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Abstract

Complementary set sequences (CSSs) are useful for dealing with the high peak-to-average power ratio (PAPR)

problem in orthogonal frequency division multiplexing (OFDM) systems. In practical OFDM transmission, however,

certain sub-carriers maybe reserved and/or prohibited to transmit signals, leading to the so-called spectral null

constraint (SNC) design problem. For example, the DC sub-carrier is reserved to avoid the offsets in D/A and

A/D converter in the LTE systems. While most of the current research focus on the design of low PAPR CSSs to

improve the code-rate, few works address the aforementioned SNC in their designs. This motivates us to investigate

CSSs with SNC as well as low PAPR property. In this paper, we present systematic constructions of CSSs under

SNCs and low PAPR. First, we show that mutually orthogonal complementary sets (MOCSs) can be used as

seed sequences to generate new CSSs with SNC and low PAPR, and then provide an iterative technique for the

construction of MOCSs which can be further used to generate complementary sets (CSs) with low PAPRs and

spectral nulls at varying positions in the designed sequences. Next, inspired by a recent idea of Chen, we propose

a novel construction of these seed MOCSs with non-power-of-two lengths from generalized Boolean functions.
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I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) is a modulation technique that transmits data by

dividing it into several low rate data streams which are modulated over a number of sub-carriers [1].

Due to its robustness to intersymbol interference in multi-path fading and low complexity equalization at

the receiver end, this technique has attracted much attention over the past decades, and has been widely

adopted in several wireless system standards and products, such as IEEE 802.11, IEEE 802.16 [2] and so

on. However, a major drawback of uncoded OFDM signals is that the transmitted signals can suffer from

high peak-to-average power ratio (PAPR) which degrades the transmission power efficiency [3].

While several signal processing techniques can be used to combat the PAPR issue [1], an elegant

approach to deal with this problem from the coding perspective is to construct codewords with low PAPR,

and then apply them to a code-keying OFDM system. In this context, an important work was done by
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Davis and Jedwab [4] by constructing codebooks from polyphase Golay complementary sequences (GCSs)

[5] using the algebraic tool of generalized Boolean functions. Therein, two properly chosen polyphase

GCSs form a Golay complementary pair (GCP) with zero out-of-phase aperiodic autocorrelation sums,

with each GCS producing an OFDM waveform with a PAPR upper bounded by 2 when this GCS is

spread over the frequency domain [6], [7].

Apart from their application in PAPR reduction, GCSs and GCPs have been used in many other scenarios

such as Doppler resilient radar waveform design [8], optimal channel estimation [9], [10], and interference-

free multicarrier CDMA [11], [12], [13], etc. However, the lengths of these constructed GCPs and GCSs

based on Boolean functions are all powers of two. Recently, Chen proposed novel constructions of q-

ary (for even q) complementary sets (CSs) of non-power-of-two length based on generalized Boolean

functions in [14], [15] and [16]. In [17], they proposed a novel construction of q-ary CSs of non-power-

of-two length based on the concatenation of the sequences in GCPs or CSs. These classes of sequences

enjoy low PAPR and good error correction capabilities, but their code-rates over phase-shift keying (PSK)

signal constellations become very low with large code lengths.

Extension of polyphase GCSs to Quadrature Amplitude Modulation (QAM) GCSs was proposed in

[18]. Owing to their larger set size, QAM GCSs exhibit higher code-rates, although with a slight (yet

tolerable) increase of PAPR (compared to the polyphase GCSs). In [18], Rößing and Tarokh were the

first to construct 16-QAM GCSs with maximum PAPR of 3.6 from the weighted sum of two quaternary

GCSs. Subsequently, Chong et al. developed an algebraic construction of 16-QAM GCSs using generalized

Boolean functions [19]. It was shown in [19] that an OFDM system with 16-QAM GCSs can indeed

achieve a higher code-rate than that with only binary or quaternary GCSs, given the same PAPR constraint.

Later, extension to the constructions of 64-QAM GCSs were reported in [20] and [21]. In [22], some

corrections were provided for the sequence pairing descriptions of 16-QAM GCSs [19] and 64-QAM

GCSs [21]. Furthermore, generalized Case I-III 4q-QAM (q ≥ 1) GCSs were investigated in [23] and

Generalized Case IV-V 4q-QAM (q ≥ 3) GCSs using selected Gaussian integer pairs were reported in

[24].

While the above mentioned works focus on complementary set sequence (CSS) designs with low PAPR

property, they do not consider an important practical constraint, i.e., spectral nulls in OFDM transmission,

as explained next. In OFDM systems, certain sub-carriers are reserved and are prohibited to transmit signals

[25]. For example, the DC sub-carrier is reserved, i.e., “spectrally nulled”, to avoid the offsets in the D/A

and A/D converters in RF transmission. Similarly, the guard bands at the spectrum edges are also nulled

to prevent interferences to the adjacent sub-carriers [2], [26]. Furthermore, it has been reported in the

literature that adjusting the positions of the null sub-carriers within the OFDM symbol is beneficial for

applications such as accurate CFO estimation [27]–[29]. More recently, the need for OFDM sequences

with spectral null constraint (SNC) (also referred to as non-contiguous OFDM [30]) is motivated by their

possible use cases in the Cognitive Radio (CR) communications [31]–[33]. In OFDM based transmission

for CR, the secondary users (SUs) are allowed to transmit only on those sub-carriers which are not

occupied by the primary user (PU), thus requiring spectral nulls at specific positions (corresponding to

the sub-carriers occupied by the PU) in the SUs’ transmitted codewords [34]. Unfortunately, due to the

explicit constraints of the spectral nulls in the above application scenarios, the traditional CSs (which

do not consider SNC in their designs) may not be applicable anymore. Moreover, in the non-contiguous
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OFDM waveforms for CR, PAPR problem is even worse than the normal OFDM [30]. Thus, an intriguing

question that follows is how to construct new complementary sets containing sequences which can be

used as low PAPR OFDM codewords with spectral nulls at specific positions.

This work attempts to address the above problem by providing a systematic construction of CSs with

low PAPR, yet satisfying the spectral constraints for some specific scenarios. In particular, we start by

an iterative method of generating mutually orthogonal CSs (MOCSs) and prove that low PAPR CSs with

spectral nulls at certain positions can be generated using MOCSs, and then we go on to construct MOCSs

with non-power-of-two lengths (in contrast to the very specific power-of-two length sequences) using

generalized Boolean functions which is inspired by a recent idea of Chen [14]. The MOCSs designed

using the proposed iterative techniques can, in fact, be used to construct low PAPR CSs with spectral

nulls at more general positions in the sequences which may be useful in applications mentioned in [27],

[28].

