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Minimax Robust Decentralized Hypothesis
Testing for Parallel Sensor Networks

Gökhan Gül , Member, IEEE

Abstract— Decentralized detection is studied for parallel-access
sensor networks, where sensor statistics are not known completely
and are assumed to follow distribution functions which belong
to known uncertainty classes. It is shown that there exist no
minimax robust tests over the deterministic decision rules for
the uncertainty classes built with respect to the Kullback-Leibler
(KL)-divergence. For the KL-divergence as well as for some
other uncertainty classes, such as the α-divergences, the joint
stochastic boundedness property, which is the fundamental rule
to prove minimax robustness, fails to hold. This raises a natural
question whether a solution to minimax robust decentralized
detection problem can be given if the uncertainty classes do
not own this property. An answer to this question has been
shown to be positive, which leads to a generalization of an
existing work. Moreover, it is shown that for Huber’s extended
uncertainty classes quantization functions at the sensors are not
required to be monotone in order to claim minimax robust-
ness. A possible generalization of the theory to minimax- and
Neyman-Pearson formulations, repeated observations, imper-
fect reporting channels and different network topologies have
been discussed. Simulation examples are provided considering
clipped- and censored likelihood ratio tests.

Index Terms— Robustness, decentralized detection, data fusion,
sensor networks, minimax robust hypothesis testing.

I. INTRODUCTION

IN SIMPLE binary hypothesis testing the design of opti-
mum decision rules requires the exact knowledge of the

conditional probability distributions under each hypothesis [1].
However, in practice, complete knowledge of the observation
statistics is often not available, such as occurs with the
presence of outliers or due to model mismatch. In these cases,
a reasonable approach is to represent each hypothesis by
a set or class of distributions and determine the optimum
decision rule via maximizing the worst case performance.
The tests optimizing the worst case performance are called
the minimax robust tests, the worst case distributions are
called the least favorable distributions (LFDs) and the related
set of distributions are called the uncertainty sets or more
commonly uncertainty classes. The minimax robust tests have
a nice property of guaranteeing a certain level of detection
performance irrespective of the actual state of the observation
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statistics. Because of this property, they are often essential for
the design of systems that have to function reliably in harsh
environments or in environments which cannot be modeled
accurately [2].

A. Related Work

The first and probably the most fundamental work in robust
hypothesis testing was developed by Huber in 1965 [3]. Huber
showed that the minimax robust test for the �-contaminated
classes of distributions and the uncertainty classes with respect
to the total variation distance were clipped likelihood ratio
tests, where the likelihood ratio was obtained by the ratio
of so called least favorable distributions from the respective
uncertainty classes. In his follow-up work, Huber extended
the number of class of distributions to five, from where the
same conclusions could be made [4]. The most general classes
of distributions for which the clipped likelihood ratio is the
minimax robust test are the two alternating capacities [5].

Huber’s classes of distributions are well known to be to
able to model uncertainties due to outliers. However, modeling
errors, which are the other source of uncertainty in signal
processing applications, cannot be well modeled by using
Huber’s techniques [2]. Dabak and Johnson, for the asymptotic
case [6], and later Levy for the single sample case [7] sug-
gested that for modeling errors instead of Huber’s uncertainty
classes the subsets of topological spaces which are created
with respect to smooth distances -such as the KL-divergence-
are more suitable. The results of [7] are applicable if the
nominal density functions under each hypothesis are sym-
metric, the robustness parameters are equal and the nominal
likelihood ratio function is monotone. In [8], the results of
[7] are generalized to the case, where no assumption was
necessary to be imposed on the choice of nominal distribu-
tions. The most general classes of distributions for modeling
errors are derived by Gül and Zoubir [9] considering the set of
distances -α-divergences- and removing the constraint of equal
a-priori probabilities imposed in [7] and [8].

Robust hypothesis testing extended to multiple sensors pro-
vides not only reliability but also high detection accuracy [10].
The earliest study in this field was conducted by Geroniotis,
who considered a distributed detection network without a
fusion center (DDN-WoF) for a fixed sample size and a
sequential discrete time robust detection for two sensors [11].
In [12], Geraniotis and Chau studied the robustness of distrib-
uted detection network with a fusion center (DDN-WF) and
sequential data fusion where the emphasis was on the selection
of robust fusion rules. In their recent work [13], Geraniotis and
Chau generalized most of their results presented in [12].
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Fig. 1. Distributed detection network with K decision makers, each
represented by the decision rule φk , and a fusion center associated with the
fusion rule γ.

All Huber’s classes of distributions satisfy joint stochastic
boundedness property. Based on this observation it was proven
in [14] that for jointly stochastically bounded classes of distri-
butions, there exist least favorable distributions for DDN-WF
if the individual sensors employ robust tests. Moreover,
the authors formalized necessary conditions that need to be
satisfied by the cost assignment procedure for DDN-WoF.
The results derived in [14] are currently the state-of-the-art
and generalize the DDN-WoF-results of Geroniotis [11] to
a network of more than two sensors and to more general
cost functions. Furthermore, the results of [14] also generalize
the DDN-WF-results of Geraniotis and Chau [12], [13] to
non-Bayesian formulation, non-binary decisions, non-identical
sensor decisions and non-asymptotic case, both in terms of the
number of sensors as well as the number of observations.

All aforementioned robust decentralized detection schemes
are based on uncertainty models, which do not assume any spe-
cific shape for the actual distributions lying in the uncertainty
classes. If such an assumption can be made, uncertainty classes
can also be constructed parametrically and the generalized
likelihood ratio test can be used to solve the resulting com-
posite hypothesis testing problem [15]. In general, uncertainty
models can also be combined with different network topolo-
gies, for instance tandem sensor networks where asymptotic
analysis is of interest [16], [17]. Other variants of this work
focus on the application of the earlier results to scenarios
with constraints such as power [18], communication rate
[19], or local optimality [20].

B. Summary of the Paper and Its Contributions
In this paper, binary minimax decentralized detection is

studied for parallel sensor networks which consist of a finite
number of sensors and a fusion center as illustrated in Figure 1.
Each sensor in the sensor network collects a finite number
of samples characterizing either the null or the alternative
hypothesis and gives a decision which is possibly multilevel.
The distribution of data samples for every sensor is not known
exactly and characterized by uncertainty classes. The motiva-
tion of this paper is due to Huber and Strassen [5]. They state

that if the classes of distributions are constructed such that
every distribution in the uncertainty class is absolutely con-
tinuous with respect to a dominating measure and the domain
of the uncertainty classes are uncountably infinite, the sto-
chastic boundedness property may fail. This property specifies
minimax robustness in all Huber’s papers [3]–[5] and it
is a necessary condition for the design of minimax robust
decentralized detection in [14]. However, it is not known
whether minimax robust decentralized detection is possible if
at least one, some, or all sensors of the sensor network do
not own this property. A positive answer to these questions
implies that the minimax robust schemes which do not own
stochastic boundedness property, e.g., [7], [8] can be extended
to multiple sensors in a straightforward manner. In this regard,
the following contributions are made in connection with their
relation to prior works.

