ÿ

j“2

αt
j trpeivjcjq, t “ 0, 1, . . . , n ´ k ´ 1,

(10)

where the second equality follows since αj P F1 for all 2 ď j ď n. Therefore, the elements ttrpeivjcjq : 2 ď
j ď nu suffice to compute ttrpeiv1α

t
1
c1q : 0 ď t ď n´k´1u. Since s “ d´2e´k`1 ď d´k`1 ď n´k,

we can calculate ttrpeiv1α
t
1
c1q : 0 ď t ď s ´ 1u from ttrpeivjcjq : 2 ď j ď nu. Thus knowing the values

of ttrpeivjcjq : 2 ď j ď n, 0 ď i ď p1 ´ 1u suffices to find the set of elements

ttrpeiv1α
t
1
c1q : 0 ď t ď s ´ 1, 0 ď i ď p1 ´ 1u. (11)

Since the set (9) forms a basis of K over F1, the set teiv1α
t : 0 ď i ď p1 ´ 1, 0 ď t ď s ´ 1u also forms a

basis of K over F1, and therefore we can recover c1 from (11). In conclusion, to recover c1, it suffices to

know the set of elements ttrpeivjcjq : 2 ď j ď n, 0 ď i ď p1 ´ 1u.
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B. The repair scheme

For j “ 2, 3, . . . , n define the vector rj :“ ptrpeivjcjq, i “ 0, . . . , p1 ´ 1q. In this section we design

invertible linear transformations Mj that send these vectors to a set of vectors zj that support error correction.

The following proposition underlies our repair scheme.

Proposition 4. Consider the set of vectors zj “ pzj,0, zj,1, . . . , zj,p1´1q, j “ 2, 3, . . . , n defined by

zTj “ Mjr
T
j , (12)

where M2, . . . ,Mn are invertible matrices of order p1. Suppose that for every i “ 0, 1, . . . , p1 ´ 1, the

vector pz2,i, z3,i, . . . , zn,iq is contained in an MDS code of length n ´ 1 and dimension s ` k ´ 1. Then

there is a repair scheme of the code C that supports recovery of the node c1 with optimal error correction

capability.

Note that, by the closing remark in Sec. II-B, it suffices to assume that s ă n ´ k.

Proof. If pz2, z3, . . . , znq is a codeword in an MDS array code of length n´1 and dimension s`k´1, then

the punctured codeword pzj : j P Rq is contained in an MDS array code of length d “ |R| and dimension
s ` k ´ 1 “ d ´ 2e, and such the code can correct any e errors.

To repair the failed node c1, we download p1-dimensional vectors r̂j , j P R, where R Ă rnszt1u, |R| “ d
is a set of d helper nodes. For all but e or fewer values of j, we have r̂j “ rj . The repair scheme consists
of the following steps:

(i) Find the vectors ẑTj “ Mj r̂
T
j , j P R,

(ii) Find the vectors zj , j P R using the error correction procedures of the underlying MDS codes,

(iii) For every i “ 0, . . . , p1 ´ 1 use the d-subset tzj,i, j P Ru to recover the codeword pz2,i, z3,i, . . . , zn,iq,

(iv) Find the vectors rTj “ M´1

j zTj , j “ 2, . . . , n ´ 1 and finally recover c1.

Step (ii) is justified by the fact that, by assumption, at most e of the elements ẑj are incorrect. In step (iii)

we rely on the fact that d symbols of the MDS codeword suffice to recover the remaining n´1´d symbols,
and in step (iv) we use invertibility of the matrices Mj and recover c1 using (10), (11).

The total number of downloaded symbols of F1 equals p1d, and it is easy to verify that the repair bandwidth
of our scheme meets the bound (3) with equality.

Why do we need the matrices Mj and why were they not involved in the example in Sec. II-B? The answer
is related to the fact that we need to remove the failed node from consideration and obtain a codeword of

the MDS code that contains all the other nodes. In the example the degree of the minimal polynomial of α1,

denoted fpxq, is s ă n´ k, so the evaluations of xtf are dual codewords (see (6) in Prop. 2). This implies
that the downloaded symbols form a codeword in an MDS code over F which supports error correction.

Importantly, this codeword does not involve the erased coordinate.

Switching to the RS codes of [21] considered here, the element α1 is of degree p1 over the repair field
F pα2, . . . , αnq, and generally p1 ą n ´ k ´ 1, so the minimal polynomial of α1 is not a dual codeword.

This requires us to modify the above idea. In general terms, we will find suitable elements of the set E1

such that Eq. (10) yields linear relations between the entries of the form trpeivjcjq. The coefficients of these

relations form the rows of the matrix Mj .

C. The matrices Mj

In this section we will construct the matrices Mj and the vector zj, and also prove the full rank condition.

Rather than writing the expressions at this point in the text, We proceed in stages, by deriving p1 linear
relations involving components of the vectors on both sides of (12). (the notation is rather complicated and

would not be intuitive; if desired, the reader may nevertheless consult Sec. III-D, particularly, Eq.(27)).
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1) The first p1 ´ s ´ 1 relations:

Proposition 5. For all 0 ď u ď s ´ 1 and 0 ď q ď p1´1

s
´ 2, the vector

`

αs
j trpβ

uα
u`qs
1

vjcjq ´ trpβuα
u`pq`1qs
1

vjcjq, j “ 2, . . . , n
˘

(13)

is a codeword in a GRS code of length n ´ 1 and dimension s ` k ´ 1.

Proof. Let us write (10) for ei of the form ei “ βuα
u`qs
1

:

trpβuα
u`qs`t
1

v1c1q “ ´
n

ÿ

j“2

αt
j trpβ

uα
u`qs
1

vjcjq, t “ 0, 1, . . . , n ´ k ´ 1

(see also (8)). Writing this as

trpβuα
u`pq`1qs`t´s
1

v1c1q “ ´
n

ÿ

j“2

αs`t´s
j trpβuα

u`qs
1

vjcjq, t “ 0, 1, . . . , n ´ k ´ 1

and performing the change of variable pt ´ sq ÞÑ t, we obtain the relation

trpβuα
u`pq`1qs`t
1

v1c1q “ ´
n

ÿ

j“2

αs`t
j trpβuα

u`qs
1

vjcjq, (14)

t “ ´s,´s ` 1, . . . ,´s ` n ´ k ´ 1.

On the other hand, substitutinng ei “ βuα
u`pq`1qs
1

into (10), we obtain

trpβuα
u`pq`1qs`t
1

v1c1q “ ´
n

ÿ

j“2

αt
j trpβ

uα
u`pq`1qs
1

vjcjq, t “ 0, 1, . . . , n ´ k ´ 1. (15)

Note that the left-hand sides of (14) and (15) conicide for t “ 0, 1, . . . , n ´ k ´ s ´ 1, and thus so do the

right-hand sides. We obtain

n
ÿ

j“2

αs`t
j trpβuα

u`qs
1

vjcjq “
n

ÿ

j“2

αt
j trpβ

uα
u`pq`1qs
1

vjcjq

or
n

ÿ

j“2

αt
j

`

αs
j trpβ

uα
u`qs
1

vjcjq ´ trpβuα
u`pq`1qs
1

vjcjq
˘

“ 0,

for t “ 0, 1, . . . , n ´ k ´ s ´ 1. On account of Proposition 1 this implies the claim about the GRS code;

moreover, since there are n ´ k ´ s independent parity-check equations, the dimension of this code is
pn ´ 1q ´ pn ´ k ´ sq “ s ` k ´ 1.

We note that the components of the vector (13) are formed as linear combinations of the elements
trpeivjcjq, and so this gives us p1 ´ s ´ 1 vectors zj.

2) One more relation:

Proposition 6. The vector

´
s´1
ÿ

u“0

αs´u
j trpβuα

u`p1´s´1

1
vjcjq ´ tr

´
s´1
ÿ

u“0

βuα
p1´1

1
vjcj

¯

, j “ 2, . . . , n
¯

(16)

is a codeword in a GRS code of length n ´ 1 and dimension s ` k ´ 1.

Proof. Going back to (10), take ei “ βuα
u`p1´s´1

1
for u “ 0, 1, . . . , s ´ 1. We obtain the relation

trpβuα
u`p1´s´1`t
1

v1c1q “ ´
n

ÿ

j“2

αt
j trpβ

uα
u`p1´s´1

1
vjcjq, t “ 0, 1, . . . , n ´ k ´ 1.
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Changing the variable pt ` u ´ sq ÞÑ t in the above equation, we obtain that for every u “ 0, 1, . . . , s ´ 1,

trpβuα
p1´1`t
1

v1c1q “ ´
n

ÿ

j“2

αt´u`s
j trpβuα

u`p1´s´1

1
vjcjq, (17)

t “ u ´ s, u ´ s ` 1, . . . , u ´ s ` n ´ k ´ 1.

Since
s´1
č

u“0

tu ´ s, u ´ s ` 1, . . . , u ´ s ` n ´ k ´ 1u “ t´1, 0, 1, . . . , n ´ k ´ s ´ 1u, (18)

we have

trpβuα
p1´1`t
1

v1c1q “ ´
n

ÿ

j“2

αt´u`s
j trpβuα

u`p1´s´1

1
vjcjq,

´ 1 ď t ď n ´ k ´ s ´ 1, 0 ď u ď s ´ 1.

