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On the Bee-Identification Error Exponent
with Absentee Bees
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Abstract—The “bee-identification problem” was formally de-
fined by Tandon, Tan and Varshney [IEEE Trans. Commun.
(2019) [Online early access]], and the error exponent was studied.
This work extends the results for the “absentee bees” scenario,
where a small fraction of the bees are absent in the beehive
image used for identification. For this setting, we present an
exact characterization of the bee-identification error exponent,
and show that independent barcode decoding is optimal, i.e.,
joint decoding of the bee barcodes does not result in a better
error exponent relative to independent decoding of each noisy
barcode. This is in contrast to the result without absentee bees,
where joint barcode decoding results in a significantly higher
error exponent than independent barcode decoding. We also
define and characterize the “capacity” for the bee-identification
problem with absentee bees, and prove the strong converse for
the same.

Index Terms—Bee-identification problem, absentee bees, noisy
channel, error exponent, capacity, strong converse.

I. INTRODUCTION

The problem of bee-identification with absentee bees can be
described as follows. Consider a group of m different bees,
in which each bee is tagged with a unique barcode for iden-
tification purposes in order to understand interaction patterns
in honeybee social networks [1], [2]. Assume a camera takes
a picture of the beehive to study the interactions among bees.
The beehive image output (see Fig. 1) can be considered as a
noisy and unordered set of barcodes. In this work, we consider
the “absentee bees” scenario, in which some bee barcodes
are missing in the image used to decode the identities of
the bees. This scenario can arise, for instance, when some
of the bees fly away from the beehive, or when some of
the bees (or their barcodes) are occluded from view. Posing
as an information-theoretic problem, we quantify the error
probability of identifying the bees still present in the finite-
resolution beehive image through the corresponding (largest
or best) error exponent.

The barcode for each bee is represented as a binary vector
of length n, and the bee barcodes are collected in a codebook
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Fig. 1: Bees tagged with barcodes
(photograph provided by T. Gernat and G. Robinson).

C comprising m rows and n columns, with each row corre-
sponding to a bee barcode. As shown in Fig. 2, the channel
first permutes the m rows of C with a random permutation
π to produce Cπ , where the i-th row of Cπ corresponds to
the π(i)-th row of C. Next, the channel deletes k rows of
Cπ , to model the scenario in which k bees, out of a total
of m bees, are absent in the beehive image. Without loss of
generality, we assume that the channel deletes the last k rows
of Cπ to produce Cπ(m−k)

, where π(m−k) denotes an injective
mapping from {1, . . . ,m−k} to {1, . . . ,m} and corresponds
to the restriction of permutation π to only its first m − k
entries. Finally, the channel adds noise, modeled as a binary
symmetric channel (BSC) with crossover probability p with
0 < p < 0.5, to produce C̃π(m−k)

at the channel output. We
assume the decoder has knowledge of codebook C, and its task
is to recover the channel-induced mapping π(m−k) using the
channel output C̃π(m−k)

. Note that π(m−k) directly ascertains
the identity of all m− k bees present in the image.

When j = π(i) and the j-th row of codebook C is denoted
cj = [cj,1 cj,2 · · · cj,n], then the i-th row of Cπ is equal to
cj . For 1 ≤ i ≤ m − k, the i-th row of C̃π(m−k)

, denoted c̃i,
is a noisy version of cj = cπ(i) and we have

Pr{c̃i | cπ(i)} = pdi(1− p)n−di , 1 ≤ i ≤ m− k,

Pr
{
C̃π(m−k)

∣∣ C, π(m−k)

}
=

m−k∏
i=1

Pr{c̃i|cπ(i)}

=

m−k∏
i=1

pdi(1− p)n−di , (1)
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Effective Channel

Codebook C - Row-Permutation π -
Cπ Delete k rows -

Cπ(m−k) BSC(p) -
C̃π(m−k)

Fig. 2: Effective channel for the bee-identification problem with k absentee bees.

where di , dH(c̃i, cπ(i)) denotes the Hamming distance
between vectors c̃i and cπ(i).

We remark that the bee-identification problem formula-
tion has other applications in engineering, such as package-
distribution to recipients from a batch of deliveries with noisy
address labels, and identification of warehouse products using
wide-area sensors [1]. In a related work on identification via
permutation recovery [3], the identification of the respective
distributions of a set of observed sequences (in which each
sequence is generated i.i.d. by a distinct distribution) was
analyzed. Other models and applications, in which permutation
recovery arises naturally, are discussed in [4].

In another related work, the fundamental limit of data
storage via unordered DNA molecules was investigated in [5],
while the corresponding capacity results were extended to a
noisy setting in [6]. Here, we remark that the effective channel
in [6] is closely related to the bee-identification channel. Data
communication over permutation channels with impairments,
such as insertions, deletions, and substitutions, was analyzed
in [7]. Note that the effective channel for the bee-identification
problem differs from the communication channel in [7] in two
aspects: (i) The input to the channel in the bee-identification
problem is the entire codebook (see Fig. 2), instead of just
a codeword belonging to the codebook; (ii) The channel in
Fig. 2 only permutes the rows of the codebook, but does not
permute the letters within a row.

A. Absentee Bee-Identification Error Exponent

The bee-identification problem involves designing a decoder
to detect the channel-induced mapping π(m−k) by using the
knowledge of codebook C and channel output C̃π(m−k)

. The
decoder corresponds to a function φ that takes C̃π(m−k)

as an
input and produces a map ν : {1, . . . ,m − k} → {1, . . . ,m}
where ν(i) corresponds to the index of the transmitted code-
word which produced the received word c̃i, where 1 ≤ i ≤
m − k. The indicator variable for the bee-identification error
is defined as

D
(
ν, π(m−k)

)
,

{
1, if ν 6= π(m−k),

0, if ν = π(m−k).

Let Υ denote the set of all injective maps from {1, . . . ,m−
k} to {1, . . . ,m}. For a given codebook C and decoding
function φ, the expected bee-identification error probability
over the BSC(p) is

D(C, p, k, φ) , Eπ(m−k)

[
E
[
D
(
ν, π(m−k)

)]]
, (2)

where the inner expectation is over the distribution of C̃π(m−k)

given C and π(m−k) (see (1)), and the outer expectation is over

the uniform distribution of π(m−k) over Υ. Note that (2) can
be equivalently expressed as

D(C, p, k, φ) = Eπ(m−k)

[
Pr
{
ν 6= π(m−k)

}]
. (3)

Let C (n,m) denote the set of all binary codebooks of size
m×n, i.e. binary codebooks with m codewords, each having
length n. Now, for given values of n, m, and k, define the
minimum expected bee-identification error probability as

D(n,m, p, k) , min
C,φ

D(C, p, k, φ), (4)

where the minimum is over all codebooks C ∈ C (n,m), and
all decoding functions φ. The exponent corresponding to the
minimum expected bee-identification error probability is given
by − 1

n logD(n,m, p, k). Note that we take all logarithms to
base 2, unless stated otherwise.