1) It is proven explicitly that there exist no minimax
robust tests over deterministic decision rules for the
uncertainty classes constructed with respect to the
Kullback-Leibler divergence. Such tests, however, exist
over the randomized decision rules, see [8].

2) It is proven that even if the joint stochastic property
fails for every sensor in the sensor network, it is
still possible to design a minimax robust decentralized
detection scheme. This can be done without resorting to
monotone sensor quantization rules (functions), which is
another necessary condition in [14]. Therefore, the pro-
posed scheme generalizes and includes the work of
Veeravalli et al. [14] as a special case.

3) The results are generalized to minimax- and
Neyman-Pearson formulations, repeated observations,
imperfect reporting channels and different network
topologies.

Based on these contributions it is now possible to link minimax
robust hypothesis testing for modeling errors [7], [8] with
decentralized detection. This was previously possible only for
uncertainty models, which are suitable for outliers [14].

C. Outline of the Paper

The organization of this paper is as follows. In Section II,
the existence of minimax robust tests are studied.
In Section III, the problem definition is made. In Section IV
the theory behind the solution of minimax robust decentralized
detection problem is introduced. In Section V uncertainty
classes are defined explicitly and their connection with
minimax robust decentralized detection is summarized.
In Section VI generalization of the theory to minimax
and Neyman-Pearson formulations, repeated observations,
imperfect reporting channels and other network topologies
are discussed. In Section VII two specific examples are given
and finally in Section VIII the paper is concluded.

D. Notations

The following notations are applied throughout the paper.
Upper case symbols are used for probability distributions and
random variables, and the lower case symbols of the prob-
ability distributions and random variables denote the density
functions and observations, respectively. Boldface symbols are
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used for vectors of random variables, or sets of- distribu-
tions or functions. The hypotheses H0 and H1 are associated
with the nominal probability measures P0 and P1, whereas the
corresponding actual distributions are denoted by Q0 and Q1.
The sets of probability distributions are denoted by P0 and
P1. Every probability measure, e.g., P [·], is associated with
its distribution function P (·) i.e., P (y) = P [Y ≤ y] for the
random variable (r.v.) Y and the observation y. The notation
N (μ, σ2) is used for the Gaussian distribution with mean μ
and variance σ2, whereas G(κ, μ, σ) stands for the generalized
Gaussian distribution with shape κ, location μ and scale σ. The
notation (·)−1 is used for the inverse function and (̂·) indicates
the least favorable distribution, e.g., Û j

k implies that the r.v.
Uk follows the LFD Q̂j ∈ Pj .

II. EXISTENCE OF MINIMAX ROBUST TESTS

In this section basic theory to be used in the next sections
will be introduced and the existence and non-existence of
minimax robust tests will be examplified. Definitions related
to Figure 1 will be detailed in the next section. Consider the
following remark, lemmas and the definition.

Remark II.1: Let X and Y be two random variables defined
on the same measurable space (Ω,A), having cumulative
distribution functions PX and PY , respectively. X is called
stochastically larger than Y , i.e., X � Y , if PY (x) ≥ PX(x)
for all x.

Lemma II.1: X � Y iff υ(X) � υ(Y ) for every
non-decreasing υ.

Proof of Lemma II.1 is simple and can be found, for
example, in [21].

Lemma II.2: Let X1, X2, Y1 and Y2 be four random
variables on (Ω,A), out of which X1 and X2, and Y1 and Y2

are independent. If X1 � Y1 and X2 � Y2, then X1 + X2 �
Y1 + Y2.

Proof: From Remark II.1, we have PY1(x) ≥ PX1(x) and
PY2(x) ≥ PX2(x) for all x. Hence,

PY1+Y2(z) =
∫ +∞

−∞
PY1(z − x)dPY2 (x)

≥
∫ +∞

−∞
PX1(z − x)dPY2 (x)

=
∫∫

x+y≤z

dPX1 (x)dPY2 (y)

=
∫ +∞

−∞
PY2(z − y)dPX1(y)

≥
∫ +∞

−∞
PX2(z − y)dPX1 (y) = PX1+X2(z). (1)

Definition II.1 (Joint Stochastic Boundedness): A pair of
class of distributions (P0, P1) defined on a measurable space
(Ω,A) are called to be jointly stochastically bounded by
(Q̂0, Q̂1), if a pair of distributions (Q̂0, Q̂1) exists such that

Q0[l̂(Y ) ≤ t] ≥ Q̂0[l̂(Y ) ≤ t], ∀t ∈ R≥0, ∀Q0 ∈ P0, (2)

Q1[l̂(Y ) ≤ t] ≤ Q̂1[l̂(Y ) ≤ t], ∀t ∈ R≥0, ∀Q1 ∈ P1, (3)

where l̂ = dQ̂1/dQ̂0 is the robust likelihood ratio function.

Minimax robust tests over deterministic decision rules
may or may not exist. In the sequel, two examples of uncer-
tainty classes are provided, where the stochastic boundedness
property holds and fails, respectively. For both examples, every
distribution in the uncertainty classes is absolutely continuous
with respect to the related nominal measure c.f. [5, p. 261].

Example II.3: Let the uncertainty classes be

P0 = {Q0 : Q0 = G(κ, μ0, σ), μ0 ∈ [t0l , t
0
u]},

P1 = {Q1 : Q1 = G(κ, , μ1, σ), μ1 ∈ [t1l , t
1
u]}, (4)

where G is the generalized Gaussian distribution with shape
κ > 0, location μj ∈ R and scale σ > 0 for t1l > t0u.
Then, there exist least favorable distributions Q̂0 = G(κ, t0u, σ)
and Q̂1 = G(κ, t1l , σ) which satisfy the joint stochastic
boundedness property given by Definition II.1.