Taking the cue from (18), let us sum these equations on u “ 0, 1, . . . , s ´ 1, and we obtain

tr
´

s´1
ÿ

u“0

βuα
p1´1`t
1

v1c1

¯

“ ´
n

ÿ

j“2

s´1
ÿ

u“0

αt´u`s
j trpβuα

u`p1´s´1

1
vjcjq, (19)

´ 1 ď t ď n ´ k ´ s ´ 1.

Turning to (8) again, let us substitute the element
řs´1

u“0
βuα

p1´1

1
into (10):

tr
´

s´1
ÿ

u“0

βuα
p1´1`t
1

v1c1

¯

“ ´
n

ÿ

j“2

αt
j tr

´
s´1
ÿ

u“0

βuα
p1´1

1
vjcj

¯

, 0 ď t ď n ´ k ´ 1 (20)

From (19) and (20) we deduce the equality

n
ÿ

j“2

s´1
ÿ

u“0

αt´u`s
j tr

´

βuα
u`p1´s´1

1
vjcj

¯

“
n

ÿ

j“2

αt
j tr

´
s´1
ÿ

u“0

βuα
p1´1

1
vjcj

¯

,

or

n
ÿ

j“2

αt
j

´
s´1
ÿ

u“0

αs´u
j trpβuα

u`p1´s´1

1
vjcjq ´ tr

´
s´1
ÿ

u“0

βuα
p1´1

1
vjcj

¯¯

“ 0

for 0 ď t ď n ´ k ´ s ´ 1. By Proposition 1, the proof is complete.

3) The remaining s relations: Following the plan outlined in Sec. III-B, we have constructed p1 ´ s
vectors zj , listed in (13) and (16). In order to find the remaining s linear combinations of the elements ri,j ,

we develop the idea used in the example in Sec. II-B.

We begin with introducing some notation. Let fpxq be the minimal polynomial of α1 over F1. For
h “ 0, 1, . . . , s ´ 1 define

fhpxq “ xp1`hpmodfpxqq, (21)

then deg fh ă deg f “ p1 and α
p1`h
1

“ fhpα1q. Let fh,q P F1rxs, q “ 0, . . . , pp1 ´1q{s´1 be the (uniquely

defined) polynomials such that

(i) deg fh,q ď s ´ 1, q “ 0, 1, . . . , p1´1

s
´ 2;

(ii) deg fh,pp1´1q{s´1 ď s;

(iii)

fhpxq “

pp1´1q{s´1
ÿ

q“0

xqsfh,qpxq. (22)
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Proposition 7. For every h “ 0, 1, . . . , s ´ 1, the vector

´

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

fh´u,qpαjq trpαu`qs
1

βuvjcjq `
s´1
ÿ

u“h`1

αh`1´u`s
j trpβuα

u`p1´s´1

1
vjcjq

´αh`1

j trp
s´1
ÿ

u“0

βuα
p1´1

1
vjcjq, j “ 2, 3, . . . , n

¯

(23)

is contained in a GRS code of length n ´ 1 and dimension s ` k ´ 1.

The proof of this proposition is rather long and technical, and is given in Appendix A.

Concluding, expressions (13), (16), and (23) yield p1 linear combinations of the elements ptrpe0vjcjq,
trpe1vjcjq, . . . , trpep1´1vjcjqq for every j P t2, 3, . . . , nu. It is these linear combinations that we denote

by zj “ pzj,0, zj,1, . . . , zj,p1´1q in (12). We have shown that for every i P t0, 1, . . . , p1 ´ 1u, the vector

pz2,i, z3,i, . . . , zn,iq is contained in an MDS code of length n´1 and dimension s`k´1. The next subsection
treats the remaining part of the assumptions in Proposition (4) above.

D. The linear transforms Mj are invertible

The object of this section is to show that the mapping

ptrpe0vjcjq, trpe1vjcjq, . . . , trpep1´1vjcjqq ÞÑ zj “ pzj,0, zj,1, . . . , zj,p1´1q

is invertible. In other words, we will show that rankpMjq “ p1 for all j. Let us first simplify the notation.

Recall the set E1 “ te0, e1, . . . , ep1´1u in (8) and let us order its elements in the order of increase of the
powers of α1 :

eu`qs :“ βuα
u`qs
1

for u “ 0, 1, . . . , s ´ 1 and q “ 0, 1, . . . , p1´1

s
´ 1

ep1´1 :“
s´1
ÿ

u“0

βuα
p1´1

1
.

Using the notation ri,j “ trpeivjcjq introduced above, the vectors in (13) can be written as

pαs
jru`qs,j ´ ru`qs`s,j , j “ 2, . . . , nq for 0 ď u ď s ´ 1 and 0 ď q ď

p1 ´ 1

s
´ 2.

or, writing i “ u ` qs, as

pαs
jri,j ´ ri`s,j , j “ 2, . . . , nq for 0 ď i ď p1 ´ s ´ 2. (24)

Similarly, the vector in (16) can be written as

´
s´1
ÿ

u“0

αs´u
j ru`p1´s´1,j ´ rp1´1,j , j “ 2, . . . , n

¯

, (25)

and the vectors in (23) can be written as

´

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

fh´u,qpαjqru`qs,j `
s´1
ÿ

u“h`1

αh`1´u`s
j ru`p1´s´1,j ´ αh`1

j rp1´1,j , j “ 2, . . . , n
¯

,

0 ď h ď s ´ 1.

(26)

For a fixed value of j, the entries in (24)–(26) form the vector zj “ pzj,0, zj,1, . . . , zj,p1´1q, and we list its

coordinates according to the chosen order:

zj,i :“ αs
jri,j ´ ri`s,j for 0 ď i ď p1 ´ s ´ 2,

zj,p1´s´1 :“
s´1
ÿ

u“0

αs´u
j ru`p1´s´1,j ´ rp1´1,j ,

zj,p1´s`h :“
h

ÿ

u“0

pp1´1q{s´1
ÿ

q“0

fh´u,qpαjqru`qs,j

`
s´1
ÿ

u“h`1

αh`1´u`s
j ru`p1´s´1,j ´ αh`1

j rp1´1,j for 0 ď h ď s ´ 1.

,

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

-

(27)
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Our objective is to show that the linear mapping pr0,j , r1,j , . . . , rp1´1,jq
Mj

Ñ pzj,0, zj,1, . . . , zj,p1´1q is
invertible. This will follow once we show that its kernel is trivial, i.e., that if pzj,0, zj,1, . . . , zj,p1´1q is

the all-zeros vector, then so is pr0,j , r1,j , . . . , rp1´1,jq. If zj,i “ αs
jri,j ´ ri`s,j “ 0 for 0 ď i ď p1 ´ s ´ 2,

then

ru`qs,j “ αs
jru`pq´1qs,j “ ¨ ¨ ¨ “ α

qs
j ru,j for 0 ď u ď s ´ 1 and 1 ď q ď

p1 ´ 1

s
´ 1. (28)

Using (28) in the expression for zj,p1´s`h, 0 ď h ď s ´ 1, we obtain the following s relations:

zj,p1´s`h “
h

ÿ

u“0

pp1´1q{s´1
ÿ

q“0

fh´u,qpαjqαqs
j ru,j

`
s´1
ÿ

u“h`1

αh`1´u`s
j α

p1´s´1

j ru,j ´ αh`1

j rp1´1,j

“
h

ÿ

u“0

fh´upαjqru,j `
s´1
ÿ

u“h`1

α
p1`h´u
j ru,j ´ αh`1

j rp1´1,j , (29)

where the second equality follows from (22). Using (28) in the expression for zj,p1´s´1, we obtain

zj,p1´s´1 “
s´1
ÿ

u“0

αs´u
j α

p1´s´1

j ru,j ´ rp1´1,j “
s´1
ÿ

u“0

α
p1´u´1

j ru,j ´ rp1´1,j. (30)

Since we assumed that the z-vector is zero, coordinates zp1´u, u “ s ` 1, s, . . . , 1 that appear in (29), (30)

are zero. Writing these conditions in matrix form using the above order, we obtain
»

—

—

—

—

—

—

—

—

–

α
p1´1

j α
p1´2

j α
p1´3

j . . . α
p1´s
j ´1

f0pαjq α
p1´1

j α
p1´2

j . . . α
p1´s`1

j ´αj

f1pαjq f0pαjq α
p1´1

j . . . α
p1´s`2

j ´α2

j

f2pαjq f1pαjq f0pαjq . . . α
p1´s`3

j ´α3

j

...
...

...
...

...
...

fs´1pαjq fs´2pαjq fs´3pαjq . . . f0pαjq ´αs
j

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

r0,j
r1,j
r2,j

...
rs´1,j

rp1´1,j

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 0, (31)

We aim to show that the above matrix is invertible.

Recall that fpxq is the minimal polynomial of α1 and from (22), fpxq ` f0pxq “ xp1 . Since fpxq is

irreducible over F1 and αj P F1, we have fpαjq ‰ 0 for all j “ 2, . . . , n.