B. Our Contributions

We consider the bee-identification problem with a constant
fraction of “absentee bees”, and provide an exact charac-
terization of the corresponding error exponent; this is done
via Theorem 1. We show that joint decoding of the bee
barcodes does not result in a better error exponent relative
to the independent decoding of each noisy barcode. This is
in contrast to the result without absentee bees [1], where
joint barcode decoding results in a significantly higher error
exponent than independent barcode decoding.

Secondly, we define and characterize the “capacity” (i.e., the
supremum of all code rates for which the error probability can
be driven to 0) of the bee-identification problem with absentee
bees via Theorem 2. Further, we prove the strong converse
showing that for rates greater than the capacity, the error
probability tends to 1 as the blocklength (length of barcodes)
tends to infinity.

Lastly, via Theorem 3, we show that for low rates, the error
exponent when the fraction of absentee bees tends to zero,
is strictly lower than the corresponding exponent for the case
without absentee bees. This implies a discontinuity in the error
exponent function when the fraction of absentee bees α tends
to 0, highlighting the dichotomy of its behavior when α > 0
and when α = 0. On the one hand, independent barcode
decoding is optimal even when arbitrarily small fraction of
bees are absent, whereas on the other hand, joint barcode
decoding provides higher exponent when no bees are absent.

II. BOUNDS ON THE ERROR PROBABILITY

In this section, we present finite-length bounds on
the minimum expected bee-identification error probability,
D(n,m, p, k). The upper bound on D(n,m, p, k) is presented
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in Section II-A using a naı̈ve decoding strategy in which
each noisy barcode is decoded independently, while the lower
bound on D(n,m, p, k) is presented in Section II-B using joint
maximum likelihood (ML) decoding of barcodes.

A. Independent decoding based upper bound on D(n,m, p, k)

We present an upper bound on D(n,m, p, k) based on
two ideas: (i) independent decoding of each barcode, and
(ii) the union bound. Independent barcode decoding is a
naı̈ve strategy where, for 1 ≤ i ≤ m − k, the decoder
picks c̃i, the i-th row of C̃π(m−k)

, and then decodes it to
ν(i) = arg min1≤j≤m dH(c̃i, cj). If there is more than one
codeword at the same minimum Hamming distance from c̃i,
then any one of the corresponding codeword indices is chosen
uniformly at random.

We denote the decoding function φ corresponding to inde-
pendent barcode decoding as φI. Then, for a given codebook
C, it follows from (3) that

D(C, p, k, φI) = Eπ(m−k)

[
Pr
{
ν 6= π(m−k)

}]
,

≤
m−k∑
i=1

Eπ(m−k)

[
Pr
{
ν(i) 6= π(m−k)(i)

}]
,

(5)

where the inequality follows from the union bound and the
linearity of the expectation operator.

For a scenario in which m binary codewords, each having
blocklength n, are used for transmission of information over
a binary symmetric channel BSC(p), let Pe(n,m, p) denote
the minimum achievable average error probability, where
the minimization is over all codebooks C ∈ C (n,m). The
following lemma applies (4) and (5) to present an upper bound
on D(n,m, p, k) in terms of Pe(n,m, p).

Lemma 1. Using independent barcode decoding, the bee-
identification error probability D(n,m, p, k) can be upper
bounded as follows

D(n,m, p, k) ≤ min {1, (m− k)Pe(n,m, p)} . (6)

Proof: See Appendix A.

B. Joint decoding based lower bound on D(n,m, p, k)

Recall Υ denotes the set of all injective maps from
{1, . . . ,m − k} to {1, . . . ,m}. With joint ML decoding of
barcodes using a given codebook C, the decoding function φ
takes the channel output C̃π(m−k)

as an input, and produces
the map

ν = arg min
σ∈Υ

dH(C̃π(m−k)
, Cσ), (7)

where Cσ denotes a matrix with m − k rows and n columns
whose i-th row is equal to the σ(i)-th row of C, and
dH(C̃π(m−k)

, Cσ) , |{(i, j) : C̃π(m−k)
(i, j) 6= Cσ(i, j), 1 ≤ i ≤

m− k, 1 ≤ j ≤ n}|. For this joint ML decoding scheme, we
denote the decoding function as φJ. As π(m−k) is uniformly
distributed over Υ, the joint ML decoder minimizes the error
probability [8, Thm. 8.1.1], and from (4) we have

D(n,m, p, k) = min
C∈C (n,m)

D(C, p, k, φJ). (8)

The following lemma uses (8) to present a lower bound on
D(n,m, p, k) in terms of Pe(n, k + 1, p).

Lemma 2. Let 0 < ε < 1/2, and let k > 1/ε. Then, the bee-
identification error probability D(n,m, p, k) using joint ML
decoding of barcodes can be lower bounded as follows

D(n,m, p, k)>
1−2ε

2
min

{
1, (m−k)ε Pe(n, bkεc, p)

}
. (9)

Furthermore, the error probability D(n,m, p, k) can alterna-
tively be lower bounded as follows

D(n,m, p, k)

> (1− 2ε)
[
1− exp (−(m− k)ε Pe(n, bkεc, p))

]
. (10)

Proof: See Appendix B.
The lower bound in (9) will be used to prove the converse

part in Theorem 1 on characterizing the error exponent. On the
other hand, the lower bound in (10) helps us to characterize
the “capacity” of the bee-identification problem in Theorem 2
and to prove the strong converse for the same problem.

III. BEE-IDENTIFICATION EXPONENT AND THE
OPTIMALITY OF INDEPENDENT DECODING

In this section, we analyze the exponent of the
minimum expected bee-identification error probability,
− 1
n logD(n,m, p, k). We first present some notation for the

bee-identification exponent. Recall that Pe(n,m, p) denotes
the minimum achievable average error probability when m
binary codewords, each having blocklength n, are used for
transmission of information over BSC(p). For a given R > 0
and m = d2nRe,1 the reliability function of the channel
BSC(p) is defined as follows [9],2

E(R, p) , lim sup
n→∞

− 1

n
logPe(n, 2nR, p). (11)

Let (Rn)n∈N be a sequence that converges to R, and for a
fixed n we define

E(n,Rn, p) , −
1

n
logPe(n, 2nRn , p). (12)

We will relate E(n,Rn, p) to E(R, p) via Lemma 3. However,
in order to establish Lemma 3, we need the fact that E(R, p) is
continuous for R > 0. We remark that although the continuity
of E(R, p) (or E(R,W ) for a general discrete memoryless
channel W ), has been discussed in previous literature (see,
e.g., [12, Lem. 1], [13, p. 113], [14, Prop. 8]), a clear and
comprehensive proof appears to be elusive. Note that the
scenario where the rate is less than the critical rate is of
particular interest, because it is well known that E(R,W ) is
continuous (and, in fact, convex) for rates greater than the
critical rate [9]. In Appendix C, we provide a simple and
complete proof of the continuity of the reliability function.

1We will remove the ceiling operator subsequently; this does not affect the
asymptotic behavior of the error exponent − 1

n
logD(n,m, p, k).

