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Variable-Length Source Dispersions Differ

under Maximum and Average Error Criteria
Yuta Sakai, Member, IEEE, and Vincent Y. F. Tan, Senior Member, IEEE

Abstract—Variable-length compression without prefix-free con-
straints and with side-information available at both encoder and
decoder is considered. Instead of requiring the code to be error-
free, we allow for it to have a non-vanishing error probability.
We derive one-shot bounds on the optimal average codeword
length by proposing two new information quantities; namely,
the conditional and unconditional ε-cutoff entropies. Using these
one-shot bounds, we obtain the second-order asymptotics of
the problem under two different formalisms—the average and
maximum probabilities of error over the realization of the
side-information. While the first-order terms in the asymptotic
expansions for both formalisms are identical, we find that the
source dispersion under the average error formalism is, in
most cases, strictly smaller than its maximum error counterpart.
Applications to a certain class of guessing problems, previously
studied by Kuzuoka [IEEE Trans. Inf. Theory, vol. 66, no. 3,
pp. 1674–1690, 2020], are also discussed.

Index Terms—Variable-length compression, Conditional loss-
less source coding, Second-order asymptotics, Source dispersion,
Massey–Arıkan guessing problem allowing errors

I. INTRODUCTION

I
N this paper, we are concerned with the problem of

variable-length compression without prefix-free constraints.

In the simplest version of this problem, a source X is to

be compressed to finite-length binary strings. The objective

is to ensure that the average codeword length is minimized

under the condition that the source code is one-to-one. One-

to-one codes have been studied by several researchers (see [2]

and references therein). Specifically, Wyner [3] and Alon and

Orlitsky [4] derived the following upper and lower bounds:

H(X) − log(H(X) + 1) − log e ≤ L∗(X) ≤ H(X), (1)

respectively, where log stands for the base-2 logarithm and

L∗(X) stands for the minimum average codeword length of

the one-to-one codes for the source X . A direct consequence

of these bounds is that for a stationary memoryless source

Xn
= (X1, . . . , Xn), one has

L∗(Xn) = n H(X) + O(log n) (as n→∞). (2)

The above-mentioned studies and results assume that the

code is not allowed to commit any error. In practical latency-

constrained applications, occasional errors are often tolerable.
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Hence, it is worthwhile to study the counterparts to the

above zero-error results when one allows the code to have

a decoding error probability ε that is non-vanishing. Towards

this end, Kostina, Polyanskiy, and Verdú [5] showed that the

fundamental limit on the average codeword length L∗(ε, Xn),
again without the prefix-free constraint, admits the following

asymptotic expansion:

L∗(ε, Xn) = n (1 − ε)H(X) −
√

n V(X) fG(ε) + O(log n) (3)

as n→∞ for every 0 ≤ ε ≤ 1. In this expression, the quantity

V(X) denotes the variance of the information density of the

source X (often referred to as the varentropy [6]) and the map

fG : [0, 1] → [0, 1/
√

2π] is defined as

fG(s) :=

{
ϕ(Φ−1(s)) if 0 < s < 1,

0 if s = 0 or s = 1,
(4)

ϕ(t) := 1
√

2π
e−t

2/2; (5)

and Φ−1 : (0, 1) → R denotes the inverse function of the

Gaussian cumulative distribution function

Φ(u) :=
∫ u

−∞
ϕ(t) dt. (6)

This is the first instance of the second-order asymptotics [7]–

[11] for variable-length compression. It is worth noting, for

our subsequent considerations, that the first-order term in (3)

is (1 − ε)H(X) and so the strong converse property, in the

sense of Wolfowitz [12], does not hold. Additionally, since the

second-order term
√

V(X) fG(ε) in (3) is nonnegative for all

0 < ε < 1, the fundamental limit L∗(ε, Xn) for variable-length

compression is always smaller than the first-order optimal

coding rate n (1 − ε)H(X). This is in contrast to, say, almost

lossless fixed-length source coding [7], [8] in which if the

tolerable error probability ε is less than 1/2, the second-order

term is positive, which means that the optimal code rate at a

finite blocklength n is larger than the first-order term.

A. Main Contributions

In this paper, we extend this setting and result by consid-

ering the presence of side-information Yn at both encoder

and decoder. In this case, the notion of the error probability

can take one of two different forms. One can consider the

maximum error probability in which we would like1

P{Xn
, X̂n | Yn} ≤ ε (a.s.). (7)

1Strictly speaking, Eq. (7) means error probability constraints except on
a null set. In other words, the error constraint is imposed on the essential

supremum of the left-hand side of (7). However, we call it the maximum error
probability as usual.
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Said differently, we require that the reconstructed source X̂n

is equal to the original source sequence Xn with probability at

least 1−ε almost surely with respect to the side-information Yn.

This is obviously a more stringent criterion than the average

error probability criterion in which one simply requires that

P{Xn
, X̂n} ≤ ε. (8)

Here, the error probability is averaged over the realizations

of Yn. Clearly, the rate of compression under the maximum

error criterion is at least as large as the average error criterion.

In this paper, we quantify this gap precisely in terms of the

second-order asymptotics, i.e., the analogue of the term scaling√
n in (3). We show that the first-order terms in the asymptotic

expansions are identical and equal to n (1−ε)H(X | Y), but the

source dispersion for the maximum error case is smaller than

that of its average error counterpart. That is, the backoff from

n (1−ε)H(X | Y) is smaller for the former, more stringent, case

compared to the latter. In fact, the maximum (resp. average)

error source dispersion is the conditional (resp. unconditional)

information variance of the conditional information density. By

the law of total variance, the conditional information variance

is not larger than its unconditional counterpart. It is easy to

show that the difference is non-zero for most sources. En route

to proving our second-order results, we develop new and novel

one-shot bounds for both these error probability formalisms.

We introduce two new information measures, namely the

unconditional and conditional ε-cutoff entropies; in the n-

shot setting, these characterize the fundamental compression

limits up to terms scaling as O(log n). Finally, we discuss

applications of the second-order asymptotic results to guessing

problems with a “giving-up” policy; this class of problems was

recently introduced by Kuzuoka [13].

B. Related Works

1) Prefix-Free Codes: The problem of variable-length com-

pression allowing errors was initiated by Han [14] who consid-

ered the fundamental limits of prefix-free codes with vanishing

error probability. Han [14] derived a general formula for

the normalized average codeword length. A general formula

allowing for non-vanishing error probabilities was derived by

Koga and Yamamoto [15]. For a stationary memoryless source

Xn on a finite alphabet Xn, Koga and Yamamoto’s general

formula can be reduced to the first-order term n (1 − ε)H(X),
which coincides with (3) up to a term scaling as o(n). In fact,

as mentioned by Kuzuoka and Watanabe [16, Remark 2], the

asymptotics of the prefix-free codes and the one-to-one codes

are equal up to a constant factor.
2) Guessing Problems: One-to-one codes with side-

information are essentially equivalent to strategies for guessing

problems [17], [18] via Campbell’s source coding problem

[19] without prefix-free constraints (cf. [20]–[22]). Kuzuoka

[13] generalized the guessing problem by allowing positive

error probabilities. The guesser can also give up guessing

at each stage; in this case, an error is declared. Kuzuoka

[13] derived general formulas of both Campbell’s source

coding problems and guessing problems with non-vanishing

error probability by introducing the conditional smooth Rényi

entropy and by exploiting its properties.

3) Conditional Rate-Distortion Theory and State-

Dependent Channels: A related topic to our present

considerations is the conditional rate-distortion problem [23],

[24]. Gray considered the problem of lossy compression with

common side-information at both encoder and decoder. The

duality between source coding and state-dependent channel

coding problems with side-information available at both

encoder and decoder have been characterized by Cover and

Chiang [25] and Pradhan, Chou, and Ramchandran [26].

4) Variable-Length Slepian–Wolf Coding: He, Lastras-

Montaño, Yang, Jagmohan, and Chen [27] investigated fixed-

and variable-length Slepian–Wolf coding problems [28] with

error probabilities that vanish but not exponentially fast. They

derived the second-order coding rates and showed that variable-

length Slepian–Wolf coding has a better second-order term

compared to its fixed-length counterpart. These are charac-

terized by some forms of the conditional and unconditional

information variances, and the superiority of variable-length

Slepian–Wolf coding is characterized by these differences.

Variable-length Slepian–Wolf coding problems were also in-

vestigated by Kimura and Uyematsu [29] and Kuzuoka and

Watanabe [16].

C. Paper Organization

This paper is organized as follows: The problem setting

is formulated in Section II. Section II-A presents some def-

initions and notations of information measures for a corre-

lated source (X,Y). The ε-cutoff entropies are defined in

Section II-B. Section II-C introduces the variable-length condi-

tional lossless source coding problems. The main results of this

study are given in Section III. Specifically, the second-order

asymptotics of variable-length compression under maximum

and average error formalisms are stated in Theorems 1 and 2 of

Section III-A, respectively. Our one-shot coding theorems are

stated in Lemmas 2 and 6 of Sections III-B and III-C, respec-

tively; those are used to prove Theorems 1 and 2, respectively.

Applications of Theorems 1 and 2 to guessing problems with

a “giving-up policy” are discussed in Section IV. Section V

concludes this study.

II. PRELIMINARIES

A. Information Measures for Correlated Sources

Assume throughout that the underlying probability space

(Ω,F , P) is rich enough so that all random variables (r.v.’s)

are well-defined on the space. Consider a countably infinite

alphabet2 X = {1, 2, . . . } and an abstract alphabet Y. Let X

be an X-valued r.v. and Y a Y-valued r.v. Then, the pair (X,Y)
can be thought of as a correlated source pair.

In the conditional source coding, the second source Y plays

the role of the side-information for the first source X . We now

introduce several information quantities. Let PX |Y (x | Y ) be a

2In this study, assume that the σ-algebra on a countable alphabet is always
the power set of the alphabet, as usual.
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version of the conditional probability P{X = x | Y} for each

x ∈ X.3 Denote by

ι(X | Y) = ιX |Y (X | Y ) ≔ log
1

PX |Y (X | Y )
(9)

the conditional information density of X given Y . Define

three σ(Y)-measurable information measures of X given Y as

follows:

H(X | Y ) ≔ E[ι(X | Y ) | Y], (10)

V(X | Y ) ≔ E[(ι(X | Y) − H(X | Y ))2 | Y ], (11)

T(X | Y ) ≔ E[|ι(X | Y ) − H(X | Y)|3 | Y ], (12)

where E[Z | W] stands for the conditional expectation of a

real-valued r.v. Z given a sub-σ-algebra σ(W) generated by a

r.v. W . When Y is countable, we analogously define

H(X | y) ≔
∑
x∈X

PX |Y (x | y) log
1

PX |Y (x | y)
, (13)

V(X | y) ≔
∑
x∈X

PX |Y (x | y)
(
log

1

PX |Y (x | y)
− H(X | y)

)2

,

(14)

T (X | y) ≔
∑
x∈X

PX |Y (x | y)
����log

1

PX |Y (x | y)
− H(X | y)

����
3

,

(15)

for each y ∈ Y, provided that PY (y) ≔ P{Y = y} > 0, where

PX |Y (x | y) ≔ P{X = x | Y = y} stands for the conditional

probability given the event {Y = y}. Moreover, we define four

information measures of X given Y as follows:

H(X | Y) ≔ E[H(X | Y )], (16)

Vc(X | Y) ≔ E[V(X | Y )], (17)

Vu(X | Y) ≔ E[(ι(X | Y ) − H(X | Y ))2], (18)

Tu(X | Y) ≔ E[|ι(X | Y ) − H(X | Y )|3], (19)

where E[Z] stands for the expectation of a real-valued r.v. Z .

Remark 1. The somewhat unconventional notationsH(X | Y),
V(X | Y), and T(X | Y ) defined in (10)–(12), respectively, are

introduced to indicate that they are σ(Y )-measurable r.v.’s, i.e.,

they are not deterministic quantities like H(X | Y ), Vc(X | Y),
Vu(X | Y), and Tu(X | Y ). The notation H(X | Y ) was also

adopted in [30].

The quantity H(X | Y ) is the well-known conditional

Shannon entropy of X given Y . In this study, we respectively

call Vc(X | Y ) and Vu(X | Y) the conditional and unconditional

information variances4 of X given Y . It follows by the law of

total variance that

Vu(X | Y ) = Vc(X | Y ) + E[(H(X | Y) − H(X | Y ))2]. (20)

Thus, the unconditional information variance Vu(X | Y ) is

larger than Vc(X | Y ) by the term E[(H(X | Y ) − H(X | Y))2],
and these variances coincide if and only if H(X | Y ) is almost

surely constant.

3Note that PX |Y (· | Y ) is a probability measure on X almost surely (a.s.)
because the conditional probability is σ-additive.

4These terminologies are inspired by Polyanskiy’s second-order asymptotic
analysis in the channel coding problem [10, Equations (3.97)–(3.100)].

B. ε-Cutoff Entropies

Given a real-valued r.v. Z , define the (unconditional) ε-

cutoff transformation action of Z by

〈Z〉ε ≔



Z if Z < η,

B Z if Z = η,

0 if Z > η,

(21)

where B denotes a Bernoulli r.v. with parameter (1 − β) in

which the independence B y Z holds, and two real parameters

η ∈ R and 0 ≤ β < 1 are chosen so that

P{Z > η} + β P{Z = η} = ε. (22)

This is the same definition as [5, Equation (13)], and the

notation 〈Z〉ε is consistent with that used in [5]. In addition,

given a real-valued r.v. Z and an arbitrary r.v. W , define the

conditional ε-cutoff transformation action of Z given W by

〈Z | W〉ε ≔



Z if Z < ηW,

BW Z if Z = ηW ,

0 if Z > ηW,

(23)

where BW denotes a Bernoulli r.v. in which the conditional

independence BW y Z | W holds and

P{BW = 0 | W} = βW (a.s.), (24)

and two σ(W)-measurable real-valued r.v.’s ηW ∈ R and 0 ≤
βW < 1 are chosen so that

P{Z > ηW | W} + βW P{Z = ηW | W} = ε (a.s.). (25)

In this paper, we call η and ηW the cutoff points of 〈Z〉ε and

〈Z | W〉ε , respectively.