Multiplying the first row of the matrix in (31) by αj and then subtracting the second row from the first

row, we obtain
»

—

—

—

—

—

—

—

–

fpαjq 0 0 . . . 0 0

f0pαjq α
p1´1

j α
p1´2

j . . . α
p1´s`1

j ´αj

f1pαjq f0pαjq α
p1´1

j . . . α
p1´s`2

j ´α2

j

f2pαjq f1pαjq f0pαjq . . . α
p1´s`3

j ´α3

j

...
...

...
...

...
...

fs´1pαjq fs´2pαjq fs´3pαjq . . . f0pαjq ´αs
j

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Since fpαjq ‰ 0, we can use elementary row operations to erase the first column, obtaining

»

—

—

—

—

—

—

—

–

fpαjq 0 0 . . . 0 0

0 α
p1´1

j α
p1´2

j . . . α
p1´s`1

j ´αj

0 f0pαjq α
p1´1

j . . . α
p1´s`2

j ´α2

j

0 f1pαjq f0pαjq . . . α
p1´s`3

j ´α3

j

...
...

...
...

...
...

0 fs´2pαjq fs´3pαjq . . . f0pαjq ´αs
j

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Proceeding analogously, let us multiply the second row of this matrix by αj and then subtract the third row
from the second one to obtain

»

—

—

—

—

—

—

—

–

fpαjq 0 0 . . . 0 0
0 fpαjq 0 . . . 0 0

0 f0pαjq α
p1´1

j . . . α
p1´s`2

j ´α2

j

0 f1pαjq f0pαjq . . . α
p1´s`3

j ´α3

j

...
...

...
...

...
...

0 fs´2pαjq fs´3pαjq . . . f0pαjq ´αs
j

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

As above, we can eliminate all the nonzeros in the second column except for fpαjq, and so on. In the end we

obtain the matrix diagpfpαjq, . . . , fpαjq,´αs
jq with nonzero diagonal. This proves that the matrix in (31)

is invertible. Therefore, r0,j “ r1,j “ ¨ ¨ ¨ “ rs´1,j “ rp1´1,j “ 0. Combining this with (28), we conclude

that ri,j “ 0 for all 0 ď i ď p1 ´ 1. This proves that the matrices Mj, j “ 2, . . . , n in (12) are invertible,

providing the last missing element to the justification of the repair scheme with optimal error correction.

IV. A FAMILY OF OPTIMAL-ACCESS RS CODES

In this section, we construct a new family of RS codes that is similar to the construction in [21] but

affords repair with optimal access.

The input-output cost of node repair for the RS codes of [21] was analyzed in [25] for d “ n ´ 1.

According to (2), in this case the minimum access cost per helper node equals l
n´k

. The authors of [25]

showed that it is possible to adjust the repair scheme so that the access cost is p1` n´k´1

pi
q l
n´k

, i.e., at most

twice the optimal value. However, more is true: namely, it turns out that any fixed node in the construction

of [21] (Def. 1) can be repaired with optimal access. This observation, which is the starting point of the new
construction, is based on the fact that it is possible to construct a basis of the field K over the base field

that reduces the access cost of the repair of the chosen node. If the option of choosing the basis for each

erased node were available, we could use the arguments in Sec. II-C to perform repair with optimal access.
The difficulty arises because this would entail rewriting the storage contents, which should be avoided. To

address this issue, we construct the code over a field that contains n elements βi instead of a single element
β, and this supports efficient repair of any single failed node. This idea is developed below.

A. New construction

Consider the following sequence of algebraic extensions of Fp : let K0 “ Fp and for i “ 1, . . . , n let

Fi “ Ki´1pαiq,Ki “ Fipβiq, (32)

where αi is an algebraic element of degree pi over Fp and βi is an element of degree s “ d ´ k ` 1 over
Fi. In the end we obtain the field

K :“ Kn “ Fppα1, . . . , αn, β1, . . . βnq. (33)

We still assume that p1, . . . , pn are distinct primes satisfying the condition pi ” 1 mod s for all i “
1, . . . , n. Consider the code C :“ RSKpn, k,Ωq, where as before, the set of evaluation points is given by
Ω “ tα1, . . . , αnu. We will show that the code C affords optimal-access repair.

The repair scheme follows the general approach of [16] and its implementation in [21]. Let c “ pc1, . . . , cnq P
C be a codeword. Suppose that the node i has failed (coordinate ci is erased), and we would like to repair
it from a set of helper nodes R Ď t1, . . . , nuztiu with |R| “ d. Let

hpxq “
ź

jPt1,...,nuzpRYtiuq

px ´ αjq.

Clearly, we have degpxthpxqq ă n ´ k for t “ 0, . . . , s ´ 1. Therefore, for some nonzero vector v “
pv1, . . . , vnq, we have pv1α

t
1
hpα1q, . . . , vnα

t
nhpαnqq P CK for t “ 0, . . . , s´1, where CK “ GRSKpn, k, v,Ωq.

In other words, we have

viα
t
ihpαiqci “ ´

n
ÿ

j“1

j‰i

vjα
t
jhpαjqcj , t “ 0, . . . , s ´ 1. (34)



13

The repair scheme in [21] as well as in this paper relies on this set of s dual codewords to recover the value
of ci.

Remark 1. The dual codewords xthpxq have zero values in the complement of the set R̂ :“ RYtiu. In other

words, they are contained in the shortened code pCKqR̂ of the dual code. Thinking dually, we can start with

the code CK and construct a repair scheme for its coordinates based on the punctured code C
R̂

(coordinate

projection of C on R̂). This approach is equivalent to the scheme used in [21] and in this paper because

ppCKqR̂qK – C
R̂
.

Let us establish a few simple properties of the tower of fields defined above in (32), (33).

Lemma 8. The extension degrees in the field tower Fp “ K0 Ă ¨ ¨ ¨ Ă Ki Ă ¨ ¨ ¨ Ă Kn “ K are as follows:

rKi : Fps “ si
i

ź

j“1

pj , i “ 1, . . . , n

rK : Fps “ l :“ sn
n

ź

i“1

pi.

Proof. The proof is obvious from the definition: for each i we adjoin two elements αi, βi to Ki´1, and their

degrees over Ki´1 are coprime, so they contribute spi to the result.

We will use an explicit form of the basis of K over Fp. For m “ 0, . . . , l ´ 1, let us write

m “ pmn,mn´1, . . . ,m1, m̄n, m̄n´1, . . . , m̄1q (35)

where mi “ 0, . . . , pi ´ 1 and m̄i “ 0, . . . , s ´ 1 for i “ 1, . . . , n.

Lemma 9. Let

A “ tam :“
n

ź

i“1

αmi

i

n
ź

j“1

β
m̄j

j | mi “ 0, . . . , pi ´ 1, m̄j “ 0, . . . , s ´ 1;m “ 0, 1, . . . , l ´ 1u.

Then A is a basis for K over Fp.

Proof. By co-primality, for i “ 1, . . . , n we have degKi´1
pαiq “ pi, and by construction, we have degFi

pβiq “
s. Thus, the elements am,m “ 0, . . . , l ´ 1 are linearly independent over Fp.

Lemma 10. For m “ 0, . . . , l ´ 1 let J “ tj P rns : pm̄j ,mjq “ ps ´ 1, pj ´ 1qu and let

bm “
n

ź

i“1

αmi

i ¨
ź

jPJ

´
s´1
ÿ

u“0

βu
j

¯

¨
ź

jRJ

β
m̄j

j .

Then the set B :“ tbm | m “ 0, . . . , l ´ 1u is a basis of K over Fp.

Furthermore, for i “ 1, . . . , n, let Ai “ tam P A | pmi, m̄iq “ p0, 0qu and Bi “ tbm P B | pmi, m̄iq “
p0, 0qu, then

Span
Fp

Ai “ Span
Fp

Bi.

Proof. Since |B| “ l, to prove that B is a basis it suffices to show that the elements am can be expressed as

linear combinations of the elements in B. Let J Ă rns and let ApJq “ tam P A : pm̄j ,mjq “ ps ´ 1, pj ´
1q, j P J; pm̄j ,mjq ‰ ps ´ 1, pj ´ 1q, j R Ju. We argue by induction on |J|. If m is such that J “ H, then
am P B, and there is nothing to prove. Now assume that for all J Ă rns, |J| ď J ´ 1 the elements am are

linearly generated by the elements in B, and let m be such that |J| “ J. We have

am “
n

ź

i“1

αmi

i

ź

jRJ

β
m̄j

j

ź

jPJ

βs´1

j

and

bm “
n

ź

i“1

αmi

i

ź

jRJ

β
m̄j

j

ź

jPJ

s´1
ÿ

u“0

βu
j “

n
ź

i“1

αmi

i

´

ź

jRJ

β
m̄j

j

¯´
s´1
ÿ

t1,...,tJ“0

J
ź

u“1

βtu
ju

¯

.
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Multiplying out the sums on right-hand side, we note that the term with all ti “ s ´ 1 equals am, while

the remaining terms contain fewer than J factors of the form α
pju ´1

ju
βs´1

ju
. Each of such terms is contained

in some ApJq with |J| ď J ´ 1, and is linearly generated by the elements bm by the induction hypothesis.