2Another popular, though perhaps pessimistic, definition of the reliability
function given by Han [10] and Csiszár-Körner [11], replaces lim sup with
lim inf in (11).
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Lemma 3. Assume that the sequence (Rn)n∈N converges, and
that R = limn→∞Rn. Then we have

lim sup
n→∞

E(n,Rn, p) = E(R, p). (13)

Proof: See Appendix D.
Lemma 3 will be pivotal in establishing the exact bee-

identification exponent (via Theorem 1), as well as in charac-
terizing the “capacity” of the bee-identification problem (via
Theorem 2).

We will characterize the exact bee-identification error ex-
ponent for the following scenario:
• For a given R > 0, the number of bee barcodes m scale

exponentially with blocklength n as m = 2nR.
• For a given 0 < α < 1, the number of absentee bees
k scale as k = bαmc,3 where α denotes the fraction of
bees missing from the camera image.

For this scenario, we define the bee-identification exponent as
follows,4

ED(R, p, α) , lim sup
n→∞

− 1

n
logD(n,m, p, k). (14)

The following theorem uses Lemmas 1, 2, and 3, to establish
the main result in this paper.

Theorem 1. For 0 < α < 1, we have

ED(R, p, α) = |E(R, p)−R|+, (15)

where |x|+ , max(0, x). Further, this exponent is achieved
via independent decoding of each barcode.

Proof: See Appendix E.
The above theorem implies the following remarks.

Remark 1. For a given 0 < α < 1, if the number of absentee
bees k scales as αm, then independent barcode decoding is
optimal, i.e., independent decoding of barcodes does not lead
to any loss in the bee-identification exponent, relative to joint
ML decoding of barcodes. This is in contrast to the result
in [1], which showed that if no bees are absent, then joint bar-
code decoding provides significantly better bee-identification
exponent relative to independent barcode decoding.

Remark 2. The lower bound on the bee-identification error
probability using joint ML decoding in Lemma 2 was obtained
by considering only those events in which just a single bee
is incorrectly identified. The proof of Theorem 1 employs
Lemma 2, and implies that these error events dominate the
error exponent.

Remark 3. The bee-identification exponent ED(R, p, α) does
not depend on the precise value of 0 < α < 1.

A. ‘Capacity’ of the bee-identification problem

The bee-identification exponent (14) is exactly characterized
in terms of the reliability function E(R, p) via Theorem 1,
when the total number of bees scale as m = 2nR with R >

3We will remove the floor operator subsequently.
4We remark that the result in Theorem 1 goes through verbatim if we

replace lim sup with lim inf in definitions (11) and (14).

0, and the number of absentee bees scale as k = αm with
0 < α < 1. For this same setting, we now formulate and
characterize the “capacity” of the bee-identification problem.

For 0 ≤ ε < 1, we say that rate R is (α, ε)-achievable
if lim infn→∞D(n, 2nR, p, α2nR) ≤ ε, and define the ε-
capacity of the bee-identification problem as the supremum
of all (α, ε)-achievable rates. We denote this ε-capacity as5

CD(p, α, ε),sup
{
R : lim inf

n→∞
D(n, 2nR, p, α2nR)≤ε

}
. (16)

The above definition implies that for R < CD(p, α, ε), there
exists a decoding function φ, and a codebook C with 2nR code-
words having blocklength n, for which the bee-identification
error probability D(C, p, α2nR, φ) < ε, for infinitely many n.

Now, the Bhattacharyya parameter for BSC(p) is [16]

Bp , − log
√

4p(1− p), (17)

and it is well known that [16]

lim
R↓0

E(R, p) =
Bp
2
. (18)

For a given 0 < p < 0.5, define the function
f(R) , E(R, p) − R. From (17) and (18), it follows that
limR↓0 f(R) > 0, while f(1) = −1 because E(R, p) = 0
for R ≥ 1 − H(p), where H(·) denotes the binary en-
tropy function. Further, f(·) is continuous because E(R, p)
is continuous in R (see Appendix C). Therefore, it follows
from the intermediate value theorem [17] that the equation
f(R) = E(R, p) − R = 0 has a positive solution, and
this solution is unique because f(R) is strictly decreasing
in R. The following theorem states that the capacity of the
bee-identification problem with absentee bees is equal to the
unique solution of the equation f(R) = 0.

Theorem 2. For 0 < α < 1, and every 0 ≤ ε < 1, we have

CD(p, α, ε) = R∗p, (19)

where R∗p is unique positive solution of the following equation

E(R, p) = R. (20)

Proof: See Appendix F.
Theorem 2 and its proof lead to the following remarks.

Remark 4. We prove the strong converse property [18] in
Appendix F, showing that if R > R∗p, then the error probability
D(n, 2nR, p, α2nR) tends to 1 as n→∞.

Remark 5. The expression for the ε-capacity (19) is indepen-
dent of the value of α ∈ (0, 1). Note that a similar behavior
was observed for the bee-identification exponent (15).

B. Computation of the bee-identification error exponent
ED(R, p, α), and the bee-identification capacity CD(p, α, ε)

We have characterized the bee-identification error exponent
ED(R, p, α), and capacity CD(p, α, ε), via Theorem 1 and
Theorem 2, respectively. In this subsection, we discuss some
computational aspects of ED(R, p, α) and CD(p, α, ε).

5This is analogous to the optimistic ε-capacity defined by Chen and
Alajaji [15, Def. 4.10].
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It is clear from (15) and (19) that explicit calculations of
ED(R, p, α) and CD(p, α, ε) require the knowledge of the
reliability function E(R, p) for a range of values of R and
p. Although the exact value of E(R, p) is not known for all
R and p, it can be bounded as follows

ETLC(R, p) ≤ E(R, p) ≤ Esp(R, p), (21)

where ETLC(R, p) is the exponent using typical linear
codes [19] that achieves the best known lower bound on
E(R, p) at all rates, and Esp(R, p) is the sphere packing
exponent [9] for BSC(p). The exponent ETLC(R, p) can be
explicitly evaluated using the following expression [19]

ETLC(R, p),


δGV(R)Bp 0 < R ≤ Rex

R0 −R Rex ≤ R ≤ Rcr

D (δGV(R)‖p) Rcr≤R≤1−H(p)

, (22)

where δGV(R) is the Gilbert-Varshamov (GV) distance [19]
defined as the value of δ in the interval [0, 0.5] with H(δ) =
1−R, and

Rex , 1−H

( √
4p(1− p)

1 +
√

4p(1− p)

)
,

Rcr , 1−H
( √

p
√
p+
√

1− p

)
,

R0 , 1− log
(

1 +
√

4p(1− p)
)
,

D(x‖y) , x log
x

y
+ (1− x) log

1− x
1− y

.