Using these cutoff operations, we now define the uncondi-

tional and conditional ε-cutoff entropies as follows:

C
ε
u (X | Y ) ≔ E[〈ι(X | Y)〉ε], (26)

C
ε
c (X | Y ) ≔ E[〈ι(X | Y) | Y〉ε], (27)

respectively. Note that these ε-cutoff entropies are not additive

in general.

Finally, the following proposition gives some basic proper-

ties of the ε-cutoff transformation actions.

Proposition 1. Let Z be a nonnegative-valued r.v., W a W-

valued r.v. with an abstract alphabet W, and 0 ≤ ε ≤ 1 a

real number. Then, it holds that

E[〈Z〉ε] = min
ǫ :E[ǫ (Z)]≤ε

E[(1 − ǫ(Z)) Z], (28)

E[〈Z | W〉ε] = min
ǫ :E[ǫ (Z,W ) |W ]≤ε (a.s.)

E[(1 − ǫ(Z,W)) Z], (29)

where the minimization in (28) (resp. (29)) is taken over the

measurable maps ǫ : [0,∞) → [0, 1] (resp. the measurable

maps ǫ : [0,∞) ×W → [0, 1]) satisfying E[ǫ(Z)] ≤ ε (resp.
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E[ǫ(Z,W) | W] ≤ ε a.s.). Moreover, the following identities

hold:

E[〈Z〉ε] = (1 − ε)E[Z]

−
∫ ∞

η

P{Z > t} dt − ε (η − E[Z]), (30)

E[〈Z | W〉ε | W] = (1 − ε)E[Z | W]

−
∫ ∞

ηW

P{Z > t | W} dt

− ε (ηW − E[Z | W]) (a.s.), (31)

where η and ηW are given in (22) and (25) respectively. In

addition, the following inequality holds:

E[〈Z〉ε] ≤ E[〈Z | W〉ε]. (32)

Furthermore, given two nonnegative-valued r.v.’s Z1 and Z2, it

holds that

P{Z1 ≤ t} ≤ P{Z2 ≤ t} (∀t > 0)
=⇒ E[〈Z1〉ε] ≥ E[〈Z2〉ε], (33)

P{Z1 ≤ t | W} ≤ P{Z2 ≤ t | W} (a.s. ∀t > 0)
=⇒ E[〈Z1 | W〉ε | W] ≥ E[〈Z2 | W〉ε | W] (a.s.). (34)

Proof of Proposition 1: See Appendix A.

Note that (30) and (31) in Proposition 1 are useful in the

subsequent second-order asymptotic analysis of the ε-cutoff

entropies Cεu (X | Y ) and Cεc (X | Y ), respectively. The identities

(28) and (29) will be used in the proofs of one-shot bounds

stated in Lemmas 6 and 2, respectively, of Sections III-B and

III-C, respectively. It follows from (32) of Proposition 1 that

C
ε
u (X | Y ) ≤ Cεc (X | Y ). (35)

C. Variable-Length Compression Under Two Error Criteria

Given an integer n ≥ 1, denote by

(X1,Y1), (X2,Y2), . . . , (Xn,Yn) n i.i.d. copies of the source

pair (X,Y ). Then, we may think of (Xn,Yn) as a sequence

of outputs from the stationary memoryless correlated source

(X,Y ), where Xn
= (X1, . . . , Xn) and Yn

= (Y1, . . . ,Yn). In

this subsection, we formalize the variable-length conditional

(almost) lossless source coding problems. Let {0, 1}∗ be

the set of finite-length binary strings containing the empty

string �. For each n ≥ 1, consider two random maps

Fn : Xn × Yn → {0, 1}∗ and Gn : {0, 1}∗ × Yn → Xn

in which both Fn(Xn,Yn) and Gn(Fn(Xn,Yn),Yn) are F -

measurable. Then, we call the pair (Fn,Gn) a variable-length

stochastic code for the source Xn with side-information Yn

available at both encoder Fn and decoder Gn. We illustrate

this compression scheme in Fig. 1.

Remark 2. Another way to consider a variable-length stochas-

tic code is to design a {0, 1}∗-valued r.v. Bn and an Xn-valued

r.v. X̂n in which those probability laws are determined by

versions of the conditional probabilities P{Bn = b | Xn,Yn}
for b ∈ {0, 1}∗ and P{X̂n

= x | Bn,Y
n} for x ∈ Xn, re-

spectively. Kostina et al. [5] studied variable-length stochastic

codes without side-information Yn in this manner.

Let ℓ : {0, 1}∗ → N∪ {0} be the length function of a finite-

length binary string; e.g., ℓ(�) = 0, ℓ(0) = ℓ(1) = 1, ℓ(00) =
ℓ(01) = ℓ(10) = ℓ(11) = 2, ℓ(000) = ℓ(001) = ℓ(010) =
ℓ(011) = ℓ(100) = ℓ(101) = ℓ(110) = ℓ(111) = 3, and so

on. Given a variable-length stochastic code (Fn,Gn), we are

interested in the average codeword length E[ℓ(Fn(Xn,Yn))] to

measure the efficiency of the data compressor for the source

Xn with side-information Yn.

Definition 1 (Maximum error criterion). Let n ≥ 1 be an

integer, and L ≥ 0 and 0 ≤ ε ≤ 1 real numbers. Given a

source X with side-information Y, an (n, L, ε)max-code is a

variable-length stochastic code (Fn,Gn) satisfying

E[ℓ(Fn(Xn,Yn))] ≤ L, (36)

P{Xn
, Gn(Fn(Xn,Yn),Yn) | Yn} ≤ ε (a.s.). (37)

Definition 2 (Average error criterion). Let n ≥ 1 be an integer,

and L ≥ 0 and 0 ≤ ε ≤ 1 real numbers. Given a source

X with side-information Y, an (n, L, ε)avg-code is a variable-

length stochastic code (Fn,Gn) satisfying

E[ℓ(Fn(Xn,Yn))] ≤ L, (38)

P{Xn
, Gn(Fn(Xn,Yn),Yn)} ≤ ε. (39)

Given a probability of error 0 ≤ ε ≤ 1, this study deals

with the fundamental limits of the average codeword length

under these error criteria. Specifically, we will investigate the

two operational quantities L∗max(n, ε, X,Y ) and L∗avg(n, ε, X,Y)
defined in (40) and (41), respectively, and presented at the top

of the next page.

III. SECOND-ORDER ASYMPTOTICS AND

ONE-SHOT BOUNDS

A. Statements of Second-Order Asymptotic Results

Recall the definition of the function fG : [0, 1] → [0, 1/
√

2π]
in (4).

Theorem 1 (Under maximum error criterion). Suppose that

the following two hypotheses hold:5

(a) V(X | Y ) is bounded away from zero almost surely; and

(b) T(X | Y) is bounded away from infinity almost surely.

Then, it holds that

L∗max(n, ε, X,Y ) = n (1 − ε)H(X | Y )
−

√
n Vc(X | Y) fG(ε) + O(log n) (42)

as n→∞ for every 0 ≤ ε ≤ 1.

Proof of Theorem 1: See Section III-B.

Theorem 2 (Under average error criterion). Suppose that

Tu(X | Y) is finite. Then, it holds that

L∗avg(n, ε, X,Y ) = n (1 − ε)H(X | Y)
−

√
n Vu(X | Y) fG(ε) + O(log n) (43)

as n→∞ for every 0 ≤ ε ≤ 1.

5We say that a real-valued r.v. Z is bounded away from zero (resp. infinity)
almost surely if there exists a positive constant c satisfying P{ |Z | > c} = 1
(resp. P{ |Z | < c} = 1).
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Xn

Yn

encoder Fn decoder Gn Gn(Fn(Xn,Yn),Yn)(source)
Fn(Xn,Yn) ∈ {0, 1}∗

(side-inf.)

Fig. 1. Variable-length conditional source coding

L∗max(n, ε, X,Y ) ≔ inf{L > 0 | there exists an (n, L, ε)max-code for the source X with side-information Y } (40)

L∗avg(n, ε, X,Y ) ≔ inf{L > 0 | there exists an (n, L, ε)avg-code for the source X with side-information Y } (41)

Proof of Theorem 2: See Section III-C.

Since an (n, L, ε)max-code is an (n, L, ε)avg-code, it is clear

that

L∗avg(n, ε, X,Y) ≤ L∗max(n, ε, X,Y ). (44)

Theorems 1 and 2 state that the first-order optimal coding

rates are the same under both the maximum and average

error criteria; they are equal to n (1 − ε)H(X | Y ). On the

other hand, we see from (20) that unless H(X | Y ) is almost

surely constant, the optimal second-order coding rates differ

under maximum and average error criteria. Since fG(ε) ≥ 0

with equality if and only if either ε = 0 or ε = 1, note in

Theorems 1 and 2 that a larger dispersion implies a shorter

average codeword length on the
√

n scale for every fixed

0 < ε < 1. In particular, it follows from (20) that the variable-

length source dispersion Vu(X | Y ) under the average error

criterion is larger than that Vc(X | Y ) under the maximum

error criterion by the term E[(H(X | Y ) − H(X | Y))2].

Remark 3. In channel coding, the counterparts of both

conditional and unconditional information variances coin-

cide for every capacity-achieving input distribution (cf. [10,

Lemma 46] or [11, Lemma 62]). Since the first-order term de-

termines the choice of input distribution (cf. [10, Lemma 48]),

the ε-channel dispersion is determined by a capacity-achieving

input distribution. Therefore, there is no difference between

the conditional and unconditional information variances in

channel coding in the absence of input cost constraints. On

the other hand, the conditional and unconditional information

variances are different for the problem at hand as there is

no optimization over input distributions. Thus, the variable-

length source dispersion under the maximum and average

error formalisms are different.

Remark 4. In Theorems 1 and 2, the code is allowed to be

stochastic. Namely, an encoder (resp. a decoder) outputs a

compressed binary string B (resp. the reconstructed source

X̂) stochastically according to some probability law given a

source X (resp. a compressed binary string B) and the side-

information Y (see Remark 2). Since the average codeword

length of a stochastic code is almost equal to that of a

deterministic code up to a constant additive term of (log e)/e
(cf. [5, Section II-A]), our asymptotic analysis is the same as

that if we assumed the code is deterministic. See also [13,

Remark 6].

In Appendix B, we show that even if the side-information

alphabet Y is countably infinite, there is a correlated source

(X,Y) that V(X | Y ) and T (X | Y ) are respectively not

bounded away from zero and infinity a.s., but Tu(X | Y ) is

finite. Therefore, Hypotheses (a) and (b) in Theorem 1 are

stronger than the hypothesis in Theorem 2 in general. On

the other hand, these hypotheses are no longer needed if the

alphabets of the source and the side-information are finite.

Proposition 2. If X is supported on some finite subalphabet

A ⊂ X, then Hypothesis (b) in Theorem 1 holds.

Proposition 3. If Y is finite, then (42) in Theorem 1 holds

without Hypothesis (a).

Proof of Propositions 2 and 3: See Appendix I.

B. Proof of Theorem 1

Firstly, we establish one-shot bounds on the fundamental

limit L∗max(ε, X,Y) ≔ L∗max(1, ε, X,Y ); namely, we consider the

case in which n = 1. The following lemma gives us a formula

for L∗max(ε, X,Y ).

Lemma 1. Given 0 ≤ ε ≤ 1, it holds that

L∗max(ε, X,Y ) = E[〈⌊log ς−1
Y (X)⌋ | Y〉ε], (45)

where ςY stands for a random permutation on X ≔ {1, 2, . . . }
satisfying

PX |Y (ςY (1) | Y) ≥ PX |Y (ςY (2) | Y ) ≥ · · · (a.s.), (46)

which rearranges the probability masses in PX |Y (· | Y) in non-

increasing order.

Proof of Lemma 1: See Appendix C.

Lemma 1 tells us that in an optimal variable-length stochas-

tic code (F∗,G∗) achieving (45), given the side-information

Y , the set of source symbols that result in an error are those

x with the smallest PX |Y (x | Y ). Moreover, we see that the

cutoff point ηY of 〈⌊log ς−1
Y
(X)⌋ | Y〉ε depends on the side-

information Y , and the conditional overflow probability of this

optimal code can be evaluated as

P{ℓ(F∗(X,Y )) ≤ ηY | Y } ≥ 1 − ε (a.s.). (47)

Using Lemma 1, we provide the following one-shot bounds

on L∗max(ε, X,Y) in terms of the conditional ε-cutoff entropy

C
ε
c defined in (27).
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Lemma 2. For every 0 ≤ ε ≤ 1, it holds that

C
ε
c (X | Y) − log(H(X | Y ) + 1) − log e

≤ L∗max(ε, X,Y ) ≤ Cεc (X | Y ). (48)

Proof of Lemma 2: See Appendix D.

Note that Lemma 2 holds without Hypotheses (a) and (b)

in Theorem 1. Since H(X | Y) < ∞ if Hypothesis (b) in

Theorem 1 holds, and since H(Xn | Yn) = n H(X | Y ) for each

n ≥ 1, Lemma 2 implies that

L∗max(n, ε, X,Y ) = Cεc (Xn | Yn) + O(log n) (49)

as n → ∞. Thus, it suffices to provide an appropriate

asymptotic estimate on Cεc (Xn | Yn).

Lemma 3. Given a fixed 0 ≤ ε ≤ 1, it holds that

C
ε
c (Xn | Yn) = n (1 − ε)H(X | Y )

− E
[√
V(Xn | Yn)

]
fG(ε) + O(1) (50)

as n→∞, provided that Hypotheses (a) and (b) in Theorem 1

hold.