This implies that am is also expressible as a linear combination of the elements in B.

To prove the second claim, note that Span
Fp

Ai Ě Span
Fp

Bi. Therefore, to show that Span
Fp

Ai “
Span

Fp
Bi, it suffices to show that for any a “ 0, . . . , n ´ 1 and any J Ď t1, . . . , nuztiu, the set AipJq can

be generated linearly by the set Bi. This proof amounts essentially to the same calculation as above, and
will be omitted.

The role of the basis pbmq is to eliminate as many terms on the right-hand side of (34) as possible. To
repair the node ci we use the dual basis pb˚

mq of pbmq, writing

ci “ v´1

i

l´1
ÿ

m“0

ci,mb˚
m. (36)

Below tr “ trK{Fp
denotes the absolute trace.

Lemmas 8 and 3 immediately imply the following.

Proposition 11. For i “ 1, . . . , n, there exists vector space Si over Ki´1 such that dimKi´1
Si “ pi and

Si ` Siαi ` ¨ ¨ ¨ ` Siα
s´1

i “ Ki. Furthermore, a basis for Si over Ki´1 is given by

Ei :“ tβu
i α

u`qs
i | u “ 0, . . . , s ´ 1; q “ 0, . . . , pi´1

s
´ 1u

ď

!

α
pi´1

i

s´1
ÿ

u“0

βu
i

)

.

We continue with the description of the repair scheme where we left in (34). As a remark, below we write
the scheme over Fp rather than over its extensions (the latter approach was chosen in [21]). Multiplying

both sides of (34) by
śn

i1“1
ei1

śn

j1‰i α
tj1

j1 , where ei1 P Ei1 and tj1 “ 0, . . . , s ´ 1, and evaluating the trace,

we obtain

tr
´

n
ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 viα
t
ihpαiqci

¯

“ ´ tr
´

n
ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1

n
ÿ

j‰i

vjα
t
jhpαjqcj

¯

“ ´
n

ÿ

j‰i

tr
´

n
ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 vjα
t
jhpαjqcj

¯

“ ´
ÿ

jPR

tr
´

n
ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 vjα
t
jhpαjqcj

¯

. (37)

On account of Proposition 11 and the fact that vihpαiq ‰ 0, the set

!
n

ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 viα
t
ihpαiq

)

, (38)

where ei1 P Ei1 , i1 P rns; t “ 0, . . . , s´ 1; tj1 “ 0, . . . , s´ 1, j1 P rnsztiu, is a basis of K over Fp. Therefore,

we can recover ci once we know the right-hand side of (37).

For j P R, from (36) we have

trp
n

ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 vjα
t
jhpαjqcjq “ tr

´
n

ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 α
t
jhpαjq

l´1
ÿ

m“0

cj,mb˚
m

¯

“
l´1
ÿ

m“0

tr
´

n
ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 α
t
jhpαjqb˚

m

¯

cj,m. (39)

From (39), we see that in order to recover ci we need to access only those symbols cj,m for which

trp
n

ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 α
t
jhpαjqb˚

mq ‰ 0.
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Now, the element
śn

i1‰i ei1

śn

j1‰i α
tj1

j1 α
t
jhpαjq does not include αi, βi, and thus it can be written as an

Fp-linear combination of the elements in the set Ai. By Lemma 10, it can further be expressed as an Fp-

linear combination of the elements in the set Bi. Therefore, the elements
śn

i1“1
ei1

śn

j1‰i α
tj1

j1 αt
jhpαjq for

ei1 P Ei1 and tj1 “ 0, . . . , s ´ 1 can be linearly generated over Fp by the set
ď

eiPEi

eiBi Ď B.

Since B and B˚ are dual bases,

tr
´

n
ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 α
t
jhpαjqb˚

m

¯

‰ 0

if and only if bm P
Ť

eiPEi
eiBi. It follows that to calculate the left hand side of (37), we need to access

ř

eiPEi
|eiBi| “ pil{spi “ l{s symbols on each helper node j P R, which implies that the node ci affords

optimal-access repair.

In conclusion, we note that the repair scheme of each of the nodes i relies on its own element βi. Looking

back at the construction of [21], Sec. III above, it contains one such β. Thus, these codes can be furnished
with a repair scheme that has the optimal access property for any one (fixed) node in the encoding; see also

the discussion at the end of Sec. II-C.

B. Error correction with optimal access

In this section we present a repair scheme of the RS codes defined in the beginning of Sec. IV-A that
supports both the optimal access and optimal error correction properties. The scheme relies on a combination

of ideas of Sections IV-A and III. A full presentation of the proof would require us to repeat the arguments

in Sec. III-C; we shall instead confine ourselves to pointing to the similarity of the starting point and argue
that once this is recognized, the remaining part is reproduced directly following the proof in Sec. III-C.

Let us modify the construction of RS codes of Sec. IV-A as follows. Let us assume that the number of

helper nodes is d. We will construct our RS code over the symbol field K “ Fppα1, . . . , αn, β1, . . . , βnq (33),
where as before, degKi´1

pαiq “ pi but degFi
pβiq “ s :“ d´2e´k`1. Define the code C :“ RSKpn, k,Ωq,

where Ω “ tα1, . . . , αnu.

Without loss of generality suppose that the failed node is the first one and let R Ď t2, 3, . . . , nu with
|R| “ d, 2e ` k ď d ď n ´ 1 be the subset of helper nodes. Consider a basis of K over Fp given by
Ťs´1

t“0
αt
1
Λ, where

Λ “
!

n
ź

i“1

ei

n
ź

j“2

α
tj
j | ei P Ei, i P rns; tj “ 0, . . . , s ´ 1, j P rnszt1u

)

.

That this is a basis is apparent from (38).

Next, note that pv1α
t
1
, . . . , vnα

t
nq P CK for some v “ pv1, . . . , vnq P pK˚qn and for t “ 0, . . . , n ´ k ´ 1.

Therefore, for every λ P Λ we have

λv1α
t
1
c1 “ ´

n
ÿ

j“2

λvjα
t
jcj , t “ 0, . . . , n ´ k ´ 1.

Let G1 :“ Fppα2, α3, . . . , αnq. Evaluating the trace trK{G1
on both sides of the above equation, we obtain

trK{G1
pλv1α

t
1
c1q “ ´

n
ÿ

j“2

αt
j trK{G1

pλvjcjq, t “ 0, . . . , n ´ k ´ 1. (40)

The repair scheme for the code C is based on (40) in exactly the same way as the repair scheme of

Proposition 4 is based on (10). Namely, suppose that there are invertible linear transformations that map
the vectors ptrK{G1

pλvjcjq, λ P Λq, j “ 2, 3, . . . , n to codevectors in an MDS code of length n ´ 1 and

dimension s ` k ´ 1. Then it is possible to correct e errors in the information collected from the helper

nodes upon puncturing of this code to any d coordinates in the same way as is done in Proposition 4. Thus,
the main step is to prove existence of such transformations. Here we observe that the terms involved in (40)
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are formed of e1 times the remaining factors in λ. The element e1 plays the same role as ei in (10), and
the multiplier in front of it in λ does not affect the proof. For this reason, the required proof closely follows

the proof in Sec. III-C, and we do not repeat it here.

Thus, the vectors ptrK{G1
pλvjcjq, λ P Λq, j P R suffice to recover the value of the failed node. We argue

that these values can be calculated by accessing the smallest possible number of symbols on the helper

nodes, and thus support the claim of optimal access. Let B “ pbmq be the basis of K over Fp defined in
Lemma 10, let B˚ “ pb˚

mq be its dual basis, and let B1 “ tbm P b|pm1, m̄1q “ p0, 0qu. From (36), for every

λ P Λ and all j “ 2, 3, . . . , n we have the equality

trK{G1
pλvjcjq “ trK{G1

´

λ

l´1
ÿ

m“0

b˚
m

¯

ci,m.

Let Γ be a basis for G1 over Fp. Then from the above equation, for every γ P Γ we have

trG1{Fp
pγ trK{G1

pλvjcjqq “ trG1{Fp

´

γ trK{G1

´

λ

l´1
ÿ

m“0

b˚
m

¯¯

ci,m.

Since γ P G1 and trG1{Fp
˝ trK{G1

“ trK{Fp
, it follows that

trK{Fp
pγλvjcjq “ trK{Fp

´

γλ

l´1
ÿ

m“0

b˚
m

¯

ci,m. (41)

Note that the elements γλ “ γ
śn

i“1
ei

śn

j“2
α
tj
j can be written as Fp-linear combinations of the elements

in the set
Ť

e1PE1
e1B1 Ď B. By the duality of B and B˚, the number of symbols that each helper node

accesses to calculate the left hand side of (41) equals |
Ť

e1PE1
e1B1| “ l{s, which, as remarked in the

introduction, is the smallest possible number of symbols. Further, since Γ is a basis of G1 over Fp, we can

recover trK{G1
pλvjcjq from the set ttrK{Fp

pγλvjcjq | γ P Γu.