The sphere packing exponent is defined as [19]

Esp(R, p) , D (δGV(R)‖p) , 0 < R ≤ 1−H(p). (23)

From (21), (22), and (23), we observe that E(R, p) =
D (δGV(R)‖p) for Rcr < R ≤ 1−H(p), and it is well known
that E(R, p) is identically zero for R ≥ 1 − H(p) [9]. The
exponent ETLC(R, p) is equal to the random coding exponent
Er(R, p) [9] for R ≥ Rex, and therefore the random coding
exponent is a tight lower bound on E(R, p) for R ≥ Rcr.
Although it is not so well known, it is also true that for
0.046 < p < 0.5, the lower bound Er(R, p) is tight for certain
rates strictly less than the critical rate Rcr [20, Thm. 17].

In general, upper and lower bounds on ED(R, p, α) and
CD(p, α) can be obtained via Theorem 1 and Theorem 2,
respectively, and employing best known bounds on E(R, p).

If we define the following minimum distance metrics

d∗(n,R) , max
C∈C (n,R)

min
ci,cj∈C
ci 6=cj

dH(ci, cj),

δ∗(n,R) ,
d∗(n,R)

n
,

δ∗(R) , lim sup
n→∞

δ∗(n,R),

then E(R, p) can also be upper bounded as [16]

E(R, p) ≤ δ∗(R)Bp. (24)

The exact value of δ∗(R) is not known in general, though we
know that δ∗(0) = 0.5 and δ∗(1) = 0 [16]. The value δ∗(R)

is lower bounded by δGV(R), and can be upper bounded as
follows [21], [22]

δ∗(R) ≤ δLP(R) ,
1

2
−
√
δGV(1−R)(1− δGV(1−R)).

(25)
Combining (24) and (25), we observe that E(R, p) can be
upper bounded as follows

E(R, p) ≤ δLP(R)Bp. (26)

The following proposition provides an exact and explicit
characterization of ED(R, p, α) for certain values of R by
applying different bounds on E(R, p).

Proposition 1. For given 0 < p < 0.5 and 0 < α < 1, we
have

lim
R↓0

ED(R, p, α) = Bp/2. (27)

Further, we have ED(R, p, α) = 0 when R ≥ Rcr.

Proof: From (15), (21), and (22), we obtain

lim
R↓0

ED(R, p, α) ≥ lim
R↓0

δGV(R)Bp = Bp/2. (28)

On the other hand, using (15) and (26), we get

lim
R↓0

ED(R, p, α) ≤ lim
R↓0

δLP(R)Bp = Bp/2, (29)

and the claim in (27) follows by combining (28) and (29).
Next, we note that ETLC(Rcr, p) = R0 − Rcr =

D (δGV(Rcr)‖p) = Esp(Rcr, p). Therefore, we have
E(Rcr, p) = R0 −Rcr, and it follows from (15) that

ED(Rcr, p, α) = |R0 − 2Rcr|+ = 0,

where the last equality follows because R0 ≤ 2Rcr [1]. Fi-
nally, the fact that ED(R, p, α) is non-increasing in R implies
that ED(R, p, α) = 0 for R ≥ Rcr. We remark that this result,
together with Theorem 2, implies that CD(p, α) < Rcr.

It is known that for small rates, the explicit upper bound on
E(R, p) given by (26) is better than the sphere packing bound
Esp(R, p) [16]. Further improved upper bounds on E(R, p)
can be obtained by using the straight line bound [23], which
for BSC(p) implies that for R1 < R2, the straight line joining
δLP(R1)Bp and Esp(R2, p) is an upper bound on E(R, p) for
R ∈ (R1, R2) [16].

Next, we apply the previously discussed bounds on E(R, p)
to compute and explicitly bound ED(R, p, α) and CD(p, α).
Fig. 3 plots upper and lower bounds on ED(R, p, α) for p =
0.05. It is seen from Fig. 3 that the upper and lower bounds
coincide as R tends to 0, and as shown in Prop. 1, we have
limR↓0ED(R, p, α) = Bp/2 = 0.599 for p = 0.05.

Fig. 4 plots lower and upper bounds on the bee-identification
capacity CD(p, α, ε). As shown in Theorem 2, when 0 < α <
1, the capacity is independent of the value of α (and of ε).
The numerical results in Fig. 4 are obtained using Theorem 2,
and applying the bounds on the reliability function E(R, p),
presented in this subsection. It is observed that lower and upper
bounds on CD(p, α, ε) are relatively close to each other for
p > 0.05.
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Fig. 3: Bounds on ED(R, p, α) for p = 0.05.
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Fig. 4: Lower and upper bounds on CD(p, α, ε).

C. Curious case of limα↓0ED(R, p, α)

In this section, we analyze the limiting behavior of
ED(R, p, α) in the setting where α ↓ 0. We will let ED(R, p)
be the exponent for the no absentee bee scenario (with k = 0),
and will compare ED(R, p) to limα↓0ED(R, p, α).

Now, the exponent ED(R, p) was studied in detail in [1]
where upper and lower bounds for the same were derived,6

and it was shown that for 0 < R < 0.5Rex, we have [1]

2δGV(2R)Bp ≤ ED(R, p) ≤ 2δLP(R)Bp +R. (30)

The next theorem shows that limα↓0ED(R, p, α) is strictly
less than ED(R, p, α) at low rates.

Theorem 3. For 0 < R < min {0.169, Rex/2}, we have the
following strict inequality

lim
α↓0

ED(R, p, α) < ED(R, p). (31)

6The exponent ED(R, p) was defined in [1, Eq. (5)] for m = 2nR

as lim infn→∞
1
n
log (1/D(n,R, p)). However, the bounds on ED(R, p)

presented in [1] continue to hold if lim inf is replaced by lim sup in the
definition of ED(R, p).

Proof: See Appendix G.
The above result highlights that the limiting behavior for

the absentee bee scenario, with α ↓ 0, is quite distinct from
the scenario where all bees are present. Independent decoding
of bee barcodes is optimal for the absentee bee scenario, even
when arbitrarily small fraction of bees are absent. On the other
hand, for the scenario where all bees are present, strictly better
error exponent, than that obtained by independent decoding,
can be achieved via joint ML decoding of barcodes [1].

D. Extension of results to discrete memoryless channels

In the preceding discussion, we characterized the error
exponent and capacity for the bee-identification problem with
absentee bees under BSC(p) noise. This characterization can
be readily extended to more general discrete memoryless
channels (DMCs).

Consider a DMC with input alphabet X , output alpha-
bet Y , and channel transition matrix W . Then, the relia-
bility function of the DMC, denoted E(R,W ), is defined
as E(R,W ) , lim supn→∞− 1

n logPe(n, 2nR,W ), where
Pe(n, 2nR,W ) denotes the minimum error probability over all
length-n block codes with 2nR codewords. Analogous to (4),
we may let D(n,m,W, k) be the minimum expected bee-
identification error probability over the DMC W , and define
the corresponding bee-identification exponent as

ED(R,W,α) , lim sup
n→∞

− 1

n
logD(n, 2nR,W, α2nR).