Proof of Lemma 3: See Appendix E.

Unfortunately, obtaining an exact single-letter expression for

the n-letter “dispersion” term E[
√
V(Xn | Yn)] that appears in

(50) is difficult unless V(X | Y ) is almost surely constant. In

fact, it can be verified by Jensen’s inequality that

E

[√
V(Xn | Yn)

]
≤

√
n Vc(X | Y ). (51)

with equality if and only if V(X | Y ) is almost surely constant,

because V(X1 | Y1),V(X2 | Y2), . . . ,V(Xn | Yn) will then be

n i.i.d. copies of V(X | Y ). Hence, Lemmas 2 and 3 can be

readily reduced to Kostina et al.’s result [5, Theorem 4] in (3),

provided that X and Y are independent.

The following lemma provides an asymptotic estimate of

E[
√
V(Xn | Yn)].

Lemma 4. If V(X | Y) is bounded away from infinity almost

surely, then

E

[√
V(Xn | Yn)

]
=

√
n Vc(X | Y) + O(

√
log n) (52)

as n→∞.

Proof of Lemma 4: See Appendix F.

Hypothesis (b) in Theorem 1 implies that V(X | Y ) is

bounded away from infinity almost surely; therefore, Lem-

mas 2–4 yield Theorem 1, as desired.

C. Proof of Theorem 2

Firstly, we establish one-shot bounds on the fundamental

limits L∗avg(ε, X,Y ) ≔ L∗avg(1, ε, X,Y ), namely, consider the

case in which n = 1. The following lemma gives us a formula

for L∗avg(ε, X,Y ).

Lemma 5. Given 0 ≤ ε ≤ 1, it holds that

L∗avg(ε, X,Y) = E[〈⌊log ς−1
Y (X)⌋〉ε], (53)

where ςY is defined in (46).

Proof of Lemma 5: See Appendix G.

Unlike Lemma 1, Lemma 5 tells us that in an optimal

variable-length stochastic code (F∗,G∗) achieving (53), the

set of source symbols that result in an error are those with the

smallest P{X = ςY (x)}. Moreover, we see that the cutoff point

η of 〈⌊log ς−1
Y
(X)⌋〉ε is independent of the side-information

Y , and the overflow probability of this optimal code can be

evaluated as

P{ℓ(F∗(X,Y )) ≤ η} ≥ 1 − ε. (54)

Using Lemma 5, we provide the following one-shot bounds

on L∗avg(ε, X,Y ) in terms of the unconditional ε-cutoff entropy

C
ε
u defined in (26).

Lemma 6. For every 0 ≤ ε ≤ 1, it holds that

C
ε
u (X | Y ) − log(H(X | Y ) + 1) − log e

≤ L∗avg(ε, X,Y) ≤ Cεu (X | Y). (55)

Proof of Lemma 6: Employing Proposition 1 and

Lemma 5, we can prove Lemma 6 by the same manner as the

proof of Lemma 2; see Appendix D for details. This completes

the proof of Lemma 6.

Note that Lemma 6 holds without Hypotheses (a) and (b)

in Theorem 2. Since H(X | Y) < ∞ if Tu(X | Y) < ∞, and

since H(Xn | Yn) = n H(X | Y ) for each n ≥ 1, Lemma 6 tells

us that

L∗avg(n, ε, X,Y ) = Cεu (Xn | Yn) + O(log n) (56)

as n → ∞. Thus, it suffices to provide an appropriate

asymptotic estimate on Cεu (Xn | Yn).
Lemma 7. Given a fixed 0 ≤ ε ≤ 1, it holds that

C
ε
u (Xn | Yn) = n (1 − ε)H(X | Y )

−
√

n Vu(X | Y ) fG(ε) + O(1) (57)

as n→∞, provided that Tu(X | Y) < ∞.

Proof of Lemma 7: Since ι(Xn | Yn) = ι(X1 | Y1)+ ι(X2 |
Y2) + · · · + ι(Xn | Yn), and since ι(X1 | Y1), ι(X2 | Y2), . . . ,

ι(Xn | Yn) are n i.i.d. real-valued r.v.’s, a naïve application

of [5, Lemma 1] readily proves Lemma 7. For the readers’

convenience, we now only give a sketch of the proof as

follows: If Vc(X | Y) = 0, then we readily see that

C
ε
u (Xn | Yn) = n (1 − ε)H(X | Y). (58)

Thus, it suffices to consider the case where Vc(X | Y ) > 0. It

follows from (30) of Proposition 1 that

C
ε
u (Xn | Yn) = n (1 − ε)H(X | Y )

−
∫ ∞

ηn

P{ι(Xn | Yn) > t} dt

− ε (ηn − n H(X | Y)), (59)

where ηn > 0 is given so that

P{ι(Xn | Yn) > ηn} + βn P{ι(Xn | Yn) = ηn} = ε (60)

with an appropriate 0 ≤ βn < 1. Then, the uniform Berry–

Esseen bound (cf. (164) in Appendix E) shows that

ηn = n H(X | Y) +
√

n Vu(X | Y )Φ−1(1 − ε) + O(1) (61)
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as n → ∞, provided that Tu(X | Y) < ∞. On the other hand,

it can be verified by the non-uniform Berry–Esseen bound (cf.

Lemma 10 in Appendix E) that∫ ∞

η

P{ι(Xn | Yn) > t} dt

=

√
n Vu(X | Y)

(
fG(ε) − εΦ−1(1 − ε)

)
+ O(1) (62)

as n→∞, provided that Tu(X | Y ) < ∞. Therefore, Lemma 7

can be proven by combining (59), (61), and (62).

The proof of Theorem 2 is finally completed by combining

Lemmas 6 and 7.

IV. GUESSING PROBLEM

Following [13, Section III], we now introduce the guessing

problem with a “giving-up” policy. Let n ≥ 1 be an integer.

Consider a stationary memoryless correlated source (Xn,Yn)
as in Section II-C. In the guessing problem, given the side-

information Yn, a guesser, equipped with a guessing strategy

{xk}∞k=1
depending on Yn, asks questions of the form “Is

Xn
= xk?” at each time k ∈ N. More precisely, a guessing

strategy is induced by a guessing function gn : Xn ×Yn → N,

which is a deterministic map in which gn(·, y) : Xn → N is

bijective for each y ∈ Yn, as follows: The guesser asks “Is

gn(Xn,Yn) = 1?” at time 1; if the answer is “no,” the guesser

asks “Is gn(Xn,Yn) = 2?” at time 2; if the answer is again

“no,” the guesser asks “Is gn(Xn,Yn) = 3?” at time 3, and

so on. By introducing a certain error probability for guessing,

the guesser can, instead of committing to a “yes/no” answer

at each time k ∈ N, give up at the same time k with a certain

probability. For each (k, y) ∈ X×Yn, let 0 ≤ πn(k | y) ≤ 1 be

a real number. The collection {πn(k | y) | (k, y) ∈ N × Yn}
plays the role of a giving-up policy. Just before starting on

the k-th guess, the guesser can give up his guessing task

with probability πn(k | Yn). We call the pair (gn, πn(· | ·)) a

guessing strategy with a giving-up policy. Formally, for each

k ≥ 1, the guesser declares an error just before starting on

the k-th guess if En,1 = En,2 = · · · = En,k−1 = 0 and

En,k = 1, where {En,k }∞k=1
denotes a sequence of conditionally

(and mutually) independent Bernoulli r.v.’s given Yn in which

P{En,k = 1 | Yn} = πn(k | Yn) (a.s.) (63)

for every k ≥ 1. Then, the giving-up guessing function Gn :

Xn × Yn → N ∪ {ce} is a random map given as

Gn(Xn,Yn) ≔



gn(Xn,Yn) if En,l = 0

for all 1 ≤ l ≤ gn(Xn,Yn),
ce otherwise,

(64)

where ce > 0 denotes the cost of making an error.6 Figure 2

illustrates a flowchart of executing a particular giving-up

guessing function Gn : Xn × Yn → N ∪ {ce}.

6For simplicity of our analysis, we assume that ce is not an integer. This
assumption simplifies the guessing error event {Gn(Xn,Yn) , gn(Xn,Yn)},
and does not affect the results in [13] and Corollaries 1 and 2 under a valid
definition of the error event.

While Kuzuoka investigated the fundamental limits of the

ρ-th moment E[Gn(Xn,Yn)ρ] with a fixed real ρ > 0 to

evaluate the guessing cost (see [13, Equation (33)]), we are

now interested in the fundamental limits of E[log Gn(Xn,Yn)].
In fact, if E[Gn(Xn,Yn)ρ] is finite for some ρ > 0, then it

follows by l’Hôpital’s rule and the dominated convergence

theorem that

lim
ρ→0+

1

ρ
logE[Gn(Xn,Yn)ρ] = E[log Gn(Xn,Yn)], (65)

so our study in this section can be thought of as a limiting

case of that in [13]. Noting that errors are declared if and only

if Gn(Xn,Yn) , gn(Xn,Yn), we define two error formalisms

as follows:

Definition 3 (Maximum error criterion). Given a source X

with side-information Y, an (n,N, ε)max-guessing strategy is a

guessing strategy (gn, πn(· | ·)) satisfying

E[log Gn(Xn,Yn)] ≤ N, (66)

P{Gn(Xn,Yn) , gn(Xn,Yn) | Yn} ≤ ε (a.s.). (67)

Definition 4 (Average error criterion). Given a source X

with side-information Y, an (n,N, ε)avg-guessing strategy is a

guessing strategy (gn, πn(· | ·)) satisfying

E[log Gn(Xn,Yn)] ≤ N, (68)

P{Gn(Xn,Yn) , gn(Xn,Yn)} ≤ ε. (69)

Given a probability of error 0 ≤ ε ≤ 1, we investigate the

two operational quantities N∗max(n, ε, X,Y) and N∗avg(n, ε, X,Y)
defined in (70) and (71), respectively, and presented at the top

of the next page.

Corollary 1 (Under maximum error criterion). Suppose Hy-

potheses (a) and (b) in Theorem 1. Then, it holds that

N∗max(n, ε, X,Y) = n (1 − ε)H(X | Y )
−

√
n Vc(X | Y ) fG(ε) + O(log n) (72)

as n→∞ for every 0 ≤ ε ≤ 1.

Corollary 2 (Under average error criterion). Suppose that

Tu(X | Y) is finite. Then, it holds that

N∗avg(n, ε, X,Y ) = n (1 − ε)H(X | Y )
−

√
n Vu(X | Y ) fG(ε) + O(log n) (73)

as n→∞ for every 0 ≤ ε ≤ 1.

Proof of Corollaries 1 and 2: Relying on Theorems 1

and 2, it suffices to prove the following lemma:

Lemma 8. For every n ≥ 1, every 0 ≤ ε ≤ 1, and every

correlated source (X,Y ), it holds that

|N∗max(n, ε, X,Y) − L∗max(n, ε, X,Y )| ≤ 1 + | log ce |, (74)

|N∗avg(n, ε, X,Y) − L∗avg(n, ε, X,Y )| ≤ 1 + | log ce |. (75)

Lemma 8 is proven in Appendix H, completing the proof

of Corollaries 1 and 2.

Note that Lemma 8 is analogous to [21, Lemma 7] which

is stated in terms of the moment generating functions of

ℓ(Fn(Xn,Yn)) and Gn(Xn,Yn) in the error-free setting (i.e.,
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Start

Initialize k ←− 1

Is En,k = 1?

(giving-up branch)

Failure

(output ce)

Is gn(Xn,Yn) = k?

(guessing task)

Success

(output k)

k ←− k + 1

Yes

No

Yes No

Fig. 2. Flowchart of a guessing strategy with a giving-up policy (gn, πn).

N∗max(n, ε, X,Y ) ≔ inf{N > 0 | there exists an (n,N, ε)max-guessing strategy for the source X with side-information Y} (70)

N∗avg(n, ε, X,Y ) ≔ inf{N > 0 | there exists an (n,N, ε)avg-guessing strategy for the source X with side-information Y} (71)

ε = 0) and in the absence of side-information Y . From

Lemma 8, it is worth pointing out that the asymptotic results

of Corollaries 1 and 2 continue to hold even if the error cost

ce grows polynomially in n.

V. CONCLUDING REMARKS

We considered two variable-length conditional lossless

source coding problems in this paper. We derived one-shot

coding theorems and the second-order asymptotic results under

two error formalisms: the maximum and the average probabil-

ities of error. The one-shot bounds of Lemmas 2 and 6 are

stated in terms of the ε-cutoff entropies Cεc (X | Y ) and Cεu (X |
Y ), respectively. These one-shot bounds are generalizations

of Kostina et al.’s one-shot coding theorem [5, Theorem 2]

to the case in which side-information Y is available at both

encoder and decoder. On the other hand, it should be noted that

Kostina et al.’s argument in the converse proof written in [5,

Section II-A] contains a minor error. Indeed, one can construct

a counterexample that Kostina et al.’s converse proof fails to

hold; see Appendix J for a counterexample. To circumvent this

issue, we explicitly provided our converse proofs of Lemmas 1

and 5 in Appendices C and G, respectively. The variable-

length source dispersions under the maximum and average

error criteria were derived by proving asymptotic estimates

on the ε-cutoff entropies Cεc (Xn | Yn) and Cεu (Xn | Yn) in

Lemmas 3 and 7, respectively. These two lemmas are again

generalizations of Kostina et al.’s asymptotic result for the

case without side-information in [5, Lemma 1] to the case in

which side-information Yn is available at both encoder and

decoder. On the other hand, there is a slight subtlety in our

proof, in which we have to establish the uniform boundedness

property of the remainder term, represented by the quantity

+O(1), with respect to the side-information Yn; see Lemma 9

stated in Appendix E for a technical statement of this uniform

boundedness property. In Section IV, we showed that our

results can be applicable to Kuzuoka’s guessing problem [13,

Section III].

