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Asymptotically Optimal Change Point Detection for

Composite Hypothesis in State Space Models
Cheng-Der Fuh

Abstract—This paper investigates change point detection in
state space models, in which the pre-change distribution fθ0 is
given, while the poster distribution fθ after change is unknown.
The problem is to raise an alarm as soon as possible after
the distribution changes from fθ0 to fθ , under a restriction
on the false alarms. We investigate theoretical properties of a
weighted Shiryayev-Roberts-Pollak (SRP) change point detection
rule in state space models. By making use of a Markov chain
representation for the likelihood function, exponential embed-
ding of the induced Markovian transition operator, nonlinear
Markov renewal theory, and sequential hypothesis testing theory
for Markov random walks, we show that the weighted SRP
procedure is second-order asymptotically optimal. To this end,
we derive an asymptotic approximation for the expected stopping
time of such a stopping scheme when the change time ω = 1. To
illustrate our method we apply the results to two types of state
space models: general state Markov chains and linear state space
models.

Index Terms

Asymptotic optimality, change point detection, first passage

time, iterated random functions system, nonlinear Markov

renewal theory, sequential analysis, Shiryayev-Roberts-Pollak

procedure.

I. INTRODUCTION

A prototypical problem of detecting abrupt changes can

be found in instruction detection in distributed computer

networks. Large scale attacks, denial of service attacks, occur

at unknown points in time and need to be detected at the early

stages by observing abrupt changes in the computer network

traffic. Further applications are in, for example, biomedical

signal processing, industrial quality control, segmentation of

signals, financial engineering, edge detection in images, and

the diagnosis of faults in the elements of computer communi-

cation networks. The reader is referred to Lai [12], [13] and

Tartakovsky et al. [28] for a comprehensive summary in this

area. A standard formulation of the change point detection

problem is that there is a sequence of observations whose

distribution changes at some unknown time ω, and the goal

is to detect this change as soon as possible under false alarm

constraints.

When the observations Yn are independent with a common

density function fθ0 for n < ω and with another common

density function fθ for n ≥ ω, where ω is unknown and both

θ0 and θ are given, there are two standard formulations for the

optimum tradeoff problem. The first is a minimax formulation
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proposed by Lorden [15], in which he shows that subject to

the “average run length” (ARL) constraint, Page’s CUSUM

procedure asymptotically minimizes the “worst case” detec-

tion delay. The second is a Bayesian formulation, proposed

by Shiryayev [25], [26], in which the change point has a

geometric prior distribution on, and the goal is to minimize

the expected delay subject to an upper bound on false alarm

probability. He uses optimal stopping theory to show that

the Bayes rule triggers an alarm as soon as the posterior

probability that a change has occurred exceeds some fixed

level. Roberts [24] considers the non-Bayesian setting, and

studies by simulation the average run length of this rule, and

finds it to be very good. Pollak [21] shows that the (modified)

Shiryayev-Roberts rule is asymptotically minimax. When θ is

unknown, Pollak and Siegmund [23] extends Shiryayev’s work

in a non-Bayesian setting, and calculates the expected value

of a weighted likelihood ratio test as well as the average run

lengths of a CUSUM rule. Then Pollak [22] provides average

run lengths of the weighted Shiryayev-Roberts change point

detection rule.

Regarding change point detection rules in dynamic systems

beyond independent assumption. In the case of using CUSUM

type change point detection rules, Bansal and Papantoni-

Kazakos [2] extends Lorden’s asymptotic theory to the case

where Yj are stationary ergodic sequences, under the condition

that {Yj , j < ω} (before the change point) and {Yj , j ≥ ω}
(after the change point) are independent, and proves the

asymptotic optimality of the CUSUM algorithm. Further ex-

tensions to general stochastic sequences Yn were obtained by

Lai [12], [13], and Tartakovsky and Veeravalli [29]. When

both θ0 and θ are given, Fuh [6] proves that the CUSUM

scheme is asymptotically optimal, in the sense of Lorden [15],

in hidden Markov models. In the domain of Shiryayev-Roberts

type change point detection rules, Yakir [30] generalizes the

result to a finite state Markov chain, while Bojdecki [3]

studies a different loss function and applies optimal stopping

theory to find the Bayes rule. Tartakovsky [27] considers

a sequential Bayesian changepoint detection problem for a

general stochastic model. Fuh [8] investigates the Shiryayev-

Roberts-Pollak (SRP) change point detection rule in hidden

Markov models, in which he proves the asymptotic minimax

property and derives an asymptotic approximation for the

average run lengths when ω = 1. Fuh and Tartakovsky

[10] considers asymptotic Bayesian change point detection in

hidden Markov models.

It is noted that many practical problems for change point

detection are beyond independent assumption. Some useful

class of such models are AR models, ARMA models, and
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linear state space models, cf. Tartakovsky et al. [28]. Along

this line, in this paper, we study change point detection in

state space models. A prototypical state space model can be

formulated as follows: for n = 1, 2, . . . , define

Yn = Gθ(Xn, εn), and Xn = Fθ(Xn−1, ηn), (1.1)

where Yn is the observed value, Xn is a d-dimensional

vector representing an unobservable state, and (εn, ηn) are

independent random vectors representing random disturbances

and having a common density function φθ . Furthermore, we

assume {εn, n ≥ 0} and {ηn, n ≥ 0} are independent. Here

the system dynamics are given by the second equation in (1.1).

Note that the state vectors Xn are not directly observable

and the observations are Yn which are related to Xn and

measurement error εn in the first equation of (1.1).

Specifically, a simple linear state space model given by

MacGregor and Harris (1990) to study the problem of moni-

toring process means with the sample means Yn:

Yn = Xn + εn, and Xn − µ = α(Xn−1 − µ) + ηn, (1.2)

where εn and ηn are independent normal random variables

with zero means, and var(εn) = σ2
ε and var(ηn) = σ2

η . Here

θ = (µ, α, σ2
ε , σ

2
η) with |α| < 1, and the target value of the

production process is µ = µ∗. If we are interested primarily in

shifts in the overall mean and treat α, σ2
ε and σ2

η as unknown

nuisance parameters, then we have an incomplete base-line

information and can apply the change point detection rule,

described in Section II, to this case.

In this paper, we will study the change point problem that

the pre-change is given while the after change is unknown.

It is reasonable to assume that the pre-change distribution is

known, because in most practical applications, a large amount

of data generated by the pre-change distribution is available

to the observer who may use this data to obtain an accu-

rate approximation of the pre-change distribution. However,

estimating or even modelling the post-change distribution is

often impractical as we may not know a priori what kind

of change will happen. We seek to design a change point

detection algorithm that allows us to quickly detect the change,

under false alarm constraints, and with suitable knowledge of

the post-change distribution. To this end, the primary goal of

this paper is to investigate theoretical properties of a weighted

Shiryayev-Roberts-Pollak (SRP) change point detection rule

in state space models.

There are two main contributions in this study. First, we

consider a state space model (1.1) in which the underlying

state space is neither finite nor compact, and includes (finite

state) hidden Markov models, linear state space model, and

AR/ARMA models as special cases. Second, the parameter

of the distribution after change is assumed to be unknown for

practical applications.

The remainder of the paper is organized as follows. Our

main results are in Section II, in which we derive a second-

order asymptotic approximation for the expected stopping

scheme when ω = 1, not worst case, and prove the weighted

SRP rule is second-order asymptotically optimal under a false-

alarm constraint. In Section III we illustrate our method by

considering two interesting examples: general state Markov

chains and linear state space models. Section IV presents the

pre-required methods used in the proofs of our results. We first

give a Markov chain representation of the likelihood ratio, and

then study exponential embedding for the induced Markovian

transition kernel in state space models. Based on a nonlinear

Markov renewal theory, we characterize the constant term of

the second order approximation in Section V. The proofs are

given in Sections VI, VII and Appendix, respectively.

II. ASYMPTOTIC OPTIMALITY OF THE WEIGHTED SRP

DETECTION PROCEDURE

In this section, we define a state space model as a pa-

rameterized Markov random walk, in which the underly-

ing environmental Markov chain can be viewed as a latent

variable. To be more precise, for each θ ∈ Θ ⊂ R, the

unknown parameter, let X = {Xn, n ≥ 0} be a Markov

chain on a general state space X , with transition probability

kernel P θ(x, ·) = P θ{X1 ∈ ·|X0 = x} and stationary

probability πθ(·). Suppose that a random sequence {Yn}∞n=0,
taking values in R

d, is adjoined to the chain such that

{(Xn, Yn), n ≥ 0} is a Markov chain on X ×R
d satisfying

P θ{X1 ∈ A|X0 = x, Y0 = y} = P θ{X1 ∈ A|X0 = x} for

A ∈ B(X ), the σ-algebra of X . And conditioning on the full

X sequence, we have

P θ{Yn+1 ∈ B|X0, X1, . . . ;Y0, Y1, . . . , Yn} (2.1)

= P θ{Yn+1 ∈ B|Xn+1} = P θ(Xn+1 : B) a.s.

for each n and B ∈ B(Rd), the Borel σ-algebra of R
d.

Furthermore, we assume the existence of a transition prob-

ability density pθ(x, y) for the Markov chain {Xn, n ≥ 0}
with respect to a σ-finite measure m on X such that

P θ{X1 ∈ A, Y1 ∈ B|X0 = x} (2.2)

=

∫

x′∈A

∫

y∈B
pθ(x, x

′)f(y; θ|x′)Q(dy)m(dx′),

for B ∈ B(Rd). Here f(Yk; θ|Xk) is the conditional prob-

ability density of Yk given Xk, with respect to a σ-finite

measure Q on R
d. We also assume that the Markov chain

{(Xn, Yn), n ≥ 0} has a stationary probability with probabil-

ity density function πθ(x)f(·; θ|x) with respect to m×Q. For

convenience of notation, we will use π(x) for πθ(x), p(x, x
′)

for pθ(x, x
′), and f(Yk|Xk) for f(Yk; θ|Xk), respectively,

here and in the sequel. We give a formal definition as follows.

Definition 1: {Yn, n ≥ 0} is called a state space model if

there is an unobserved Markov chain {Xn, n ≥ 0} such that

the process {(Xn, Yn), n ≥ 0} satisfies (2.1).