Let us restrict our attention to DMCs with the property
that there exists an output symbol y ∈ Y that is reachable
from all symbols in X . This property ensures that E(R,W ) is
continuous for each R > 0 (see Appendix C). The continuity
of E(R,W ) can be applied to obtain the following result,
equivalent to Theorem 1 for BSC(p), as

ED(R,W,α) = |E(R,W )−R|+.

If, analogous to (16), we define the bee-identification ε-
capacity over DMC W as

CD(W,α, ε) , sup
{
R : lim inf

n→∞
D(n, 2nR,W, α2nR) ≤ ε

}
,

then, for 0 ≤ ε < 1, the ε-capacity CD(W,α, ε) is equal to
the unique positive solution of the equation E(R,W ) = R.
Note that this result also uses the continuity of E(R,W ), and
extends the result in Theorem 2 to DMCs.

IV. REFLECTIONS

This work extended the characterization of the bee-
identification error exponent to the “absentee bees” scenario,
where a fraction of the bees are absent in the beehive image.
For this scenario, we presented the exact characterization of
the bee-identification error exponent in terms of the well
known reliability function [9].

The derivation of the bee-identification exponent led to three
interesting observations. The first observation is that when the
number of absentee bees k scales as k = αm, where α lies
in the interval (0, 1) and is fixed, and the number of bees
m scales exponentially with blocklength, then independent



7

barcode decoding is optimal, i.e., joint decoding of the bee
barcodes does not result in any better error exponent relative
to the independent decoding of each noisy barcode. This result
is in contrast to the result without absentee bees [1], where
joint barcode decoding results in significantly higher error
exponent compared to independent barcode decoding. The
second interesting observation is that when k = αm, the bee-
identification exponent is dominated by the events where a
single bee in the beehive image is incorrectly identified as
one of the absentee bees, while the other bee barcodes are
correctly decoded. The third observation is that for k = αm,
the bee-identification exponent does not depend on the actual
value of α when 0 < α < 1.

We also characterized the exact “capacity” for the bee-
identification problem with absentee bees, and proved the
strong converse. Further, we showed that for low rates, the
error exponent for the case where α ↓ 0 is strictly lower than
the corresponding error exponent for the case without absentee
bees, thereby highlighting a discontinuity in the error exponent
function at α = 0.

The extension of the results presented in this work to general
DMCs was briefly discussed in Section III-D. Future work
includes exploring the error exponent for the scenario where
α, the fraction of absentee bees, also varies with blocklength
n, and second-order or finite-length analysis, i.e., the scaling
of the code rate when 0 ≤ ε < 1 and n is finite.

APPENDIX A
PROOF OF LEMMA 1

Proof: For a given codebook C, and given π(m−k) and
1 ≤ i ≤ m − k, the probability Pr

{
ν(i) 6= π(m−k)(i)

}
in

(5) is the probability that the codeword cπ(i) transmitted over
BSC(p) is incorrectly decoded at the receiver. As π(m−k) is
uniformly distributed over Υ, we have for 1 ≤ i ≤ m− k,

min
C∈C (n,m)

Eπ(m−k)

[
Pr
{
ν(i) 6= π(m−k)(i)

}]
= Pe(n,m, p).

(32)
Now, from the definition of D(n,m, p, k) in (4), we get

D(n,m, p, k) ≤ min
C∈C (n,m)

D(C, p, k, φI)

≤ (m− k)Pe(n,m, p), (33)

where (33) follows by combining (5) and (32). Finally, the
lemma is proved by using (33), and noting that the bee-
identification error probability D(n,m, p, k) is trivially upper
bounded by 1.

APPENDIX B
PROOF OF LEMMA 2

Proof: Let I denote the image of π(m−k), i.e.,

I , {j : j = π(m−k)(i), 1 ≤ i ≤ m− k}. (34)

Let the complement of I be denoted I, i.e.,

I , {1, 2, . . . ,m} \ I. (35)

For a given ` ∈ {1, . . . ,m − k} and  ∈ I, define the map
π

(`→)
(m−k) : {1, . . . ,m− k} → {1, . . . ,m} as follows

π
(`→)
(m−k)(i) ,

{
, i = `

π(m−k)(i), i 6= `.

Thus, the map π(`→)
(m−k) differs with π(m−k) only at i = `, and

we have π(`→)
(m−k) ∈ Υ. Now, define the event{

π(m−k) → π
(`→)
(m−k)

}
,
{

dH (c̃`, c) ≤ dH

(
c̃`, cπ(m−k)(`)

)}
,

where the error event
{
π(m−k) → π

(`→)
(m−k)

}
implies that only

a single bee is decoded incorrectly. Further, if we define the
event E

(`)
π(m−k)

as

E (`)
π(m−k)

,
⋃
∈I

{
π(m−k) → π

(`→)
(m−k)

}
, (36)

then, for ` ∈ {1, . . . ,m− k}, we have

Pr
{

E (`)
π(m−k)

}
= Pr

⋃
∈I

{
dH (c̃`, c) ≤ dH

(
c̃`, cπ(m−k)(`)

)} . (37)

The output of the ML decoding function φJ is given by (7), and
hence the bee-identification error probability is lower bounded
as follows

Pr
{
ν 6= π(m−k)

}
≥ Pr

 ⋃
1≤`≤m−k

E (`)
π(m−k)

 . (38)

For a given codebook C, we observe from (37) that the event
E

(`)
π(m−k)

depends only on the noise in the `-th received barcode
c̃`. Thus, the set of events E

(`)
π(m−k)

, for ` ∈ {1, . . . ,m − k},
are mutually independent. Therefore, the probability of their
union can be lower bounded using Shulman’s lower bound
as [24, Eq. (30)], [25, p. 109]

Pr

 ⋃
1≤`≤m−k

E (`)
π(m−k)

≥ 1

2
·min

{
1,

m−k∑
`=1

Pr
{

E (`)
π(m−k)

}}
.

(39)
As |I| = k, we observe from (37) that the error event E

(`)
π(m−k)

occurs when the received word c̃` is incorrectly decoded to one
of the k incorrect codewords {c}∈I , instead of the correct
codeword cπ(m−k)(`), and so

Eπ(m−k)

[
Pr
{

E (`)
π(m−k)

}]
≥ Pe(n, k + 1, p) ≥ Pe(n, k, p),

(40)
because Pe(n, k + 1, p) denotes the average error probability,
minimized over all codebooks with only k+1 codewords. Note
that (40) holds for all codebooks C ∈ C (n,m). Now recall
that Υ is the set of all injective maps from {1, . . . ,m− k} to
{1, . . . ,m}, and that π(m−k) is uniformly distributed over Υ.
Let 0 < ε < 1/2 and k > 1/ε, and define the set

A(`) ,
{
π(m−k) ∈ Υ : Pr{E (`)

π(m−k)
} ≥ Pe(n, bkεc, p)

}
.