The remainder of this paper is organized as follows. Section II gives the preliminaries and the mathe-

matical tools used in the paper. In Section III, we present an iterative method to construct MOCSs under

SNC with bounded PAPR from the known sequences. In Section IV, we introduce a new construction of

MOCSs with non-power-of-two lengths based on generalized Boolean functions. In Section V we calculate

the code-rate of the codebook of the proposed construction in Section IV. Finally, Section VI concludes

this paper with some remarks.

II. PRELIMINARIES

A. Aperiodic Correlations and Complementarity

Let a = (a(0), a(1), · · · , a(L−1)) and b = (b(0), b(1), · · · , b(L−1)) be two complex-valued sequences

of length L. The aperiodic cross-correlation between a and b at a time shift u is defined by

Ra,b(u) =











∑L−1−u
i=0 a(i)b∗(i+ u), 0 ≤ u ≤ L− 1;

∑L−1+u
i=0 a(i− u)b∗(i), −(L− 1) ≤ u ≤ −1;

0, |u| ≥ L.

It is easily verified that

Ra,b(u) = R∗
b,a(−u). (1)

If a = b, Ra,b(u) reduces to the aperiodic auto-correlation of a and will be written as Ra(u) for simplicity.

Definition 1 ( [35]). Let A = {ai}Ni=1 be a set of N complex-valued sequences of length L. It is said

to be a complementary set (CS) of size N if
∑N

i=1Rai
(u) = 0 for any u 6= 0, and any sequence in this

set is called a complementary set sequence (CSS). In particular, when N = 2, the set is called a Golay

complementary pair (GCP), and any sequence in this pair is called a Golay complementary sequence

(GCS), or complementary sequence.

Definition 2. Two sequence sets S1 = {s1,1, s1,2, · · · , s1,N} and S2 = {s2,1, s2,2, · · · , s2,N} are said to be

mutually orthogonal if

N
∑

j=1

Rs1,j ,s2,j (u) = 0, for all − L+ 1 ≤ u ≤ L− 1.
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Definition 3. Let S = {S1,S2, · · · ,SM}, where each Sc (1 ≤ c ≤M) is a complementary set consisting

of N length-L sequences. S is called an (M,N,L)-MOCS (mutually orthogonal complementary set) if

N
∑

j=1

Rsi,j ,sk,j(u) = 0, ∀ 1 ≤ i 6= k ≤M and − L+ 1 ≤ u ≤ L− 1.

Remark 1. It turns out in Theorem 4 of [36] that M ≤ N for any (M,N,L)-MOCS. An MOCS with

M = N is also called a complete complementary code (CCC). Thanks to a systematic framework in [36]

(see Theorems 5 and 7 in [36]), an (N,N, L)-MOCS can be obtained from a unitary-like matrix of order

N , where L is an arbitrary number whose factors are not greater than N .

B. Generalized Boolean Functions

Let q be a positive integer and Zq = {0, 1, · · · , q − 1} denote the set of integers modulo q. For

x = (x1, x2, · · · , xm) ∈ Z
m
2 , a generalized Boolean function f(x) is defined as a mapping f from {0, 1}m

to Zq . Given f(x), define

f = (f(0), f(1), ..., f(2m − 1)), (2)

where f(i) = f(i1, i2, · · · , im), and (i1, i2, · · · , im) is the binary representation of i =
∑m

k=1 ik2
k−1 with

im denoting the most significant bit.

In this paper, we consider the truncated version of the sequence f above. Specifically, let f (L) be a

sequence of length L obtained from f by ignoring the last 2m − L elements of the sequence f . That is,

f (L) = (f(0), f(1), · · · , f(L− 1)) is a sequence of length L. Let ξ = exp(2π
√
−1/q) be a primitive q-th

complex root of unity. One can naturally associate a complex-valued sequence ψ(f (L)) of length L with

f (L) as

ψ(f (L)) := (ξf(0), ξf(1), · · · , ξf(L−1)). (3)

From now on, whenever the context is clear, we ignore the superscript of f (L) unless the sequence length

is specified.

C. PAPR of OFDM Symbol

Let us consider an L-sub-carrier OFDM system. The transmitted OFDM signal is the real part of the

complex envelope, which can be written as

Sa(t) =

L−1
∑

i=0

a(i)e2π(fc+i∆f)t
√
−1, 0 ≤ t < T, (4)

where fc denotes the carrier frequency and ∆f = 1
T

denotes the sub-carrier spacing, with T being the

OFDM symbol duration. The sequence a = (a(i)) of length L is called the modulating sequence of the

OFDM symbol.

The instantaneous power of an OFDM sequence (codeword) is given by Pa(t) = |Sa(t)|2. The PAPR

of the OFDM sequence is then defined as:

PAPR(a) =

sup
t∈[0,T )

Pa(t)

Pav(a)
, (5)
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where Pav(a) is the average power of a. Accordingly, the PAPR of a sequence set A = {a1, a2, · · · , aN}
is defined as

PAPR(A) = max
ai∈A

PAPR(ai).

Define the code-rate of a code-keying OFDM as R(C) :=
logq |C|
L

, where q is the constellation size,

|C| and L denote the set size of codebook C and the codeword length (or the number of sub-carriers)

respectively.

III. AN ITERATIVE CONSTRUCTION OF CSS UNDER SPECTRAL NULL CONSTRAINTS

In this section, we first recall an upper bound on the PAPR of CS sequences, and then present an

iterative method to construct CSs under spectral null constraints (SNCs) with low PAPR property.

A. An Upper Bound on PAPR of CSs

The following bound due to Liu and Guan will be used to estimate PAPR of the proposed CSs in the

sequel.

Lemma 1 (Lemma 2 of [37]). Let A be a CS of size N in which all the sequences have the same length

and energy. Then the PAPR of A is upper bounded by N .

B. An Iterative Construction of CSs under SNCs

In this part, we provide an iterative method to construct CSs under SNCs with low PAPRs from MOCSs,

and the position of the spectrum null can be not only in the middle but also symmetrical.