Recently, the present authors [31], [32] derived asymptotic

expansions of smooth Rényi entropies and their conditional

versions and using these expansions, established fundamental

limits of various information-theoretic problems including

Campbell’s source coding problem [19], the guessing problem

studied by Massey [17] and Arıkan [18] (see also recent work

by Kuzuoka [13]), and the task encoding problem [33], all al-

lowing errors. We then showed that the first-order terms of the

asymptotic expansions of these fundamental limits differ under

average and maximum error criteria, where the the average and

maximum are taken with respect to the available side informa-

tion Y , as in Definitions 1 and 2. The differences between

the asymptotic expansions derived in [31], [32] and the main

results in this paper arise from the following differences in the

problem settings: While Theorems 1 and 2 evaluate the ordi-

nary expectation E[ℓ(Fn(Xn,Yn))], Campbell’s source coding

problem considered in [31], [32] evaluates the cumulant gener-
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ating function of codeword lengths, i.e., logE[2ρℓ(Fn(Xn,Yn ))]
for fixed ρ > 0. Similarly, while Corollaries 1 and 2 evaluate

the right-hand side of (65), the guessing problem considered in

[31], [32] evaluates the left-hand side of (65) without taking

the limit as ρ → 0+. Moreover, Campbell’s source coding

problem imposes a prefix-free constraint. Finally, it is worth

mentioning that the difference between the first-order terms

derived in [31], [32] under the average and maximum error

criteria can be characterized by the law of total variance, as

in (20), Theorems 1 and 2, and Corollaries 1 and 2.

In this study, we investigated the infimum of L > 0 in

which E[ℓ(Fn(Xn,Yn))] ≤ L under the average error criterion

P{X , Gn(Fn(Xn,Yn),Yn)} ≤ ε and the maximum error

criterion P{X , Gn(Fn(Xn,Yn),Yn) | Yn} ≤ ε (a.s.); see

Definitions 1 and 2, respectively. A natural avenue for future

research is to examine the infimum of L > 0 in which

E[ℓ(Fn(Xn,Yn)) | Yn] ≤ L (a.s.) under these error criteria.

In addition, comparing the present setting and results to the

variable-length Slepian–Wolf coding problem [16], [27]–[29]

would be of interest.

APPENDIX A

PROOF OF PROPOSITION 1

A. Proofs of (28) and (29)

The identity (28) is stated in [5, Equation (38)], and can

be thought of as a special case of (29) in which σ(W) is the

trivial σ-algebra {∅,Ω}. Thus, it suffices to prove (29).

Let ǫ∗ : [0,∞) ×W → [0, 1] be the measurable map given

as

ǫ∗(z,W) =



0 if z < ηW ,

βW if z = ηW,

1 if z > ηW

(76)

for each z ≥ 0, where the σ(W)-measurable r.v.’s ηW ≥ 0 and

0 ≤ βW < 1 are given in (25). It is clear from (25) and (76)

that

E[ǫ∗(Z,W) | W] = ε (a.s.). (77)

After some algebra, we get

P{〈Z | W〉ε > t | W} = P{(1 − ǫ∗(Z,W)) Z > t | W}

=



P{Z > t | W} if t < 0,

P{Z > t | W} − ε if 0 ≤ t < ηW ,

0 if t ≥ ηW
(78)

a.s. Therefore, the two r.v.’s 〈Z | W〉ε and (1− ǫ∗(Z,W)) Z are

equal in distribution, which implies that

E[〈Z | W〉ε] = E[(1 − ǫ∗(Z,W)) Z]. (79)

Consider an arbitrary measurable map ǫ : [0,∞)×W → [0, 1]
satisfying

E[ǫ(Z,W) | W] ≤ ε (a.s.). (80)

Denoting by 1A the indicator function of A ⊂ Ω, a direct

calculation shows that (81) written in the top of the next page

holds, where

• (a) and (c) follow from the definition of ǫ∗ stated in (76),

• (b) follows from the fact that ηW is σ(W)-measurable,

and

• (d) follows from (77) and (80) and the fact that ηW ≥ 0.

Combining (77) and (79)–(81), we obtain (29) of Proposition 1,

as desired.

B. Proofs of (30) and (31)

The identity (30) can be shown in the same manner as [5,

Equations (155)–(156)], and can be thought of as a special

case of (31) in which σ(W) is the trivial σ-algebra. Thus, it

suffices to prove (31).

It can be verified that the following conditional version of

[5, Equation (157)] holds:7

E[Z 1{Z>z } | W] =
∫ ∞

z

P{Z > t | W} dt

+ z P{Z > z | W} (a.s.) (82)

for every real number z ≥ 0.

We have

E[〈Z | W〉ε | W]
(a)
= E[Z 1{Z<ηW } | W] + ηW (1 − βW ) P{Z = ηW | W}
= E[Z | W] − E[Z 1{Z>ηW } | W] − ηW βW P{Z = ηW | W}
(b)
= E[Z | W] −

∫ ∞

ηW

P{Z > t | W} dt

− ηW
(
P{Z > ηW | W} + βW P{Z = ηW | W}

)
(c)
= E[Z | W] −

∫ ∞

ηW

P{Z > t | W} dt − ε ηW (a.s.), (83)

where

• (a) follows from the definition of 〈· | ·〉ε stated in (23),

• (b) follows from (82) by noting that ηW is σ(W)-
measurable, and

• (c) follows from (25).

This completes the proof of (31) of Proposition 1.

C. Proof of (32)

Since the functional ǫ 7→ E[(1 − ǫ(Z)) Z] of a mapping

ǫ : [0,∞) → [0, 1] is linear, we readily see that

min
ǫ :E[ǫ (Z)]=ε

E[(1 − ǫ(Z)) Z]

= min
ǫ :E[ǫ (Z,W )]=ε

E[(1 − E(Z)) Z], (84)

where the minimization in the left-hand side (resp. the right-

hand side) is taken over the maps ǫ : [0,∞) → [0, 1] (resp.

the maps ǫ : [0,∞) × W → [0, 1]) satisfying E[ǫ(Z)] = ε
(resp. E[ǫ(Z,W)] = ε). Therefore, the proof is completed by

the identities (28) and (29) of Proposition 1, and the fact that

E[ǫ(Z,W)] = ε if E[ǫ(Z,W) | W] = ε a.s.

7While [5, Equation (157)] can be verified by applying Tonelli’s theorem
only once, one can show (82) by applying Tonelli’s theorem twice.
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E[(ǫ(Z,W) − ǫ∗(Z,W)) Z | W]
= E[(ǫ(Z,W) − ǫ∗(Z,W)) Z (1{Z<ηW } + 1{Z=ηW } + 1{Z>ηW }) | W]
(a)
= E[ǫ(Z,W) Z 1{Z<ηW } | W] + E[(ǫ(Z,W) − βW ) Z 1{Z=ηW } | W] + E[(ǫ(Z,W) − 1) Z 1{Z>ηW } | W]
(b)
≤ ηW

(
E[ǫ(Z,W) 1{Z<ηW } | W] + E[(ǫ(Z,W) − βW ) 1{Z=ηW } | W] + E[(ǫ(Z,W) − 1) 1{Z>ηW } | W]

)
(c)
= ηW E[ǫ(Z,W) − ǫ∗(Z,W) | W]
(d)
≤ 0 (a.s.), (81)

D. Proofs of (33) and (34)

The identity (33) is a special case of (34) in which σ(W) is

the trivial σ-algebra. Hence, it suffices to prove (34). Choose

two σ(W)-measurable real-valued r.v.’s η
(1)
W

and η
(2)
W

so that

P{Z1 > η
(1)
W
| W} + β(1)

W
P{Z1 = η

(1)
W
| W} = ε (a.s.), (85)

P{Z2 > η
(2)
W
| W} + β(2)

W
P{Z2 = η

(2)
W
| W} = ε (a.s.) (86)

for some σ(W)-measurable real-valued r.v.’s β
(1)
W

and β
(2)
W

.

Then, it follows by the premise of (34) that

η
(1)
W
≥ η(2)

W
(a.s.). (87)

Now, a direct calculation shows

E[〈Z1 | W〉ε | W]

(a)
=

∫ η
(1)
W

0

P{Z1 > t | W} dt − ε η(1)
W

(b)
=

∫ η
(2)
W

0

P{Z1 > t | W} dt +

∫ η
(2)
W

η
(1)
W

P{Z1 > t | W} dt − ε η(1)
W

(c)
≤

∫ η
(2)
W

0

P{Z1 > t | W} dt +

∫ η
(2)
W

η
(1)
W

ε dt − ε η(1)
W

=

∫ η
(2)
W

0

P{Z1 > t | W} dt − ε η(2)
W

(d)
≤

∫ η
(2)
W

0

P{Z2 > t | W} dt − ε η(2)
W

(e)
= E[〈Z2 | W〉ε | W] (88)

a.s., where

• (a) follows from (31),

• (b) follows from (87),

• (c) follows from the fact that P{Z1 > t | W} ≤ ε if

t ≥ η(1)
W

a.s. (see (85)),

• (d) follows by the premise of (34), and

• (e) follows again from (31).

Therefore, the conclusion of (34) holds, completing the proof.

APPENDIX B

AN EXAMPLE OF SOURCE (X,Y ) FOR THE HYPOTHESES IN

THEOREMS 1 AND 2

Let X = Y = {1, 2, . . . }. Suppose that

PY (y) =
6

π2 y2
, (89)

PX |Y (x | y) =
(
1 − 1

y

)x−1
1

y
(90)

for each (x, y) ∈ X × Y. Namely, the conditional distribution

PX |Y (· | y) is the geometric distribution with parameter 1/y
for each y ∈ Y. After some algebra, we have8

V(X | y) = y (y − 1)
(
log

y

y − 1

)2

(91)

for each y ∈ Y, implying that Hypotheses (a) and (b) in

Theorem 1 fail to holds. Therefore, Theorem 1 cannot ensure

that (42) holds for this source (X,Y ).
On the other hand, it can be verified that

H(X | Y ) ≤ 2 +
6

π2

∞∑
y=2

log(y − 1)
y2

, (92)

T̃ (X | y) ≔
∑
x∈X

PX |Y (x | y)
(
log

1

PX |Y (x | y)

)3

≤ log3(y − 1) + 6 log2(y − 1)
+ 12 log(y − 1) + 12 (93)

for each y ≥ 2, where T̃ (X | 1) = 0. Thus, we observe that

Tu(X | Y) ≤ E[T̃ (X | Y )] + H(X | Y)3

≤ 6

π2

∞∑
y=2

log3(y − 1) + 6 log2(y − 1) + 12 log(y − 1)
y2

+ 12 +
©«
2 +

6

π2

∞∑
y=2

log(y − 1)
y2

ª®
¬

3

, (94)

implying that Tu(X | Y) is finite. Therefore, it follows from

Theorem 2 that (43) holds for this source (X,Y ).

8We adopt the usual convention that 0 log 0 = 0 and 0 logs (1/0) = 0 for
s ≥ 1.
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APPENDIX C

PROOF OF LEMMA 1

Throughout Appendix C, we consider one-shot (n = 1)

variable-length stochastic codes (F,G) as defined in Sec-

tion II-C. We say that a decoder G is deterministic if

G(F(X,Y ), X) is σ(F(X,Y ), X)-measurable. To specify the

determinism, we use the lower case g to denote a deterministic

decoder.

Consider an (L, ε)max-code (F,G) satisfying

E[ℓ(F(X,Y))] ≤ L, (95)

P{X , G(F(X,Y ),Y) | Y } ≤ ε (a.s.). (96)

It can be verified that there exists a deterministic decoder g0
satisfying9

P{X , g0(F(X,Y),Y) | Y } ≤ P{X , G(F(X,Y ),Y ) | Y} (97)

a.s. In addition, for each (x, y) ∈ X × Y, construct another

stochastic encoder F0 as

F0(x, y) ≔
{
� if x , g0(F(x, y), y),
F(x, y) otherwise.

(98)

As shown later, the new code (F0, g0) has a better performance

than that of the initial code (F,G). It is clear that

F0(X,Y) , � =⇒ X = g0(F0(X,Y ),Y ). (99)

Now, generate a random collection B(Y ) of subsets of

{0, 1}∗ as

B(Y ) ≔ {B(x | Y ) | x ∈ X} \ {∅}, (100)

where the random subset B(x | Y ) of {0, 1}∗ is defined by

B(x | Y)
≔ {b ∈ {0, 1}∗ \ {�} | P{F0(x,Y ) = b | Y } > 0} (101)

if x , g0(�,Y ); and B(x | Y) ≔ {�} otherwise. We shall

prove the disjointness of the sets B(x | Y ), x ∈ X, in B(Y )
as follows: Choose b

′ ∈ {0, 1}∗ \ {�} and x1, x2 ∈ X so that

P(E1 ∩ E2) > 0, where the two events E1 and E2 are given by

E1 ≔ {P{F0(x1,Y) = b
′ | Y} > 0}, (102)

E2 ≔ {P{F0(x2,Y) = b
′ | Y} > 0}, (103)

respectively. It is clear that Ei ∈ σ(Y ) for each i = 1, 2.