Note that the general state space model defined in Definition

1 includes (1.1), ARMA models, (G)ARCH models and

stochastic volatility models. cf. Fan and Yao [5] and Fuh [9].

To formulate the change point detection problem, let

Y1, . . . , Yω−1 be a sequence of random variables from the

state space model {Yn, n ≥ 1} with distribution P θ0 , and

let Yω, Yω+1, . . . be a sequence of random variables from the

state space model {Yn, n ≥ 1} with distribution P θ at some

unknown time ω. The parameter of pre-change θ0 ∈ Θ ⊂ R is

given; while the parameter of after change θ ∈ J = (a, b) ⊂ Θ
is unknown. Moreover, we assume θ0 < a < b <∞. We shall
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use Pω to denote such a probability measure (with change

time ω) and use P∞ to denote the case ω = ∞ (no change

point). Denote Eω as the corresponding expectation under Pω.

The objectives are to raise an alarm as soon as possible after

the change and to avoid false alarms. A sequential detection

scheme N is a stopping time on the sequence of observations

{Yn, n ≥ 1}. A false alarm is raised whenever the detection is

declared before the change occurs. A good detection procedure

should minimize the number of post change observations,

provided that there is no false alarm, while the rate of false

alarms should be low. Hence, the stopping time N should

satisfy {N ≥ ω} but, at the same time, keep N − ω small.

Specifically we will find a stopping time N to minimize

sup
1≤k<∞

sup
θ∈J

Eθk(N − k|N ≥ k) (2.3)

subject to

Eθ0∞N ≥ γ, (2.4)

for some specified (large) constant γ. A detection scheme is

called second-order asymptotically optimal, if it minimizes

(2.3), within an O(1) order, among all stopping rules that

satisfy (2.4), where O(1) converges to a constant as γ → ∞.

When both θ0 ∈ Θ and θ ∈ J ⊂ Θ are given, the

Shiryayev-Roberts-Pollak change point detection scheme in

state space models can be described as follows. Let Y1, . . . , Yn
be a sequence of random variables from the state space model

{Yn, n ≥ 1}, denote

LRn(θ) :=
pn(Y1, . . . , Yn; θ)

pn(Y1, . . . , Yn; θ0)
(2.5)

:=

∫

x0∈X ,...,xn∈X πθ(x0)
∏n
l=1 pθ(xl−1, xl)f(Yl; θ|xl)

∫

x0∈X ,...,xn∈X πθ0(x0)
∏n
l=1 pθ0(xl−1, xl)f(Yl; θ0|xl)

×m(dxn) · · ·m(dx0)

m(dxn) · · ·m(dx0)

as the likelihood ratio. For 0 ≤ k ≤ n, denote the detection

scheme as

LRkn(θ) :=
pn(Yk, Yk+1, . . . , Yn; θ)

pn(Yk, Yk+1, . . . , Yn; θ0)
(2.6)

:=

∫

xk∈X ,...,xn∈X
∏n
l=k pθ(xl−1, xl)f(Yl; θ|xl)

∫

xk∈X ,...,xn∈X
∏n
l=k pθ0(xl−1, xl)f(Yl; θ0|xl)

.

×m(dxn) · · ·m(dxk)

m(dxn) · · ·m(dxk)

Given an approximate threshold B > 0 and setting b = logB,

define the Shiryayev-Roberts scheme as

Nb(θ) := inf{n :

n
∑

k=0

LRkn(θ) ≥ B} (2.7)

= inf{n : log

n
∑

k=0

LRkn(θ) ≥ b}.

A simple modification of (2.7) was given in Pollak [21]

by adding a randomization on the initial LR0
n(θ). This is

the celebrated Shiryayev-Roberts-Pollak (SRP) change point

detection scheme. An extension to finite state hidden Markov

models can be found in Fuh [8].

When θ0 ∈ Θ is given and θ ∈ J is unknown, we apply a

similar idea as that in Pollak and Siegmund [23], and Pollak

[22] for independent observations, extending (2.7) to have a

weight function of LRkn(θ)

LRkn(F ) :=

∫

θ∈J
LRkn(θ)dF (θ), (2.8)

where F is a probability measure on J with F ({θ0}) = 0.

Given an approximate threshold B > 0 and setting b = logB,

define

Nb(F ) := inf{n :

n
∑

k=0

LRkn(F ) ≥ B} (2.9)

= inf{n : log

n
∑

k=0

LRkn(F ) ≥ b}.

Then (2.9) is the weighted SRP change point detection rule

in state space models. A formal definition will be given in

Section 5, in which we will show that the SRP scheme is an

“equalizer rule” in the sense that Ek(Nb(θ)− k + 1|Nb(θ) ≥
k − 1) = E1Nb(θ), for all k > 1.

REMARK 1. Note that the weighted SRP change point

detection rule (2.9) involves two mixture components. One is

an integration over the unknown parameter θ with respect to

a prior distribution. The other is an integration over unknown

states in the state space models, which is related to the non-

linear filtering problem. In practice, it is usually difficult to

carry out the computation of LRkn(F ) in (2.8). A natural

substitution is to replace it by LRkn(θ̂l,k) with θ̂l,k is an

estimator of θ based on Yk, . . . , Yl−1, then apply Markov

chain Monte Carlo method, in particular particle filtering

algorithm, to approximate the change point detection rule

(2.9). Theoretical justification and empirical study of this

change point detection rule are interesting tasks for further

investigation.

To derive asymptotic approximation of the average run

length, and to prove asymptotic optimality of the weighted

SRP rule in state space models, the following condition C

will be assumed throughout this paper. Before that, we need

some definitions first.

A Markov chain {Xn, n ≥ 0} on a state space X is called

V -uniformly ergodic if there exists a measurable function V :
X → [1,∞), with

∫

V (x)m(dx) <∞, and

lim
n→∞

sup
x∈X

{

∣

∣E[h(Xn)|X0 = x]−
∫

h(x′)m(dx′)
∣

∣

V (x)
:

|h| ≤ V

}

= 0. (2.10)

A Markov chain {Xn, n ≥ 0} is called Harris recurrent if

there exist a recurrent set R ∈ B(X ), a probability measure ϕ
on R and an integer n0 such that P{Xn ∈ R for some n ≥
n0|X0 = x} = 1, for all x ∈ X , and there exists λ > 0 such

that

P{Xn ∈ A|X0 = x} ≥ λϕ(A), (2.11)

for all x ∈ R and A ⊂ R. Under (2.11), Athreya and

Ney [1], and Nummelin [19] show that Xn admits a re-

generative scheme with i.i.d. interregeneration times for an
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augmented Markov chain, which is called the “split chain”. It

is known that under irreducibility and aperiodicity assumption,

w-uniform ergodicity implies that {Xn, n ≥ 0} is Harris

recurrent.

Denote Sn := logLRn(θ), where LRn(θ) is defined in

(2.5). Let ̺ be the first time (> 0) to reach the atom of the

split chain, and define u(α, ζ) = Eνe
αS̺−ζ̺ for ζ ∈ R, where

ν is an initial distribution on X . Assume that

W := {(α, ζ) : u(α, ζ) <∞} is an open subset on R
2.(2.12)

Denote ζ1 = ζ1(θ) := logLR1(θ). Ney and Nummelin

[18] shows that D = {α : u(α, ζ) < ∞ for some ζ}
is an open set and that for α ∈ D, the transition kernel

P̂α(x,A) = Ex{eαζ1I{X1∈A}} has a maximal simple real

eigenvalue eΨ(α), where Ψ(α) is the unique solution of the

equation u(α,Ψ(α)) = 1, with corresponding eigenfunction

r∗(x;α) := Ex exp{αS̺ −Ψ(α)̺}. For a measurable subset

A ∈ B(X ) and x ∈ X , define

L(A;α) = Eν

[ ̺−1
∑

n=0

eαSn−nΨ(α)I{Xn∈A}

]

, (2.13)

Lx(A;α) = Ex

[ ̺−1
∑

n=0

eαSn−nΨ(α)I{Xn∈A}

]

. (2.14)

For each θ ∈ J , denote K(P θ, P θ0) as the Kullback-Leibler

information numbers which will be defined precisely in (5.8)

of Section V.

The following assumptions will be used throughout this

paper.

Condition C:

C1. For each θ ∈ Θ, the Markov chain {Xn, n ≥ 0} defined

in (2.1) and (2.2) is aperiodic, irreducible, and V -uniformly

ergodic for some V on X , such that there exists p ≥ 1,

sup
x∈X

Eθx

{

V (Xp)

V (x)

}

<∞. (2.15)

C2. For each θ ∈ Θ, assume 0 < pθ(x, x
′) < ∞ for all

x, x′ ∈ X , and 0 < supx∈X f(y; θ|x) < ∞, for all y ∈ R
d.

Denote hθ(Y1) = supx0∈X
∫

pθ(x0, x1)f(Y1; θ|x1)m(dx1),
and assume there exists p ≥ 1 as in C1 such that

sup
x∈X

Eθx

{

log

(

hθ(Y1)
pV (Xp)

V (x)

)}

< 0, (2.16)

sup
x∈X

Eθx

{

hθ(Y1)
V (X1)

V (x)

}

<∞. (2.17)

C3. For each θ ∈ J , assume 0 < K(P θ, P θ0) <∞. For each

θ ∈ Θ, assume

sup
x0∈X

|
∫

x1∈X

∫

y∈Rd

πθ(x0)pθ(x0, x1)f(y; θ|x1)

Q(dy)m(dx1)| <∞.

C4. Assume (2.12) hold. Let C be a measurable subset of X
such that

L(C;α) <∞ and Lx(C;α) <∞ for all x ∈ X . (2.18)

Let V : X → [1,∞) be a measurable function such that for

some 0 < β < 1 and K > 0,

Ex[e
αζ1−Ψ(α)V (X1)] ≤ (1− β)V (x) ∀ x /∈ C,(2.19)

sup
x∈C

Ex[e
αζ1−Ψ(α)V (X1)] = K <∞ (2.20)

and

∫

V (x)ϕ(dx) <∞,

where ϕ is defined in (2.11).