Step 1: Select an (M,N,L)-MOCS: W = {W1,W2, · · · ,WM}, where Wi = {wi,j}Nj=1 and

wi,j = {wi,j(0), wi,j(1), · · · , wi,j(L− 1)}, 1 ≤ i ≤M, 1 ≤ j ≤ N.

Step 2: Let M1 = ⌊M
2
⌋, b1 be any given non-negative integer, and L1 = 2L + b1. Obtain the following

sequence set

W(1)
i = {w(1)

i,j }Nj=1, 1 ≤ i ≤M1

from Wi and Wi+M1 , where

w
(1)
i,j = (w

(1)
i,j (0), w

(1)
i,j (1), · · · , w

(1)
i,j (L1 − 1))

and

w
(1)
i,j (t) =











wi,j(t), t = 0, 1, · · · , L− 1;

0, t = L, · · · , L+ b1 − 1;

wi+M1,j(t− (L+ b1)), t = L+ b1, · · · , 2L+ b1 − 1.

(6)

...

Step k: Let Mk−1 = ⌊ M
2k−1 ⌋ ≥ 1 where k ≥ 3, bk−1 be any given non-negative integer, and Lk−1 =

2Lk−2 + bk−1. Generate a sequence set

W(k−1)
i = {w(k−1)

i,j }Nj=1, 1 ≤ i ≤Mk−1
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of sequence length Lk−1 = 2Lk−2 + bk−1 from W(k−2)
i and W(k−2)

i+Mk−1
as in (6).

Theorem 1. The set W(1) = {W(1)
1 ,W(1)

2 , · · · ,W(1)
M1

} is an (M1, N, 2L+ b1)-MOCS.

Proof. The proof of this theorem is divided into two steps. In the first step, we show that W(1)
i (1 ≤ i ≤

M1) is a CS of length 2L+ b1. In the second one, we prove that for i 6= r, W(1)
i and W(1)

r are mutually

orthogonal.

Step 1: We only need to prove that
∑N

j=1Rw
(1)
i,j

(u) = 0 holds for 1 ≤ u ≤ 2L− 1 + b1. We distinguish

among the following three cases to achieve this goal.

• For b1 = 0, from the definition of aperiodic cross-correlation, we have

R
w

(1)
i,j

(u) =

{

Rwi,j
(u) +R∗

wi+M1,j
,wi,j

(L− u) +Rwi+M1,j
(u), 0 < u ≤ L− 1;

Rwi,j ,wi+M1,j
(u− L), L ≤ u ≤ 2L− 1.

(7)

Note that Wi and Wi+M1 are CSs, one has

N
∑

j=1

R
w

(1)
i,j

(u) =

{

∑N

j=1R
∗
wi+M1,j

,wi,j
(L− u), 0 < u ≤ L− 1;

∑N

j=1Rwi,j ,wi+M1,j
(u− L), L ≤ u ≤ 2L− 1.

(8)

• For 1 ≤ b1 ≤ L− 1, we have

R
w

(1)
i,j

(u) =



















Rwi,j
(u) +Rwi+M1,j

(u), 0 < u ≤ b1;

Rwi,j
(u) +R∗

wi+M1,j
,wi,j

(L+ b1 − u) +Rwi+M1,j
(u), b1 < u ≤ L− 1;

R∗
wi+M1,j

,wi,j
(L+ b1 − u), L− 1 < u ≤ L+ b1 − 1;

Rwi,j ,wi+M1,j
(u− L− b1), L+ b1 ≤ u ≤ 2L+ b1 − 1.

(9)

This, together with the fact that Wi and Wi+M1 are CSs, implies that

N
∑

j=1

R
w

(1)
i,j

(u) =



















0, 0 < u ≤ b1;
∑N

j=1R
∗
wi+M1,j

,wi,j
(L+ b1 − u), b1 < u ≤ L− 1;

∑N

j=1R
∗
wi+M1,j

,wi,j
(L+ b1 − u), L− 1 < u ≤ L+ b1 − 1;

∑N

j=1Rwi,j ,wi+M1,j
(u− L− b1), L+ b1 ≤ u ≤ 2L+ b1 − 1.

(10)

• For b1 ≥ L, we have

R
w

(1)
i,j

(u) =



















Rwi,j
(u) +Rwi+M1,j

(u), 0 < u ≤ L− 1;

0, L ≤ u ≤ b1;

R∗
wi+M1,j

,wi,j
(L+ b1 − u), b1 + 1 ≤ u ≤ L+ b1 − 1;

Rwi,j ,wi+M1,j
(u− L− b1), L+ b1 ≤ u ≤ 2L+ b1 − 1.

(11)

This leads to

N
∑

j=1

R
w

(1)
i,j

(u) =



















0, 0 < u ≤ L− 1;

0, L ≤ u ≤ b1;
∑N

j=1R
∗
wi+M1,j

,wi,j
(L+ b1 − u), b1 + 1 ≤ u ≤ L+ b1 − 1;

∑N

j=1Rwi,j ,wi+M1,j
(u− L− b1), L+ b1 ≤ u ≤ 2L+ b1 − 1.

(12)
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Combining the cases above and noting that Wi and Wi+M1 are mutually orthogonal, we have

N
∑

j=1

R
w

(1)
i,j

(u) = 0 for all 1 ≤ u ≤ 2L− 1 + b1.

Step 2:

• For b1 = 0, from the definition of aperiodic cross-correlation, we have

R
w

(1)
i,j
,w

(1)
r,j

(u) =







































Rwi,j ,wr,j
(u) +R∗

wr+M1,j
,wi,j

(L− u)

+Rwi+M1,j
,wr+M1,j

(u), 0 < u ≤ L− 1;

Rwi,j ,wr+M1,j
(u− L), L ≤ u ≤ 2L− 1;

R∗
wr,j ,wi,j

(−u) +Rwi+M1,j
,wr,j(L+u)

+R∗
wr+M1,j

,wi+M1,j
(−u), −L+ 1 ≤ u < 0;

R∗
wr,j ,wi+M1,j

(−u− L), −2L+ 1 ≤ u ≤ −L.