Moreover, it follows from (99) that g0(b′,Y ) = xi on the event

Ei for each i = 1, 2. Thus, since g0(b′,Y) is σ(Y)-measurable,

we observe that x1 = x2 whenever P(E1 ∩ E2) > 0. Therefore,

the random collection B(Y) is disjoint a.s., i.e.,

P{B(x1,Y ) ∩ B(x2,Y ) = ∅ for all x1 , x2} = 1. (104)

By the disjointness of (104), one can find an index set I(Y ) =
{1, 2, . . . , |B(Y)|} of the collection B(Y) so that

B(Y) = {Bi(Y) | i ∈ I(Y )} (105)

9Note that in general, the determinism of decoders is not a necessary
condition to be optimal.

and

P

{
for all i < j, there exists b ∈ Bi(Y) s.t.

b ≺ b̃ for all b̃ ∈ Bj (Y )

}
= 1, (106)

where the binary relation ≺ on {0, 1}∗ represents the lexico-

graphical order in {0, 1}∗. Let {bi}∞i=1
be the lexicographical

ordering of the strings in {0, 1}∗ so that bi ≺ b j whenever

i < j; e.g., b1 = �, b2 = 0, b3 = 1, b4 = 00, b5 = 01,

b6 = 10, b7 = 11, b8 = 000, and so on. It is trivial that

P{B1(Y) = {�}} = 1; (107)

consequently, it follows from (104) that

P{� < Bi(Y ) for all i ∈ I(Y) \ {1}} = 1. (108)

Now, define the event

Ak

≔

{
ℓ(bi) ≤ ℓ(b) for all 1 ≤ i ≤ min{k, |B(Y )|}

and b ∈ Bi(Y)

}
(109)

for each integer k ≥ 1. It can be verified from (106) and (107)

by induction that

P(Ak) = 1 (110)

for every k ≥ 1. Hence, it follows from the monotonicity

A1 ⊃ A2 ⊃ A3 ⊃ · · · that

P{ℓ(bi) ≤ ℓ(b) for all i ∈ I(Y) and b ∈ Bi(Y)} = 1. (111)

Based on the previous paragraph, define the random map

ΦY : {0, 1}∗ → {0, 1}∗ so that

ΦY (b) ≔
{
� if b < Bi(Y) for all i ∈ I(Y),
bi if b ∈ Bi(Y) for some i ∈ I(Y).

(112)

Moreover, the disjointness of (104) ensures the existence of a

random map ΨY : X → X ∪ {0} satisfying

ΨY (i) =
{

x if Bi(Y ) = B(x | Y) for some x ∈ X,
0 otherwise.

(113)

Note that ΦY (b) and ΨY (i) are σ(Y)-measurable for each

b ∈ {0, 1}∗ and i ∈ X, respectively. Then, construct another

variable-length stochastic code (F1, g1) so that

F1(x,Y ) ≔ ΦY (F0(x,Y )), (114)

g1(b,Y ) ≔ ΨY (i) if b = bi for some i ≥ 1. (115)

Now, we shall evaluate the average codeword length of the

encoder F1. A direct calculation shows

E[ℓ(F1(X,Y ))]

(a)
= E

[ |B(Y) |∑
i=2

ℓ(bi) 1{F0(X,Y)∈Bi (Y)}

]

(b)
≤ E

[ |B(Y) |∑
i=2

ℓ(F0(X,Y)) 1{F0(X,Y )∈Bi (Y)}

]

(c)
≤ E

[
ℓ(F0(X,Y)) 1{X,g0(�,Y)}

]
(d)
= E

[
ℓ(F(X,Y )) 1{X=g0(F(X,Y),Y)}∩{X,g0(�,Y)}

]
≤ E[ℓ(F(X,Y ))]
(e)
≤ L, (116)
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where

• (a) follows from the definitions of B(Y) and φ stated in

(105) and (112), respectively, and the fact that ℓ(b1 =

�) = 0,

• (b) follows from (111),

• (c) follows from the disjointness of B(Y ) stated in (104)

and the fact that

P{F0(X,Y ) ∈ Bi(Y ) for some 1 ≤ i ≤ |B(Y)|} = 1; (117)

that is,

|B(Y) |∑
i=2

1{F0(X,Y )∈Bi (Y)}

= 1{F0(X,Y )∈Bi (Y) for some 2≤i≤ |B(Y) | }

= 1{F0(X,Y ),�}

= 1{X,g0(�,Y)}∩{X=g0(F0(X,Y),Y)}

≤ 1{X,g0(�,Y)} (118)

a.s.,

• (d) follows by the definition of F0 stated in (98), and

• (e) follows from (95).

Namely, the average codeword length of the encoder F1 is

shorter than or equal to that of the initial encoder F .

Next, we shall evaluate the error probability of the code

(F1, g1). We observe that

P{X , g1(F1(X,Y),Y ) | Y }

=

∞∑
i=1

P{F1(X,Y) = bi and X , g1(bi,Y) | Y }

(a)
=

|B(Y) |∑
i=1

P{ΦY (F0(X,Y )) = bi and X , ΨY (i) | Y }

(b)
=

|B(Y) |∑
i=1

P{F0(X,Y ) ∈ Bi(Y ) and X , ΨY (i) | Y }

(c)
=

|B(Y) |∑
i=1

P{F0(X,Y ) ∈ Bi(Y ) and B(X,Y ) , Bi(Y) | Y }

(d)
= P{F0(X,Y ) ∈ B1(Y) and B(X,Y) , B1(Y) | Y}
(e)
= P{F0(X,Y ) = � and X , g0(�,Y ) | Y}
(f)
= P{X , g0(F0(X,Y),Y ) and X , g0(�,Y) | Y }
(g)
= P{X , g0(F(X,Y),Y) and X , g0(�,Y) | Y }
≤ P{X , g0(F(X,Y),Y ) | Y }
(h)
≤ ε (a.s.), (119)

where

• (a) follows by the definition of (F1, g1) stated in (114)

and (115),

• (b) follows by the definition of the random map ΦY (·)
stated in (112),

• (c) follows by the definition of the random map ΨY (·)
stated in (113),

• (d) follows from the fact that F0(X,Y) ∈ Bi(Y ) only if

B(X,Y ) = Bi(Y ) for each 2 ≤ i ≤ |B(Y )| a.s.,

• (e) follows from (107),

• (f) follows from the fact that F0(X,Y) = � if and only if

X = g(�,Y) or X , g0(F0(X,Y ),Y ),
• (g) follows by the definition of F0 stated in (98), and

• (h) follows from (96) and (97).

In other words, the maximum probability of error for the code

(F1, g1) is smaller than or equal to that for the initial code

(F,G).
Here, we shall prove the converse result of Lemma 1, i.e.,

we shall show that the average codeword length of (F,G)
satisfying (96) is always bounded from below by the right-

hand side of (45). We see that

1 − ε
(a)
≤ P{X = g1(F1(X,Y ),Y) | Y}
= P{X = g1(�,Y ) and F1(X,Y) = � | Y }
+ P{X = g1(F1(X,Y ),Y) and F1(X,Y ) , � | Y}

(b)
= P{X = ΨY (1) | Y}
+ P{X = g1(F1(X,Y ),Y) and F1(X,Y ) , � | Y}
= P{X = ΨY (1) | Y}

+ P

{
X = g1(bi,Y) and

F1(X,Y) = bi for some i ≥ 2

���� Y

}
(c)
= P{X = ΨY (1) | Y}
+ P{X = ΨY (i) for some 2 ≤ i ≤ |B(Y )| | Y }

(d)
=

|B(Y) |∑
i=1

PX |Y (ΨY (i) | Y ) (a.s.), (120)

where

• (a) follows from (119),

• (b) and (c) follows from the definition of (F1, g1) stated

in (114) and (115), and

• (d) follows from the fact that ΨY (i) , ΨY ( j) if 1 ≤ i <

j ≤ |B(Y)| a.s.

Now, define the σ(Y )-measurable r.v.’s ξY and ζY so that10

ξY ≔ sup

{
k ≥ 0

�����
k∑
i=1

PX |Y (ΨY (i) | Y) ≤ 1 − ε
}
, (121)

ζY ≔ 1 − ε −
ξY∑
i=1

PX |Y (ΨY (i) | Y ), (122)

respectively. In addition, define the σ(Y )-measurable r.v.’s κY
and γY so that

κY ≔ sup

{
k ≥ 0

�����
k∑

x=1

PX |Y (ςY (x) | Y) ≤ 1 − ε
}
, (123)

γY ≔ 1 − ε −
γY∑
x=1

PX |Y (ςY (x) | Y), (124)

10Note that ξY = 0 if PX |Y (ψ(1,Y ) | Y ) ≥ 1 − ε; and ξY = ∞ if∑∞
i=1 PX |Y (ψ(i,Y ) | Y ) = 1 − ε and PX |Y (ψ(i, Y) | Y) > 0 for all i ≥ 1.



13

respectively, where ςY is given in (46). Furthermore, define

p1(k | Y ) ≔



PX |Y (ΨY (k) | Y ) if 1 ≤ k ≤ ξY,
ζY if k = ξY + 1,

0 if ξY + 2 ≤ k < ∞.
(125)

p2(x | Y ) ≔



PX |Y (ςY (x) | Y) if 1 ≤ x ≤ κY,
γY if x = κY + 1,

0 if κY + 2 ≤ x < ∞.
(126)

Then, a direct calculation shows

E[ℓ(F1(X,Y )) | Y] ≥
∞∑
k=1

⌊log k⌋ p1(k | Y )

=

∞∑
j=0

j

2 j+1−1∑
k=2 j

p1(k | Y )

=

∞∑
j=1

∞∑
k=2 j

p1(k | Y ), (127)

E[〈⌊log ς−1
Y (X)⌋ | Y〉ε | Y] =

∞∑
x=1

⌊log x⌋ p2(x | Y)

=

∞∑
j=0

j

2 j+1−1∑
x=2 j

p2(x | Y)

=

∞∑
j=1

∞∑
x=2 j

p2(x | Y ) (128)

a.s., respectively, where the second equalities in (127) and

(128) follow from the fact that ⌊log k⌋ = j if and only if

2j ≤ k < 2j+1 for every k ≥ 1. On the other hand, since

ςY rearranges the probability masses in PX |Y (· | Y ) in non-

increasing order (see (46)), it can be verified that p1(· | Y ) is

majorized by p2(· | Y ) a.s., i.e., it follows that

l∑
k=1

p1(k | Y ) ≤
l∑

x=1

p2(x | Y ) (a.s.) (129)

for every l ≥ 1, and

∞∑
k=1

p1(k | Y) =
∞∑
x=1

p2(x | Y ) = 1 − ε (a.s.). (130)

Therefore, it follows from (127)–(130) that

E[ℓ(F1(X,Y))] ≥ E[〈⌊log ς−1
Y (X)⌋ | Y〉ε]. (131)

Combining (116) and (131), we observe that the existence of

an (L, ε)max-code (F,G) implies that

L ≥ E[〈⌊log ς−1
Y (X)⌋ | Y〉ε], (132)

which corresponds to the converse bound of Lemma 1.

Finally, we shall show the existence of an (L, ε)max-code

meeting the equality in (132). In fact, constructing a variable-

length stochastic code (F∗sup, g
∗) so that

F∗sup(x,Y ) ≔


bς−1

Y
(x) if 1 ≤ ς−1

Y
(x) ≤ κY,

Bsup if ς−1
Y
(x) = κY + 1,

� if κY < ς
−1
Y
(x) < ∞,

(133)

g∗(b,Y ) ≔ x if b = bς−1
Y
(x) for some x ∈ X, (134)

where Bsup denotes a {0, 1}∗-valued r.v. satisfying the condition

that it is conditionally independent of X given Y (i.e., that

Bsup y X | Y ) and

P{Bsup = � | Y } = 1 − P{Bsup = bκY+1 | Y } = 1 − γY (135)

a.s., we readily see that

E[ℓ(F∗sup(X,Y))] = E[〈⌊log ς−1
Y (X)⌋ | Y〉ε] (136)

and

P{X , g∗(F∗sup(X,Y ),Y ) | Y} = ε (a.s.). (137)

This completes the proof of Lemma 1.

APPENDIX D

PROOF OF LEMMA 2

Define the event

Ck ≔
{
⌊log x⌋ ≤ log

1

PX |Y (ςY (x) | Y)
for all 1 ≤ x ≤ k

}
(138)

for each integer k ≥ 1. Since ςY rearranges the probability

masses in PX |Y (· | Y) in non-increasing order (see (46)),

similar to [6, Theorem 2], it can be verified by induction that

P(Ck) = 1 (139)

for every k ≥ 1. Hence, the monotonicity C1 ⊃ C2 ⊃ C3 ⊃ · · ·
implies that

P

{
⌊logσ−1

Y (x)⌋ ≤ log
1

PX |Y (x | Y )
for all x ∈ X

}
= 1.

(140)

yielding that

P

{
log

1

PX |Y (X | Y )
≤ t

���� Y

}
≤ P

{
⌊logσ−1

Y (X)⌋ ≤ t

��� Y
}

(141)

a.s. for all t > 0. Therefore, it follows from (34) of Proposi-

tion 1 that

E[〈⌊log ς−1
Y (X)⌋ | Y〉ε] ≤ Cεc (X | Y ). (142)

Thus, it follows from Lemma 1 that the left-hand inequality

of (48) holds.

On the other hand, we observe that (143) written in the top

of the next page holds, where

• (a) follows from (29) of Proposition 1,

• (b) follows from (29) and (34) of Proposition 1 and (141),

• (c) follows from the fact that the same argument as [4]

proves

E[⌊log ς−1
Y (X)⌋ | Y ]

≥ H(X | Y ) − log(H(X | Y) + 1) − log e (144)

a.s., which leads together with Jensen’s inequality that

E[⌊log ς−1
Y (X)⌋]

≥ H(X | Y) − log(H(X | Y ) + 1) − log e; (145)

and

• (d) follows as in (a).

Therefore, it follows from Lemma 1 that the right-hand side

of (48) holds. This completes the proof of Lemma 2.
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E[〈⌊log ς−1
Y (X)⌋ | Y〉ε]

(a)
= E[⌊log ς−1

Y (X)⌋] − max
ǫ :E[ǫ ( ⌊log ς−1

Y
(X)⌋,Y ) |Y]=ε (a.s.)

E[ǫ(⌊log ς−1
Y (X)⌋,Y ) ⌊log ς−1

Y (X)⌋]

(b)
≥ E[⌊log ς−1

Y (X)⌋] − max
ǫ :E[ǫ (ι(X |Y ),Y) |Y]=ε (a.s.)