REMARK 2: C1 is an ergodic condition for the underlying

Markov chain. The weighted mean contraction property

(2.16) and the finite weighted mean average property (2.17),

appeared in C2, guarantee that the induced Markovian iterated

random functions system satisfies uniformly ergodic condition

with respect to a given norm. In Section III, we show that

several interesting models satisfy these conditions. C3 is

a constraint of the Kullback-Leibler information numbers

and a standard moment condition. Note that positiveness

of the Kullback-Leibler information numbers is not at all

restrictive, since it holds whenever the probability density

functions of P θ and P θ0 do not coincide almost surely. The

finiteness condition is quite natural and holds in most cases.

C4 ensures the finiteness of the eigenfunction r(x;α) and

the eigenmeasure L(A;α), cf. Theorem 4 of Chan and Lai

[4]. These properties are useful for defining the exponential

embedding in (4.18) and (4.20) below.

The next theorem establishes second order approximation

of the weighted SRP rule.

Theorem 1: Let Y1, . . . , Yn be a sequence of random

variables from a state space model {Yn, n ≥ 1} satisfying

conditions C1-C4. Suppose F ′(θ) = dF (θ)/dθ exists, positive

and continuous in an open neighborhood of θ ∈ Θ. Assume

that S1 is nonarithmetic with respect to P θ∞ and P θ1 . Then for

given x0 ∈ X , as b→ ∞
Eθ1 (Nb(F )|X0 = x0) (2.21)

=
1

K(P θ, P θ0)

(

b+
1

2
log

b

K(P θ, P θ0)
+ C(θ)

)

+ o(1),

where C(θ) will be defined precisely in (5.21) of Section V.

The proof of Theorem 1 is given in Section VI.

The next theorem establishes asymptotic optimality of the

weighted SRP rule.

Theorem 2: Let Y1, . . . , Yn be a sequence of random

variables from a state space model {Yn, n ≥ 1} satisfying

conditions C1-C4. Assume θ0 ∈ Θ, and suppose that there

exists J ⊂ Θ with F (J) > 0. Assume that for all θ ∈ J ⊂ Θ,

S1 is nonarithmetic with respect to P θ∞ and P θ1 . Then for any

given change point detection rule N ∈ C := {Eθ0∞N ≥ 1/B},

we have

inf
N∈C

sup
1≤ω<∞

sup
θ∈J

2K(P θ, P θ0)Eθω(N − ω|N ≥ ω)

≥ 2b+ log b +Oθ(1), (2.22)

where lim supb→∞ supθ∈J |Oθ(1)| < ∞, and equality is

attained by the weighted SRP rule.

The proof of Theorem 2 is given in Section VII.
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III. EXAMPLES AND APPLICATIONS

In this section, we demonstrate the application of our

results to models of general state Markov models and linear

state space models, which are commonly used in practice for

change point detection, cf. Tartakovsky et al. [28].

Example 1. General state Markov models

When Yn equals Xn in (2.1), one has a general

state Markov chain. Under the uniform recurrent con-

dition for the Markov chain, and using the character-

ization of the Kullback-Leibler distance K(θ, θ0) :=
∫

x∈X πθ(x)
∫

x′∈X pθ(x, x
′) log pθ(x,x

′)
pθ0 (x,x

′)dx
′dx, Lai [13] inves-

tigates the optimality property of generalized CUSUM rule

under error probability constraint. In this paper, we prove

that the SRP rule is second-order asymptotic optimal, and

present an asymptotic expansion of the average run length

under conditions C1-C4. Note that the V -uniformly ergodic

condition appeared in C1 is weaker than the uniform re-

current condition, and covers several interesting examples.

For instance an AR(1) model with normal innovation is V -

uniformly ergodic with V (x) = |x| + 1 [cf. pages 380 and

383 of Meyn and Tweedie [17]]; while it does not satisfy

the assumption of the transition density function pθ1(·, ·) is

uniform recurrent, in the sense that there exist c2 > c1 >
0, m ≥ 1 and a probability measure µ∗ on X such that

c1µ
∗(A) ≤ P{Xm ∈ A|X0 = x} ≤ c2µ

∗(A) for all

measurable subsets A and all x ∈ X .

To discuss condition C, appeared in Section II, for this

model. Suppose that {Xn, n ≥ 0} is a Markov chain with

transition density function pθ0(·, ·) for n < ω and pθ(·, ·)
for n ≥ ω, with respect to some σ-finite measure m on the

state space X . Condition C1 requires that {Xn, n ≥ 0} is

V -uniformly ergodic. By choosing p = 1, (2.15) reduces to

supx E
θ
xV (X1)/V (x) <∞. Condition C3 reduces to that for

each θ ∈ Θ, 0 < pθ(x, y) <∞, for all x, y ∈ X , which is also

required in C2. Note that h(Y1), used in (2.16) and (2.17),

reduces to supx0

∫

pθ(x0, x1)πθ(x1)m(dx1). Condition C4

reduces to a condition involvesX0 andX1 only; see conditions

(W1) and (W2) in Chan and Lai [4].

One can show that many practical used models satisfy

condition C. For instance, we consider an AR(1) model

Xn = αXn−1 + εn, where |α| < 1, and εn are independent

and identically distributed standard normal random variables.

Under the normal errors assumption, it is straightforward to

check that C1 and C3 hold. To check condition C2, we only

show that (2.16) holds since the verification of (2.17) is the

same. Note that X1 has stationary distribution N(0, a2) with

a = 1/(1 − α2). Observe that Y1 = X1 and hθ(Y1) reduces

to

sup
x∈R

∫ ∞

−∞

exp{−(y − αx)2/2}√
2π

exp{−y2/2a2}√
2π

dy

= sup
x∈R

1
√

2π(1 + a2)
exp

{

− α2x2

2(1 + a2)

}∫ ∞

−∞

√
1 + a2√
2πa

× exp

{

− 1 + a2

2a2

(

y − a2αx

1 + a2

)2}

dy

=
1

√

2π(1 + a2)
sup
x∈R

exp

{

− α2x2

2(1 + a2)

}

=
1

√

2π(1 + a2)
.

Consider p = 1, a simple calculation leads that

sup
x0∈R

Eθx0

{

log

(

hθ(X1)
V (X1)

V (x0)

)}

(3.1)

< log sup
x0∈R

Eθx0

{ |αx0 + ε1|+ 1
√

2π(1 + a2)(|x0|+ 1)

}

≤ log sup
x0∈R

{ |αx0|+ Eθx0
|ε1|+ 1

√

2π(1 + a2)(|x0|+ 1)

}

= log sup
x0∈R

{ |αx0|+ 2√
2π

+ 1
√

2π(1 + a2)(|x0|+ 1)

}

< 0.

This implies (2.16) hold. The verification of C4 is similar to

Example 2 in Chan and Lai [4].

Next we consider the following example which involves

change in the mean value θ of a stable autoregressive se-

quence:

Xn =

p
∑

k=1

akXn−k + vk + (1−
p
∑

k=1

ak)θ, (3.2)

where a1, . . . , ap are autoregressive coefficients and vk is

a Gaussian sequence with zero mean and variance σ2. By

Theorem 16.5.1 of Meyn and Tweedie [17], Xn defined

in (3.2) is a V -uniformly ergodic Markov chain with

V (x) = x2+1. It is easy to see condition C1 holds. Since the

verification of C2 can be done as that in (3.1), we will not

repeat it here. Note that the assumption of normal distributed

innovation (with mean zero and finite variance σ2) implies

that the moment condition C3 holds. The verification of

condition C4 is similar to Example 2 in Chan and Lai [4].

Note that this example can be generalized to the case of

random coefficient autoregression appeared on page 404 of

Meyn and Tweedie [17].

Example 2. Linear state space models

Consider the stochastic system

Xn+1 = FXn +Gun + δn, (3.3)

‖F‖ = sup
‖x‖=1

‖Fx‖ < 1,

Yn = HXn + Jun + εn, (3.4)

in which the unobservable state vector Xn, the input vector

un, and the measurement vector Yn have dimensions p, q, and

r, respectively, and δn, εn are independent Gaussian vectors

with zero means and cov(δn) = Σ1, cov(εn) = Σ2. We

assume G, J,Σ1 and Σ2 are given, and the unknown parameter

is (F,H)t, where t denotes transpose. The problem of additive

change point detection can be found in Tartakovsky et al. [28]

and Lai [13]. Here we consider the problem of nonadditive

change. Suppose at an unknown time ω the system undergoes

some change in the sense that the parameter is changed from

θ0 to θ, where θ0 is given while θ ∈ J ⊂ Θ is unknown. Here

we consider θ is one dimensional unknown parameter, which

can be one of the component in (F,H)t, the other parts are

treated as nuisance parameters.
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Let Ĥn and F̂n be the estimators of H and F , respectively.

The Kalman filter provides a recursive algorithm to compute

the conditional expectation X̂n|n−1 of the state Xn given the

past observations Yn−1, un−1, Yn−2, un−2, . . . . The innova-

tions en = Yn−ĤnX̂n|n−1−Ĵnun are independent zero-mean

Gaussian vectors with cov(en) = Vn given recursively by

Vn = ĤnPn|n−1Ĥ
t
n +Σ2, (3.5)

where

Pn+1|n (3.6)

= F̂n(Pn|n−1 − Pn|n−1Ĥ
t
nV

−1
n ĤnPn|n−1)F̂

t
n +Σ1.

When the parameter θ = θ0, the innovations e0n are indepen-

dent Gaussian vectors with covariance matrices V 0
n , and means

µ0
n = E(e0n) for n ≤ ω, while when the parameter is changed

to θ ∈ J , the innovations eθn are independent Gaussian vectors

with covariance matrices V θn , and means µθn = E(eθn) for

n ≥ ω. Consider the weighted likelihood

LRkn(F ) =

∫

θ∈J

n
∏

l=k

f(eθl /
√

V θl )

f(e0l /
√

V 0
l )
dF (θ), (3.7)

where f(s) = e−||s||2/2/(2π)d/2 denotes the d-dimensional

standard normal density, d = p+r, and assume that the matrix

whose inverse appears in (3.7) is nonsingular.

To illustrate the computation of (3.7), we consider a simple

case that there is only a one-dimensional unknown parameter

H = θ ∈ J = (0, 1) and F (θ) is uniform distributed on

(0, 1). Let θ+ an = µn for given an, and denote σ2
n,θ as V θn .