Proof: In order to prove (2), it is sufficient to show
that Q0[log l̂(Y ) ≤ t] is decreasing in μ0 for every t.
The probability density function of the generalized Gaussian
distribution is given by

qm(y) =
κ−1/κ

2σΓ(1 + 1
κ )

exp(−(|y − μm|/σ)κ/κ), m ∈ {0, 1}.
(5)

The corresponding log-likelihood ratio function

t = log l̂(y) =
1

κσκ

(|y − t0u|κ − |y − t1l |κ
)

(6)

is strictly increasing in y. Hence, for y(t) = l̂−1(exp(t)),
we have

f(μ0, t) = Q0[log l̂(Y ) ≤ t] = Q0[Y ≤ y(t)]
= Q0(y(t)) = 1y(t)≥μ0(y(t))

+ sign(μ0 − y(t))
1
2
Γr

⎛
⎝ 1

κ
,

(
|μ0−y(t)|

σ

)κ

κ

⎞
⎠ , (7)

where 1(·) is the indicator function and Γr(·) is the regularized
gamma function. Since

∂f(μ0, t)
∂μ0

= −
exp

(
−
� |y(t)−μ0 |

σ

�κ

κ

)
κ

(� |y(t)−μ0 |
σ

�κ

κ

) 1
κ

2Γ
(

1
κ

) |y(t) − μ0|
< 0

(8)

for every t, the inequality (2) holds. The proof for (3) is similar
and is omitted.

Example II.4: The second example will be stated with the
following proposition.

Proposition II.5: Let the uncertainty classes be

Pj = {Qj : D(Qj , Pj) ≤ �j}, j ∈ {0, 1}, (9)

where

D(Qj , Pj) =
∫

Ω

ln(dQj/dPj)dQj , j ∈ {0, 1}

is the KL-divergence. Then, there exists no pair of LFDs
(Q̂0, Q̂1) which satisfy the joint stochastic boundedness
property.

A proof of Proposition II.5 is given in Appendix A.
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Remark II.2: The proposition is valid for any choice of
(�0, �1) so long as a minimax robust test exists, i.e., the
uncertainty classes are disjoint. Existence of a minimax robust
test can be guaranteed if the robustness parameters are chosen
sufficiently small, depending on the chosen distinct nominal
distributions. A sketchy explanation of the choice of nominals
and the maximum allowable robustness parameters can be seen
in [6, Fig. 3], [22]. It is worth noticing that a minimax robust
test for the KL-divergence exists over randomized decision
rules and the corresponding test is unique [8]. Since this test is
not equivalent to any deterministic likelihood ratio test, it does
not satisfy (2) and (3) either.

III. PROBLEM DEFINITION

Consider a decentralized detection network with a parallel
topology as shown in Figure 1. There are K decision makers
(physically sensors), each represented by the decision rules
φk : Ωk → Sk ⊂ N observing a certain phenomenon,
and a fusion center. Every random variable Yk corresponding
to the observation yk takes values on a measurable space
(Ωk,Ak), where Ωk is a continuous set, e.g. Ω1 = R

n,
n ∈ N, and Ak is the Borel σ-algebra defined on Ωk.
The random variables Y1, . . . , YK are assumed to be inde-
pendent under each hypothesis, but not necessarily identi-
cal. Given an observation yk, each sensor transmits (error
free) its own decision uk = φk(yk) to the fusion center.
The fusion center represented by the fusion rule γ ∈ Γ,
where Γ is the set of all fusion rules on (S1, . . . , SK), then
makes the final binary decision u0 based on all decisions
u1, . . . , uK that are received. The technical details related
to the random variables Yk and Uk corresponding to the
observations yk and decisions uk, respectively, as well as to
the decision rules, which are shown in Figure 1, are detailed
below.

• Under each hypothesis Hj , the random variables Y j
k and

U j
k = φk(Y j

k ) follow the distributions Q
Y j

k

j and Q
Uj

k

j hav-

ing the density functions q
Y j

k

j and q
Uj

k

j , respectively. The

distributions Q
Y j

k

j belong to the uncertainty classes P
Y j

k

j .
In order to avoid cumbersome notation, the distributions
and densities will be denoted by Qk

0 , Qk
1 , qk

0 , qk
1 , and the

uncertainty classes by Pk
0 and Pk

1 omitting the random
variables in superscripts.

• Similarly, the distributions Q0 = (Q1
0, . . . , Q

K
0 ) and

Q1 = (Q1
1, . . . , Q

K
1 ) belong to the product uncertainty

classes P0 = P1
0×. . .×PK

0 and P1 = P1
1×. . .×PK

1 ,
respectively.

• Yj = (Y j
1 , . . . , Y j

K) and Uj = (U j
1 , . . . , U j

K) are the
multivariate random variables under the hypothesis Hj ,
and Y and U are defined similarly without the index j.

• The stochastically larger sign � is extended to vector
notation �, i.e.,

Ûj � Uj =⇒ Û j
k � U j

k , ∀k,

where (̂·) indicates the LFDs, e.g., Û j
k is the random

variable Uk which follows Q̂j .
• The vector notation is also applied to the collection of

decision rules φ = (φ1, . . . , φK), where every decision

rule φk is an element of the set of all decision rules Δk

on Ωk, hence, φ ∈ Δ = Δ1 × . . . × ΔK .
Let the false alarm and miss detection probabilities be defined
as PF = EQ0 [γ] and PM = EQ1 [1 − γ]. Then, the minimum
error probability can be written as

PE(Q0,Q1, φ, γ)
=P (H0)PF (Q0, φ, γ) + P (H1)PM (Q1, φ, γ)
=P (H0)EQ0 [γ(φ(Y ))]
+(1 − P (H0))EQ1 [1 − γ(φ(Y ))] . (10)

Accordingly, a solution to the following problem is sought.

Problem III.1 (Original minimax decentralized detection
problem):

{Q̂0, Q̂1, φ̂, γ̂}
= arg inf

φ∈Δ,γ∈Γ
sup

(Q0,Q1)∈P0×P1

PE(Q0,Q1, φ, γ). (11)

where Q̂0 and Q̂1 are the PE maximizing distributions, and
φ̂ and γ̂ are the PE minimizing decision and fusion rules,
respectively.

Let Q̂∗
0 ∈ P0 and Q̂∗

1 ∈ P1 be two distributions, which
are not necessarily the same distributions with Q̂0 and Q̂1,
respectively. Then, instead of solving the original minimax
decentralized detection problem, it is much easier and hence
more preferable to solve the following simple decentralized
detection problem, in case they are equivalent.

Problem III.2 (Simple Decentralized Detection Problem):

{φ̂∗
, γ̂∗} = arg inf

φ∈Δ,γ∈Γ
PE(Q̂∗

0, Q̂
∗
1, φ, γ). (12)

where φ̂
∗

and γ̂∗ are the PE minimizing decision and fusion
rules for the distributions Q̂∗

0 and Q̂∗
1.

The results of Problem III.1 and Problem III.2 are equivalent
if Q̂∗

0 and Q̂∗
1 satisfy the worst case PF and PM conditions.

This will be stated with the following proposition.