8

A key observation is that the size |A(`)| can be bounded as

|A(`)| > (1− ε)|Υ|, (41)

where the inequality holds for all ` ∈ {1, . . . ,m − k}, and
all codebooks C ∈ C (n,m). This claim can be explained
as follows. First, fix the following variables: codebook C ∈
C (n,m), index ` ∈ {1, . . . ,m − k}, and π(m−k) ∈ Υ. Note
that fixing π(m−k) in turn fixes the sets I and I, defined in (34)
and (35), respectively. Let I = {1, . . . , k}, and define

q(`)
r = Pr

{
E

(`)

π
(`→r)

(m−k)

}
, for r ∈ {1, . . . , k}.

Now, let (̃1 ̃2 . . . ̃k) be a permutation of the indices
(1 2 . . . k) such that we have the following relation

q
(`)
̃1
≤ q(`)

̃2
≤ · · · ≤ q(`)

̃k
.

Thus, q(`)
̃bkεc

satisfies the following property

q
(`)
̃bkεc

= max
{
q

(`)
̃1
, q

(`)
̃2
, . . . , q

(`)
̃bkεc

}
,

and hence
q

(`)
̃bkεc

≥ Pe(n, bkεc, p).

The above relation is satisfied because each of
q

(`)
̃1
, q

(`)
̃2
, . . . , q

(`)
̃bkεc

is obtained by comparison among
codewords, cπ(m−k)(`), c1 , c2 , . . . , ck , while Pe(n, bkεc, p)
is the minimum achievable average error probability using
only bkεc codewords. Therefore, the fraction of entries in the
set
{
q

(`)
1 , q

(`)
2 , . . . , q

(`)
k

}
that satisfy

q(`)
r = Pr

{
E

(`)

π
(`→r)

(m−k)

}
≥ Pe(n, bkεc, p),

is at least (k− bkεc+ 1)/k > (1− ε). This technique can be
reapplied to other mappings in Υ to obtain (41).

Next, construct a matrixM whose rows are indexed by ele-
ments of Υ, and the columns are indexed by ` ∈ {1, 2, . . . ,m−
k}. For a given row ofM indexed by π(m−k) ∈ Υ, let the `-th
entry be equal to Pr

{
E

(`)
π(m−k)

}
. Then, from (41) it follows

that at least 1−ε fraction of entries in each column are lower
bounded by Pe(n, bkεc, p). Thus, the fraction of entries of
matrixM that are lower bounded by Pe(n, bkεc, p) is at least
1− ε. Now, we call a row of M to be ε-strong if the fraction
of entries lower bounded by Pe(n, bkεc, p) in that row exceed
ε. Let θε denote the fraction of rows of M that are ε-strong.
Then we have

(1− θε)ε+ θε ≥ 1− ε,

which implies that

θε ≥
1− 2ε

1− ε
> 1− 2ε. (42)

Now, we define

Υε ,

{
π(m−k) ∈ Υ :

m−k∑
`=1

Pr
{
E (`)
π(m−k)

}
> (m− k)ε Pe(n, bkεc, p)

}
, (43)

and note that the elements of Υε correspond to the rows of
M whose row-sum is greater than (m − k)ε Pe(n, bkεc, p).
Now, we observe that if π(m−k) corresponds to a row of M
that is ε-strong, then π(m−k) ∈ Υε. Therefore, we have

|Υε| ≥ θε|Υ| > (1− 2ε)|Υ|, (44)

where the strict inequality follows from (42). Finally, we have

Eπ(m−k)

[
Pr
{
ν 6= π(m−k)

}]
(i)
=

1

|Υ|
∑

π(m−k)∈Υ

Pr
{
ν 6= π(m−k)

}
,

(ii)

≥ 1

|Υ|
∑

π(m−k)∈Υ

1

2
·min

{
1,

m−k∑
`=1

Pr
{

E (`)
π(m−k)

}}
,

(iii)

≥ 1

|Υ|
∑

π(m−k)∈Υε

1

2
·min

{
1,

m−k∑
`=1

Pr
{

E (`)
π(m−k)

}}
,

(iv)

≥ 1

|Υ|
∑

π(m−k)∈Υε

1

2
·min {1, (m− k)ε Pe(n, bkεc, p)} ,

(v)
>

1− 2ε

2
·min {1, (m− k)ε Pe(n, bkεc, p)} , (45)

where (i) follows because π(m−k) is uniformly distributed over
Υ, (ii) follows from combining (38) and (39), (iii) follows
because we restrict π(m−k) to belong to Υε ⊆ Υ, (iv) follows
using (43) as

∑m−k
`=1 Pr{E (`)

π(m−k)
} > (m − k)ε Pe(n, bkεc, p)

for every π(m−k) ∈ Υε, and (v) follows from the fact
that |Υε|/|Υ| > 1 − 2ε via (44). Finally, we obtain (9)
by combining (3), (8), with the fact that (45) holds for all
codebooks C ∈ C (n,m).

We now proceed to prove the alternative (and stronger)
bound in (10). Choose a codebook C ∈ C (n,m) and a
mapping π(m−k) ∈ Υ. For ` ∈ {1, . . . ,m − k}, let the error
event E

(`)
π(m−k)

be given by (36). Applying (38), we get

Pr
{
ν 6= π(m−k)

}
≥ Pr

 ⋃
1≤`≤m−k

E (`)
π(m−k)


(vi)
= 1−

m−k∏
`=1

(
1− Pr

{
E (`)
π(m−k)

})
,

= 1− exp

(
m−k∑
`=1

ln
(

1− Pr
{

E (`)
π(m−k)

}))
,

(vii)

≥ 1− exp

(
−
m−k∑
`=1

Pr
{

E (`)
π(m−k)

})
, (46)

where (vi) follows because the events E
(`)
π(m−k)

, for ` ∈
{1, . . . ,m − k}, are mutually independent, and (vii) follows
because ln(1− x) ≤ −x for x ∈ [0, 1). Now, we have

Eπ(m−k)

[
Pr
{
ν 6= π(m−k)

}]
=

1

|Υ|
∑

π(m−k)∈Υ

Pr
{
ν 6= π(m−k)

}
,
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(viii)

≥ 1

|Υ|
∑

π(m−k)∈Υ

[
1− exp

(
−
m−k∑
`=1

Pr
{

E (`)
π(m−k)

})]
,

≥ 1

|Υ|
∑

π(m−k)∈Υε

[
1− exp

(
−
m−k∑
`=1

Pr
{

E (`)
π(m−k)

})]
,

(ix)

≥ 1

|Υ|
∑

π(m−k)∈Υε

[1− exp (−(m− k)ε Pe(n, bkεc, p))] ,

> (1− 2ε) [1− exp (−(m− k)ε Pe(n, bkεc, p))] , (47)

where (viii) follows from (46), and (ix) follows using (43)
as
∑m−k
`=1 Pr{E (`)

π(m−k)
} > (m − k)ε Pe(n, bkεc, p) for every

π(m−k) ∈ Υε. Finally, combining (3), (8), with the fact
that (47) holds for all codebooks C ∈ C (n,m), we obtain
the lower bound on D(n,m, p, k) in (10).

We remark that (10) provides a strict improvement over the
corresponding bound in (9). This is because the bound in (10)
exploits mutual independence of events

{
π(m−k) → π

(`→)
(m−k)

}
,

while the bound in (9) only uses their pairwise independence.