When θ = θ0, simply denote al = 0 and σ2
n,0 as σ2

n,θ0
. That

is eθl ∼ N(θ + al, σ
2
l,θ), and e0l ∼ N(0, σ2

l,0). Then a simple

calculation leads that

(3.7)

=

∫ 1

0

n
∏

l=k

[

exp

{

− (eθl − (θ + al))
2

2σ2
l,θ

+
(e0l − θ0)

2

2σ2
l,0

}]

dθ

= exp

{ n
∑

l=k

[

(e0l − θ0)
2

2σ2
l,0

− (eθl − al)
2

2σ2
l,θ

]

+

( n
∑

l=k

(eθl − al)

)2

2α

}

·
√
2π√
α

(

Φ(b)− Φ(a)

)

,

where α =
∑n

l=k 1/σ
2
l,θ, a = −

n
∑

l=k

eθl − al√
α

, b =
√
α −

n
∑

l=k

eθl − al√
α

, and Φ(·) is the cumulative distribution function

of standard normal random variable.

Without assuming prior knowledge for the parameter after

change θ and the change time ω, the weighted SRP change

point detection rule, defined in Section II, has the form

Nb = inf

{

n :

n
∑

k=0

LRkn(F ) ≥ B

}

(3.8)

= inf

{

n : log
n
∑

k=0

LRkn(F ) ≥ b

}

,

where B > 0 is a given threshold and b = logB.

To check the regularity condition C hold, we assume that

there is no input vector un for simplicity. We first consider

condition C1. Note that Yn are independent for given Xn,

therefore the weight function V depends on X0 only and one

can choose V (x) = eγ‖x‖ for some γ to be specified later.

Let C = {µ : ‖µ‖ ≤ N}, and denote λ as the Lebesgue

measure on R
p. Recall that δ1 has normal density function

φ with zero mean vector and variance-covariance matrix

cov(δ1) = Σ1, which is positive and continuous, and this

implies η := inf{φ(δ − Fx) : x ∈ C and Fx+ δ ∈ C} > 0.

Since P{Fx1 + δ1 ∈ dδ} ≥ φ(δ − Fx)dδ, we have for all

x ∈ R
p, Px{X1 ∈ A} ≥ δI{x∈C}λ(A∩C), and therefore the

minorization condition holds with h(x) = δλ(C) × I{x∈C}.

Under the normal error assumptions, it is easy to see that

(2.15) and C3 hold.

To check condition C4 hold. Let

ζ1 := ζ1(θ) (3.9)

:= log

∫
x0,x1∈X

πθ(x0)pθ(x0,x1)f(Y1;θ|x1)m(dx1)m(dx0)
∫
x0,x1∈X

πθ0
(x0)pθ0 (x0,x1)f(Y1;θ0|x1)m(dx1)m(dx0)

,

where πθ(x0) is the p-variate normal density function with

zero mean vector and variance-covariance matrix Σ1/(1 −
||F ||), pθ(x0, x1) is the p-variate normal density function

with mean vector Fx0 and variance-covariance matrix Σ1,

and f(Y1; θ|x1) is the p-variate normal density function with

mean vector Hx1 and variance-covariance matrix Σ2. Denote

the conditional distribution of ζ1 given (X1, Y1) has the form

F(X1,Y1). Since ζn = g(Yn) for some g by (3.9), F(X1,Y1)

degenerates to FY1
. By (3.3), (3.4) and (3.9), it is easy to see

that for any given α ∈ R, there exists a positive constant ρα
such that
∫

eαg(s1)dFs1 (s1) ≤ exp{ρα‖s1‖} for all s1 ∈ R
r. (3.10)

This implies that

Ex[e
θζ1V (X1)] (3.11)

≤ E exp{ρθ(‖Hx+ ε1‖) + γ‖Fx+ δ1‖}
≤ Λ(ρθ + γ) exp{

(

ρθ(1 + ‖H‖) + γ‖F‖
)

‖x‖}.
Since ‖F‖ < 1, we can choose γ large enough so that 2ρθ +
γ‖H‖ < γ, and then (2.19) is satisfied if N is chosen large

enough. Since C is compact and λ(·∩C) has support C, (2.20)

also holds for sufficiently large L.

Finally we need to verify C2 hold. For simplicity, let p =
r = d in (3.3) and (3.4). After normalization, we may assume

the variance parts in Σ1 and Σ2 are both equal to 1. That is,

define

Σ1 =











1 ρ11 · · · ρ1d
ρ11 1 · · · ρ1d−1
...

...
. . .

...

ρ1d ρ1d−1 · · · 1











and

Σ2 =











1 ρ21 · · · ρ2d
ρ21 1 · · · ρ2d−1
...

...
. . .

...

ρ2d ρ2d−1 · · · 1











.
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Let

x0 = x =











x1
x2
...

xd











, x1 = x′ =











x′1
x′2
...

x′d











, y =











y1
y2
...

yd











,

z = Hx′ =













h11 · · · · · · h1d
... · · · · · · · · ·
...

...
. . .

...

hd1 · · · · · · hdd























x′1
x′2
...

x′d











,

µ = FX =













α11 · · · · · · α1d

... · · · · · · · · ·

...
...

. . .
...

αd1 · · · · · · αdd























x1
x2
...

xd











,

µ∗ = (Σ−1
1 +HtΣ−1

2 H)−1(Σ−1
1 µ+HtΣ−1

2 y)

and

Σ∗−1 = Σ−1
1 +HtΣ−1

2 H.

Denote |Σ| as the determinant of the matrix Σ. Then a simple

calculation leads that

∫ ∞

−∞
· · ·
∫ ∞

−∞

exp{− 1
2 (x

′ − µ)tΣ−1
1 (x′ − µ)}

(2π)d/2|Σ1|1/2

×exp{−
1
2 (y − z)tΣ−1

2 (y − z)}
(2π)d/2|Σ2|1/2

dx′1 · · · dx′d

=
|Σ∗|1/2

(2π)d/2|Σ1|1/2|Σ2|1/2
exp

{

µtΣ−1
1 µ+ stΣ−1

2 y

−
[

(Σ−1
1 +HtΣ−1

2 H)−1(Σ−1
1 µ+HtΣ−1

2 y)

]t

× Σ∗−1

[

(Σ−1
1 +HtΣ−1

2 H)−1(Σ−1
1 µ+HtΣ−1

2 y)

]}

.

Note that

Σ∗−1 = Σ−1
1 +HtΣ−1

2 H =⇒ Σ∗ = (Σ−1
1 +HtΣ−1

2 H)−1

=⇒ |Σ∗| = |(Σ−1
1 +HtΣ−1

2 H)−1|.

Therefore

h(y) (3.12)

= sup
x∈Rd

∫ ∞

−∞
· · ·
∫ ∞

−∞

exp{− 1
2 (x

′ − µ)tΣ−1
1 (x′ − µ)}

(2π)d/2|Σ1|1/2

×exp{− 1
2 (y − z)tΣ−1

2 (y − z)}
(2π)d/2|Σ2|1/2

dx′1 · · · dx′d

=
1

(2π)d/2|Σ1|1/2|Σ2|1/2
· |(Σ−1

1 +HtΣ−1
2 H)|−1/2.

Assume
|(Σ−1

1
+HtΣ−1

2
H)|−1/2

(2π)d/2|Σ1|1/2|Σ2|1/2 = a < 1. A simple calcula-

tion leads that

sup
x0∈Rd

Eαx0

{

log

(

h(Y1)
pw(Xp)

w(x0)

)}

(3.13)

= sup
x0∈Rd

Eαx0
log

{

ap exp{γ(αp‖x0‖+
∑p−1
k=0 α

kεp−k)}
exp{γ‖x0‖}

}

= sup
x0∈Rd

Eαx0

{

γαp‖x0‖+
p−1
∑

k=0

αkεp−k − γ‖x0‖+ p log a

}

= p log a < 0.

This implies (2.16) hold. By using the same argument, we

have (2.17) hold.

To illustrate (3.12) and (3.13), we consider a simple case

of d = 2. Denote x =

(

x1
x2

)

, x′ =

(

x′1
x′2

)

, µ =
(

α1x1
α2x2

)

, y =

(

y1
y2

)

, Σ1 =

(

1 ρ1
ρ1 1

)

and Σ2 =
(

1 ρ2
ρ2 1

)

. Simple calculation leads that

Σ∗−1 =
2− ρ21 − ρ22

(1− ρ21)(1− ρ22)

×





1
−ρ1(1−ρ22)−ρ2(1−ρ21)

2−ρ2
1
−ρ2

2

−ρ1(1−ρ22)−ρ2(1−ρ21)
2−ρ2

1
−ρ2

2

1



 ,

and

µ∗ =

(

(ρ1−ρ2)(µ2−y2)+(ρ21+ρ1ρ2−2)s1+(ρ22+ρ1ρ2−2)µ1

(ρ1+ρ2)2−4
(ρ1−ρ2)(µ1−y1)+(ρ21+ρ1ρ2−2)s2+(ρ22+ρ1ρ2−2)µ2

(ρ1+ρ2)2−4

)

.

Then h(y) = 1

2π
√

4−(ρ1+ρ2)2
, and the condition reduces to

|ρ1 + ρ2| <
√
16π2−1
2π ≈ 1.994.

IV. LIKELIHOOD REPRESENTATION AND EXPONENTIAL

EMBEDDING

In this section, we investigate the weighted Shiryayev-

Roberts change point detection rule (2.8)-(2.9). Due to the

change point detection rule involves LRkn(θ) defined in (2.6),

we study the likelihood ratio LRn appeared in (2.5) first. A

major difficulty for analysing the likelihood ratio (2.5) is its

integral form. To overcome this obstacle, we represent (2.5)

as the ratio of L1-norms of a Markovian iterated random

functions system. Specifically, let

H = {h|h : X → R
+ is m−measurable, (4.1)

∫

h(x)m(dx) <∞ and sup
x∈X

h(x) <∞},

and define the variation distance between any two elements

h1, h2 in H by

d(h1, h2) = sup
x∈X

|h1(x)− h2(x)|. (4.2)
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For j = 1, . . . , n, define the random functions Pθ(Yj) on

X ×H as

Pθ(Y0)h(x) (4.3)

=

∫

x′∈X
f(Y0; θ|x′)h(x′)m(dx′) a constant,

Pθ(Yj)h(x) (4.4)

=

∫

x′∈X
pθ(x, x

′)f(Yj ; θ|x′)h(x′)m(dx′),

and denote the composition of two random functions as

Pθ(Yj+1) ◦Pθ(Yj)h(x) (4.5)

=

∫

xj∈X
pθ(x, xj)f(Yj ; θ|xj)

(∫

xj+1∈X
pθ(xj , xj+1)

×f(Yj+1; θ|xj+1)h(y)m(dxj+1)

)

m(dxj).