Finally, evaluating the trace trG1{Fp
on both sides of (40), we obtain

trK{Fp
pλv1α

t
1
c1q “ ´

n
ÿ

j“2

trG1{Fp
pαt

j trK{G1
pλvjcjqq, t “ 0, . . . , s ´ 1. (42)

Since the set tλv1α
t
1

| λ P Λ; t “ 0, . . . , s´ 1u forms a basis for K over Fp, we conclude from (42) that we
can perform optimal error correction for the code C with optimal access. As a final remark, the locations of

the entries accessed on each helper node depend only on the index of the failed node, and are independent

of the index of the helpers.

V. EVERY SCALAR MSR CODE AFFORDS OPTIMAL-ACCESS REPAIR

This section is devoted to establishing the claim in the title. We begin with a discussion of repair schemes

with a particular property of having constant repair subspaces and use it to show that every MSR code with
this property can be repaired with optimal access. In the last part of the section we remove this assumption,

establishing the general result, which is stated as follows.

Theorem 12. Let C be an pn, kq scalar MDS code over a finite field K of length n such that any single

failed node can be optimally repaired from any subset of d helper nodes, k ` 1 ď d ď n ´ 1 with optimal

repair bandwidth. Then there exists an explicit procedure that supports optimal-access repair of any single

node from any subset of d helpers, k ` 1 ď d ď n ´ 1.

A. Constant repair subspaces

Observe that the repair scheme presented above in Sec. IV has the property that for a given index of the

failed node i, the procedure for recovering the node contents does not depend on the chosen subset of d
helper nodes. Indeed, to repair node i, the scheme accesses symbols tcj,m | m : bm P

Ť

eiPEi
eiBiu on the

node j, i.e., the symbols cj,m with m “ pmi, m̄iq and

pmi, m̄iq P tpu ` qs, uq | u “ 0, . . . , s ´ 1; q “ 0, . . . , ppi ´ 1q{s ´ 1u Y tppi ´ 1, s ´ 1qu.
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Clearly the values of m are independent of j P R. This simplifies the implementation, and therefore represents
a desirable property of the scheme. In this section, we generalize this observation and give conditions for it

to hold.

Let C be an pn, kq linear scalar MDS code of length n over finite field K, and let r “ n ´ k be the

number of parity nodes. Let F be a subfield of K such that rK : F s “ l. For a subset M Ă K we write

dimF pMq to refer to the dimension of the subspace spanned by the elements of M over F . The following
result is a starting point of our considerations.

Theorem 13 ([16]). The code C has an optimal linear repair scheme over F with repair degree d “ n ´ 1
if and only if for every i “ 1, . . . , n there exist l codewords pcK

t,1, . . . , c
K
t,nq P CK, t “ 1, . . . , l such that

dimF pcK
1,i, . . . , c

K
l,iq “ l,

n
ÿ

j‰i

dimF pcK
1,j , . . . , c

K
l,jq “

pn ´ 1ql

r
.

We go on to define the main object of this section.

Definition 2. Let C be a scalar MDS code that has a linear repair scheme for repair of a single node

with optimal bandwidth, based on dual codewords cK
1
, . . . , cK

l . The scheme is said to have constant repair

subspaces if for every i “ 1, . . . , n and every R Ă rnsztiu, |R| “ d, the information downloaded from a

helper node cj, j P R to repair the failed node ci does not depend on the index j. Namely, the subspace

S
piq
j :“ SpanF pcK

1,j , . . . , c
K
l,jq, j P R is independent of the index j, i.e., S

piq
j “ Spiq for some linear subspace

Spiq Ď K.

The notion of constant repair subspaces was mentioned earlier in the literature on general MSR codes,

for instance, see [11].

The algorithms below in this section rely on a proposition which we cite from [21].

Proposition 14. Let C be an pn, n ´ rq MDS code and let rns “ J Y Jc, where J, |J | “ r is the set of

parity coordinates. Let H “ ph1, . . . , hnq be a parity-check matrix of C, where hi denote its columns. The

code C has an optimal linear repair scheme over F with repair degree d “ n ´ 1 if and only if for each

j P Jc there exist r vectors au P K l{r, u “ 1, . . . , r such that

dimF pAhjq “ l, (43)

dimF pAhiq “
l

r
, i P t1, . . . , nuztju, (44)

where A :“ Diagpa1, . . . , arq is an l ˆ r block-diagonal matrix with blocks formed by single columns.

Furthermore for every subspace Au “ SpanF pauq, u “ 1, . . . , r (the F -linear span of the entries of au) we

have

dimF pAuq “
l

r
. (45)

Remark 2. The matrix A in Proposition 14 depends on the matrix H and the choice of J , but we suppress
this dependence from the notation for simplicity.

Before presenting the algorithms for finding a basis for optimal-access repair we briefly digress to state
some conditions for an optimal linear repair scheme to have constant repair subspaces. First, we rephrase

their definition based Proposition 14.

Definition 3. An optimal linear repair scheme for the code C is said to have constant repair subspaces if

for every j “ 1, . . . , n there exists a vector h P Kr such that

SpanF pAhiq “ SpanF pAhq

for every i P t1, . . . , nuztju. Here the matrix A is as in Proposition 14, and it depends on H and the

particular choice of the information coordinates.

Proposition 15. Suppose that A1 “ A2 “ ¨ ¨ ¨ “ Ar for each i “ 1, . . . , n, and that for every j P
t1, . . . , nuztiu there exists v P t1, . . . , ru such that hv,j P F , then there exists an optimal linear repair

scheme for the code C which has constant repair subspaces.
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Proof. Let V denote any of the (coinciding) repair subspaces. By Proposition 14, we have dimF pVq “ l{r.
Suppose that J is the subset of parity coordinates, and the matrix H is represented in systematic form. In

this case, for every j P Jc, hu,j ‰ 0 for all u “ 1 . . . , r, and we have dimF pVhu,jq “ l{r. Note that

SpanF pAhjq “
r

ÿ

u“1

Auhu,j “
r

ÿ

u“1

Vhu,j , j P t1, . . . , nuztiu, (46)

where the sum on the right is a sum of linear spaces. By Proposition 14, we also have l{r “ dimF pAhjq “
dimF p

řr

u“1
Vhu,jq. Therefore,

Vh1,j “ Vh2,j “ ¨ ¨ ¨ “ Vhr,j , j P Jcztiu. (47)

Since for each j ‰ i there exists v P t1, . . . , ru such that hv,j P F, it follows that Vhv,j “ V. On account

of (46) and (47), we have SpanF pAhjq “ V “ SpanF pA ¨ 1q for every j P t1, . . . , nuztiu, where 1 is the
all-ones column vector of length r. By Definition 3 this completes the proof.

The assumptions of this proposition are satisfied, for instance, for the RS subfamily of [21], which therefore
have constant repair subspaces (this observation was previously not stated in published literature).

Proposition 16. If there exists an optimal linear repair scheme for the code C which has constant repair

subspaces, then A1 “ A2 “ ¨ ¨ ¨ “ Ar for every j “ 1, . . . , n.

Proof. Indeed, since HJ is the identity, for j P J we have SpanF pAhjq “ At for some t P t1, . . . , ru. It
follows that A1 “ A2 “ ¨ ¨ ¨ “ Ar.

B. Optimal access for the case of constant repair subspaces

The codes constructed in Sec. IV above form essentially the only known example of RS codes that afford

repair with optimal access. For instance, the optimal-repair RS codes in [21] are not known to support

optimal access, and the repair scheme in [21] is far from having this property. Prior works on the problem
of access cost for RS repair [23]–[25] also do not give examples of repair schemes with optimal access.

In this section we show that any family of scalar MDS codes with optimal repair can be furnished with a

repair scheme with optimal access, and this includes the code family in [21]. Unfortunately, our results are
not explicit; rather, we present an algorithm that produces a basis for representing nodes of the codeword

that supports optimal-access repair.

As in Sec. V-A, let F be a subfield of K such that rK : F s “ l. Let C be an pn, k “ n ´ rq linear scalar
MDS code of length n over K equipped with a repair scheme over F that attains the bound (2) for repair

of a single node. Let us represent C in systematic form, choosing a subset J Ď t1, . . . , nu, |J | “ r for the
parity symbols and Jc for the data symbols. Let H be an r ˆ n parity-check matrix for C such that HJ is

the r ˆ r identity matrix,

In this section we assume that there exists an optimal repair scheme over F for C that has constant repair
subspaces, and that the repair degree is d “ n ´ 1. We will lift both assumptions and show that our result

holds in general in the next section. For a given j “ 1, . . . , n consider the subspaces Ai, i “ 1, . . . , r defined

in Proposition 14. Under the assumption of constant repair subspaces, they coincide, and we use the notation
Vj to refer to any of them.

Consider the following procedure (Algorithm 1) that interatively collects vectors to form a basis of K{F
that supports optimal-access repair.

Proposition 17. Upon completion of Algorithm 1 we have Bj “ Vj for j “ 1, . . . , n, and thus Bj is a

basis for Vj over F .

Proof. From Algorithm 1, we have

Bj “
n´1
ÿ

i“0

ÿ

|I|“i,

IĎt1,...,nu

1tjPĪu

č

tPĪ

Vt, (48)
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Algorithm 1: Construction of an optimal basis

Input: Subspaces V1, . . . ,Vn.