APPENDIX C
CONTINUITY OF THE RELIABILITY FUNCTION

Consider a DMC with input alphabet X , output alphabet
Y , and transition matrix W . Then, the (operationally defined)
reliability function of the DMC is defined as [9]

E(R,W ) , lim sup
n→∞

− 1

n
logPe(n, 2nR,W ), (48)

where Pe(n, 2nR,W ) denotes the minimum error probability
over all length-n block codes with 2nR codewords.

We prove that E(R,W ) is continuous at any R > R∞,
where R∞ is defined as the smallest R ≥ 0 for which the
sphere-packing exponent Esp(R,W ) is finite [26, p. 69]. Note
that R∞ > 0 if and only if each output y ∈ Y is unreachable
from at least one input symbol in X [26, p. 70], and hence
R∞ = 0 for BSC(p). In the following, for brevity, we suppress
the dependence of several quantities on W , e.g., we denote
E(R,W ), Esp(R,W ), and Pe(n, 2nR,W ) by E(R), Esp(R),
and Pe(n, 2nR), respectively.

Lemma 4. The reliability function E(R) is continuous at any
R > R∞.

Proof: Let Pe(n,M,L) denote the minimum error prob-
ability for the given channel minimized over all codes with
M code words of length n and all list decoding schemes with
list size L. Then, [26, Thm. 1] states that

Pe(n1+n2,M,L2)≥Pe(n1,M,L1)Pe(n2, L1+1, L2). (49)

Note that when the list size is L = 1, then the list-decoding
error corresponds to ordinary decoding error, and for M =
2nR, we have Pe(n,M,L = 1) = Pe(n,M) = Pe(n, 2nR).

We will employ (49) for proving the continuity of E at a
point R > R∞. Fix δ ∈ (0, 1) and let n1 = δn, n2 = (1−δ)n,
L2 = 1 in (49) to obtain

Pe(n,M) ≥ Pe (δn,M,L1) Pe ((1− δ)n,L1 + 1) ,

≥ Pe (δn,M,L1) Pe ((1− δ)n,L1) . (50)

Let M = 2nR, R′ = R − R∞, and L1 = 2n(1−δ)(R+δR′).
Then M/L1 = 2δn(R∞+δR′) and it follows from [26, Thm. 2]

lim sup
n→∞

− 1

n
logPe (δn,M,L1) ≤ δ Esp(R∞ + δR′). (51)

As L1 = 2(1−δ)n(R+δR′), it follows from (48) that

lim sup
n→∞

− 1

n
logPe ((1− δ)n,L1) = (1− δ)E (R+ δR′) .

(52)
The lim sup operator is subadditive, i.e., for two se-
quences (an) and (bn), we have lim supn→∞(an + bn) ≤
lim supn→∞ an + lim supn→∞ bn. Combining this fact
with (50), we get

lim sup
n→∞

− 1

n
logPe(n,M) ≤ lim sup

n→∞
− 1

n
logPe (δn,M,L1)

+ lim sup
n→∞

− 1

n
logPe ((1− δ)n,L1) .

Applying (51) and (52) to the above inequality, we get

E(R) ≤ δ Esp(R∞ + δR′) + (1− δ)E (R+ δR′) . (53)

As (53) holds for all δ > 0, we have

E(R) ≤ lim inf
δ↓0

[δ Esp(R∞ + δR′) + (1− δ)E (R+ δR′)] ,

(i)
= lim inf

δ↓0
[(1− δ)E (R+ δR′)] ,

= lim inf
δ↓0

E (R+ δR′) , (54)

where (i) follows because limδ↓0 [δ Esp(R∞ + δR′)] = 0 as
Esp(R∞) is finite. Next, as E(R) is non-increasing in R,

E(R+ δR′) ≤ E(R), (55)

and it follows from (55) that

lim sup
δ↓0

E(R+ δR′) ≤ E(R). (56)

Now (54) and (56) imply that limδ↓0E(R+ δR′) exists, and

E(R) = lim
δ↓0

E(R+ δR′) = lim
δ↓0

E(R+ δ). (57)

The above argument leading to (57) shows that E(R) is
right continuous. To prove left continuity, we again fix
R > R∞ and choose δ ∈ (0, 1). Let R′ = R − R∞,
M = 2n(R∞+[R′/(1+δ)]) and L1 = 2n(1−δ)(R∞+R′). Then,
M/L1 = 2(δn)(R∞+R′δ/(1+δ)). From [26, Thm. 2], we have

lim sup
n→∞

− 1

n
logPe (δn,M,L1) ≤ δEsp(R∞ +R′δ/(1 + δ)).

(58)
As L1 = 2(1−δ)nR, it follows from (48) that

lim sup
n→∞

− 1

n
logPe ((1− δ)n,L1) = (1− δ)E(R). (59)

Combining (50), (58), and (59), we obtain

E

(
R∞ +

R′

1 + δ

)
≤ δEsp

(
R∞ +

R′δ

1 + δ

)
+ (1− δ)E(R).

The above inequality can be equivalently expressed as

E(R) ≥ 1

1− δ
E

(
R∞ +

R′

1 + δ

)
− δ

1− δ
Esp

(
R∞ +

R′δ

1 + δ

)
.
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The above relation holds for all δ > 0, and hence

E(R) ≥ lim sup
δ↓0

(
1

1− δ
E

(
R∞ +

R′

1 + δ

)

− δ

1− δ
Esp

(
R∞ +

R′δ

1 + δ

))
.

Now, limδ↓0 (δ/(1− δ))Esp (R∞ +R′δ/(1 + δ)) = 0 as
Esp(R∞) is finite, and it follows from above inequality that

E(R) ≥ lim sup
δ↓0

(
1

1− δ
E

(
R∞ +

R′

1 + δ

))
,

= lim sup
δ↓0

E

(
R∞ +

R′

1 + δ

)
,

= lim sup
δ↓0

E (R∞ +R′(1− δ)) ,

= lim sup
δ↓0

E (R− δ) . (60)

Further, as E(R) is non-increasing in R, we have

lim inf
δ↓0

E (R− δ) ≥ E(R). (61)

Combining (60) and (61), we get

E(R) = lim
δ↓0

E(R− δ), (62)

which proves that E(R) is left continuous, and the proof is
complete by combining (57) and (62).

APPENDIX D
PROOF OF LEMMA 3

Proof: Choose R > 0 and ε > 0. As E(R̃, p) is
continuous in R̃ (see Appendix C), there exists 0 < δ < R
such that |E(R̃, p)−E(R, p)| < ε for all |R̃−R| ≤ δ. Now, as
Rn converges to R, there exists an N such that |Rn−R| ≤ δ
for all n ≥ N . Furthermore, as E(n,R, p) is non-increasing
in R,

E(n,Rn, p) ≤ E(n,R− δ, p), for n ≥ N.