Furthermore, let

M = {M : H → H|M is a linear (4.6)

and bounded operator P πθ∗ − a.s.},
be equipped with the operator norm ‖ · ‖ with respect to the

sup-norm, i.e.

‖M‖ = sup
h∈H:‖h‖∞=1

‖M(h)‖∞. (4.7)

We define the iterated random functional system as

Mθ,0(h) = Pθ(Y0)h (4.8)

Mθ,n(h) = F (Yn,Mθ,n−1)(h) (4.9)

:=
Mθ,n−1(Pθ(Yn)h)

∫

Mθ,n−1(Pθ(Yn)1)(x)m(dx)
,

for n ≥ 1. Note that

Mθ,n(h)(x) (4.10)

=

∫

xn∈X
h(xn)pθ (X0 = x,Xn = xn|Y0, · · · , Yn)m(dxn)

For h ∈ M, let ‖h‖ :=
∫

x∈X h(x)m(dx) be the L1-norm

on M with respect to m. Then, the likelihood ratio (2.5) can

be represented as

LRn(θ) =
||Pθ(Yn) ◦ · · · ◦Pθ(Y1)πθ||

||Pθ0(Yn) ◦ · · · ◦Pθ0(Y1)πθ0 ||
. (4.11)

Let {(Xn, Yn), n ≥ 0} := {(Xθ
n, Y

θ
n ), n ≥ 0} be the

Markov chain defined in (1.1) and (2.2). Abuse the notation a

little bit, we denote θ = (θ0, θ) because θ0 is given. For each

n, let

Mn(θ) = Pθ(Yn) ◦ · · · ◦Pθ(Y1) = (Mn(θ0),Mn(θ)) (4.12)

=
(

Pθ0(Yn) ◦ · · · ◦Pθ0(Y1),Pθ(Yn) ◦ · · · ◦Pθ(Y1)
)

be the Markovian iterated random functions system on M in-

duced from (4.4). Then {W θ
n , n ≥ 0} := {(Xθ

n,Mn(θ)), n ≥
0} is a Markov chain on the state space X×M, with transition

probability kernel

Pθ((x0, h), A× Γ) :=

∫

x1∈A

∫

y∈B
IΓ(Pθ(y)h) (4.13)

×pθ(x0, x1)f(y; θ|x1)Q(dy)m(dx1)

for all x0 ∈ X , h ∈ M, A ∈ B(X ) and Γ ∈ B(M),
where IΓ denotes the indicator function on the set Γ. For

(x, h) ∈ X ×M, let P(x,h) be the probability measure on the

underlying measurable space under which X0 = x,M0 = h.

The associated expectation is denoted E(x,h), as usual. For

an arbitrary distribution ν on X × M, we put Pν(·) :=
∫

P(x,h)(·) ν(dx×dh) with associated expectation Eν . We use

P and E for probabilities and expectations, respectively, that

do not depend on the initial distribution. Since the Markov

chain {Xn, n ≥ 0} has transition probability density and the

iterated random function M1(θ), defined in (4.12), is driven

by {(Xn, Yn), n ≥ 0}, the induced transition probability

P(·, ·) has a density with respect to m × Q. Denote it as P

for simplicity. According to Theorem 1(iii) in Fuh [9], the

stationary distribution of {W θ
n , n ≥ 0} exists, and denote it

by Πθ .

Now the log-likelihood ratio can be written as an additive

functional of the Markov chain {W θ
n , n ≥ 0}. That is

logLRn(θ) =

n
∑

k=1

g(W θ
k−1,W

θ
k ), (4.14)

where

g(W θ
k−1,W

θ
k ) := log

||Pθ(Yk) ◦ · · · ◦Pθ(Y1)πθ||
||Pθ0(Yk) ◦ · · · ◦Pθ0(Y1)πθ0 ||

(4.15)

− log
||Pθ(Yk−1) ◦ · · · ◦Pθ(Y1)πθ||

||Pθ0(Yk−1) ◦ · · · ◦Pθ0(Y1)πθ0 ||
.

To analyze the weighted SRP change point detection rule

in state space models, we need first to construct an exponen-

tial embedding of the transition probability operator for the

induced Markov chain {Wn, n ≥ 0} with state space W :=
X ×M, and then to represent the weighted likelihood ratio as

an additive functional of the Markov chain {Wn, n ≥ 0}. To

this end, we show that the induced Markov chain {Wn, n ≥ 0}
satisfies some required recurrent and ergodic conditions.

For any given two transition probability kernels

Q(w,A),K(w,A), w ∈ W , A ∈ B(W), the σ-algebra

of W , and for all measurable functions h(w), w ∈ W ,

define Qh and QK by Qh(w) =
∫

Q(w, dw′)h(w′) and

QK(w,A) =
∫

K(w, dw′)Q(w′, A), respectively. Let N be

the Banach space of measurable functions h : W → C (:=

the set of complex numbers) with norm ‖h‖ < ∞. We also

introduce the Banach space B of transition probability kernels

Q such that the operator norm ||Q|| = sup{||Qg||; ||g|| ≤ 1}
is finite.

Denote by Pn(y,A) = P{Wn ∈ A|W0 = y}, the transition

probabilities over n steps. The kernel Pn is a n-fold power

of P . Define also the Césaro averages P (n) =
∑n
j=0 P

j/n,

where P 0 = P (0) = I and I is the identity operator on B.

Definition 2: A Markov chain {Xn, n ≥ 0} is said to be

uniformly ergodic with respect to a given norm || · ||, if there

exists a stochastic kernel Π such that P (n) → Π as n → ∞
in the induced operator norm in B.

Definition 3: Let ω : X → [1,∞) be the weight

function defined in C1, and M be defined in (4.1).
For any measurable function g : X × M → [1,∞),

define ||g||V := sup(x,h)∈X×M

|g(x,h)|
V (x) , and ‖g‖h :=
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supx∈X ,h1,h2:0<d(h1,h2)≤1
|g(x,h1)−g(x,h2)|
(V (x)d(h1,h2))δ

, for 0 < δ < 1.

We define H as the set of g on X ×M for which ‖g‖V h :=
‖g‖V + ‖g‖h is finite, where V h represents a combination

of the weighted variation norm and the bounded weighted

Hölder’s norm.

Theorem 3: Let {(Xθ
n, Y

θ
n ), n ≥ 0} be the state space model

given in (2.1), satisfying C1-C3, where θ = (θ0, θ) ∈ Θ × J
is the unknown parameter. Then the induced Markov chain

{W θ
n , n ≥ 0} is an aperiodic, irreducible and Harris recurrent

Markov chain. Moreover, it is uniformly ergodic with respect

to the norm defined in Definition 3. Furthermore there exist

a, C > 0, such that Ew(exp{ag(W0,W1)}) ≤ C <∞ for all

w ∈ W .

Since the proof is the same as those in Lemmas 3 and 4 of

Fuh [9], it is omitted.

Next we define Laplace transform of the transition operator

and introduce the twisting probability measure for {Wn, n ≥
0}. Denote w := (x, h) and w̃ := (x0, π), where x0 is

the initial state of X0 taken from π(X0). Recall g(W0,W1)
defined in (4.15). For given w ∈ W , A × Γ ∈ B(W), and

α ∈ R, define the linear operator P̂α by

P̂α(w,A× Γ) = Ew

{

eαg(W0,W1)I{W1∈A×Γ}

}

. (4.16)

Under conditions C1-C3, Theorem 3 leads that {Wn, n ≥ 0} is

an aperiodic, irreducible and Harris recurrent Markov chain,

and conditions in Theorem 4.1 of Ney and Nummelin [18]

hold. Therefore, P̂α has a maximal simple real eigenvalue

λ(α) with associated right eigenfunction r(·;α) such that

Λ(α) = logλ(α) is analytic and strictly convex on D = {α :
Λ(α) <∞}.

Let τ be the first time (> 0) to reach the atom of the split

chain for {Wn, n ≥ 0}. For each w ∈ W and A×Γ ∈ B(W),
define the left eigenmeasures

ℓ(A× Γ;α) := Eν

{

τ−1
∑

n=0
eαSn−nΛ(α)I{Wn∈A×Γ}

}

,(4.17)

ℓw(A× Γ;α) := Ew

{

τ−1
∑

n=0
eαSn−nΛ(α)I{Wn∈A×Γ}

}

.

Recall Sn =
∑n

k=1 g(Wk−1,Wk), and g(Wk−1,Wk) de-

fined in (4.15) is an additive functional of the Markov

chain {(Wn−1,Wn), n ≥ 1}. Since r(w;α)−1πα(dw) =
Lαℓ(dw;α) for some constant Lα [cf. Ney and Nummelin

[18], page 581], the finiteness of ℓ(A × Γ;α) implies that

r(w;α) > 0 uniformly for w ∈ W . On the other hand,

Theorem 4 of Chan and Lai [4] establishes the finiteness of

ℓ(A× Γ;α) and ℓw(A× Γ;α).

Denote θ := (θ0, θ) ∈ Θ × J as the parameter. Assume

θ = Λ′(α) is a one to one function, so one can indifferently

consider θ to be a function of α or α a function of θ. Here ′

denotes derivative. For simplicity, we replace α by θ in (4.16),

and let D = J here and in the sequel. Then under conditions

C1-C4, by using Theorem 1 of Ney and Nummelin [18] and

Theorem 4 of Chan and Lai [4], we have r(·; θ) is uniformly

positive, bounded and analytic on J for each w ∈ W . For

θ ∈ J , define the twisting transformation for the transition

probability of {Wn, n ≥ 0} as

Pθ(w, dw′) =
r(w′; θ)

r(w; θ)
e−Λ(θ)+θg(W0,W1)P(w, dw′). (4.18)

For given θ ∈ J ⊂ Θ ⊂ R, let {W θ
n , n ≥ 0} be the Markov

chain with transition kernel Pθ and invariant probability Πθ .