Output: A basis B for K over F .

1 for j Ð 1 to n do

2 Bj Ð H;

3 Bj Ð t0u;

4 for i Ð 0 to n ´ 1 do

5 foreach I Ď t1, . . . , nu such that |I| “ i do

6 Ī Ð t1, . . . , nuzI;

7 UI Ð
Ş

jPĪ Vj ;

8 for j Ð 1 to n do

9 if j P Ī then

10 Bj Ð Bj ` UI ;

11 Extend the set Bj to a basis of Bj over F ;

12 B̄ Ð
Ťn

j“1
Bj ;

13 Extend the set B̄ to a basis B of K over F ;

so clearly Bj Ď Vj . Suppose that v P VjzBj , then there exists a subset Ī Ă t1, . . . , nu with 1 ď |Ī| ď n
such that j P Ī and that

v R
č

tPĪ

Vt.

However, Bj Ě
Ş

tPĪ Vt for every Ī with 1 ď |Ī | ď n such that j P Ī , which is a contradiction. Hence,

Bj “ Vj .

Proposition 18. Algorithm 1 returns a basis B for K over F .

Proof. From Algorithm 1, for every Ī Ď t1, . . . , nu with 1 ď |Ī| ď n and for every j P Ī , the set Bj

contains a basis of the subspace UI “
Ş

tPĪ Vt. It follows that for every Ī Ď t1, . . . , nu with 1 ď |Ī| ď n,

the set
Ş

tPĪ Bt is a basis for
Ş

tPĪ Vt.

Now by Proposition 17, B1, B2 are bases for V1,V2 over F , respectively. From the above, we have
B1 X B2 is a basis of V1 X V2 over F . It follows that dimF pV1 X V2q “ |B1 X B2|. Then

dimF pV1 ` V2q “ dimF pV1q ` dimF pV2q ´ dimF pV1 X V2q

“ |B1| ` |B2| ´ |B1 X B2|

“ |B1 Y B2|.

By definition, SpanF pB1 Y B2q “ V1 ` V2, and so the set B1 Y B2 is a basis of V1 ` V2 over F . By a
straightforward induction argument, we conclude that

Ťn
j“1

Bj is a basis for
řn

j“1
Vj over F .

Since
řn

j“1
Vj Ď K , we have |

Ťn

j“1
Bj | ď rK : F s “ l. It follows that we can extend the set B̄ “

Ťn

j“1
Bj to a basis B of K over F .

Now we are ready to present a repair scheme for the code C with the optimal access property. Let

B “ pbmq be the basis of K over F constructed above and let B˚ “ pb˚
mq be its dual basis. Given a

codeword c “ pc1, . . . , cnq P C, we expand its coordinates in the basis B˚, writing

ci “
l´1
ÿ

m“0

ci,mb˚
m. (49)

Suppose that ci is the erased coordinate of c (the “failed node”). The starting point, as above, is Eq. (34),

and our first step is to choose l dual codewords cK
t , t “ 1, . . . , l that support the repair. Construct the l ˆ n
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matrix CK “ AH and take the rows of C to be the needed codewords cK
t . Since cK

t ¨ c “ 0 for all t, we
have cK

t,ici “ ´
řn

j“1

j‰i

cK
t,jcj for all t “ 1, . . . , l. Computing the trace trK{F , we obtain

trK{F pcK
t,iciq “ ´

n
ÿ

j‰i

trK{F pcK
t,jcjq

“ ´
n

ÿ

j‰i

trK{F pcK
t,j

l´1
ÿ

m“0

cj,mb˚
mq

“ ´
n

ÿ

j‰i

l´1
ÿ

m“0

trK{F pcK
t,jb

˚
mqcj,m. (50)

Note that for each j P t1, . . . , nuztiu, we have

SpanF pcK
1,j , . . . , c

K
l,jq “ SpanF pAhjq “ Vi, (51)

where the last equality follows by the assumption of constant repair subspaces. By Proposition 17, the set

Bi Ď B is a basis for Vi over F . Therefore, cK
t,j can be linearly generated by the set Bi for every t “ 1, . . . , l.

More precisely, let Bi “ tbi,u |u “ 1, . . . , l{ru, then we have

cK
t,j “

l{r
ÿ

u“1

γj,ubi,u (52)

for some γj,u, u “ 1, . . . , l{r. Substituting into (50), we obtain the equality

trK{F pcK
t,iciq “ ´

n
ÿ

j‰i

l´1
ÿ

m“0

l{r
ÿ

u“1

trK{F pbi,ub
˚
mqγj,ucj,m. (53)

It follows that to determine the left-hand side of (53), on each node cj , j ‰ i the repair procedure needs to
access the set of symbols tcj,m | trK{F pbi,ub

˚
mq “ 1u. Since Bi Ď B and B˚ is the dual basis of B for K

over F, the cardinality of this subset equals |Bi| “ l{r, verifying that the repair can be accomplished with

the minimum possible access cost.

C. Optimal-access repair for general scalar MSR codes

In this section we extend the above arguments for optimal repair schemes that do not necessarily have
constant repair subspaces. This is done by a simple extension of Algorithm 1. We use the same notation as

in Sec. V-B.

1) Repair degree d “ n ´ 1:

Assume that the index of the failed node is i P t1, . . . , nu. By Proposition 14, for each j P t1, . . . , nuztiu,
we have

dimF pAuq “ dimF pAhjq “
l

r
, u “ 1, . . . , r.

It follows that for j P Jcztiu we have

A1hj,1 “ A2hj,2 “ ¨ ¨ ¨ “ Arhj,r.

Let J “ pi1, . . . , irq be the set of parity nodes written in increasing order of their indices, and for it P J let

σpitq “ t. Define

V
pjq
i “

#

A1hj,1 j P Jcztiu,

Aσpjq j P J.
(54)

Proposition 19. When Algorithm 2 terminates, we have B
pjq
i “ V

pjq
i for i P t1, . . . , nu and j P t1, . . . , nuztiu,

and thus B
pjq
i is a basis for V

pjq
i over F .
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Algorithm 2: Construction of an optimal basis; repair degree d “ n ´ 1

Input: Subspaces V
pjq
i , i P t1, . . . , nu, j P t1, . . . , nuztiu.

Output: A basis B for K over F .

1 for i Ð 1 to n do

2 foreach j P t1, . . . , nuztiu do

3 B
pjq
i Ð H;

4 B
pjq
i Ð t0u;

5 Ω Ð t1, . . . , nu2ztpi, iq | i “ 1, . . . , nu;

6 for u Ð 0 to n2 ´ n ´ 1 do

7 foreach I Ď Ω such that |I| “ u do

8 Ī Ð ΩzI;

9 UI Ð
Ş

pi,jqPĪ V
pjq
i ;

10 for i Ð 1 to n do

11 foreach j P t1, . . . , nuztiu do

12 if pi, jq P Ī then

13 B
pjq
i Ð B

pjq
i ` UI ;

14 Extend the set B
pjq
i to be a basis of B

pjq
i over F ;

15 B̄ Ð
Ťn

i“1

Ťn

j‰i B
pjq
i ;

16 Extend the set B̄ to be a basis B for K over F ;

Proposition 20. Algorithm 2 returns a basis B for K over F .

The proofs of Propositions 19 and 20 follow closely the proofs of Proposition 17 and 18 and will be

omitted.

Now it is not difficult to see that we can repair the failed node ci with optimal access cost relying on the

basis B. Indeed, for each j P t1, . . . , nuztiu, we have

SpanF pcK
1,j , . . . , c

K
l,jq “ SpanF pAhjq “ V

pjq
i . (55)

By Algorithm 2 and Proposition 19, the set B
pjq
i Ď B is a basis for V

pjq
i over F . Therefore, cK

t,j can be

linearly generated by the set B
pjq
i for every t “ 1, . . . , l. Let B

pjq
i “ tb

pjq
i,u | u “ 1, . . . , l{ru. Then, similarly

to (52) and (53), we have

cK
t,j “

l{r
ÿ

u“1

γj,ub
pjq
i,u, (56)

trK{F pcK
t,iciq “ ´

n
ÿ

j‰i

l´1
ÿ

m“0

l{r
ÿ

u“1

trK{F pb
pjq
i,ub

˚
mqγj,ucj,m. (57)

Therefore, each node cj , j ‰ i needs to access the set of symbols tcj,m | trK{F pb
pjq
i,ub

˚
mq “ 1u, whose

cardinality is given by |B
pjq
i | “ l{r. It follows that the repair scheme has the optimal access property.

2) Arbitrary repair degree:

So far we assumed that the repair relies on all the surviving nodes except for the single failed node, i.e.,

|R| “ n ´ 1. In this section we derive the most general version of the result of this section, that any scalar
MDS code can be repaired with optimal access from any subset of helper nodes R of size d, k`1 ď d ď n´1.
Let s :“ d ´ k ` 1.