(13)

Since for any 1 ≤ s 6= h ≤ N , Ws and Wh are mutually orthogonal, then

N
∑

j=1

R
w

(1)
i,j ,w

(1)
r,j

(u) = 0, for all 1− b1 − 2L ≤ u ≤ 2L+ b1 − 1. (14)

• For 1 ≤ b1 ≤ L− 1, from the definition of aperiodic cross-correlation, we have

R
w

(1)
i,j ,w

(1)
r,j

(u)

=



























































Rwi,j ,wr,j
(u) +Rwi+M1,j

,wr+M1,j
(u), 0 ≤ u ≤ b1;

Rwi,j ,wr,j
(u) +R∗

wr+M1,j
,wi,j

(v) +Rwi+M1,j
,wr+M1,j

(u), b1 < u ≤ L− 1;

R∗
wr+M1,j

,wi,j
(v), L− 1 < u ≤ L+ b1 − 1;

Rwi,j ,wr+M1,j
(u− L− b1), L+ b1 ≤ u ≤ 2L+ b1 − 1;

R∗
wr,j ,wi,j

(−u) +R∗
wr+M1,j

,wi+M1,j
(−u), −b1 ≤ u < 0;

R∗
wr,j ,wi,j

(−u) +Rwi+M1,j
,wr,j

(v̄) +R∗
wr+M1,j

,wi+M1,j
(−u), 1− L ≤ u < −b1;

Rwi+M1,j
,wr,j

(v̄), 1− L− b1 ≤ u < 1− L;

R∗
wr,j ,wi+M1,j

(−u− L− b1), 1− 2L− b1 ≤ u ≤ −L− b1.

(15)

where v = L+ b1 − u and v̄ = L+ b1 + u.

Similar to Case 1, (14) holds for 1 ≤ b1 ≤ L− 1.

• For b1 ≥ L, from the definition of aperiodic cross-correlation, we have

R
w

(1)
i,j ,w

(1)
r,j

(u) =



























































Rwi,j ,wr,j
(u) +Rwi+M1,j

,wr+M1,j
(u), 0 ≤ u ≤ L− 1;

0, L ≤ u ≤ b1;

R∗
wr+M1,j

,wi,j
(L+ b1 − u), b1 + 1 ≤ u ≤ L+ b1 − 1;

Rwi,j ,wr+M1,j
(u− L− b1), L+ b1 ≤ u ≤ 2L+ b1 − 1;

R∗
wr,j ,wi,j

(−u) +R∗
wr+M1,j

,wi+M1,j
(−u), 1− L ≤ u < 0;

0, −b1 ≤ u ≤ −L;
Rwi+M1,j

,wr,j
(L+ b1 + u), 1− L− b1 ≤ u ≤ −1 − b1;

R∗
wr,j ,wi+M1,j

(−u− L− b1), 1− 2L− b1 ≤ u ≤ −L− b1.

(16)
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Similar to Case 1, (14) holds when b1 ≥ L.

Combining the cases above, it can be concluded that for i 6= r, W(1)
i and W(1)

r are mutually orthogonal.

The following corollary is a direct result of Theorem 1.

Corollary 1. For any k ≥ 3 and M ≥ 2k, W(k−1) = {W(k−1)
1 ,W(k−1)

2 , · · · ,W(k−1)
Mk−1

} is an (Mk−1, N, 2
k−1L+

∑k−1
i=1 2k−1−ibi)-MOCS.

Remark 2. Note that when Mk−1 = 1, W(k−1) in Corollary 1 is reduced to a CS of size N with length

2k−1L+
∑k−1

i=1 2
k−1−ibi. By Step 2 in the iterative construction we obtained CSs with spectral nulls (zeros)

only at the center of the sequences. However, after (k − 1)-th iteration we can get CSs (by Theorem 1)

with spectral nulls at various positions (other than the center) within the sequence.

Example 1. Let W = {W1,W2,W3,W4} be a (4, 4, 4)-MOCS, where

W1 = {(1, 1, 1, 1), (1, 1,−1,−1), (−1, 1,−1, 1), (−1, 1, 1,−1)},
W2 = {(−1, 1,−1, 1), (−1, 1, 1,−1), (1, 1, 1, 1), (1, 1,−1,−1)},
W3 = {(−1,−1, 1, 1), (−1,−1,−1,−1), (1,−1,−1, 1), (1,−1, 1,−1)},
W4 = {(1,−1,−1, 1), (1,−1, 1,−1), (−1,−1, 1, 1), (−1,−1,−1,−1)}.

Let b1 = 1 and

W(1)
1 = {(1, 1, 1, 1, 0,−1,−1, 1, 1), (1, 1,−1,−1, 0,−1,−1,−1,−1),

(−1, 1,−1, 1, 0, 1,−1,−1, 1), (−1, 1, 1,−1, 0, 1,−1, 1,−1)},
W(1)

2 = {(−1, 1,−1, 1, 0, 1,−1,−1, 1), (−1, 1, 1,−1, 0, 1,−1, 1,−1),

(1, 1, 1, 1, 0,−1,−1, 1, 1), (1, 1,−1,−1, 0,−1,−1,−1,−1)}.

By Theorem 1, W(1) = {W(1)
1 ,W(1)

2 } is a (2, 4, 9)-MOCS, and the sequence set

{(1, 1, 1, 1, 0,−1,−1, 1, 1, 0, 0,−1, 1,−1, 1, 0, 1,−1,−1, 1),

(1, 1,−1,−1, 0,−1,−1,−1,−1, 0, 0,−1, 1, 1,−1, 0, 1,−1, 1,−1),

(−1, 1,−1, 1, 0, 1,−1,−1, 1, 0, 0, 1, 1, 1, 1, 0,−1,−1, 1, 1),

(−1, 1, 1,−1, 0, 1,−1, 1,−1, 0, 0, 1, 1,−1,−1, 0,−1,−1,−1,−1)}

is a CS of length 20.

Remark 3. The above construction is generic in the sense that it works for any mutually orthogonal CSs.

According to Theorem 1 and Corollary 1, some known MOCSs in the literature (see [35], [36], [38]–[42]

for example) can be directly used to construct sequences under SNCs. It can be seen from Remark 1 that

the systematic construction in [36] provides MOCSs with very flexible lengths. Further, by Lemma 1, if

the sequences in the employed MOCSs have the same energy, the PAPR of the constructed CS is upper

bounded by its set size.