If the function Λ(θ) is normalized so that Λ(0) = Λ
′

(0) = 0,

then P = P0 is the transition probability of the Markov chain

{Wn, n ≥ 0}, with invariant probability Π = Π0.

By making use of (4.18) and repeat the same idea as (4.14),

we have representations for

LRkn(θ) = exp

( n
∑

l=k+1

g(W θ
l−1,W

θ
l )

)

, (4.19)

and

LRkn(F ) =

∫

θ∈J

r(Wn; θ)

r(Wk; θ)
exp

{

− (n− k)Λ(θ)

+θ

n
∑

l=k+1

g(Wl−1,Wl)

}

dF (θ). (4.20)

V. SECOND ORDER APPROXIMATION OF THE WEIGHTED

SRP DETECTION RULE

By using the same idea as that in Pollak [21] and Fuh [8],

we introduce a randomization on the initial LR0
n(θ) for the

Shiryayev-Roberts scheme, and call it the Shiryayev-Roberts-

Pollak (SRP) change point detection rule in state space models.

Before that, we need the following notations first.

Given 0 ≤ k ≤ n, denote β(W θ
k−1,W

θ
k ) =

exp{g(W θ
k−1,W

θ
k )}. For 0 < p < 1 and q = 1− p, let

Rn,p :=

n
∑

k=1

1

q

pn(Yk, Yk+1, . . . , Yn; θ)

pn(Yk, Yk+1, . . . , Yn; θ0)
(5.1)

=

n
∑

k=1

1

q
β(W θ

n−1,W
θ
n) · · ·β(W θ

k−1,W
θ
k ).

Note that Rn+1,p = β(W θ
n ,W

θ
n+1)

1
q (1 +Rn,p). Define

Nq,b = inf{n : Rn,p ≥ B} = inf{n : Rn,p ≥ B(Wn)},
Hn(y, w) = P∞{Rn,p ≤ y|Nq,b > n,Wn = w},
ρ(t, y, w) = P∞{Rn+1,p ≤ y|Rn,p = t, Nq,b > n+ 1,

Wn+1 = w},
ζ(t, w, w′) = P∞{Nq,b > n+ 1,Wn+1 ∈ dw′|Rn,p = t,

Nq,b > n,Wn = w}.

For a given set of non-negative boundary points B =
{B(w) : w ∈ W} (infinity is not excluded), consider the

set SB = {(r, w) : w ∈ W , 0 < r < B(w)}. Let FB be

the set of distribution functions with support in SB . For given

H(·, ·) ∈ FB, let TB be the transformation on FB defined by

TBH(r, w) =
1

Q(H)

∫

w′∈W

∫ B(w′)

0

ρ(t, r, w)ζ(t, w′, w)

dH(t, w′)P(w′, dw), (5.2)
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where

Q(H) =

∫

w,w′∈W

∫ B(w′)

0

ζ(t, w′, w)dH(t, w′)P(w′, dw). (5.3)

The following proposition characterizes the behavior of TB.

Proposition 1: For each given B, we have TBHn = Hn+1.

Therefore there associates a set of invariant measures ΦB such

that TBφ = φ for all φ ∈ ΦB .

The proof of Proposition 1 is given in the Appendix.

By Proposition 1, we have that for each B there is an

associated set of invariant measures ΦB , i.e., TBφ = φ for

all φ ∈ ΦB . Define φ̃ as

dφ̃(y, w) =

∫

w′∈W(1 + py)dφ(y, w)P(w, dw′)
∫

w,w′∈W
∫ B(w′)

0
(1 + pt)dφ(t, w)P(w, dw′)

.

It is easy to see that if the distribution of R0,p is φ̃, then the

distribution of R0,p conditional on {ω > 0} is φ. Note that φ
depends on p. Let 0 < c <∞ and 0 < p < 1 be such that Nq,b
is the Bayes rule for B(0, p, c). By using the same argument

as that in Theorem 4 of Fuh [8], we can choose a subsequence

{T iB, pi, ci, φi} such that as i → ∞, pi → 0, ci → c∗ and φi
converges in distribution to a limit ψ.

Given the value of the initial state W0 = w̃, the initial R∗
0(θ)

is simulated from the distribution ψ, conditioned on the event

{W0 = w̃}. Define recursively

R∗
n+1(θ) = β(W θ

n ,W
θ
n+1)(1 +R∗

n(θ)). (5.4)

Let

R∗
n(F ) =

∫

θ∈J
R∗
n(θ)dF (θ). (5.5)

Denote b = logB, and define the weighted Shiryayev-Roberts-

Pollak (SRP) rule as

Nψ
b := inf{n : R∗

n(F ) ≥ B} = inf{n : logR∗
n(F ) ≥ b}. (5.6)

Note that each one of these detection policies (5.2) and (5.6)

is an “equalizer rule” in the sense that

Ek(N
ψ
b − k + 1|Nψ

b ≥ k − 1) = E1N
ψ
b , (5.7)

for all k > 1. The same is true for the case where ψ has

atoms on the boundary, since the randomization law is time

independent. Note that the threshold of the Bayes rule (5.2)

depends on the current state of the Markov chain, while the

threshold of the SRP rule (5.6) is a constant. By using an

argument similar to Lemma 7 of Fuh [8], we have that the

difference between these two rules is o(1) as p→ 0 and b→
∞.

Next, we will study asymptotic approximations for the

average run length in the weighted SRP detection rule when

w is finite. Since Nψ
b is an equalizer rule, we only consider

the approximation of E1N
ψ
b . Given θ = θ0 or θ ∈ J , let πθ

denote the stationary distribution of {Xn, n ≥ 0} under P θ.

For given P θ0 and P θ and denote Pθ0 and Pθ as the induced

probabilities, define the Kullback-Leibler information number

K(P θ, P θ0) = K(Pθ,Pθ0) = Eθ
(

log
‖Pθ(Y1)πθ‖
‖Pθ0(Y1)πθ0‖

)

. (5.8)

By assumption C3, we have 0 < K(P θ, P θ0) <∞.
To derive a second-order approximation for the average

run lengths of the weighted SRP rule, we will apply relevant

results from nonlinear Markov renewal theory developed in

Section 3 of Fuh [8]. To this end, we rewrite the stopping

time Nb := Nψ
b (we delete ψ for simplicity) in the form of

a Markov random walk crossing a constant threshold plus a

nonlinear term that is slowly changing. Note that the stopping

time Nb can be written in the following form

Nb = inf{n ≥ 1 : Sn + ηn ≥ b}, b = logB, (5.9)

where for n ≥ 1,

Sn = Sn(θ) (5.10)

= (θ − θ0)
n
∑

k=1

g(Wk−1,Wk)− n(Λ(θ)− Λ(θ0)),

is a Markov random walk with mean EθS1 = K(Pθ,Pθ0), and

ηn = η(θ) (5.11)

= log

∫

Θ

r(Wn;α)

r(W0;α)
exp

{

(α− θ)

n
∑

k=1

g(Wk−1,Wk)

−n(Λ(α)− Λ(θ))

}

{

1 +

n
∑

k=1

exp(−Sk(α))

}

dF (α).

Suppose there exists θ such that Λ′(θ) = EΠg(W0,W1),
and denote θ̂n = θ(

∑n
k=1 g(Wk−1,Wk)/n). Then ηn can be

further decomposed as ln + Vn, where

ln = −1

2
logn, (5.12)

Vn = (θ̂n − θ)
n
∑

k=1

g(Wk−1,Wk)− n(Λ(θ̂n)− Λ(θ)) (5.13)

+ logn1/2

∫

Θ

r(Wn;α)

r(W0;α)
exp

{

(α− θ̂n)
n
∑

k=1

g(Wk−1,Wk)

− n(Λ(α)− Λ(θ̂n))

}

{

1 +

n
∑

k=1

exp(−Sk(α))

}

dF (α)

:= nK(Pθ,Pθ̂n) + log un(

n
∑

k=1

g(Wk−1,Wk)/n).

For b > 0, define

N∗
b = inf{n ≥ 1 : Sn ≥ b}, (5.14)

and let Rb = SN∗
b
− b (on {N∗

b < ∞}) denote the overshoot

of the statistic Sn crossing the threshold b at time n = N∗
b .

When b = 0, we denote N∗
b in (5.14) as N∗

+. For given w̃ :=
(x0, π) ∈ W , with x0 is the initial state of X0 taken from

π(x0), let

G(u) = lim
b→∞

Pθ{Rb ≤ u|W0 = ỹ} (5.15)

be the limiting distribution of the overshoot. It is known [cf.

Theorem 1 of Fuh [7]] that

lim
b→∞

Eθ(Rb|W0 = w̃) =

∫ ∞

0

udG(u) =
Eθm+

S2
N∗

+

2Eθm+
SN∗

+

, (5.16)
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where m+ := mθ
+ is defined in the same way as πθ+ defined

in Section 3 of Fuh [8].

Note that by (5.9), we have

SNb
= b− ηNb

+Ob on {Nb <∞}, (5.17)

where Ob = SNb
+ ηNb

− b is the overshoot of Sn + ηn
crossing the boundary b at time Nb. Taking the expectations on

both sides of (5.17), and applying Wald’s identity for Markov

random walks [cf. Corollary 1 of Fuh and Zhang [11]], we

obtain

K(Pθ,Pθ0)Eθ(Nb|W0 = w̃)

+

∫

W
∆θ(w)m

θ
+(dw) −∆θ(w̃)

= Eθ(SNb
|W0 = w̃) (5.18)

= b − Eθ(ηNb
|W0 = w̃) + Eθ(Ob|W0 = w̃),

where ∆θ : W → R
d solves the Poisson equation

Eθw∆θ(W1)−∆θ(w) = EθwS1 − Eθm+
S1 (5.19)

for almost all w ∈ W with Eθm+
∆θ(W1) = 0.