Proposition III.1: It is true that φ̂ = φ̂∗ and γ̂ = γ̂∗, hence,
Q̂0 = Q̂∗

0 and Q̂1 = Q̂∗
1 if

PF (Q̂∗
0, φ̂

∗
, γ̂∗) ≥ PF (Q0, φ̂

∗
, γ̂∗), ∀Q0 ∈ P0,

PM (Q̂∗
1, φ̂

∗
, γ̂∗) ≥ PM (Q1, φ̂

∗
, γ̂∗), ∀Q1 ∈ P1. (13)

A proof of Proposition III.1 is given in Appendix B.

Remark III.1: Instead of solving Problem III.1, by using
the Proposition III.1, one can equivalently find Q̂0 and Q̂1,
and PE minimizing decision and fusion rules, φ̂ and γ̂, such
that the inequalities in (13) are satisfied. This strategy will be
followed in the next section.

IV. MINIMAX ROBUST DECENTRALIZED DETECTION

Error minimizing decision rules φ̂ and the fusion rule γ̂ are
known to be monotone likelihood ratio tests (MLRTs) [23].
The conditions that need to be satisfied for (13) to hold are
twofold.

1) Conditions defined on U and from U to U0 via the
fusion rule γ.

2) Conditions defined from Y to U via φk such that the
conditions defined in 1) hold.
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The following theorem details 1), whereas the next two
theorems suggest two possible solutions for 2).

Theorem IV.1: The inequalities defined by (13) hold if φ̂
results in

1) Û0 � U0 and U1 � Û1,
2) Monotone non-decreasing likelihood ratio function

l̂k = q̂
U1

k
1 /q̂

U0
k

0 for every k.

Proof: Since U1, . . . , UK are all mutually independent
random variables, the optimum fusion rule γ̂ at the fusion
center is to make a decision based on

K∏
k=1

q̂k
1 (Uk)

q̂k
0 (Uk)

H1

≷
H0

t,

which is equivalent to

log
K∏

k=1

q̂k
1 (Uk)

q̂k
0 (Uk)

=
K∑

k=1

log l̂k(Uk)
H1

≷
H0

log t. (14)

From condition 2), recall that l̂k is monotone non-decreasing,
log l̂k is also monotone non-decreasing for all k. Using
Lemma II.1 in condition 1) with υ = log l̂k, all summands
in (14) satisfy

log l̂k(Û0
k ) � log l̂k

(
U0

k

)
, ∀k, ∀Qk

0 ∈ Pk
0 ,

log l̂k
(
U1

k

) � log l̂k(Û1
k ), ∀k, ∀Qk

1 ∈ Pk
1 . (15)

Accordingly, by applying Lemma II.2 to both inequalities
in (15) inductively, i.e., to the pairs of random variables
iteratively, leads to

K∑
k=1

log l̂k(Û0
k ) �

K∑
k=1

log l̂k
(
U0

k

)
, ∀Qk

0 ∈ Pk
0 ,

K∑
k=1

log l̂k
(
U1

k

) �
K∑

k=1

log l̂k(Û1
k ), ∀Qk

1 ∈ Pk
1 . (16)

Let Q̂j and Qj be the probability distributions of the random
variable Z =

∑K
k=1 log l̂k (Uk), when Uk is distributed as

Q̂k
j and Qk

j , respectively. Then, by Remark II.1, the stochastic
ordering conditions given by (16) can equivalently be written
as

Q̂0 [Z > t] ≥ Q0 [Z > t] , ∀t, ∀Q0,

Q̂1 [Z ≤ t] ≥ Q1 [Z ≤ t] , ∀t, ∀Q1. (17)

The inequalities in (17) imply the assertion, hence, the proof
is complete.

Sufficient conditions among the random variables
U1, . . . , UK as well as from U to U0 have been established
with Theorem IV.1. Next, by Theorem IV.2 and Theorem IV.4,
the sufficient conditions from Y to U will be stated with a
suitable choice of decision rules φk.

Theorem IV.2: Let each decision rule φk be a monotone
likelihood ratio test

Uk = φk(Xk)

=

⎧⎪⎨
⎪⎩

0, Xk < tk0
d, tkd−1 ≤ Xk < tkd
Dk Xk > tDk−1

, d ∈ {1, . . . , Dk − 1}. (18)

where Xk = l̂k(Yk) and tkd are some constants. Furthermore,
let us assume that

X̂0
k � X0

k and X1
k � X̂1

k , ∀k, ∀Qk
j ∈ Pk

j . (19)

Then, the two conditions described in Theorem IV.1 hold and
all conclusions therein follow.

Proof: For the monotone non-decreasing function φk (18)
and the r.v.s defined by (19), Lemma II.1 implies

Û0
k � U0

k and U1
k � Û1

k , ∀k, ∀Qk
j ∈ Pk

j .

The function l̂k = q̂
U1

k
1 /q̂

U0
k

0 is a monotone non-decreasing
function for all k as

l̂k(d) =
Q̂k

1 [td−1 ≤ Xk < td]
Q̂k

0 [td−1 ≤ Xk < td]
≤ Q̂k

1 [td ≤ Xk < td+1]
Q̂k

0 [td ≤ Xk < td+1]

= l̂k(d + 1)

holds for all d since

Q̂k
1 [td−1 ≤ Xk < td]

Q̂k
0 [td−1 ≤ Xk < td]

=

1
Q̂k

0 [td−1 ≤ Xk < td]

∫
{td−1≤Xk<td}

dQ̂k
1 =

1
Q̂k

0 [td−1 ≤ Xk < td]

∫
{td−1≤Xk<td}

XkdQ̂k
0 =

EQ̂k
0
[Xk|td−1 ≤ Xk < td]

implies td−1 ≤ l̂k(d) < td and td ≤ l̂k(d + 1) < td+1.
The result also applies to the end points, i.e., l̂k(0) and
l̂k(Dk), considering the intervals (0, tk0) and (tDk−1,∞),
respectively.

In the following corollary, the results of Theorem IV.2 are
extended to the case, where the decision rules φk are not
necessarily monotone. In order to have this property, however,
the fusion center must apply a well defined permutation
function to the received decisions.

Corollary IV.3: Let φk : Xk �→ Uk be any bijective
mapping (not necessarily monotone) from the intervals of
Xk to possibly multilevel discrete decisions Uk. Then, there
exists a permutation mapping π = {π1, . . . , πK} applied by
the fusion center such that the two conditions described in
Theorem IV.1 hold and all conclusions therein follow.

Proof: For each decision maker φk , bijective mapping from
the intervals of Xk to Uk makes l̂k not necessarily monotone.
However, this is reversible at the fusion center by applying
a well defined permutation function πk : Sk → Sk to Uk

such that l̂k becomes monotone. Since the same procedure is
applied to all decision makers by π, the overall likelihood ratio
test performed by the fusion center is equivalent to the case,
where l̂k is monotone. Hence, Theorem IV.2 and accordingly
Theorem IV.1 follow.