Remark 4. As pointed out by one of the anonymous reviewers, an idea of constructing sequences with

zeros based on complementary sequences was reported recently in [43]. With a careful comparison, the

main differences of our paper from [43] are the following.
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1) The motivation of our paper is to construct sequences with low PAPR under SNCs for multicarrier

communications, while the motivation of [43] is to construct sequences with zero aperiodic correlation

zone (ZACZ) for radars. This means that the main concern of our paper is different from [43].

2) In our paper, we employ CSSs in MOCSs as seed sequences, and then insert zeros into two sequences

taking from two different CSs to obtain sequences with low PAPR. In [43], the authors used GCSs of

a GCP as seed sequences, and then inserted zeros into two sequences from the GCP to get sequences

with ZACZ.

3) The number of inserted zeros in our paper is arbitrary which does not depend on the length of the

employed CSs, while the number of inserted zeros in [43] should be a multiple of the length of the

employed GCPs.

To the best of our knowledge, the length of the MOCSs based on generalized Boolean functions in the

literature is a power of two. This motivates us to construct MOCSs with non-power-of-two lengths based

on generalized Boolean functions in the next section.

IV. MOCSS WITH NON-POWER-OF-TWO LENGTHS AND THEIR CSS

In this section, we introduce a direct construction of MOCSs based on generalized boolean functions,

with its sequence length being non-power-of-two and PAPR upper bounded by 4. Before giving the

construction of MOCSs, we need the following theorem.

Theorem 2 (Theorem 4 of [14]). Let q be an even integer and L = 2m−1 + 2v, where m and v are

integers with m ≥ 2 and 1 ≤ v ≤ m− 1. Define

g1(x) =
q

2

m−2
∑

s=1

xπ(s)xπ(s+1) +
m−1
∑

s=1

λsxπ(s)xm +
m
∑

s=1

µsxs + µ,

g2(x) = g1(x) +
q

2
xm,

g3(x) = g1(x) +
q

2
xπ(1),

g4(x) = g1(x) +
q

2
xπ(1) +

q

2
xm,

where x ∈ Z
m
2 , λs, µ, µs are any given elements in Zq, and π is a permutation of the symbols {1, 2, · · · , m−

1} with {π(1), π(2), · · · , π(v)} = {1, 2, · · · , v}. Then {ψ(g1), ψ(g2), ψ(g3), ψ(g4)} is a CS of length L.

Remark 5. Note that iπ(s)im = 0 for 0 ≤ i < L and s > v. g1(x) in Theorem 2 can be reduced to

g1(x) =
q

2

m−2
∑

s=1

xπ(s)xπ(s+1) +
v

∑

s=1

λsxπ(s)xm +
m
∑

s=1

µsxs + µ, (17)

This observation will be used to calculate the code-rate of the CSSs generated by Theorem 2.

Now we state our main result in the following theorem, which is based on Theorem 2 and (17).
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Theorem 3. In the context of Theorem 2 and m ≥ 3, 1 ≤ v < m− 1, let

f1(x) = g1(x) +
q

2
x(m−1) +

q

2
xmxπ(v),

f2(x) = f1(x) +
q

2
xm,

f3(x) = f1(x) +
q

2
xπ(1),

f4(x) = f1(x) +
q

2
xπ(1) +

q

2
xm.

Then, the sets G = {ψ(g1), ψ(g2), ψ(g3), ψ(g4)} and F = {ψ(f1), ψ(f2), ψ(f3), ψ(f4)} form a (2, 4, L)-

MOCS of sequence length L = 2m−1 + 2v.

Proof. According to Theorem 2, G and F are two CSs of sequence length L. Therefore, we only need

to show that they are orthogonal. For any integer i and u, let j = i + u; also let (i1, i2, · · · , im) and

(j1, j2, · · · , jm) be the binary representations of i and j, respectively. It is clear that

f2(i)− g2(j) = f1(i)− g1(j) +
q

2
(im − jm),

f3(i)− g3(j) = f1(i)− g1(j) +
q

2
(iπ(1) − jπ(1)),

f4(i)− g4(j) = f1(i)− g1(j) +
q

2
(im − jm) +

q

2
(iπ(1) − jπ(1)).

In order to show that G and F are orthogonal, it is only necessary to prove

4
∑

h=1

Rψ(fh),ψ(gh)(u) =
L−1−u
∑

i=0

ξf1(i)−g1(j)[1 + (−1)iπ(1)−jπ(1)][1 + (−1)im−jm] (18)

for −L+ 1 ≤ u ≤ L− 1.

Case 1: u = 0. In this case, we have i = j and (18) is reduced as

4
∑

h=1

Rψ(fh),ψ(gh)(u) = 4
L−1
∑

i=0

ξf1(i)−g1(i)

= 4
L−1
∑

i=0

ξ
q

2
im−1+

q

2
imiπ(v)

= 4
L−1
∑

i=0

(−1)im−1+imiπ(v)

= 4

2m−1−1
∑

i=0

(−1)im−1+0·iπ(v) + 4

2m−1+2v−1
∑

i=2m−1

(−1)0+1·iπ(v)

= 4

2m−1−1
∑

i=0

(−1)im−1 + 4

2v−1
∑

i=0

(−1)iπ(v)

= 0

where the last two equalities are due to {π(1), π(2), · · · , π(v)} = {1, 2, · · · , v} and v < m− 1.
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Case 2: 0 < u ≤ L− 1. In this case, the set {0, 1, · · · , L− 1− u} is divided into two disjoint subsets:

J1(u) = {0 ≤ i ≤ L− 1− u : iπ(1) 6= jπ(1) or jm 6= im}
J2(u) = {0 ≤ i ≤ L− 1− u : iπ(1) = jπ(1), jm = im}.

Hence (18) can be written as

4
∑

h=1

Rψ(fh),ψ(gh)(u) =
∑

i∈J1(u)
ξf1(i)−g1(j)[1 + (−1)iπ(1)−jπ(1)][1 + (−1)im−jm]

+
∑

i∈J2(u)
ξf1(i)−g1(j)[1 + (−1)iπ(1)−jπ(1)][1 + (−1)im−jm]

= 4
∑

i∈J2(u)
ξf1(i)−g1(j). (19)

For i ∈ J2(u), let t be the smallest integer such that iπ(t) 6= jπ(t), obviously, t ≥ 2. In particular, if

im = jm = 1, which indicates that 2m−1 ≤ i, j ≤ 2m−1 + 2v − 1, then we have t ≤ v; Otherwise, since

{π(1), π(2), · · · , π(v)} = {1, 2, · · · , v} which implies is = js for s = 1, 2, · · · , v, then j ≥ i + 2v ≥
2m−1 + 2v, and it contradicts the assumption.