The crucial observations are that the sequence {Vn, n ≥ 1}
is slowly changing, and that Vn converges in Pθ-distribution,

as n→ ∞, to the random variable

Ṽ (5.20)

=
1

2
χ2
1 +

1

2
log

2πF ′(θ)

Λ′′(θ)
+ log

{

1 +

∞
∑

k=1

exp(−Sk(θ))

}

+ log

{

Eθm+
r(WN∗

+
; θ)

r(W0; θ)

}

,

where χ2
1 denotes a random variable having the chi-squared

distribution with one degree of freedom.

Denote γθ = log {1 +∑∞
k=1 exp(−Sk(θ))}, we will show

in Section 6 that Eθm+
γθ < ∞. Here the expectation Eθm+

is

taken under ω = 1 and the initial distribution of Y0 is m+, we

omit 1 for simplicity. An important consequence of the slowly

changing property is that, under mild conditions, the limiting

distribution of the overshoot of a Markov random walk over

a fixed threshold does not change by the addition of a slowly

changing nonlinear term [cf. Theorem 1 in Section 3 of

Fuh [8]]. More importantly, nonlinear Markov renewal theory

allows us to obtain an asymptotically accurate approximation

for ENb, that takes the overshoot into account. Now we can

characterize the constant C(θ) appeared in Theorem 1,

C(θ) =
E
θ
m+

S2

N∗
+

2Eθ
m+

SN∗
+

− Eθm+
γθ − 1

2 log
2πF ′(θ)
Λ′′(θ) − 1

2 (5.21)

(
∫

W ∆(w)mθ
+(dw) −∆(w̃))− log

{

E
θ
m+

r(YN∗
+
;θ)

r(Y0;θ)

}

.

When θ = θ1 is known, we have the following approxima-

tion of the average run length. Since the proof is similar to

that of Theorem 6 in Fuh [8], we will not repeat it here.

Proposition 2: Let Y1, . . . , Yn be a sequence of random

variables from a state space model {Yn, n ≥ 1} satisfying

conditions C1-C4. Assume that S1 is nonarithmetic with

respect to P∞ and P1. Then for w̃ ∈ W , as b→ ∞

E1(Nb|W0 = w̃) (5.22)

=
1

K(Pθ1 ,Pθ0)

(

b− Em+
γ +

Em+
S2
N∗

+

2Em+
SN∗

+

−
∫

W
∆(w)m+(dw) + ∆(w̃)

)

+ o(1).

VI. PROOF OF THEOREM 1

To prove Theorem 1, without loss of generality, we as-

sume that J = Θ = [θ0, θ1] ⊂ R and θ ≥ 0. Note

that the proof of (2.21) rests on the nonlinear Markov re-

newal theory from Theorem 3 and Corollary 1 in Fuh [8].

Indeed, by (5.9), the stopping time Nψ
b is based on the

thresholding of the sum of the Markov random walk Sn
and the nonlinear term ηn. From (5.12) and (5.13), we have

ηn = ln + Vn, with ln = −(1/2) logn. It is easy to see that

limn→∞ max0≤j≤√
n | − (1/2) log(n+ j) + (1/2) logn| = 0.

In order to apply Theorem 3 and Corollary 1 in Fuh [8], we

need to check the validity of the conditions which are stated

in the following lemmas, respectively. Relation (2.21) will

then follow by specialization. Note that although the nonlinear

Markov renewal theory developed in Fuh [8] is under the

condition of w-uniformly ergodic, it can be generalized to the

norm in Definition 3. A heuristic explanation of this result

can be described as follows: we first investigate the difference

between a stopping time crossing nonlinear boundaries and a

stopping time crossing linear boundaries with varying drift,

then derive nonlinear Markov renewal theory directly from

parallel results in the linear case with varying drift via the

uniform integrabilities and the weak convergence of the over-

shoot. Because the uniform Markov renewal theory developed

in Fuh [7] is under a general norm, therefore the extension

of the proofs in Fuh [8] is straightforward. The details are

omitted.

In the proof of the following lemmas, we will assume the

conditions of Theorem 1 hold. We first consider the case that

F is concentrated on [θ0, θ1], where 0 < θ0 < θ < θ1 < ∞
are such that αΛ′(α)−Λ(α) > 0 for θ0 ≤ α ≤ θ1 and F has

a derivative F ′ which is positive and continuous on [θ0, θ1].
The probability P1 and expectation E1 in this section are taken

under Y0 = ỹ, and we omit it for simplicity.

Lemma 1: Under assumptions of Theorem 1, S1 = S1(θ) =
(θ − θ0)g(Y0, Y1) − (Λ(θ) − Λ(θ0)) has a nonarithmetic

distribution.

PROOF. Suppose the S1(θ) has an arithmetic distribution for

some θ 6= θ0, say θ = θ∗, and let d1 be the span of S1(θ
∗).

Then g(Y0, Y1) must take values of the form ( 1
θ∗−θ0 ){kd1 +

[Λ(θ∗) − Λ(θ0)]} = dk + γ, say, where k = 0,±1,±2, . . . .
Moreover, since g(Y0, Y1) is assumed to have a nondegenerate

distribution, there are k1 6= k2 for which Py{dk1 + γ} > 0 <
Py{dk2 + γ} for all y ∈ Y . Now suppose that S1(θ) has an

arithmetic distribution for some θ with θ0 6= θ 6= θ∗ and let

d(θ) > 0 denote the span of S1(θ). Then there are j1 and j2
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for which j1 6= j2 and jid(θ) = (θ − θ0)(dki + γ)− [Λ(θ)−
Λ(θ0)], i = 1, 2. Therefore

Λ(θ)− Λ(θ0)

θ − θ0
= γ + d(

k1j2 − k2j1
j2 − j1

). (6.1)

Thus, the set of θ for which θ0 6= θ 6= θ∗ and S1(θ) has an

arithmetic distribution is contained in the set of θ for which

(6.1) holds for some j1 6= j2; the latter set is countable, since

Λ is convex. �

Lemma 2: Under assumptions of Theorem 1, we have

∞
∑

n=1

P1{Vn ≤ −εn} <∞ for some 0 < ε < K(Pθ1 ,Pθ0).(6.2)

Condition (6.2) holds trivially because r(y; θ) is uniformly

positive and hence Vn ≥ 0.

Lemma 3: Under assumptions of Theorem 1, then

max
0≤l≤n

|Vn+l|, n ≥ 1, are P1 − uniformly integrable. (6.3)

PROOF. To show (6.3) holds, we first prove

max
0≤l≤n

(θ̂n+l − θ)

n+l
∑

k=1

g(Yk−1, Yk)− (n+ l)(Λ(θ̂n+l)− Λ(θ))(6.4)

are P1-uniformly integrable, where θ̂n+l is the maximum

likelihood estimator of θ. Note that on the event An of

|(1/n)∑n
k=1 g(Yk−1, Yk) − Λ′(θ)| < ε for some ε > 0, we

have for all n ≥ 1,

(θ̂n − θ)

n
∑

k=1

g(Yk−1, Yk)− n(Λ(θ̂n)− Λ(θ))

≤ Bn

(

1

n

n
∑

k=1

g(Yk−1, Yk)− Λ′(θ)

)2

on An, for some constant B. Therefore,

P1

{

max
0≤l≤n

{(θ̂n+l − θ)

n+l
∑

k=1

g(Yk−1, Yk)

−(n+ l)(Λ(θ̂n+l)− Λ(θ))} > a

}

(6.5)

≤ P1

{

max
0≤l≤2n

l|1
l

l
∑

k=1

g(Yk−1, Yk)− Λ′(θ)| >
√
Bna

}

.

Since conditions of Theorem 2 imply that conditions of

Theorem 2 in Fuh and Zhang [11] hold, we have that for

all ε > 0 and r ≥ 0
∞
∑

n=1

nr−1P1

{

max
1≤l≤n

(Sl − Λ(θ)l) ≥ εn

}

<∞. (6.6)

Hence (6.6) ≤ Ca−r, for some C > 0 and r > 1. This imply

(6.4) hold.

Denote

Hn (6.7)

= n1/2

∫

Θ

r(Yn;α)

r(Y0;α)
exp

{

(α − θ̂n)

n
∑

k=1

g(Yk−1, Yk)

−n(Λ(α)− Λ(θ̂n))

}

×
{

1 +
n−1
∑

k=1

exp(−Sk(α))

}

dF (α).

To complete the proof, we need to show that max0≤l≤nHn+l

are P1-uniformly integrable. First, we note that (θ̂n+l −
θ)
∑n+l

k=1 g(Yk−1, Yk)−(n+ l)(Λ(θ̂n+l)−Λ(θ)) are uniformly

bounded on An and 0 < r(y; θ) <∞ uniformly for y ∈ Y by

Theorem 4 of Chan and Lai [4].

To analyze the term appeared in (6.8), denote Wn
α =

1 +
∑n−1
k=1 exp(−Sk(α)), for θ0 ≤ α ≤ θ1. Note that

Wn
α converges Pθ1-a.s. as n → ∞ to a random variable

W θ
α := 1 +

∑∞
k=1 exp(−Sk(α)). Since

∞
∑

n=m

(Wn+1
α −Wn

α )

=

∞
∑

n=m

exp

{

−
[

α

n
∑

k=1

g(Xk−1, Xk)− nΛ(α)

]}

→m→∞ 0

Pθ1 − a.s., uniformly in α ∈ [θ0, θ1], it follows that W θ
α is

Pθ1 − a.s. continuous in α ∈ [θ0, θ1].