E[ǫ(ι(X | Y ),Y ) ι(X | Y )]

(c)
≥ E[ι(X | Y )] − max

ǫ :E[ǫ (ι(X |Y ),Y) |Y]=ε (a.s.)
E[ǫ(ι(X | Y ),Y ) ι(X | Y )] − log(H(X | Y ) + 1) − log e

(d)
= C

ε
c (X | Y ) − log(H(X | Y) + 1) − log e, (143)

APPENDIX E

PROOF OF LEMMA 3

It is clear from the definition of Cεc stated in (27) that

ε = 0 =⇒ C
ε
c (Xn | Yn) = n H(X | Y), (146)

ε = 1 =⇒ C
ε
c (Xn | Yn) = 0. (147)

Hence, it suffices to consider the case where 0 < ε < 1. It

follows from (31) of Proposition 1 that

E[〈ι(Xn | Yn) | Yn〉ε | Yn]
= (1 − ε)H(Xn | Yn)

−
∫ ∞

ηYn

P{ι(Xn | Yn) > t | Yn} dt

− ε
(
ηYn − H(Xn | Yn)

)
(a.s.) (148)

for every n ≥ 1, where σ(Yn)-measurable r.v.’s ηYn ≥ 0 and

0 ≤ βYn < 1 are given so that

P{ι(Xn | Yn) > ηYn | Yn} + βYn P{ι(Xn | Yn) = ηYn | Yn} = ε
(149)

a.s. Similar to [5, Equations (159)–(165)], we see that (150)

written in the top of the next page holds, for every n ≥ 1,

where

• (a) follows by the definition

bYn ≔ ηYn −H(Xn | Yn)
−

√
V(Xn | Yn)Φ−1(1 − ε), (151)

• (b) follows by the definition of BYn (see (152) written

in the top of the next page) with the sign function sgn :

R→ {−1, 0, 1} defined by

sgn(u) ≔


−1 if u < 0,

0 if u = 0,

1 if u > 0,

(153)

• (c) follows by the substitution rule for integrals with

t = r
√
V(Xn | Yn), (154)

• (d) follows by the definition of DYn (see (155) written in

the top of the next page),

• (e) follows from (82) with the trivial σ-algebra σ(W) =
{∅,Ω}, and

• (f) follows by the definition of fG : [0, 1] → [0, 1/
√

2π]
stated in (4).

Substituting (150) into (148), we obtain

E[〈ι(Xn | Yn) | Yn〉ε | Yn]
= (1 − ε)H(Xn | Yn)

−
√
V(Xn | Yn)

(
fG(1 − ε) − εΦ−1(1 − ε)

)
+ BYn − DYn − ε

(
ηYn −H(Xn | Yn)

)
(a)
= (1 − ε)H(Xn | Yn)

−
√
V(Xn | Yn)

(
fG(1 − ε) − εΦ−1(1 − ε)

)
+ BYn − DYn − ε

(
bYn +

√
V(Xn | Yn)Φ−1(1 − ε)

)
= (1 − ε)H(Xn | Yn)
−

√
V(Xn | Yn) fG(1 − ε) + BYn − DYn − ε bYn, (156)

where (a) follows by the definition of bYn stated in (151).

Taking expectations in both sides of (156), we have

C
ε
c (Xn | Yn) = n (1 − ε)H(X | Y )

− E
[√
V(Xn | Yn)

]
fG(1 − ε)

+ E[BYn ] + E[DYn ] − ε E[bYn ]. (157)

Finally, we shall prove that the last three terms in (157) can

be scaled as +O(1) as n → ∞. By Hypotheses (a) and (b)

in Theorem 1, there exist two positive constants Vinf and Tsup

satisfying

V(X | Y ) ≥ Vinf (a.s.), (158)

T(X | Y ) ≤ Tsup (a.s.), (159)

respectively. Using those constants, we state the following

lemma.

Lemma 9. Suppose that Hypotheses (a) and (b) in Theorem 1

hold. Given 0 < ε < 1, it holds that

���E[BYn ] + E[DYn ] − ε E[bYn ]
��� ≤ A (1 + ε)T4/3

sup

c V
3/2
inf

+

3 ATsup

Vinf

(160)

for every n ≥ n0, where A > 0 is an absolute constant,

c = c(ε) > 0 is a constant depending only on ε, and

n0 = n0(ε,Vinf,Tsup) ≥ 1 is a constant depending on ε, Vinf ,

and Tmax.

To prove Lemma 9, we shall use the following non-uniform

strengthened Berry–Esseen bound.
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∫ ∞

ηYn

P{ι(Xn | Yn) > t | Yn} dt
(a)
=

∫ ∞

bYn

P

{
ι(Xn | Yn) > H(Xn | Yn) +

√
V(Xn | Yn)Φ−1(1 − ε) + t

��� Yn
}

dt

(b)
=

∫ ∞

0

P

{
ι(Xn | Yn) > H(Xn | Yn) +

√
V(Xn | Yn)Φ−1(1 − ε) + t

��� Yn
}

dt − BYn

(c)
=

√
V(Xn | Yn)

∫ ∞

0

P

{
ι(Xn | Yn) − H(Xn | Yn)√

V(Xn | Yn)
> Φ−1(1 − ε) + r

����� Yn

}
dr − BYn

=

√
V(Xn | Yn)

∫ ∞

Φ−1(1−ε)
P

{
ι(Xn | Yn) − H(Xn | Yn)√

V(Xn | Yn)
> r

����� Yn

}
dr − BYn

(d)
=

√
V(Xn | Yn)

∫ ∞

Φ−1(1−ε)
(1 −Φ(r)) dr − BYn + DYn

(e)
=

√
V(Xn | Yn)

(∫ ∞

Φ−1(1−ε)
r ϕ(r) dr − εΦ−1(1 − ε)

)
− BYn + DYn

(f)
=

√
V(Xn | Yn)

(
fG(1 − ε) − εΦ−1(1 − ε)

)
− BYn + DYn (a.s.) (150)

BYn ≔ sgn(bYn )
∫ max{0,bYn }

min{0,bYn }
P

{
ι(Xn | Yn) > H(Xn | Yn) +

√
V(Xn | Yn)Φ−1(1 − ε) + t

��� Yn
}

dt (152)

DYn ≔

√
V(Xn | Yn)

∫ ∞

Φ−1(1−ε)

(
P

{
ι(Xn | Yn) − H(Xn | Yn)√

V(Xn | Yn)
> r

����� Yn

}
− (1 − Φ(r))

)
dr (155)

Lemma 10 (non-uniform Berry–Esseen bound [34]; see also

[5, Theorem 10]). Let n ≥ 1 be an integer, and Z1, Z2, . . . , Zn

independent, but not necessarily identically distributed, real-

valued r.v.’s. Define the following two quantities:

Vn ≔

n∑
i=1

E[(Zi − E[Zi])2], (161)

Tn ≔

n∑
i=1

E[|Zi − E[Zi]|3]. (162)

Then, it holds that�����P
{ n∑

i=1

(Zi − E[Zi]) ≤ z
√

Vn

}
−Φ(z)

����� ≤ ATn

(1 + |z|3)V3/2
n

(163)

for every z ∈ R, provided that Vn > 0 and Tn < ∞, where

A > 0 is an absolute constant.

Note that Lemma 10 can be readily reduced to the uniform

Berry–Esseen bound:

sup
z∈R

�����P
{ n∑

i=1

(Zi − E[Zi]) ≤ z
√

Vn

}
−Φ(z)

����� ≤ ATn

V
3/2
n

. (164)

Proof of Lemma 9: Since ι(Xn | Yn) is a real-valued r.v.,

we see that P{ι(Xn | Yn) ≤ r | Yn} forms a cumulative distri-

bution function of r ∈ R a.s. (see, e.g., [35, Theorem 10.2.2]).

Thus, noting that ηYn given in (149) is σ(Yn)-measurable, it

follows from the Berry–Esseen bound stated in (164) with an

absolute constant A > 0 that

P{ι(Xn | Yn) ≤ ηYn | Yn}

≤ Φ
(
ηYn −H(Xn | Yn)√
V(Xn | Yn)

)
+

AT(Xn | Yn)
V(Xn | Yn)3/2

(a.s.), (165)

P{ι(Xn | Yn) < ηYn | Yn}

≥ Φ
(
ηYn −H(Xn | Yn)√
V(Xn | Yn)

)
− AT(Xn | Yn)
V(Xn | Yn)3/2

(a.s.). (166)

It is clear that there exists an n0 = n0(ε,Vinf,Tsup) ≥ 1

satisfying

ATsup

√
n V

3/2
inf

<
min{1 − ε, ε}

2
(167)

for every n ≥ n0, where note that we have assumed that 0 <

ε < 1. Since

AT(Xn | Yn)
V(Xn | Yn)3/2

=

A
∑n

i=1 T(Xi | Yi)
(∑n

i=1V(Xi | Yi))3/2
≤

ATsup

√
n V

3/2
inf

(168)

a.s., substituting (165) and (166) into (149), we get

Φ
−1

(
1 − ε −

ATsup

√
n V

3/2
inf

)
≤ ηY

n − H(Xn | Yn)√
V(Xn | Yn)

≤ Φ−1

(
1 − ε +

ATsup

√
n V

3/2
inf

)
(169)
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a.s. for every n ≥ n0. In addition, it follows by Taylor’s

theorem (and the inverse function theorem) that

Φ
−1(t + u) −Φ−1(t) = u

fG(s)
(170)

for every 0 < t < 1, every u ∈ (−t, 1−t), and some s ∈ [t, u+t].
Applying (170) to (169), we have

|bYn | =
���ηYn −H(Xn | Yn) −

√
V(Xn | Yn)Φ−1(1 − ε)

���
≤

ATsup

c

√
V(Xn | Yn)

n V3
inf

≤
AT

4/3
sup

c V
3/2
inf

(a.s.) (171)

for every n ≥ n0, where the constant c > 0 is given as

c = c(ε) ≔




fG

(
ε

2

)
if 0 < ε ≤ 1

2
,

fG

(
1 + ε

2

)
if

1

2
< ε < 1,

(172)

and the last inequality follows from the fact that11

V(Xn | Yn) =
n∑
i=1

V(Xi | Yi)

≤
n∑
i=1

T(Xi | Yi)2/3

≤ n T
2/3
sup (a.s.). (173)

We readily see that Fn is bounded away from zero for

sufficiently large n.

Now, it follows by the definition of BYn stated in (152) that

E[|BYn |] ≤ E
[�����
∫ max{0,bYn }

min{0,bYn }
dr

�����
]
= E[|bYn |] (174)

for every n ≥ 1. Moreover, it follows from (171) that

E[|bYn |] ≤
AT

4/3
sup

c V
3/2
inf

(175)

for every n ≥ n0. Furthermore, it follows by the definition of

DYn stated in (155) that (176) written in the top of the next

page holds for every n ≥ 1, where

• (a) follows by the non-uniform Berry–Esseen theorem

stated in Lemma 10 with an absolute constant A > 0,

and

• (b) follows from (158) and (159).

Analogously, we may see that

E[DYn ] ≥ −
3 ATsup

Vinf

(177)

for every n ≥ 1. Combining (174)–(177), we obtain Lemma 9,

as desired.

The proof of Lemma 3 is completed by applying Lemma 9

to (157).

11The first inequality in (173) can be verified by (E[ |Z |p | G])1/p ≤
(E[ |Z |q | G])1/q for 1 ≤ p < q and every G ⊂ F.

APPENDIX F

PROOF OF LEMMA 4

To prove Lemma 4, we use the following lemma.

Lemma 11 (Bernstein’s inequality; see, e.g., [36, Equa-

tion (2.10)]). Let n be a positive integer and Z1, . . . , Zn real-

valued and independent r.v.’s. Suppose that there exists a

positive constant c satisfying |Zi | ≤ c a.s. for each 1 ≤ i ≤ n.

Then, it holds that

P

{
n∑
i=1

(Zi − E[Zi]) ≤ −t

}
≤ exp

(
− t2

2(∑n
i=1 E[Z2

i
] + c t/3)

)

(178)

for every positive real number t.

Assume without loss of generality that P{V(X | Y ) > 0} >
0. For each integer n ≥ 1, define the event

An ≔

{
n∑
i=1

Vc(X | Y) − V(Xi | Yi)√
2E[V(X | Y )2] n log n

≤ 1

}
. (179)

Since we have assumed that there exists a positive constant

Vsup satisfyingV(X | Y ) ≤ Vsup a.s., it follows from Lemma 11

that (180) written in the top of the next page holds, where the

last equality follows from the fact that

Vsup

√
2 log n

9 nE[V(X | Y )2]
≤ 1 (181)

for sufficiently large n. On the other hand, for sufficiently large

n satisfying √
2E[V(X | Y )2] log n

n Vc(X | Y)2
≤ 1, (182)

we observe that

E

[√
V(Xn | Yn)

]
≥ E

[√
V(Xn | Yn) 1An

]

≥ E


√√√√
n Vc(X | Y)

©
«
1 −

√
2E[V(X | Y )2] log n

n Vc(X | Y)2
ª®¬

1An


≥

√
n Vc(X | Y )

©
«
1 −

√
2E[V(X | Y)2] log n

n Vc(X | Y )2
ª®¬
P(An),

(183)

where the second inequality follows by the definition of An

stated in (179). Combining (51), (180), and (183), we obtain

(52), completing the proof.

APPENDIX G

PROOF OF LEMMA 5

.