Let i′ and j′ be integers which are different from i and j in only one position π(t− 1), i.e., i′π(t−1) =

1− iπ(t−1) and j′π(t−1) = 1− jπ(t−1) respectively, and so j′ = i′ + u and i′ ∈ J2(u). Then

f1(i)− g1(j) =
q

2

m−2
∑

s=1

(iπ(s)iπ(s+1) − jπ(s)jπ(s+1)) +
v

∑

s=1

λs(iπ(s)im − jπ(s)jm)

+

m
∑

s=1

µs(is − js) +
q

2
im−1 +

q

2
imiπ(v),

and

f1(i
′)− g1(j

′) =
q

2

m−2
∑

s=1

(i′π(s)i
′
π(s+1) − j′π(s)j

′
π(s+1)) +

v
∑

s=1

λs(i
′
π(s)i

′
m − j′π(s)j

′
m)

+

m
∑

s=1

µs(i
′
s − j′s) +

q

2
i′m−1 +

q

2
i′mi

′
π(v).

When t = 2, it is clear that

f1(i
′)− g1(j

′) = f1(i)− g1(j) +
q

2
(1− 2iπ(t−1))iπ(t) −

q

2
(1− 2jπ(t−1))jπ(t)

+λt−1(1− 2iπ(t−1))im − λt−1(1− 2jπ(t−1))jm

+µt−1(1− 2iπ(t−1))− µt−1(1− 2jπ(t−1))

≡ f1(i)− g1(j) +
q

2
(mod q).
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On the other hand, when t 6= 2 we have

f1(i
′)− g1(j

′) = f1(i)− g1(j) +
q

2
iπ(t−2)(1− 2iπ(t−1)) +

q

2
(1− 2iπ(t−1))iπ(t)

−q
2
jπ(t−2)(1− 2jπ(t−1))−

q

2
(1− 2jπ(t−1))jπ(t)

+λt−1(1− 2iπ(t−1))im − λt−1(1− 2jπ(t−1))jm

+µt−1(1− 2iπ(t−1))− µt−1(1− 2jπ(t−1))

≡ f1(i)− g1(j) +
q

2
(mod q).

This implies

ξf1(i)−g1(j) + ξf1(i
′)−g1(j′) = 0.

When i ranges over J2(u), so does i′. It then follows from (19) that

4
∑

h=1

Rψ(fh),ψ(gh)(u) = 2
∑

i∈J2(u)
[ξf1(i)−g1(j) + ξf1(i

′)−g1(j′)] = 0.

Case 3: −L+ 1 ≤ u < 0. According to (1), for this case, we have

4
∑

h=1

Rψ(gh),ψ(fh)(τ) =

L−1−τ
∑

i=0

ξg1(i)−f1(j)[1 + (−1)iπ(1)−jπ(1)][1 + (−1)im−jm] = 0, (20)

where 0 < τ ≤ L− 1.

By similar arguments as in Case 2, we can get (20).

This completes the proof of this theorem.

Corollary 2. With the same notations as in Theorem 3,

W = {w1,w2,w3,w4} = {(ψ(f1)|0b|ψ(g1)), (ψ(f2)|0b|ψ(g2)), (ψ(f3)|0b|ψ(g3)), (ψ(f4)|0b|ψ(g4))}

is a CS with sequence length 2m + 2v+1 + b, and PAPR(W) ≤ 4, where (ψ(fi)|0b|ψ(gi)) is constructed

similarly as (6), and 0b is a b-zeros sequence.

Proof. First, by Theorems 1 and 3, it can be observed that W is a CS of sequence length 2m+ 2v+1 + b.

Second, for any wi ∈ W , it contains b zeros, which implies that the sequences in set W have the same

energy. By Lemma 1, PAPR(W) ≤ 4.

Example 2. For q = 2, b = 1, m = 7, let π be the identity permutation of {1, 2, · · · , 6}, and g1(i) =
∑5

k=1 ikik+1. When v = 1, 2, 3, 4, 5, it is easy to check that G and F form an MOCS of length L =

66, 68, 72, 80, 96. Then the set W constructed above is a CS of size 4 with sequence length 133, 137, 145, 161,

193, respectively. Table I lists the PAPRs of these W’s for various v. In addition, Table II lists the PAPRs

of W for a fixed L = 66 while the number of zeros is changed. It is worth noting that the PAPR of the

proposed sequence sets is lower than the upper bound in Corollary 2. (Note that the oversampling ratio

is 8 in our computation.)

Remark 6. Compared with the MOCSs with flexible parameters from unitary-matrices in [36] (see Remark

1), our construction in Theorem 3 based on generalized Boolean functions only leads to non-power-of-
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TABLE I

THE PAPR OF W IN EXAMPLE 1 FOR VARIOUS v

Sequence length of W 133 137 145 161 193

PAPR(W) 2.5986 2.9412 3.0956 3.6000 3.8036

TABLE II

THE PAPR OF W IN EXAMPLE 1 FOR VARIOUS b WITH L = 66

b 0 1 2 3 4

PAPR(W) 2.4722 2.5986 2.5308 2.6484 2.5168

two length MOCSs with fixed small size (M = 2). This means the iterative construction in Section III to

construct new CSs using the MOCSs in Theorem 3 will be ended after Step 2.

V. THE CODE-RATE AND MINIMUM HAMMING DISTANCE OF PROPOSED CSS

In this section, first, we explicitly compute the set size of the codebook constructed in [14] (see

Theorem 2). This result can then be immediately applied to calculate the set sizes and hence, the code-

rates of our proposed construction also (see Corollary 4). Next, we provide the numerical values of the

code-rates of our proposed codebooks (constructed from G and F in Theorem 3) in a tabular form for

various parameters. At last, the minimum Hamming distance of the codebook is discussed.

The following corollary gives the number of the codewords constructed by Theorem 2.

Corollary 3. The set size of the codebook C1 generated by Theorem 2 equals v!(m− 1− v)!qm+v+1.

Proof. The conclusion follows directly from Theorem 2 and (17).

Remark 7. It can be easily verified that when b spectral nulls are considered as in our proposed codeword

construction (see Corollary 2), the number of codewords is also equal to v!(m− 1− v)!qm+v+1.