The mapping described by φk can also be deduced from
[23, p. 310]. Notice that the fusion center must know which
decisions correspond to which decision makers to be able to
perform the required permutations.

Theorem IV.2 provides sufficient conditions on φ for min-
imax robust decentralized detection. These conditions require
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joint stochastic boundedness property reformulated by (19).
Second possible design of φ, which does not require the joint
stochastic boundedness property is given by the following
theorem.

Theorem IV.4: Let φk : Ωk → {0, 1} be a (random)
mapping which results in

Û0
k � U0

k and U1
k � Û1

k ∀k, ∀Qk
j ∈ Pk

j , (20)

satisfying the condition Q̂k
1(Uk = 0) + Q̂k

0(Uk = 1) ≤ 1.
Then, all conclusions of Theorem IV.1 follow.

Proof: By the definition of φk the first condition in
Theorem IV.1 is immediately satisfied. What remains to be
shown is that l̂k is equal to a non-decreasing (discrete)
function. This condition is true because for all k

Q̂k
1(Uk = 0) ≤ 1 − Q̂k

0(Uk = 1),

Q̂k
0(Uk = 1) ≤ 1 − Q̂k

1(Uk = 0),

implies

Q̂k
0(Uk =1)Q̂k

1(Uk =0)≤(1−Q̂k
0(Uk = 1))(1−Q̂k

1(Uk = 0)),

which is

l̂k(1) =
1 − Q̂k

1(Uk = 0)
Q̂k

0(Uk = 1)
≥ Q̂k

1(Uk = 0)
1 − Q̂k

0(Uk = 1)
= l̂k(0).

Both Theorem IV.2 and Theorem IV.4 imply Theorem IV.1.
From Theorem IV.1 to the inequalities given by (13), what
remains to be shown is that among all possible φ ∈ Δ, φ̂
minimizes the overall error probability PE , since by Theo-
rem IV.1, γ̂ is already chosen to be the likelihood ratio test,
which is known to minimize PE [23], cf. Remark III.1.

Remark IV.1: For Dk = 1, Theorem IV.2 (see its proof)
implies Theorem IV.4. However, the converse is not true,
i.e., the inequalities in (19), which are necessary for Theo-
rem IV.2, are not necessary for Theorem IV.4. This means
that for binary Uk, one can combine Theorem IV.4 with
Theorem IV.1 and bypass Theorem IV.2, which also implies
circumventing the stochastic boundedness property, in order
to reach the inequalities given by Proposition III.1.

V. UNCERTAINTY CLASSES

In the previous section uncertainty classes have not been
defined explicitly. Instead, it has been assumed that there are
decision rules φk based on the least favorable distributions
Q̂0 and Q̂1, which satisfy certain conditions. In this section,
three different uncertainty classes will be introduced and it will
be shown that the conditions defined by Theorem IV.2 and/or
Theorem IV.4 are satisfied by these uncertainty classes. This
eventually completes the link from the uncertainty classes to
the minimax equation given by Problem III.1.

A. Huber’s Extended Uncertainty Classes
Huber showed that there exists a pair of LFDs, which

satisfies the joint stochastic boundedness property, i.e., (19),
for binary (robust) hypothesis testing with a single decision
maker, where under each hypothesis the set of distribu-
tions are represented by the uncertainty classes that include

�- contamination-, total variation-, Prohorov-, Kolmogorov-
and Levy neighborhood as special cases [4], [24, p. 271].
The robust decision rule is obtained by quantizing the robust
likelihood ratios, which are basically the clipped versions of
the nominal likelihood ratios.

Assume that for a parallel decentralized detection network,
all decision makers consider Huber’s extended uncertainty
classes. Then, since (19) holds, by quantizing the robust
likelihood ratios with a monotone likelihood ratio test as given
by (18), or with any bijective mapping due to Corollary IV.3,
we can reach Theorem IV.2, hence to the minimax equation
given by Problem III.1. This result was previously obtained
by [14]. However, if the quantization is binary, i.e., Uk

are binary or Dk = 1, by making use of Theorem IV.4,
we can find a solution to Problem III.1 without any need for
stochastic boundedness property, see Remark IV.1. Notice that
for each decision maker the quantization thresholds are free to
choose similar to the threshold of the fusion rule. Therefore,
the decision rule can be chosen such that it minimizes PE .

B. Uncertainty Classes Based on KL-Divergence

A minimax robust test based on the KL-divergence gets user
defined pair of robustness parameters and a pair of nominal
distributions as inputs and gives a unique pair of least favorable
density functions (q̂0, q̂1) and a randomized robust decision
rule φ̂ as outputs [8]. The robustness parameters should be
chosen small enough in order to ensure that the hypotheses do
not overlap, i.e., a minimax robust test exists or equivalently
for a single decision maker (k = 1),

Q̂k
1(Uk = 0) + Q̂k

0(Uk = 1) < 1. (21)

From [8], we also have (k = 1),

PF (Q̂k
0 , ·, φ̂) ≥ PF (Qk

0 , ·, φ̂), ∀Qk
0 ∈ Pk

0 ,

PM (Q̂k
1 , ·, φ̂) ≥ PM (Qk

1 , ·, φ̂), ∀Qk
1 ∈ Pk

1 . (22)

Suppose that for a parallel decentralized detection network,
all decision makers k ∈ {1, . . . , N} are associated with the
uncertainty classes based on the KL-divergence. Then, by (21)
and the following inequalities given by (22), which imply
(20), Theorem IV.4 and hence Theorem IV.1 follow. From
Theorem IV.1 to a solution to Problem III.1, what remains to
be shown is that the decision rules φ̂ jointly minimize PE , see
Remark III.1. However, this is not necessarily true, since for
the KL-divergence based uncertainty classes, the decision rule
for each decision maker is unique, and designed to minimize
the error probability of each decision maker PEk

, not the
global error probability PE . Minimizing the error probability
of each decision maker PEk

for every decision maker k does
not guarantee that PE is also minimized. However, there are
special cases, for which PE is also minimized. Suppose that
the uncertainty classes under each hypotheses are the same for
all decision makers. Then, the corresponding robust decision
rule for each decision maker will be identical. It is known
that identical decision rules are not always PE minimizer
[25]. However, for the majority of decision making problems,
i.e., for the choice of nominal distributions, identical decision
makers are optimum and minimize PE for some fusion rule
γ̂ [26]. Similarly, if no assumption is made on the choice
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of robustness parameters and nominal distributions, there are
some detection problems for which PE is minimized by φ̂.
This result together with Theorem IV.1 implies a solution to
Problem III.1 and generalizes [14], which requires stochastic
boundedness property. In other words, it is not possible
to use the theory in [14] and come up with a solution to
Problem III.1 for the KL-divergence based uncertainty classes.
Because, as shown by Proposition II.5, the KL-divergence
does not accept joint stochastic boundedness property, which
is a precondition in [14].