Let G “ rg1|g2| . . . |gns be a kˆn generator matrix of C, where gi is a k-column over K . Let i P t1, . . . , nu
and let R S tiu be a subset of d helper nodes. Let R̂ “ RY tiu and G

R̂
be the kˆ pd`1q submatrix formed
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by the columns gj, j P R̂. Clearly, G
R̂

defines a pd ` 1, kq punctured code C
R̂

of the code C. Since C is

MDS, the code C
R̂

is itself MDS. Let HR̂ “ ph
pR̂q
i , i “ 1, . . . , d ` 1q be an the s ˆ pd ` 1q parity-check

matrix of the code C
R̂

. Recalling Remark 1, the code generated by HR̂ is a shortened code pCKqR̂, i.e., a

subcode of CK formed of the codewords with zeros in the coordinates in R̂c.

Suppose that the code C can optimally repair any single failed node i from the coordinates in R “ R̂ztiu.
This means that the MDS code C

R̂
can optimally repair any single failed node i from the helper nodes

R̂ztiu. Let J Ď R̂, |J | “ s and i R J and assume without loss of generality that the submatrix HR̂
J is

an s ˆ s identity matrix. Now Proposition 14 applied for the code C
R̂

guarantees that there exist vectors

au P K l{s, u “ 1, . . . , s such that the block-diagonal matrix A “ Diagpa1, . . . , asq satisfies

dimF pAh
pR̂q
i q “ l, (58)

dimF pAh
pR̂q
j q “

l

s
, j P R̂ztiu, (59)

dimF pAuq “
l

s
, u “ 1, . . . , s, (60)

where Au :“ SpanF pauq.

It follows from (59) and (60) that for j P R̂zpJ Y tiuq, we have

A1h
pR̂q
j,1 “ A2h

pR̂q
j,2 “ ¨ ¨ ¨ “ Ash

pR̂q
j,s .

Let us define

V
pjq

R̂,i
“

#

A1h
pR̂q
j,1 j P R̂zpJ Y tiuq,

Aσpiq j P J,
(61)

where σ is a bijection between J and t1, . . . , su defined as before (54).

The procedure to construct a basis for optimal-access repair in this case is constructed as a modification

of Algorithm 2, and is given in Algorithm 3.

Similarly to the previous sections, we have the following propositions, whose proofs are analogous to the
proofs of Propositions 17 and 18.

Proposition 21. When Algorithm 3 terminates, we have B
pjq

R̂,i
“ V

pjq

R̂,i
for R̂ Ď t1, . . . , nu with |R̂| “ d ` 1,

i P R̂, and j P R̂ztiu, and thus B
pjq

R̂,i
is a basis of V

pjq

R̂,i
over F .

Proposition 22. Algorithm 3 returns a basis B of K over F .

The basis of K over F constructed in the algorithm enables us to construct an optimal-access repair

scheme for the code C. Let d P tk ` 1, . . . , n ´ 1u be the repair degree. Let pc1, . . . , cnq be a codeword
of the code C written on the storage nodes, and suppose that the failed node is i and that R be the set of

d helper nodes. Let A be the block-diagonal matrix defined above, constructed with respect to i and HR̂.

Define the matrix CK “ AHR̂ and note that its rows cK
t , t “ 1, . . . , l form codewords of the code dual to

the punctured code C
R̂
. Letting cK

t “ pcK
t,iqiPR, we can write

cK
t,ici “ ´

ÿ

jPR

cK
t,jcj . (62)

Similarly to (50), we have

trK{F pcK
t,iciq “ ´

ÿ

jPR

l´1
ÿ

m“0

trK{F pcK
t,jb

˚
mqcj,m, (63)

where B˚ “ pb˚q is the dual basis of the basis B. Note that for j P R we have

SpanF pcK
1,j , . . . , c

K
l,jq “ SpanF pAhjq “ V

pjq
R,i. (64)
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Algorithm 3: Construction of an optimal basis; arbitrary repair degree

Input: Subspaces V
pjq

R̂,i
for each R̂ Ď t1, . . . , nu such that |R̂| “ d ` 1 and i P R̂, j P R̂ztiu.

Output: A basis B for K over F .

1 foreach R̂ Ď t1, . . . , nu such that |R̂| “ d ` 1 do

2 foreach i P R̂ do

3 foreach j P R̂ztiu do

4 B
pjq

R̂,i
Ð H;

5 B
pjq

R̂,i
Ð t0u;

6 Ω Ð tpR̂, i, jq | R̂ Ď t1, . . . , nu, i P R̂, j P R̂ztiuu;

7 for u Ð 0 to
`

n
d`1

˘

ppd ` 1q2 ´ pd ` 1qq ´ 1 do

8 foreach I Ď Ω such that |I| “ u do

9 Ī Ð ΩzI;

10 UI Ð
Ş

pR̂,i,jqPĪ V
pjq
i ;

11 foreach R̂ Ď t1, . . . , nu such that |R̂| “ d ` 1 do

12 foreach i P R̂ do

13 foreach j P R̂ztiu do

14 if pR̂, i, jq P Ī then

15 B
pjq

R̂,i
Ð B

pjq

R̂,i
` UI ;

16 Extend the set B
pjq

R̂,i
to be a basis of B

pjq

R̂,i
over F ;

17 B̄ Ð
Ť

R̂Ďt1,...,nu,|R̂|“d`1

Ť

iPR̂

Ť

j‰R̂ztiu B
pjq

R̂,i
;

18 Extend the set B̄ to be a basis B of K over F ;

By Algorithm 3 and Proposition 21, the set B
pjq
R,i Ď B forms a basis for the subspace V

piq
R,j over F . Therefore,

the element cK
t,j can be linearly generated by the set B

pjq
R,i for every t “ 1, . . . , l. Let B

pjq
R,i “ tb

pjq
R,i,u |u “

1, . . . , l{su. Then, similarly to (52) and (53), we have

cK
t,j “

l{s
ÿ

u“1

γj,ub
pjq
R,i,u, (65)

trK{F pcK
t,iciq “ ´

ÿ

jPR

l´1
ÿ

m“0

l{s
ÿ

u“1

trK{F pb
pjq
R,i,ub

˚
mqγj,ucj,m. (66)

Therefore, each node cj , j P R needs to access the set of symbol tcj,m | trK{F pb
pjq
R,i,ub

˚
mq “ 1u, whose

cardinality equals |B
pjq
R,i| “ l{s. It follows that the constructed repair scheme has the optimal access property.

This completes the proof of Theorem 12.

VI. CONCLUDING REMARKS

We have shown that error correction is feasible in the original code family of [21] without the increase of

the extension degree of the locator field of the code (the node size). Namely, codes from [21] use extension

degree l “ pd ´ k ` 1qL, where L is the product of the first n distinct primes in an arithmetic progression,

L “

ˆ n
ź

i“1

pi”1 mod pd´k`1q

pi

˙

.
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The lower bound on l from [21], necessary for repair of a single node, has the form l ě
śk´1

i“1
pi, where pi

is the i-th smallest prime. Asymptotically for fixed d´ k and growing n we obtain the following bounds on

the node size: Ωpkkq ď l ď Opnnq. Essentially the same node size is used in this paper for repair with error

correction. At the same time, the explicit RS code family with optimal access that we construct comes at
the expense of larger node size, namely l “ pd ´ k ` 1qnL. Since there is an optimal-access repair scheme

for every scalar MSR code, this leaves a gap between what is known explicitly and what is shown to be
possible, which represents a remaining open question related to the task of optimal repair of RS codes.

APPENDIX A

PROOF OF PROPOSITION 7

First we present the proof for the case h “ 0 (strictly speaking, we do not have to isolate it, but it makes

understanding the general case much easier). In this case, definition (21), (22) simplifies as follows. Let

f0pxq “ xp1 ´ fpxq. Write f0 as

f0pxq “ a0 ` a1x ` a2x
2 ` ¨ ¨ ¨ ` ap1´1x

p1´1

“

pp1´1q{s´1
ÿ

q“0

xqsf0,qpxq,

where
f0,0pxq “ a0 ` a1x ` ¨ ¨ ¨ ` as´1x

s´1

f0,1pxq “ as ` as`1x ` ¨ ¨ ¨ ` a2s´1x
s´1

. . .

f0,pp1´1q{s´1pxq “ ap1´1´s ` ap1´sx ` ¨ ¨ ¨ ` ap1´1x
s,

,

/

/

/

.

/

/

/

-

(67)

so that the degree of the last polynomial is ď s and the degrees of the remaining ones are ď s´1. Obviously,
we have

α
p1

1
“ f0pα1q (68)

“

pp1´1q{s´1
ÿ

q“0

α
qs
1
f0,qpα1q. (69)

As before, we start with (10), which implies that for any polynomial g P F1rxs of degree deg g ď n´k´1,

we have

trpeiv1gpα1qc1q “ ´
n

ÿ

j“2

gpαjq trpeivjcjq. (70)

Take ei “ α
qs
1

and gpxq “ xtf0,qpα1q and sum on q on the left, then from (69) we obtain trpv1α
t
1
f0pα1qc1q.