The code-rate of our proposed CSs is then given by the following corollary which is a direct result

obtained from Corollary 3 and Remark 7.

Corollary 4. In the context of Corollary 2, let C2 denote the codebook constructed by W , then

R(C2) =
⌊

logq(v! · (m− 1− v)! · qm+v+1)
⌋

2m + 2v+1 + b
.

According to Corollary 4, we can obtain the following code-rate tables.

Table III shows that for given m and v, the code-rate R(C2) decreases when b increases (recall that b

is the number of zeros in the sequences). This is because of the insertion of the zeros (or nulls) which

increases the length of the sequences, but the number of codewords remains constant. However, it is worth

noting that for large values of m, the code-rate does not decrease significantly with b. Similarly, we also

observe that for a fixed value of b, the code-rate decreases with m and v. Finally, Table IV shows that

for given m, b and fixed v (v = 1 in this case), the code-rate R(C2) does not increase with q. This is

expected because of

R(C2) =
(m+ v + 1) + ⌊logq(v! · (m− 1− v)!)⌋

2m + 2v+1 + b
.
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TABLE III

R(C2) FOR VARIOUS m, v, b WHEN q = 2

b
R(C2) m, v m = 3 m = 4 m = 5 m = 6

v = 1 v = 1 v = 2 v = 1 v = 2 v = 3 v = 1 v = 2 v = 3 v = 4
0 0.4167 0.3500 0.3333 0.2500 0.2500 0.2292 0.1765 0.1667 0.1625 0.1563

1 0.3846 0.3333 0.3200 0.2432 0.2439 0.2245 0.1739 0.1644 0.1605 0.1546

2 0.3571 0.3182 0.3077 0.2368 0.2381 0.2200 0.1714 0.1622 0.1585 0.1531

3 0.3333 0.3043 0.2963 0.2308 0.2326 0.2157 0.1690 0.1600 0.1566 0.1515

4 0.3125 0.2917 0.2857 0.2250 0.2273 0.2115 0.1667 0.1579 0.1548 0.1500

5 0.2941 0.2800 0.2759 0.2195 0.2222 0.2075 0.1644 0.1558 0.1529 0.1485

6 0.2778 0.2692 0.2667 0.2143 0.2174 0.2037 0.1622 0.1538 0.1512 0.1471

TABLE IV

R(C2) FOR VARIOUS q,m, b WHEN v = 1

q

R(C2) m, b m = 4 m = 5 m = 6
b = 1 b = 2 b = 1 b = 2 b = 3 b = 1 b = 2 b = 3 b = 4

2 0.3333 0.3182 0.2432 0.2368 0.2308 0.1739 0.1714 0.1690 0.1667

4 0.2857 0.2727 0.2162 0.2105 0.2051 0.1449 0.1429 0.1408 0.1389

6 0.2857 0.2727 0.2162 0.2105 0.2051 0.1304 0.1286 0.1268 0.1250

8 0.2857 0.2727 0.1892 0.1842 0.1795 0.1304 0.1286 0.1268 0.1250

10 0.2857 0.2727 0.1892 0.1842 0.1795 0.1304 0.1286 0.1268 0.1250

The minimum Hamming distance of C is identified by

dmin(C) = min{d (F1, F2) : F1 6= F2, F1, F2 ∈ C},

where d (F1, F2) = ω (F1 − F2), and ω (F1 − F2) denotes the Hamming weight of the vector F1 − F2.

dmin(C2) might be small due to the small Hamming weight of xm when the sequence length L = 2m−1+2v

(1 ≤ v ≤ m− 2). So we consider a subcode of C2.

Definition 4. In the context of Theorems 2 and 3, let m ≥ 3, 1 ≤ v < m − 2 and b is a nonnegative

integer, define

C3 =



















(ψ(f1)|0b|ψ(g1)) : π is a permutation of the symbols {1, 2, · · · , m− 1}
with {π(1), π(2), · · · , π(v)} = {1, 2, · · · , v};

λs = 0 (1 ≤ s ≤ v), µm = 0;

µs, µ ∈ Zq (1 ≤ s ≤ m− 1);



















.

It is obvious that C3 is a subcode of C2 and |C3| = v!(m− 1− v)!qm with

R(C3) =
m+ ⌊logq(v! · (m− 1− v)!)⌋

2m + 2v+1 + b
.

Lemma 2. [44] For q ≥ 2, the generalized rth-order Reed-Muller code, RMq(r,m), has minimum

Hamming distance 2m−r.

Proposition 1 (Propositions 9 and 10 of [14]). In the context of Theorem 2, let m ≥ 3, 1 ≤ v ≤ m− 2,
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and

Q1 =
q

2

m−2
∑

s=1

xπ1(s)xπ1(s+1), Q2 =
q

2

m−2
∑

s=1

xπ2(s)xπ2(s+1)

where π1, π2 are any two permutations of the symbols {1, 2, ..., m− 1} with

{πs(1), πs(2), · · · , πs(v)} = {1, 2, · · · , v} (s = 1, 2),

also let

S1 =

{

Q1 +

m−1
∑

s=1

µsxs + µ : µs, µ ∈ Zq

}

, S2 =

{

Q2 +

m−1
∑

s=1

µsxs + µ : µs, µ ∈ Zq

}

,

and

C11 = {ψ(f) : f(x) ∈ S1} , C12 = {ψ(f) : f(x) ∈ S2} .

Then, for C̃1 = C11
⋃

C12, we have

dmin(C̃1) =

{

2m−2, if π1 = π2;

2m−3, if π1 6= π2.

Based on Proposition 1 and Corollary 2, we can get the results about dmin(C3) in the following corollary.

Corollary 5. In the context of Corollary 2 and Proposition 1, let C21 = {(ψ(f1)|0b|ψ(g1)) : f1(x) ∈ S1}
and C22 = {(ψ(f2)|0b|ψ(g2)) : f2(x) ∈ S2} generated in Corollary 2. Then, for C̃2 = C21

⋃ C22, we have

dmin(C̃2) =

{

2m−1, if π1 = π2 and 1 ≤ v < m− 1;

2m−2, if π1 6= π2 and 1 ≤ v < m− 2.