C. Uncertainty Classes Based on α-Divergence

Similar to the KL-divergence, for the choice of
α-divergence, the related uncertainty classes are not jointly
stochastically bounded, because minimax decision rules
are randomized [9]. However, a solution to Problem III.1
through Remark III.1 can again be obtained since (21) and
(22) also hold for the α-divergence [9]. The advantage of
α-divergence over the KL-divergence is that both the distance,
symbolized by the parameter α, as well as the threshold of
the nominal test are selectable for every decision maker.
This provides flexibility and a more likely scenario that the
designed decision rules φ minimize not only PEk

s but also
PE . Both for the KL-divergence and the α−divergence,
without imposing any additional constraints on the choice
of parameters or nominal distributions, inequalities in (21)
and (22) are always satisfied. Therefore, the power of the
test is guaranteed to be above a certain threshold, despite the
uncertainty on the sensor network.

D. Composite Uncertainty Classes

Uncertainty classes for each decision maker can be
chosen arbitrarily either from Huber’s extended uncertainty
classes or from the uncertainty classes formed with respect
to the α-divergence1. Based on the information from the
previous sections, it can be concluded that the decentralized
detection network can be minimax robust, if sensor and fusion
thresholds minimize the overall error probability PE for the
least favorable distributions Q̂0 and Q̂1.

VI. GENERALIZATIONS

A. Minimax and Neyman-Pearson Formulations

Minimax and Neyman-Pearson versions of the same
problem can respectively be stated as follows:

inf
φ∈Φ,γ∈Γ

max

{
sup

Q0∈P0

PF (Q0, φ, γ), sup
Q1∈P1

PM (Q1, φ, γ)

}
,

inf
φ∈Φ,γ∈Γ

sup
Q1∈P1

PM (Q1, φ, γ) s.t. sup
Q0∈P0

PF (Q0, φ, γ)≤ t.

(23)

Application of exactly the same procedure defined by Propo-
sition III.1 to the minimax formulation results in the simple
version of the same problem, where P0 and P1 are replaced
by the singletons Q̂0 and Q̂1. For the Neyman-Pearson
formulation, depending on the choice of the threshold of
the constraint, dependently randomized decision and/or fusion

1As α → 1, the α−divergence tends to the KL-divergence [22].

rules may need to be employed at the decision makers and/or at
the fusion center [23], [27]. It was stated in [14] that the same
simplification then applies to the Neyman-Pearson formulation
as well.

Huber’s uncertainty classes satisfy the joint stochastic
boundedness property, which makes LFDs to be defined
independent of the decision rules. Once the LFDs are found,
Neyman-Pearson tests can be designed by jointly randomizing
MLRTs at the decision makers. However, the same result
does not apply to the α-divergence based uncertainty classes,
because, the LFDs are in this case dependent on the decision
rule, which is unique, and modifying the optimal decision rule
results in the loss of minimax robustness [9], [22].

B. Repeated Observations

Suppose that one or more decision makers give their
decisions based on a block of observations, which are not nec-
essarily obtained from identically distributed random variables.
Then, for every decision maker minimax condition holds by
multiplying the robust likelihood ratio functions and compar-
ing the result to a threshold, if Huber’s uncertainty classes are
considered [3, p. 1756]. However, the same conclusion cannot
be made in the same way for the α-divergence based uncer-
tainty classes [9]. Because, multiplication of the likelihood
ratios removes the randomization information, which is uncon-
ditionally required for minimax robustness. An alternative way
in this case could be to consider designs over multi-variate
distributions [22].

C. Imperfect Reporting Channels

It was assumed in the problem formulation that the reporting
channel between the sensors and the fusion center is error free.
In general the reporting channel can be modeled as a q-ary
discrete channel in order to account for imperfect channel
conditions. Let the communication link between the kth sensor
and the fusion center is modeled by a state transition matrix
Tk, where each element of this matrix is given by

T k
d̃d

= Pk[Ũk = d̃|Uk = d], d, d̃ ∈ {0, . . .Dk − 1}. (24)

Here, Ũk are the corrupted (multilevel) decisions received
by the fusion center, Pk are the conditional probabilities
corresponding to the underlined events by each sensor k
and

∑Dk−1

d̃=0
T k

d̃d
= 1 for any d ∈ {0, . . .Dk − 1}. Hence,

the distribution of the received symbols by the fusion center
can be calculated as

Q̂k
j [Ũk = d̃] =

Dk−1∑
d=0

T k
d̃d

Q̂k
j [Uk = d]. (25)

Assuming that Tk can perfectly be estimated by the fusion
center, instead of Uk the induced random variable Ũk should
satisfy Theorem IV.2 or Theorem IV.4 for minimax robustness.
In general Ũk does not have to satisfy one of these theorems.
However, if Uk satisfies one of these theorems, so does Ũk if
the non-diagonal elements of Tk are small enough. Moreover,
φ̂ should minimize the error probability of the fusion center,
when Uk are replaced by Ũk in Theorem IV.1. As a special
case, Ũks satisfy the conditions in Theorem IV.4 if Uks
are transmitted over binary symmetric memoryless channels.
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A proof is provided in Appendix C. More details of imperfect
reporting channels can be found in [15], [28]. See also [29],
[30] for applications.

D. Different Network Topologies
Although it may be true that the parallel network topology

has received the most attention in the literature [27], depending
on the application, decentralized detection networks can be
designed considering a number of different topologies, for
example a serial topology, a tree topology, or an arbitrary
topology [23]. For arbitrary network topologies, it is known
that likelihood ratio tests are no longer optimal in general
[23, p. 331]. Therefore, the results obtained for a parallel
network topology cannot be generalized to arbitrary networks
in a straightforward manner. Each network structure requires
a new and possibly a much complicated design.

If the network topology is parallel, PE goes to zero as
the number of sensors goes to infinity. This is a consequence
of Cramér’s Theorem [31] for independent Bernoulli random
variables Uk. If the network is serial, from [32], [33], we know
that the error probability is almost surely bounded away
from zero in case the underlined likelihood ratio function
is bounded from above and below. Remember that Huber’s
clipped likelihood ratio test bounds the nominal likelihoods,
therefore, a minimax robust serial network may never be
asymptotically error free [17]. On the other hand, a minimax
robust test based on the KL-divergence or α-divergence does
not alter the boundedness properties of the nominal likelihood
ratios, hence, it preserves the asymptotic property of the
network.