Summing on q on the right of (70) and using (68), we conclude that

trpv1α
p1`t
1

c1q “ ´

pp1´1q{s´1
ÿ

q“0

n
ÿ

j“2

αt
jf0,qpαjq trpαqs

1
vjcjq (71)

for all t “ 0, 1, . . . , n ´ k ´ s ´ 1, Note that the constraint t ď n ´ k ´ s ´ 1 is implied by the condition

degpgq “ degpxtf0,qpxqq ď n´k´1 needed in order to use (70) (and (10)). Change the variable t ÞÑ pt´1q
to write the last equation as

trpv1α
p1´1`t
1

c1q “ ´

pp1´1q{s´1
ÿ

q“0

n
ÿ

j“2

αt´1

j f0,qpαjq trpαqs
1
vjcjq. t “ 1, 2, . . . , n ´ k ´ s, (72)

From (17) and the fact that

s´1
č

u“1

tu ´ s, u ´ s ` 1, . . . , u ´ s ` n ´ k ´ 1u “ t´1, 0, 1, . . . , n ´ k ´ su,
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we obtain

trpβuα
p1´1`t
1

v1c1q “ ´
n

ÿ

j“2

αt´u`s
j trpβuα

u`p1´s´1

1
vjcjq, ´1 ď t ď n ´ k ´ s, 1 ď u ď s ´ 1.

Summing these equations on u “ 1, 2, . . . , s ´ 1, we obtain the relation

tr
´

s´1
ÿ

u“1

βuα
p1´1`t
1

v1c1

¯

“ ´
n

ÿ

j“2

s´1
ÿ

u“1

αt´u`s
j trpβuα

u`p1´s´1

1
vjcjq, ´1 ď t ď n ´ k ´ s.

For each t “ 1, 2, . . . , n´ k´ s let us add this equation and (72). This gives n´ k´ s relations of the form

tr
´

s´1
ÿ

u“0

βuα
p1´1`t
1

v1c1

¯

“ ´
n

ÿ

j“2

´
s´1
ÿ

u“1

αt´u`s
j trpβuα

u`p1´s´1

1
vjcjq

`

pp1´1q{s´1
ÿ

q“0

αt´1

j f0,qpαjq trpαqs
1
vjcjq

¯

.

Observe that the left-hand side of this equation is the same as the left-hand side of (20). Therefore,

n
ÿ

j“2

αt
j tr

´
s´1
ÿ

u“0

βuα
p1´1

1
vjcj

¯

“
n

ÿ

j“2

´
s´1
ÿ

u“1

αt´u`s
j trpβuα

u`p1´s´1

1
vjcjq

`

pp1´1q{s´1
ÿ

q“0

αt´1

j f0,qpαjq trpαqs
1
vjcjq

¯

, 1 ď t ď n ´ k ´ s.

Replacing t ´ 1 with t in this equation, we obtain that

n
ÿ

j“2

αt
j

´
s´1
ÿ

u“1

αs´u`1

j trpβuα
u`p1´s´1

1
vjcjq `

pp1´1q{s´1
ÿ

q“0

f0,qpαjq trpαqs
1
vjcjq

´ αj tr
´

s´1
ÿ

u“0

βuα
p1´1

1
vjcj

¯¯

“ 0, 0 ď t ď n ´ k ´ s ´ 1.

By Proposition 1, the vector

´
s´1
ÿ

u“1

αs´u`1

j tr
´

βuα
u`p1´s´1

1
vjcj

¯

`

pp1´1q{s´1
ÿ

q“0

f0,qpαjq trpαqs
1
vjcjq

´ αj tr
´

s´1
ÿ

u“0

βuα
p1´1

1
vjcj

¯

, j “ 2, . . . , n
¯

(73)

is contained in a GRS code of length n ´ 1 and dimension s ` k ´ 1. This proves the case h “ 0 of the

proposition.

Now let us consider the general case 0 ď h ď s ´ 1. From (21) and (22) we obtain

α
p1`h
1

“ fhpα1q “

pp1´1q{s´1
ÿ

q“0

α
qs
1
fh,qpα1q. (74)

This relation enables us to use the argument that yielded (71) above: Take ei “ α
u`qs
1

βu and gpxq “
xtfh,qpxq in (70) and sum on q “ 0, 1, . . . , pp1 ´ 1q{s ´ 1. We obtain for h “ 0, . . . , s ´ 1 and u “
0, . . . , s ´ 1 ´ h

trpαp1`h`u`t
1

βuv1c1q “

pp1´1q{s´1
ÿ

q“0

trpαqs`u`t
1

βufh,qpα1qv1c1q

“ ´

pp1´1q{s´1
ÿ

q“0

n
ÿ

j“2

αt
jfh,qpαjq trpαu`qs

1
βuvjcjq,
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t “ 0, 1, . . . , n ´ k ´ s ´ 1.

The restriction t ď n ´ k ´ s ´ 1 is imposed in the same way as in (71) (namely, it is necessary that

degpxtfh,qpxqq ď n ´ k ´ 1). Replacing h ` u with h in the last equation, we obtain that

trpαp1`h`t
1

βuv1c1q “ ´

pp1´1q{s´1
ÿ

q“0

n
ÿ

j“2

αt
jfh´u,qpαjq trpαu`qs

1
βuvjcjq,

0 ď h ď s ´ 1, 0 ď u ď h, 0 ď t ď n ´ k ´ s ´ 1.

Let us sum these equations on u “ 0, 1, . . . , h to obtain

trpαp1`h`t
1

h
ÿ

u“0

βuv1c1q “ ´
n

ÿ

j“2

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

αt
jfh´u,qpαjq trpαu`qs

1
βuvjcjq,

0 ď h ď s ´ 1, 0 ď t ď n ´ k ´ s ´ 1.

Replacing t with t ´ 1, we obtain that

tr
´

α
p1´1`h`t
1

h
ÿ

u“0

βuv1c1

¯

“ ´
n

ÿ

j“2

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

αt´1

j fh´u,qpαjq trpαu`qs
1

βuvjcjq,

0 ď h ď s ´ 1, 1 ď t ď n ´ k ´ s.

(75)

According to (17) and the fact that

s´1
č

u“h`1

tu ´ s, u ´ s ` 1, . . . , u ´ s ` n ´ k ´ 1u “ t´1, 0, 1, . . . , n ´ k ´ s ` hu,

for 0 ď h ď s ´ 1, we have

trpβuα
p1´1`t
1

v1c1q “ ´
n

ÿ

j“2

αt´u`s
j trpβuα

u`p1´s´1

1
vjcjq,

´1 ď t ď n ´ k ´ s ` h, h ` 1 ď u ď s ´ 1.

Replacing t with t ` h, we have

trpβuα
p1´1`h`t
1

v1c1q “ ´
n

ÿ

j“2

αh`t´u`s
j trpβuα

u`p1´s´1

1
vjcjq,

´h ´ 1 ď t ď n ´ k ´ s, h ` 1 ď u ď s ´ 1.

Summing these equations on u “ h ` 1, h ` 2, . . . , s ´ 1, we obtain

tr
´

s´1
ÿ

u“h`1

βuα
p1´1`h`t
1

v1c1

¯

“ ´
n

ÿ

j“2

s´1
ÿ

u“h`1

αh`t´u`s
j trpβuα

u`p1´s´1

1
vjcjq,

´h ´ 1 ď t ď n ´ k ´ s.

Finally, adding together this equation and (75), we obtain that

tr
´

s´1
ÿ

u“0

βuα
p1´1`h`t
1

v1c1

¯

“ ´
n

ÿ

j“2

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

αt´1

j fh´u,qpαjq trpαu`qs
1

βuvjcjq

´
n

ÿ

j“2

s´1
ÿ

u“h`1

αh`t´u`s
j trpβuα

u`p1´s´1

1
vjcjq, (76)

0 ď h ď s ´ 1, 1 ď t ď n ´ k ´ s.

Going back to (20), let us perform the change t ÞÑ t ` h, then we obtain

tr
´

s´1
ÿ

u“0

βuα
p1´1`h`t
1

v1c1

¯

“ ´
n

ÿ

j“2

αh`t
j tr

´
s´1
ÿ

u“0

βuα
p1´1

1
vjcj

¯

, ´h ď t ď n ´ k ´ h ´ 1. (77)
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For t “ 1, 2, . . . , n ´ k ´ s the left-hand sides of (76) and (77) coincide, and therefore,

n
ÿ

j“2

αh`t
j tr

´
s´1
ÿ

u“0

βuα
p1´1

1
vjcj

¯

“
n

ÿ

j“2

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

αt´1

j fh´u,qpαjq trpαu`qs
1

βuvjcjq

`
n

ÿ

j“2

s´1
ÿ

u“h`1

αh`t´u`s
j trpβuα

u`p1´s´1

1
vjcjq, 1 ď t ď n ´ k ´ s.

Replacing t by t ` 1, we obtain that

n
ÿ

j“2

αt
j

´

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

fh´u,qpαjq trpαu`qs
1

βuvjcjq `
s´1
ÿ

u“h`1

αh`1´u`s
j trpβuα

u`p1´s´1

1
vjcjq

´αh`1

j tr
´

s´1
ÿ

u“0

βuα
p1´1

1
vjcj

¯¯

“ 0,

0 ď t ď n ´ k ´ s ´ 1.

The proof is complete.
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