Proof. Case 1: If π1 = π2 and 1 ≤ v < m− 1, then we have C21 = C22. For any two f1(x), f2(x) ∈ C11,

it can be easily get that f1(i)− f2(i) = g1(i)− g2(i) for any 0 ≤ i ≤ 2m−1 + 2v − 1, and

ω(ψ(f1)− ψ(f2)) = ω (ψ(g1)− ψ(g2)) ,

so we have

d ((ψ(f1)|0b|ψ(g1)), (ψ(f2)|0b|ψ(g2)) = 2 · ω (ψ(f1)− ψ(f2)) .

Hence, according to the first case in Proposition 1, it can be obtained that dmin(C̃2) is equal to 2 · 2m−2 =

2m−1.

Case 2: If π1 6= π2 and 1 ≤ v < m− 2, let

S11 =
{

g1(x) = f1(x) +
q

2
xπ1(v)xm +

q

2
xm−1 : f1(x) ∈ S1

}

,

S12 =
{

g2(x) = f2(x) +
q

2
xπ2(v)xm +

q

2
xm−1 : f2(x) ∈ S2

}

,

also let

C′
11 = {ψ(g1) : g1(x) ∈ S11} , C′

12 = {ψ(g2) : g2(x) ∈ S12} .

For any two codewords c1 ∈ C′
11 and c2 ∈ C′

12, let d = c1 − c2 and d(2m−1) be the sequence of length
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2m−1 by truncating d. Since d(2m−1) is a nonzero codeword of RMq(2, m− 1), the Hamming weight of

d is at least 2m−3 according to Lemma 2. So, dmin(C′
11

⋃

C′
12) is larger than 2m−3, and then dmin(C̃2) is

larger than 2 · 2m−3 = 2m−2. Next, we exhibit two codewords in C̃2 where the distance is equal to 2m−2.

Let

f1(x) =
q

2
(x1x2 + x2x3 + · · ·+ xm−4xm−3 + xm−3xm−2 + xm−2xm−1) ,

g1(x) = f1(x) +
q

2
xvxm +

q

2
xm−1,

f2(x) =
q

2
(x1x2 + x2x3 + · · ·+ xm−4xm−3 + xm−3xm−1 + xm−1xm−2) ,

g2(x) = f2(x) +
q

2
xvxm +

q

2
xm−1,

also let c1 = (ψ(f1)|0b|ψ(g1)), c2 = (ψ(f2)|0b|ψ(g2)) and d = c1 − c2. then we have

f1(x)− f2(x) = g1(x)− g2(x) = xm−3xm−2 − xm−3xm−1.

So

ω(d) = 2 · ω(ψ(f1)− ψ(f2)) = 2 · ω (xm−3xm−2 − xm−3xm−1) = 2 · 2m−3 = 2m−2.

This completes the proof of this corollary.

The following is a straightforward result of Corollary 5.

Corollary 6. In the context of Corollary 2 and Proposition 1, we have

dmin(C̃3) =

{

2m−1 = 4, if m = 3 and 1 ≤ v < m− 1;

2m−2, if m > 3 and 1 ≤ v < m− 2.

Proof. Case 1: For m = 3 and 1 ≤ v < m − 1, there is only permutation π of {1, ..., m− 1} satisfying

1 ≤ v < m− 1 where π(1) = 1, π(2) = 2, then, according to Corollary 5, we have dmin(C̃3) = 2m−1.

Case 2: For m > 3 and 1 ≤ v < m− 2, there exist different permutations of {1, ..., m− 1} satisfying

1 ≤ v < m− 2, then by Corollary 5, we have dmin(C̃3) = min{2m−1, 2m−2} = 2m−2.

This completes the proof of this corollary.

Remark 8. Since C3 is a subcode of C2, so we have dmin(C2) ≤ dmin(C3). dmin(C2) would increase after

deleting some codewords in C2. For example, in the context of Corollary 5, the codebook C21 is also a

subcode of C2 with dmin(C21) = 2m−1 for m ≥ 3.

Table V shows the code-rate and minimum Hamming distance of C3 for various b,m, v when q = 2, i.e.,

C3 is a binary code. It can be observed that dmin(C3) is independent with b and v where 1 ≤ v < m− 2.

VI. CONCLUDING REMARKS

In this paper, we presented a systematic construction of CSs (CSs) with low PAPR and spectral nulls

at certain positions. Our proposed sequences may find applications as low PAPR codewords for practical

OFDM transmissions where certain sub-carriers are nulled or not allowed to transmit, for example, as

transmission codewords for non-contiguous OFDM transmission in Cognitive Radio. As one of our main

results, we proposed iterative techniques to generate MOCSs which can then be used to design more
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TABLE V

THE CODE-RATE AND MINIMUM HAMMING DISTANCE OF BINARY CODE C3 FOR VARIOUS b,m, v

b m v length code-rate dmin

0

3 1 6 0.2500 4

4 1 10 0.2500 4

5
1 18 0.1944 8

2 20 0.1750 8

6

1 34 0.1471 16

2 36 0.1250 16

3 40 0.1125 16

1

3 1 7 0.2308 4

4 1 11 0.2381 4

5

1 19 0.1892 8

2 21 0.1707 8

6

1 35 0.1449 16

2 37 0.1233 16

3 41 0.1111 16

2

3 1 8 0.2143 4

4 1 12 0.2273 4

5
1 20 0.1842 8

2 22 0.1667 8

6

1 36 0.1429 16

2 38 0.1216 16

3 42 0.1098 16

general CSs with spectral nulls not only at the center but also at other positions within the sequences.

Using tools from generalized Boolean functions, we then provided a new construction of the seed MOCSs

with non-power-of-two lengths, which can be used to construct CSs. Our final proposed CSs have low

PAPR, non-power-of-two lengths and can be used as OFDM codewords with any number of spectral

nulls at the middle within the sequences. It would be interesting to construct MOCSs with large size and

non-power-of-two lengths, and then obtain sequences with more flexible nulls under the proposed iterative

construction.
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[40] S. Das, S. Budišin, S. Majhi, Z. Liu, and Y. L. Guan, “A multiplier-free generator for polyphase complete complementary codes,” IEEE

Trans. on Signal Processing, vol. 66, no. 5, pp. 1184–1196, Mar. 2018.

[41] S. Das, S. Majhi, and Z. Liu, “A novel class of complete complementary codes and their applications for APU matrices,” IEEE Signal

Process. Lett., vol. 25, no. 9, pp. 1300–1304, Sep. 2018.
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