VII. EXAMPLES

In this section two examples regarding the theoretical
derivations will be given in connection with the uncertainty
classes introduced in the previous sections. Let us consider the
parallel decentralized detection network with a fusion center as
illustrated by Figure 1. Suppose that for every decision maker
φk the phenomenon is nominally characterized by the binary
hypothesis test

H0 : Yk ∼ N (−1, 1)
H1 : Yk ∼ N (1, 1) (26)

where Yk are mutually independent random variables
following the Gaussian distribution N (μ, σ2) with mean μ and
variance σ2. The actual distributions of the r.v.s Yk, however,
may depend either on the outliers that corrupt the collected
data, or the secondary physical effects that go unmodeled by
(26). If the nominal model is correct, optimum nominal test
is an MLRT based on the nominal distributions. Else, some
sort of robust hypothesis testing procedure is required for a
reliable detection and this will be investigated in the next two
sections.

A. Clipped Likelihood Ratio Test

Huber’s extended uncertainty classes result in clipped likeli-
hood ratio tests. Here the �-contamination model is considered,
due to its practical use in various applications, e.g., in cognitive
radio [34] or in localization [35]. It is assumed that ten

percent of the collected data contains outliers under each
hypothesis. Therefore, the robustness parameters are chosen as
�0 = �1 = 0.1. The corresponding minimax robust test is an
MLRT based on the LFDs, which are determined by solving
the related equations given in [3]. For comparison, another
robust test has been designed as an MLRT for the likelihood
ratio function l̄ = q̄1/q̄0, where

q̄0 = �0p1 + (1 − �0)p0,

q̄1 = �1p0 + (1 − �1)p1. (27)

Accordingly the following notations are adopted. The nominal
test is denoted by the (n)-test, the minimax robust clipped
likelihood ratio test is denoted by the (h)-test and the second
robust test is denoted by the (r)-test. The data to be tested are
sampled from the pair of distributions building the likelihood
ratio functions of each of these three tests. The notation |ab
indicates that the test under consideration is the (b)-test while
the data samples come from the pair of distributions, which
yield the (a)-test. For binary decisions, all three tests are the
same and have no difference in terms of robustness or perfor-
mance. Therefore, all three tests are simulated for multilevel
decisions, i.e., for Dk = 3 and Dk = 7. These choices
of the number of quantization levels correspond to 2- and
3-bits of transmission per observation per decision maker. For
n-bit quantization there are 2n − 1 thresholds that need to
be found optimally for each sensor. Given the quantization
thresholds, PE minimizing fusion rule is a likelihood ratio test
based on the distributions of the multilevel decisions Uk under
each hypothesis. Determining the optimum decision and fusion
rules for parallel decentralized detection is computationally
intractable even for a few sensors, i.e., it is an NP-complete
problem in general and an exhaustive search requires KDk

loops to be evaluated [27]. Therefore, we make the assumption
that the sensor decisions are identical, i.e., φk(yk) = φi(yk)
for all i given k and yk. With this assumption the compu-
tational complexity is reduced drastically and only Dk loops
need to be evaluated. Notice that identical sensor decisions
result in very little to no loss of detection performance
[23, p. 313], [25] and they are asymptotically optimum [36].
For both 2- and 3-bit quantizations and for all three tests
exhaustive search has been launched to determine the optimum
(PE minimizing) quantization thresholds and the correspond-
ing fusion rules. This corresponds to the error probabilities,
which are denoted by PE

n
n, PE

r
r and PE

h
h. Fixing the thresh-

olds and fusion rules found, minimum error probabilities have
been calculated also for the mismatch cases, i.e., PE

a
b , for

a ≡ b. In all cases the a-priori probabilities have been chosen
to be equal P (H0) = P (H1) = 1/2. Figures 2 and 3
illustrate the results of the tests for 2- and 3-bit quantizations,
respectively, for the number of sensors varying from 2 to
51. The solid lines correspond to Huber’s clipped likelihood
ratio test, the dashed-lines correspond to the nominal test
and the dotted lines correspond to the second robust test.
In both figures, the (h)-test guarantees a certain level of
detection performance, shown by PE

h
h, irrespective of the

uncertainties on the system model. The nominal test, although
having the best performance for the nominal distributions
have the largest degradation when the samples are actually
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Fig. 2. Minimum error probabilities of three different tests for the data
samples from three different statistics over various number of sensors, when
the observations are quantized to 2-bits by all decision makers.

Fig. 3. Minimum error probabilities of three different tests for the data
samples from three different statistics over various number of sensors, when
the observations are quantized to 3-bits by all decision makers.

obtained from the LFDs of the (h)-test. The best performance
guarantee property of the (h)-test is obtained at a cost of
certain performance degradation in comparison to the (n)-test,
if indeed the distributions of data samples are given by
the nominal distributions and this degradation increases from
2-bit to 3-bit quantization.

B. Censored Randomized Likelihood Ratio Test

All minimax robust tests based on the KL-divergence [7],
[8] or the α-divergence [9] (except for the limiting cases) result
in censored randomized likelihood ratio tests. For simplicity
the KL-divergence is considered. Suppose that the measure-
ments show that the r.v. Yk under H0 follows the nominal
distribution N (−1, 1), however under H1 it is not necessarily
Gaussian due to secondary physical effects, and whenever it is
Gaussian the mean can decrease down to 0 and the variance
can increase up to 3/2. Accordingly, alternative hypothesis
should include N (0, 3/2) and potentially all other distributions
on Ω which are at least �1 = D(N (0, 3/2),N (1, 1)) close to
N (1, 1), where D is the KL-divergence. For this uncertainty

Fig. 4. Minimum error probabilities of three different tests for the data
samples from three different statistics over various number of sensors, when
the observations are quantized to 1-bit by all decision makers.

model the LFDs and the robust decision rule are obtained
by solving the related equations in [8]. The resulting mini-
max robust test is denoted by the (m)-test. For comparison
another robust test has been designed as an MLRT for the
likelihood ratio l̄ = dQ̄1/dQ̄0, where Q̄0 = N (−1, 1) and
Q̄1 = N (0, 3/2). As before this second robust test is denoted
by the (r)-test and the nominal test is denoted by the (n)-test.
All other notations, assumptions and experimental approach
are inherited from the previous section. The decisions are
now binary as the (m)-test is originally designed for binary
quantization. Figure 4 illustrates the error probabilities of
three different tests for three different data statistics and for
various number of sensors. Out of three conclusions that can
be made, the first is that the (m)-test guarantees a certain
level of detection performance for every number of sensors,
i.e., PE

a
m, is upper-bounded for a := m and it does not

increase for a := n or a := r. Secondly, it can be seen that
the nominal likelihood ratio test is not robust as PE

r
n or PE

m
n

do not tend to zero, no matter how many sensors there are
in the sensor network. Finally, unlike for the (h)-test, the
(m)-test does not minimize the overall error probability for
every number of sensors, when the data samples come from
the LFDs of the (m)-test. This can be seen by comparing
PE

m
m with PE

m
r , where the latter is expected to be larger than

the former if the (m)-test indeed minimizes PE . As explained
in Section V-B, the (m)-test minimizes PEk

for each sensor
and this cannot necessarily be interpreted as minimizing the
overall error probability PE of the sensor network. However,
asymptotically, it is possible that PE

m
m gets below PE

m
r ,

as implied by the given example.