Consider an (L, ε)avg-code (F,G) satisfying

E[ℓ(F(X,Y ))] ≤ L, (184)

P{X , G(F(X,Y ),Y )} ≤ ε. (185)



17

E[DYn ] = E
[√
V(Xn | Yn)

∫ ∞

Φ−1(1−ε)

(
P

{
ι(Xn | Yn) − H(Xn | Yn)√

V(Xn | Yn)
> r

����� Yn

}
− (1 − Φ(r))

)
dr

]

(a)
≤ AE

[
T(Xn | Yn)
V(Xn | Yn)

] ∫ ∞

Φ−1(1−ε)

dr

1 + |r |3
(b)
≤

ATsup

Vinf

∫ ∞

Φ−1(1−ε)

dr

1 + |r |3

≤
2 ATsup

Vinf

∫ ∞

0

dr

1 + r3

≤
2 ATsup

Vinf

( ∫ 1

0

dr +

∫ ∞

1

dr

r3

)

=

3 ATsup

Vinf

(176)

P(An) ≥ 1 − exp

(
− 2E[V(X | Y )2] n log n

2 nE[V(X | Y )2] + (2/3)Vsup

√
2E[V(X | Y)2] n log n

)

≥ 1 − exp

(
− log n

1 + Vsup

√
(2 log n)/(9 nE[V(X | Y)2])

)

= 1 + O

(
1
√

n

)
(as n→∞) (180)

As similarly done in (114) and (115) of Appendix C, construct

another code (F1, g1) from the original code (F,G) via the ran-

dom maps ΦY and ΨY defined in (112) and (113), respectively.

Obviously, the same derivations as (116) and (120) yield

E[ℓ(F1(X,Y ))] ≤ L, (186)

1 − ε ≤ E
[ |B(Y) |∑

i=1

P{X = ΨY (i) | Y }
]

=

∞∑
i=1

P{X = ΨY (i)}, (187)

respectively, where the last equality follows from the fact that

ΨY (i) = 0 whenever i > |B(Y )| a.s. (see (113)). Now, defining

two parameters ξ and ζ so that12

ξ ≔ sup

{
k ≥ 0

�����
k∑
i=1

P{X = ΨY (i)} ≤ 1 − ε
}
, (188)

ζ ≔ 1 − ε −
ξ∑
i=1

P{X = ΨY (i)}, (189)

respectively. In addition, define two parameters κ and γ so

that

κ ≔ sup

{
k ≥ 0

�����
k∑

x=1

P{X = ςY (x)} ≤ 1 − ε
}
, (190)

γ ≔ 1 − ε −
κ∑

x=1

P{X = ςY (x)}. (191)

12Note that α = 0 if P{X = ψ(1,Y)} ≥ 1 − ε; and α = ∞ if
∑∞

i=1 P{X =
ψ(i, Y)} = 1 − ε and P{X = ψ(i,Y )} > 0 for all i ≥ 1.

respectively, where ςY is given in (46). Furthermore, define

q1(k) ≔


P{X = ΨY (k)} if 1 ≤ k ≤ ξ,
ζ if k = ξ + 1,

0 if ξ + 2 ≤ k < ∞,
(192)

q2(x) ≔


P{X = ςY (x)} if 1 ≤ x ≤ κ,
γ if x = κ + 1,

0 if κ + 2 ≤ x < ∞.
(193)

Similar to (127) and (128), we observe that

E[ℓ(F1(X,Y ))] ≥
∞∑
j=1

∞∑
k=2 j

q1(k), (194)

E[〈⌊log ς−1
Y (X)⌋〉ε] =

∞∑
j=1

∞∑
x=2 j

q2(x). (195)

Since ςY defined in (46) ensures that

P{X = ςY (1)} ≥ P{X = ςY (2)} ≥ · · · , (196)

it can be verified that q1(·) is majorized by q2(·), i.e., it follows

that

l∑
k=1

q1(k) ≤
l∑

x=1

q2(x) (a.s.) (197)

for every l ≥ 1, and

∞∑
k=1

q1(k) =
∞∑
x=1

q2(x) = 1 − ε (a.s.). (198)

Therefore, it follows from (194), (195), (197) and (198) that

E[ℓ(F1(X,Y ))] ≥ E[〈⌊log ς−1
Y (X)⌋〉ε]. (199)
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Combining (186) and (199), we observe that the existence of

an (L, ε)avg-code (F,G) implies that

L ≥ E[〈⌊log ς−1
Y (X)⌋〉ε], (200)

which corresponds to the converse bound of Lemma 5.

Finally, we shall show the existence of an (L, ε)avg-code

meeting the equality in (200). In fact, constructing a variable-

length stochastic code (F∗avg, g
∗) so that

F∗avg(x,Y) ≔


bς−1

Y
(x) if 1 ≤ ς−1

Y
(x) ≤ κ,

Bavg if ς−1
Y
(x) = κ + 1,

� if κ < ς−1
Y
(x) < ∞,

(201)

g∗(b,Y) ≔ x if b = bς−1
Y
(x) for some x ∈ X, (202)

where Bavg denotes a {�, bκ+1}-valued r.v. satisfying the con-

dition that it is independent of (X,Y) (i.e., that Bavg y (X,Y )),
and

Bavg =

{
bκ+1 with probability γ,

� with probability 1 − γ,
(203)

we readily see that

E[ℓ(F∗avg(X,Y))] = E[〈⌊log ς−1
Y (X)⌋〉ε], (204)

P{X , g∗(F∗avg(X,Y ),Y )} = ε. (205)

This completes the proof of Lemma 5.

APPENDIX H

PROOF OF LEMMA 8

A. Proof of (74)

By Lemma 1 in Appendix D, it suffices to show that

−| log ce | ≤ N∗max(ε, X,Y) − E[〈⌊log ς−1
Y (X)⌋ | Y〉ε]

≤ 1 + | log ce |, (206)

where N∗max(ε, X,Y ) ≔ N∗max(1, ε, X,Y ). Throughout Ap-

pendix H, we consider one-shot (n = 1) guessing strategies as

defined in Section IV (by taking n therein to be 1). Specifically,

we now consider an (N, ε)max-guessing strategy (g, π(· | ·))
satisfying

E[log G(X,Y )] ≤ N, (207)

P{G(X,Y ) , g(X,Y) | Y } ≤ ε (a.s.). (208)

It is clear that��E[(log G(X,Y )) 1{G(X,Y),g(X,Y)}]
�� ≤ | log ce |. (209)

It follows from (208) that

1 − ε ≤ 1 − P{G(X,Y ) , g(X,Y ) | Y }
= P{G(X,Y) = g(X,Y ) | Y}

=

∞∑
k=1

P{G(X,Y ) = k | Y } (a.s.), (210)

where the last equality follows from the fact that G(X,Y) = k

only if g(X,Y ) = k. Based on (210), define the σ(Y)-
measurable real-valued r.v.’s νY and υY as follows:

νY ≔ sup

{
k ≥ 1

�����
k∑

x=1

P{G(X,Y ) = k | Y} ≤ 1 − ε
}
, (211)

υY ≔ 1 − ε −
νY∑
x=1

P{G(X,Y) = k | Y}, (212)

respectively. Furthermore, define

p3(k | Y) ≔


P{G(X,Y) = k | Y} if 1 ≤ k ≤ νY,
υY if k = νY + 1,

0 if νY + 2 ≤ k < ∞.
(213)

Similar to (127) in Appendix C, we get

E[⌊log G(X,Y )⌋ 1{G(X,Y)=g(X,Y)} | Y ] ≥
∞∑
j=1

∞∑
i=2 j

p3(i | Y )

(214)

a.s. Moreover, in the same way as (129) and (130) in Ap-

pendix C, it can be verified that p3(· | Y ) is majorized

by p2(· | Y ) a.s., where p2(· | Y ) is defined in (126).

Therefore, combining (207)–(209) and (214), the existence of

an (N, ε)max-guessing strategy implies that

N + | log ce | ≥ E[〈⌊log ς−1
Y (X)⌋ | Y〉ε], (215)

which corresponds to the left-hand inequality of (206).

Finally, considering the guessing strategy (g∗, π∗max(· | ·))
given by

g∗(x,Y) = ς−1
Y (x) (a.s.), (216)

π∗max(x | Y) =




0 if 1 ≤ x ≤ κY,
1 − γY

PX |Y (ςY (x) | Y )
if x = κY + 1,

1 if κY + 2 ≤ x < ∞,
(217)

and denoting by G∗max : X × Y → X the giving-up guessing

function induced by the strategy (g∗, π∗max(· | ·)), we obtain

after some algebra that

P{G∗max(X,Y ) , g∗(X,Y) | Y } = ε (a.s.) (218)

and

E[(log G∗max(X,Y)) 1{G(X,Y)=g(X,Y )}]
≤ E[⌊log G∗max(X,Y )⌋ 1{G(X,Y)=g(X,Y)}] + 1

= E[〈⌊log ς−1
Y (X)⌋ | Y〉ε] + 1, (219)

which, together with (209) and (214), imply the right-hand

inequality of (206). This completes the proof of (74).
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B. Proof of (75)

By Lemma 5, it suffices to show that

−| log ce | ≤ N∗avg(ε, X,Y ) − E[〈⌊log ς−1
Y (X)⌋ | Y〉ε]

≤ 1 + | log ce |, (220)

where N∗avg(ε, X,Y ) ≔ N∗avg(1, ε, X,Y ). Consider an (N, ε)avg-

guessing strategy (g, π(· | ·)) satisfying

E[log G(X,Y)] ≤ N, (221)

P{G(X,Y) , g(X,Y )} ≤ ε, (222)

where G : X × Y → X is the giving-up guessing function

induced by the strategy (g, π(· | ·)). Similar to (210), one has

1 − ε ≤
∞∑
k=1

P{G(X,Y ) = k}. (223)

Based on (223), define two parameters ν and υ by

ν ≔ sup

{
k ≥ 1

�����
k∑

x=1

P{G(X,Y ) = k} ≤ 1 − ε
}
, (224)

υ ≔ 1 − ε −
ν∑

x=1

P{G(X,Y ) = k}, (225)

respectively. Moreover, define

q3(k) ≔


P{G(X,Y ) = k} if 1 ≤ k ≤ ν,
υ if k = ν + 1,

0 if ν + 2 ≤ k < ∞,
(226)

Similar to (214), we observe that

E[⌊log G(X,Y)⌋ 1{G(X,Y)=g(X,Y )}] ≥
∞∑
j=1

∞∑
k=2 j

q3(k), (227)

Moreover, in the same way as (197) and (198) in Appendix G,

it can be verified that q3(·) is majorized by q2(·), where q2(·) is

defined in (193). Therefore, combining (209), (221), (222), and

(227), the existence of an (N, ε)avg-guessing strategy implies

that

N + | log ce | ≥ E[〈⌊log ς−1
Y (X)⌋〉ε], (228)

which corresponds to the left-hand inequality of (220).

Finally, considering the guessing strategy (g∗, π∗avg(· | ·)) so

that g∗ is given as (216) and

π∗avg(x | Y ) =




0 if 1 ≤ x ≤ κ,
1 − γ

P{X = ςY (x)}
if x = κ + 1,

1 if κ + 2 ≤ x < ∞,

(229)

and denoting by G∗avg : X × Y → X the giving-up guessing

function induced by the strategy (g∗, π∗avg(· | ·)), we obtain

after some algebra that

P{G∗avg(X,Y) , g∗(X,Y)} = ε (230)

and

E[(log G∗avg(X,Y)) 1{G(X,Y)=g(X,Y )}]
≤ E[(⌊log G∗avg(X,Y )⌋) 1{G(X,Y)=g(X,Y )}] + 1

= E[〈⌊log ς−1
Y (X)⌋〉ε] + 1, (231)

which, together with (209) and (227), imply the right-hand

inequality of (220). This completes the proof of (75).

APPENDIX I

RELAXATIONS OF HYPOTHESES IN THEOREM 1

A. Proof of Proposition 2

Suppose that P{X ∈ A} = 1 for some finite A ⊂ X. Then,

we readily see that∑
x∈A

PX |Y (x | Y ) = 1 (a.s.). (232)

Hence, the well-known upper bound on the Shannon entropy

shows that ∑
x∈X

PX |Y (x | Y ) log
1

PX |Y (x | Y )

=

∑
x∈A

PX |Y (x | Y) log
1

PX |Y (x | Y )
≤ log |A| (a.s.). (233)

Therefore, it can be verified by the dominated convergence

theorem for the conditional expectation that

H(X | Y ) ≤ log |A| (a.s.). (234)

On the other hand, we get

∑
x∈A

PX |Y (x | Y )
����log

1

PX |Y (x | Y)
− H(X | Y )

����
3

≤
∑
x∈A

PX |Y (x | Y ) log3 1

PX |Y (x | Y )
+H(X | Y)3. (235)

Since the mapping u 7→ u ln3(1/u) on [0, 1] is maximized at

u = e−3, it follows from (232) and (235) that∑
x∈A

PX |Y (x | Y ) log3 1

PX |Y (x | Y)
≤ 27 |A|
(e ln 2)3

(236)

a.s., where ln stands for the natural logarithm. Combining

(234)–(236), we can obtain from the dominated convergence

theorem that

T(X | Y) ≤ 27 |A|
(e ln 2)3 + log3 |A| (a.s.), (237)

which implies that T(X | Y ) is bounded away from infinity

a.s. This completes the proof of Proposition 2.

B. Proof of Proposition 3

Assume without loss of generality that PY (y) is positive for

each y ∈ Y. Hypothesis (a) in Theorem 1 is used only to

ensure Lemma 3; thus, it suffices to prove Lemma 3 without

Hypothesis (a) in Theorem 1.

Let η(y) ≥ 0 be a real number satisfying

P{ι(X | Y) > η(y) | Y = y}
+ β(y) P{ι(X | Y ) = η(y) | Y = y} = ε (238)

for some 0 ≤ β(y) < 1. Define

ηmax = max
y∈Y
η(y). (239)
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Since we now do not assume that Hypothesis (a) in Theorem 1

holds, there may exist a y ∈ Y satisfying V(X | y) = 0. If

V(X | y) = 0 for every y ∈ Y, then we readily see that

E[〈ι(Xn | Yn) | Yn〉ε | Yn
= y] = (1 − ε)

n∑
i=1

H(X | yi)

(240)

for every n ≥ 1 and y ∈ Yn. Therefore, Lemma 3 also holds

even if V(X | y) = 0 for every y ∈ Y.