From the above inequality, it follows that

lim sup
n→∞

E(n,Rn, p) ≤ lim sup
n→∞

E(n,R− δ, p),

= E(R− δ, p),
< E(R, p) + ε (63)

As E(n,R, p) is non-increasing in R, we have

E(n,Rn, p) ≥ E(n,R+ δ, p), for n ≥ N.

From the above inequality, it follows that

lim sup
n→∞

E(n,Rn, p) ≥ lim sup
n→∞

E(n,R+ δ, p),

= E(R+ δ, p),

≥ E(R, p)− ε. (64)

The proof is complete by observing that (63) and (64) hold
for all ε > 0.

APPENDIX E
PROOF OF THEOREM 1

Proof: We first show that ED(R, p, α) ≥ |E(R, p)−R|+.
Towards this, we note that when m = 2nR and k = αm, for
a given 0 < α < 1, then we have

lim
n→∞

− 1

n
log(m− k) =

(
lim
n→∞

− 1

n
log(1− α)

)
−R,

= −R. (65)

Combining (6), (14), and (65), we get

ED(R, p, α) ≥
∣∣∣∣(lim sup

n→∞
− 1

n
logPe(n,m, p)

)
−R

∣∣∣∣+ ,
= |E(R, p)−R|+ , (66)

where the last equality follows from (12) and (13).
Next, we show that ED(R, p, α) ≤ |E(R, p) − R|+ by

applying Lemma 2. Choose ε = 1/4, and define

R̂n ,
1

n
log(bkεc). (67)

For k > 8, we have kε/2 < bkεc ≤ kε. Thus, when k = αm
and m = 2nR, we get

R+
1

n
log
(αε

2

)
< R̂n ≤ R+

1

n
log(αε), (68)

which implies that

R = lim
n→∞

R̂n. (69)

Combining the facts that limn→∞
1
n log ((1− 2ε)/2) = 0,

limn→∞
1
n log ((m− k)ε) = R, with (14), (9), (12), and (67),

we get

ED(R, p, α) ≤
∣∣∣∣lim sup
n→∞

E(n, R̂n, p)−R
∣∣∣∣+ ,

= |E(R, p)−R|+ , (70)

where the last equality follows from (69) and (13). The proof
is now complete by combining (66) and (70).

APPENDIX F
PROOF OF THEOREM 2

Proof: We first prove the direct part CD(p, α, ε) ≥ R∗p.
If R < R∗p, then it follows from (15) and the definition of R∗p
that ED(R, p, α) is strictly positive. From (14) it follows that
there exist infinitely many n for which

− 1

n
logD(n, 2nR, p, α2nR) > ED(R, p, α)/2.

In other words, when R < R∗p, D(n, 2nR, p, α2nR) <

2−nED(R,p,α)/2. Thus when R < R∗p, we have

lim inf
n→∞

D(n, 2nR, p, α2nR) = 0.

Therefore, any rate less than R∗p is achievable and it follows
from the definition of capacity in (16) that CD(p, α, ε) ≥ R∗p.

Next, we will apply the bound in (10) to prove the con-
verse part CD(p, α, ε) ≤ R∗p. This is a strong converse
statement, i.e., for rates R > R∗p, the error probability
D(n, 2nR, p, α2nR) tends to 1 as n → ∞. Consider a rate
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R that satisfies R > R∗p, and define ∆R , R−E(R, p). Then
it follows from the definition of R∗p, and the fact E(R, p) is
non-increasing in R, that ∆R > 0. Define εn , 1

n , and let n
be sufficiently large such that k = α2nR > 2n = 2/εn. Now
define R̂n to be

R̂n ,
1

n
log(bkεnc). (71)

Then, we have

R+
1

n
log
( α

2n

)
< R̂n ≤ R+

1

n
log
(α
n

)
,

R = lim
n→∞

R̂n. (72)

It follows from (72) and (13) that

lim sup
n→∞

E(n, R̂n, p) = E(R, p).

As ∆R > 0, the above equation implies that there exists an
N such that for all n ≥ N , we have

E(n, R̂n, p) < E(R, p) +
∆R

2
. (73)

Combining (12), (71), and (73), for n ≥ N , we obtain

Pe(n, bkεnc, p) > 2−n(E(R,p)+(∆R/2)). (74)

Now, if we define βn as

βn , − 1

n
log ((1− α)εn) ,

then we have βn > 0, while limn→∞ βn = 0. Thus, we have

(m− k)εn = m(1− α)εn = 2n(R−βn). (75)

Combining (74) and (75), for all n ≥ N , we have

(m− k)εn Pe(n, bkεnc, p) > 2n(R−E(R,p)−(∆R/2)−βn),

= 2n((∆R/2)−βn). (76)

As (10) holds for all 0 < ε < 1/2 and k > 1/ε, replacing ε
with εn = 1

n in (10), we get for n > N that

D(n, 2nR, p, α2nR)

> (1− 2εn) [1− exp (−(m− k)εn Pe(n, bkεnc, p))] ,
> (1− 2εn)

[
1− exp

(
− 2n((∆R/2)−βn)

)]
, (77)

where (77) follows from (76). Now, as βn = o(1), there exists
N̂ such that for all n ≥ N̂ , we have ∆R/2−βn > 0. Further,
as βn is a decreasing function of n, it follows that

lim
n→∞

[
1− exp

(
− 2n((∆R/2)−βn)

)]
= 1. (78)

As limn→∞(1− 2εn) = 1, combining (77) and (78) with the
fact that D(n, 2nR, p, α2nR) is upper bounded by 1, we obtain
the following important result

lim
n→∞

D(n, 2nR, p, α2nR) = 1, for R > R∗p, (79)

thereby showing that CD(p, α, ε) ≤ R∗p, and completing the
proof of the strong converse.
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Fig. 5: Plot demonstrating δGV(Rex/2)Bp > Rex/2.

APPENDIX G
PROOF OF THEOREM 3

Proof: We first show that E(R, p) − R > 0 when 0 <
R < Rex/2. Towards this, we note from (21) and (22) that
E(Rex/2, p) ≥ δGV(Rex/2)Bp. Now, it can be numerically
verified that δGV(Rex/2)Bp > (Rex/2) when 0 < p < 0.5
(see Fig. 5), and hence E(Rex/2, p) > Rex/2. As E(R, p) is
non-increasing in R, it follows that

E(R, p)−R > 0, when 0 < R < Rex/2. (80)

Now, for 0 < R < min {0.169, Rex/2}, we have

lim
α↓0

ED(R, p, α)
(i)
= |E(R, p)−R|+,

(ii)
= E(R, p)−R,
(iii)

≤ δLP(R)Bp −R,
(iv)
< 2δGV(2R)Bp −R,
< 2δGV(2R)Bp,

(v)

≤ ED(R, p),

where (i) follows from Thm. 1 and the fact that ED(R, p, α)
is constant for 0 < α < 1, (ii) follows from (80), (iii)
follows from (26), (iv) follows from the fact that δLP(R) <
2δGV(2R) for 0 < R < 0.169 (see Fig. 6), and (v) follows
from [1, Theorem 4].
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