VIII. CONCLUSION

Minimax robust decentralized detection has been studied for
parallel sensor networks. It was proven that the minimax robust
tests designed from the KL-divergence neighborhood do not
satisfy the joint stochastic boundedness property. For this case,
it was not known whether the minimax optimization problem
could be reduced to its simple version, which could be solved
much more easily. We showed that an answer to this question
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was positive and this led to a generalization of an earlier work
by Veeravalli et al. [14]. Such a generalization allows, without
sacrificing from the minimax optimality, different types of
minimax robust tests to be simultaneously employed by the
decision makers, not only the clipped likelihood ratio tests.
The theory has been developed under the assumption that
the observations are independent but not necessarily identi-
cal. Additionally, multilevel quantization at decision makers
was also allowed. An extension of the proposed model to
minimax and Neyman-Pearson tests, repeated observations,
imperfect reporting channels and different network topologies
has been discussed. Two examples have been provided to
show the benefits of minimax robust decentralized detection.
Open problems arising from this work can be listed as
follows:

• What are the minimax strategies for the sensor networks
with arbitrary topologies, for which likelihood ratio test
is known not to be optimum?

• How can one design minimax robust tests for decentral-
ized sensor networks when observations are not mutually
independent?

• How do minimax robust decentralized tests look like if
the reporting channels are imperfect or if they introduce
additional uncertainty, e.g., due to imperfect channel
estimation?

APPENDIX A
PROOF OF PROPOSITION II.5

Proof: The claim can be proven by contradiction. Assume
that there exists such a pair of LFDs (Q̂0, Q̂1). Then, the same
pair must satisfy

Q̂0 = arg max
Q0∈P0

EQ0 ln(dQ̂1/dQ̂0),

Q̂1 = arg min
Q1∈P1

EQ1 ln(dQ̂1/dQ̂0) (28)

by applying Remark II.1 and Lemma II.1 in (2) and (3).
By Huber and Strassen [5, Theorem 7.1], see also [22], (28)
is equivalent to

Q̂0 = arg max
Q0∈P0

EQ0 ln(dQ̂1/dQ0),

Q̂1 = arg min
Q1∈P1

EQ1 ln(dQ1/dQ̂0). (29)

By Dabak and Johnson [6], see also [2], the pair of distribu-
tions solving (29) are given by

q̂0 =
p0

1−up1
u∫

Ω
p0

1−up1
udμ

, q̂1 =
p0

vp1
1−v∫

Ω
p0

vp1
1−vdμ

, (30)

where (p0, p1) and (q̂0, q̂1) are the density pairs corresponding
to (P0, P1) and (Q̂0, Q̂1), respectively, μ is a suitable measure,
and u and v are the parameters to be determined such
that

D(Q̂0, P0) = �0, D(Q̂1, P1) = �1. (31)

The test based on l̂ = q̂1/q̂0 is still a nominal likelihood ratio
test [2], [6], though with a modified threshold. It is known
that nominal likelihood ratio tests are not minimax robust [24].
Therefore, the corresponding pair of distributions (Q̂0, Q̂1) do
not satisfy the joint stochastic boundedness property. Hence,
no pair of distributions is jointly stochastically bounded for
the KL-divergence neighborhood.

APPENDIX B
PROOF OF PROPOSITION III.1

Proof: We have

sup
(Q0,Q1)∈P0×P1

PE(Q0,Q1, φ̂
∗
, γ̂∗)

=PE(Q̂∗
0, Q̂

∗
1, φ̂

∗
, γ̂∗)

≤PE(Q̂∗
0, Q̂

∗
1, φ, γ)

≤ sup
(Q0,Q1)∈P0×P1

PE(Q0,Q1, φ, γ) (32)

for any φ and γ, where the equality follows from (13) and the
first inequality follows from (12). This implies that φ̂

∗
and γ̂∗

jointly minimize PE , cf. sup terms in (32). Therefore, (φ̂
∗
, γ̂∗)

is also the minimizer for Problem III.1, hence φ̂ = φ̂∗ and
γ̂ = γ̂∗. Inserting (φ̂

∗
, γ̂∗) in (11) and considering (13) we

have Q̂0 = Q̂∗
0 and Q̂1 = Q̂∗

1.

APPENDIX C
BINARY SYMMETRIC CHANNEL

Consider the binary symmetric channel which can be
modeled as

Ũk = Uk + Zk mod 2 (33)

where Zk is a Bernoulli distributed random variable indepen-
dent of Uk and with a success probability P ≤ 1/2. Then,
the distribution (false alarm and miss detection probabilities)
of Ũk can be obtained by modulo 2 convolution of the
probability mass function of Uk with that of Zk as

Q̂k
0(Ũk = 1) = P + Q̂k

0(Uk = 1) − 2PQ̂k
0(Uk = 1),

Q̂k
1(Ũk = 0) = P + Q̂k

1(Uk = 0) − 2PQ̂k
1(Uk = 0). (34)

Let Q̂k
0(Uk = 1) + Q̂k

1(Uk = 0) = (1 − �), where 0 ≤ � ≤ 1.
Then,

Q̂k
0(Ũk = 1) + Q̂k

1(Ũk = 0)

= 2P + Q̂k
0(Uk = 1)

+ Q̂k
1(Uk = 0) − 2P (Q̂k

0(Uk = 1)

+ Q̂k
1(Uk = 0))

= 1 − �(1 − 2P ) ≤ 1. (35)

Hence, the first condition in Theorem IV.4 holds. Let
Q̂k

0(Uk = 1) − Qk
0(Uk = 1) = �, where 0 ≤ � ≤ 1. Then,

Q̂k
0(Ũk = 1) − Qk

0(Ũk = 1)

= Q̂k
0(Uk = 1) − Qk

0(Uk = 1)

+ 2P (Qk
0(Uk = 1) − Q̂k

0(Uk = 1))

= �(1 − 2P ) ≥ 0, ∀Qk
0 ∈ Pk

0 . (36)

Since the same equations also apply to Q̂k
1(Ũk = 0) −

Qk
1(Ũk = 0), the second condition in Theorem IV.4 holds

and the proof is complete.
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