In the following, we assume that there exists a y ∈ Y
satisfying V(X | y) > 0. Define

Hmax ≔ max
y∈Y
H(X | y), (241)

Vmax ≔ max
y∈Y
V(X | y), (242)

Vmin ≔ min
y∈Y:

V(X |y)>0

V(X | y), (243)

Tmax ≔ max
y∈Y
T(X | y). (244)

Note that the three numbers Hmax, Vmax, and Tmax are finite

since Hypothesis (b) in Theorem 1 is satisfied. To prove

Lemma 3 without Hypothesis (a) in Theorem 1, it suffices

to prove an analog of Lemma 9 stated in Appendix E without

Hypothesis (a) in Theorem 1. More precisely, we shall prove

the following lemma.

Lemma 12. Recall that bYn , BYn , and DYn are defined

in (151), (152), and (155), respectively (see Appendix E).

Suppose that the following hold: (i) Y is a finite alphabet,

(ii) there exists a y ∈ Y satisfying V(PX |Y=y) > 0, and (iii)

Hypothesis (b) in Theorem 1 holds. Given 0 < ε < 1, it holds

that���E[BYn ] + E[DYn ] − ε E[bYn ]
���

≤ (1 + ε)
(

AT
4/3
max

c V
3/2
min

+ K
(
ηmax + Hmax + VmaxΦ

−1(1 − ε)
))

+

3 ATmax

Vmin

(245)

for every n ≥ K, where A > 0 is an absolute constant,

c = c(ε) > 0 is a constant depending only on ε, and

K = K(ε,Vmin,Tmax) > 0 is a constant depending on ε, Vmin,

and Tmax.

Proof of Lemma 12: Fix an infinite sequence y =

(y1, y2, . . . ) ∈ YN arbitrarily. For each n ≥ 1, denote by

y
(n)
= (y1, . . . , yn) the n-length prefix of y . For each n ≥ 1,

consider two parameters ηn ≥ 0 and 0 ≤ βn < 1 given so that

P{ι(Xn | Yn) > ηn | Yn
= y

(n)}
+ βn P{ι(Xn | Yn) = ηn | Yn

= y
(n)} = ε. (246)

Let K ⊂ N be the subset in which for all k ∈ K, there exists

a finite Ak ⊂ X satisfying PX |Y (x | yk) = 1/|Ak | for each

x ∈ Ak . Define k(n) ≔ |{1 ≤ k ≤ n | k < K}| for each n ≥ 1.

Moreover, let n1 ≥ 1 be chosen so that

n1 ≔ sup

{
n ≥ 1

����� ATmax√
k(n) + 1 Vmin

≥ min{1 − ε, ε}
2

}
. (247)

Since V(X | yk) = T(X | yk) = 0 for every k ∈ K, and since

V(X | yi) T (X | yi) > 0 for every i ∈ N \ K, we observe that

AT(Xn | y (n))
V(Xn | y (n))3/2

=

A
∑n

i=1:i<K T(X | yi)
(∑n

i=1:i<K V(X | |yi))3/2

≤ ATmax√
k(n)V3/2

min

; (248)

therefore, it can be shown by the same way as (171) that

���ηn −H(Xn | y (n)) −
√
V(Xn | y (n))Φ−1(1 − ε)

��� ≤ AT
4/3
max

c V
3/2
min

(249)

for every n ≥ n1, provided that n1 < ∞, where A > 0 is an

absolute constant that appears in Lemma 10, and c = c(ε) > 0

a constant is given in (172).

Now, consider the case where n1 = ∞. Note that n1 = ∞ if

and only if

lim
n→∞

k(n) ≤
(

2 ATmax

Vmin min{1 − ε, ε}

)2

− 1 ≕ K(ε,Vmin,Tmax).
(250)

It is clear from the definition of K that

H(Xn | y (n)) =
n∑

i=1:i<K
H(X | yi) +

n∑
j=1:j∈K

log |A j | (251)

for each n ≥ 1. If 1 ∈ K, then

P{ι(X1 | Y1) > t | Y1 = y1} =
{

0 if t ≤ log |A1 |,
1 if t > log |A1 |,

(252)

implying that

η1 = log |A1 |. (253)

Moreover, for each k ∈ K satisfying k ≥ 2, we see that

P{ι(Xk | Y k) > ηk | Y k
= y

(n)}
= P{ι(Xk−1 | Y k−1) > ηk−1 + log |A| | Y k

= y
(n)} (254)

for every t ∈ R, implying that

ηk = ηk−1 + log |Ak |. (255)

Therefore, since V(X | yk) = 0 for each k ∈ K, it follows

from (250), (251), (253), and (254) that���ηn −H(Xn | y (n)) −
√
V(Xn | y (n))Φ−1(1 − ε)

���
≤ K(ε,Vmin,Tmax)

(
ηmax + Hmax + VmaxΦ

−1(1 − ε)
)

(256)

for every n ≥ 1, provided that n1 = ∞.

Combining (249) and (256), we obtain���ηn −H(Xn | y (n)) −
√
V(Xn | y (n))Φ−1(1 − ε)

���
≤ AT

4/3
max

c V
3/2
min

+ K(ε,Vmin,Tmax)
(
ηmax + Hmax + VmaxΦ

−1(1 − ε)
)

(257)
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for every n ≥ K(ε,Vmin,Tmax). Therefore, since the infinite

sequence y = (y1, y2, . . . ) is arbitrary, we have

E[|bYn |] ≤ AT
4/3
max

c V
3/2
min

+ K(ε,Vmin,Tmax)
(
ηmax + Hmax + VmaxΦ

−1(1 − ε)
)

(258)

for every n ≥ K(ε,Vmin,Tmax). The proof of Lemma 12 is

finally completed by combining (174), (176), (177), and (258).

Lemma 3 without Hypothesis (a) in Theorem 1 is now

ensured by applying Lemma 12 to (157). This completes the

proof of Proposition 3.

APPENDIX J

A COUNTEREXAMPLE OF

CONVERSE PART IN [5, SECTION II-A]

In this appendix, we consider a variable-length compression

problem for a discrete memoryless source in the absence of

side-information. Here, we use similar notations to those in

[5]. Fix a real number 0 < ǫ < 1. Suppose that the source S

defined as a positive-integer-valued r.v. satisfies that PS(1) ≥
PS(2) ≥ · · · . As written in Remark 2, consider a stochastic

encoder PW |S defined as a conditional probability distribution

of S given a {0, 1}∗-valued r.v. W . In addition, consider a

deterministic decoder g : {0, 1}∗ → {1, 2, . . . }.
In [5, Section II-A], it was stated that an optimal variable-

length stochastic code (P∗
W |S, g

∗) like (133) and (134), or

like (201) and (202), has an average codeword length and

error probability that are both no larger than those of the

given variable-length stochastic code (PW |S, g). This is an

unconditional version of Lemmas 1 and 5. In the particular

case of S satisfying PS(1) + PS(2) + · · · + PS(M) = 1 − ǫ for

some M ≥ 1, its proof is written in Lines 3–19 of the left

column of Page 4318 of [5, Section II-A] as follows:

“Formally, for a given encoder PW |S , the optimal decoder

is always deterministic and we denote it by g. Consider [sic]

w0 ∈ {0, 1}∗\� and source realization m with PW |S=m(w0) > 0.

If g(w0) , m, the average length can be decreased, without

affecting the probability of error, by setting PW |S=m(w0) = 0

and adjusting PW |S=m(�) accordingly. This argument implies

that the optimal encoder has at most one source realization

m mapping to each w0 , �. Next, let m0 = g(�) and

by a similar argument conclude that PW |S=m0
(�) = 1. But

then, interchanging m0 and 1 leads to the same or better

probability of error and shorter average length, which implies

that the optimal encoder maps 1 to �. Continuing in the same

manner for m0 = g(0),g(1), . . . , g(f∗
S
(M)), we conclude that

the optimal code maps f(m) = f∗
S
(m), m = 1, . . . . ,M. Finally,

assigning the remaining source outcomes whose total mass is

ǫ to � shortens the average length without affecting the error

probability, so f(m) = �, m > M is optimal.”

In the above proof, note that f : {1, 2, . . . } → {0, 1}∗
denotes a deterministic encoder induced by the stochastic

encoder PW |S constructed by the above procedures, and f∗
S

:

{1, 2, . . . } → {0, 1}∗ stands for the optimal one-to-one code

satisfying f∗
S
(m) = bm for every m ≥ 1 (cf. [4]), where {bi}∞i=1

denotes the lexicographical ordering of the strings in {0, 1}∗
(cf. Appendix C).

One can, however, show a counterexample of the triplet

(X, PB |X, g) in which the above proof strategy fails to prove

the desired assertion. Let ǫ = 1/6 be fixed, and PS the source

distribution given as

PS(m) =




1

2
if m = 1,

1

3
if m = 2,

1

6
if m = 3,

0 otherwise.

(259)

Since PS(1)+PS(2) = 1− ǫ , it is clear that M = 2 in this case.

Consider the stochastic encoder PW |S defined as

PW |S=m(w) =




5

6
if m = 1 and w = 0,

1

6
if m = 1 and w = 1

1 if m = 2 and w = �,
1

2
if m = 3 and w ∈ {0, 1},

0 otherwise,

(260)

and the decoder g given as

g(w) =




1 if w = 0,

2 if w = �,
3 if w = 1,

arbitrary otherwise.

(261)

Then, the error probability and the average codeword length

can be calculated as P{S , Ŝ} = 1/6 = ǫ and E[ℓ(W)] = 2/3,

respectively, where Ŝ = g(W). By applying the above proof

strategy to the given variable-length stochastic code (PW |S, g),
we construct the optimal encoder and decoder:

P∗
W |S=m(w) =




1 if m = 1 and w = �,
1 if m = 2 and w = 0,

1 if m = 3 and w = �,
0 otherwise,

(262)

g∗(w) =



1 if w = �,
2 if w = 0,

arbitrary otherwise,

(263)

respectively, yielding the optimal performance: P{S , Ŝ} =
1/6 = ǫ and E[ℓ(W)] = 1/3.

By the procedure “Consider [sic] w0 ∈ {0, 1}∗ \ � and

source realization m with PW |S=m(w0) > 0. If g(w0) , m,

the average length can be decreased, without affecting the

probability of error, by setting PW |S=m(w0) = 0 and adjusting

PW |S=m(�) accordingly,” we modify the stochastic encoder

PW |S to another P
(1)
W |S so that P

(1)
W |S=m(w0) = 0 if w0 , � and
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g(w0) , m; and P
(1)
W |S=m(w0) = PW |S=m(w0) if w0 , � and

g(w0) = m; and

P
(1)
W |S=m(�) = PW |S=m(�)

+

∑
w∈{0,1}∗\{�}:

g(w),m

PW |S=m(w) (264)

for every m ≥ 1. Namely, we see from (260) that

P
(1)
W |S=m(w) =




5

6
if m = 1 and w = 0,

1

6
if m = 1 and w = �,

1 if m = 2 and w = �,
1

2
if m = 3 and w ∈ {�, 1},

0 otherwise.

(265)

As mentioned as “the average length can be decreased, with-

out affecting the probability of error,” the error probability and

the average codeword length are then given as P{S , Ŝ} =
1/6 = ǫ and E[ℓ(W)] = 1/2, respectively.

Next, consider the procedure “Next, let m0 = g(�) and by

a similar argument conclude that PW |S=m0
(�) = 1. But then,

interchanging m0 and 1 leads to the same or better probability

of error and shorter average length, which implies that the

optimal encoder maps 1 to �.” In this example, we see from

(261) that m0 = 2, and interchanging the source symbols m0 =

2 and 1 results in the following encoder and decoder:

P
(2)
W |S=m(w) =




1 if m = 1 and w = �,
5

6
if m = 2 and w = 0,

1

6
if m = 2 and w = �,

1

2
if m = 3 and w ∈ {�, 1},

0 otherwise,

(266)

g(2)(w) =




1 if w = �,
2 if w = 0,

3 if w = 1,

arbitrary otherwise,

(267)

respectively, and we readily see that P{S , Ŝ} = 5/36 < ǫ

and E[ℓ(W)] = 13/36.

Moreover, consider the iterative procedure “Continuing

in the same manner for m0 = g(0),g(1), . . . , g(f∗
S
(M)), we

conclude that the optimal code maps f(m) = f∗
S
(m), m =

1, . . . . ,M.” However, since M = 2 and g(2) ◦ f∗
S
(2) = 2,

this iterative procedure does not change the variable-length

stochastic code (P(2)
W |S, g

(2)) at all. Namely, since the stochastic

encoder P
(2)
W |S given in (266) stochastically maps the source

symbols m = 1 and m = 3, we cannot conclude that “the

optimal code maps f(m) = f∗
S
(m), m = 1, . . . ,M” in this

example.

Finally, consider the procedure “Finally, assigning the re-

maining source outcomes whose total mass is ǫ to � shortens

the average length without affecting the error probability, so

f(m) = �, m > M is optimal.” Then, we have the following

encoder:

P
(3)
W |S=m(w) =




1 if m = 1 and w = �,
5

6
if m = 2 and w = 0,

1

6
if m = 2 and w = �,

1 if m = 3 and w = �,
0 otherwise,

(268)

and we observe from the variable-length stochastic code

(P(3)
W |S, g

(2)) that P{S , Ŝ} = 2/9 > ǫ and E[ℓ(W)] = 5/18.

This calculation, however, violates the error probability con-

straint P{S , Ŝ} ≤ ǫ , which justifies our claim that there is

an error in the proof in [5, Section II-A].
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