Next we will show, which is more than it suffices, that there

exists a constant a > 0 such that

Eθ1

(

∫ θ1

θ0

{

1 +

∞
∑

k=1

exp(−Sk(α))

}

dF (α)

)a

<∞. (6.8)

For given ε > 0, let Γ = min{n||∑m
k=1 g(Yk−1, Yk)/m−

Λ′(θ)| ≤ ε for all m ≥ n}. Suppose that ε is chosen small

enough so that there exists β > 0 such that Sn(α) ≥ βn if

n ≥ Γ for all θ0 ≤ α ≤ θ1. There exists a constant η > 0
such that |Λ(θ− α) + Λ(α)−Λ(θ)| < η for all θ0 ≤ α ≤ θ1.
By using the large deviation result for Markov random walks

(cf. Ney and Nummelin [18]) we can choose a constant δ > 0
such that Pθ1(Γ = λ) ≤ exp{−δλ}. Furthermore we choose

1 > a > 0 such that aη − δ(1− a) < 0. Now

∫ θ1

θ0

W θ
αdF (α) (6.9)

=

∫ θ1

θ0

(

1 +
Γ−1
∑

k=1

exp(−Sk(α)) +
∞
∑

k=Γ

exp(−Sk(α))

)

dF (α)

≤
∫ θ1

θ0

(

1 +

Γ−1
∑

k=1

exp(−Sk(α)) +
1

1− e−β

)

dF (α).

To evaluate the second term in the integrand of (6.9), we have

Eθ1

(

∫ θ1

θ0

b−1
∑

k=1

exp(−Sk(α))dF (α)

∣

∣

∣

∣

Γ = b

)

≤
Eθ1
∫ θ1
θ0

∑b−1
k=1 exp(−Sk(α))dF (α)

Pθ1(Γ = b)

=
1

Pθ1(Γ = b)

∫ θ1

θ0

b−1
∑

k=1

{e[Λ(θ−α)+Λ(α)−Λ(θ)]k +O(ρk)}dF (α)

≤ 1

Pθ1(Γ = b)

(

1

η
eηb +

ρ2

1− ρ

)

,
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where 0 < ρ < 1. By Jensen’s inequality,

Eθ1

(

∫ θ1

θ0

W θ
αdF (α)

)a

(6.10)

= Eθ1

(

Eθ1

[

(

∫ θ1

θ0

W θ
αdF (α)

)a ∣
∣

∣

∣

Γ

])

≤
∞
∑

b=1

(

1

Pθ1(Γ = b)

(

1

η
eηb +

ρ2

1− ρ

)

+
2− e−β

1− e−β

)a

Pθ1(Γ = b).

The inequality (6.8) now follows because there exist constants

C1, · · · , Ca such that

∞
∑

b=1

(

1

Pθ1(Γ = b)

(

eηb

η
+

ρ2

1− ρ

))a

Pθ1(Γ = b)

=

∞
∑

b=1

(

eηb

η
+

ρ2

1− ρ

)a

[Pθ1(Γ = b)]1−a

≤ 1

ηa

∞
∑

b=1

eb(aη−δ(1−a)) + C1
1

ηa

∞
∑

b=1

eb((a−1)η−δ(1−a)) + · · ·

+Ca
1

ηa

∞
∑

b=1

eb(η−δ(1−a)) <∞. �

Lemma 4: Let Vn be defined in (5.13) and Ṽ be defined in

(5.20). Then under assumptions of Theorem 1, we have

Vn −→n→∞ Ṽ in P1-distribution (6.11)

and E1Vn −→n→∞ E1Ṽ .

PROOF. Let An = {|∑n
k=1 g(Yk−1, Yk)/n − Λ′(θ)| <

ε}. Then by using a result of large deviations in Markov

random walks [cf. Ney and Nummelin [18]], there exists a

δ > 0 such that P1{Acn} ≤ δ. Let θ be defined such that

Λ′(θ) = EΠg(Y0, Y1). Under the event An, the maximum

likelihood estimate θ̂n = θ(
∑n

k=1 g(Yk−1, Yk)/n) is well

defined. Recall ηn = ln + Vn, where ηn is defined in (5.11),

ln = (−1/2) logn, and

Vn (6.12)

= (θ̂n − θ)

n
∑

k=1

g(Yk−1, Yk)− n(Λ(θ̂n)− Λ(θ))

+ logn1/2

∫

Θ

r(Yn;α)

r(Y0;α)

× exp

{

(α− θ̂n)

n
∑

k=1

g(Yk−1, Yk)− n(Λ(α)− Λ(θ̂n))

}

{

1 +

n
∑

k=1

exp(−Sk(α))

}

dF (α)

:= nK(Pθ,Pθ̂n) + log un(
n
∑

k=1

g(Yk−1, Yk)/n).

We first analyze the second term in (6.12) and show that

for any θ ∈ Θ

logun(
n
∑

k=1

g(Yk−1, Yk)/n) (6.13)

−→ 1

2
log

2πF ′(θ)

Λ′′(θ)
+ log

{

1 +

∞
∑

k=1

exp(−Sk(θ))

}

+ log

{

Eθm+
r(YN∗

+
; θ)

r(Y0; θ)

}

,

Pθ1-a.s. as n→ ∞.

To complete the proof of (6.13). By (6.8), and 0 < r(y;α) <
∞ uniformly for y ∈ Y for all α ∈ Θ via Theorem 4 of Chan

and Lai [4], we need only to show that

logn1/2

∫

Θ

exp

{

(α− θ̂n)

n
∑

k=1

g(Yk−1, Yk)− n(Λ(α)

−Λ(θ̂n))

}

dF (α) (6.14)

−→ 1

2
log

2πF ′(θ)

Λ′′(θ)
Pθ1 − a.s. as n→ ∞,

For given α ∈ Θ and y ∈ R, let

H(α, y) = (Λ(α)− Λ(θ̂n))− (α− θ̂n)
1

n

n
∑

k=1

g(Yk−1, Yk).

Then

(6.14) =

∫

Θ

exp[−nH(α, y)]dF (α), y ∈ R. (6.15)

Observe that H(α, y) is convex in Θ for fixed y ∈ R, since

Λ is convex. Moreover, for fixed y, H(α, y) = 1
2Λ

′′(α∗)(α−
θ̂n)

2, where α∗ = α∗(α, y) is an intermediate point between α
and θ̂n. Let K be any compact subinterval of R. Then there are

a σ > 0 and a compact J ⊂ Θ for which [θ̂n− δ, θ̂n+ δ] ⊂ J
for all y ∈ K and, since Λ′′ is positive and continuous, there

is an ε > 0 for which Λ′′(α∗) ≥ ε for |α − θ̂n| ≤ δ and

y ∈ K . In particular, H(α, y) ≥ 1
2ε(α− θ̂n)2 for |α− θ̂n| ≤ δ

and y ∈ K . Since H is convex in α for fixed y, it follows

that H(α, y) ≥ 1
2εδ

2 for |α − θ̂n| ≥ δ and y ∈ K and,

consequently, that

∫

|α−θ̂n|≥δ
e−nHdF (α) ≤ e−εδ

2n/2, y ∈ K, n ≥ 1. (6.16)

Next, consider the change of variables θ̂n = θ̂n + n−1/2α
shows that

√
n

∫

|α−θ̂n|<δ
exp{−nH}dF (α) (6.17)

=

∫ δ
√
n

−δ√n
exp[−1

2
Λ′′(α∗

n)α
2]F ′(θ̂n +

α√
n
)dα,

where α∗
n = α∗(θ̂n + n−1/2α, yn), n ≥ 1. As n →

∞, the integrand on the right side of (6.17) converges to

exp[− 1
2Λ

′′(θ)α2]F ′(θ); and the integrand is dominated by
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C exp(− 1
2εα

2) for some C. So, the right hand side of (6.17)

converges to

∫ ∞

−∞
exp[−1

2
Λ′′(θ)α2]F ′(θ)dα =

√

2π

Λ′′(θ)
F ′(θ) (6.18)

by the dominated convergence theorem.

Finally, using Theorem 17.2.2 of Meyn and Tweedie [17],

we have as n→ ∞,

(θ̂n − θ)

n
∑

k=1

g(Yk−1, Yk)− n(Λ(θ̂n)− Λ(θ)) −→ χ2
1, (6.19)

where χ2
1 is a random variable with chi-squared distribution

with one degree of freedom.

Combining (6.13) and (6.19), we have the proof. �

Lemma 5: Under assumptions of Theorem 1, we have for

some 0 < ε < 1,

lim
b→∞

b P1

{

Nψ
b ≤ εb

K(Pθ,Pθ0)

}

= 0. (6.20)

PROOF. By using E1g(Y0, Y1) > 0, and 0 < K(Pθ,Pθ0) <
∞, we will prove that

P1

{

Nψ
b <

(1− ε)b

K(Pθ,Pθ0)

}

≤ e−yεb + α1(ε, b), (6.21)

where yε > 0 for all ε > 0, and

α1(ε, b) = P1

{

max
1≤n<Kε,b

Sn ≥ (1 + ε)(1− ε)b

}

,(6.22)

Kε,b =
(1− ε)b

K(Pθ,Pθ0)
.

If (6.21) is correct, then the first term on the right hand side

of (6.21) is o(1/b) as b→ ∞. All it remains to do is to show

that α1(ε, b) in (6.22) is o(1/b).

Note that Theorem 1 implies conditions of Theorem 2 in

Fuh and Zhang [11] hold. Hence for all ε > 0 and r ≥ 0

∞
∑

n=1

nr−1P1

{

max
1≤k≤n

(Sk −K(Pθ,Pθ0)k) ≥ εn

}

<∞,(6.23)

whenever E1|S1|2 <∞ and E1[(S1−K(Pθ,Pθ0))+]r+1 <∞.

Recall that under conditions of Theorem 1, E1|S1|2 < ∞,

and hence, the sum on the left hand side of the inequality

(6.23) is finite for r = 1 and all ε > 0, which im-

plies that the summand should be o(1/n). Since α1(ε, b) ≤
P1

{

maxn<Kε,b
(Sn −K(Pθ,Pθ0)n) ≥ ε(1− ε)b

}

, it follows

that α1(ε, b) = o(1/b).

Next, we need to prove (6.21). We only consider the case

that θ0 < θ, as the other case can be done by using a similar

way. Denote Skn = logLRkn, and let N = Nψ
b for simplicity.

Let I{·} be the indicator function. Recall from (4.18), we have

Pθ0(y, dz)

=
r(z; θ0)

r(y; θ0)

r(y; θ)

r(z; θ)
e−(Λ(θ0)−Λ(θ))+(θ0−θ)g(Y0,Y1)Pθ(y, dz).

By Proposition 1, for all θ ∈ Θ 0 < r(z; θ) < ∞ uniformly

for z ∈ Y . For any C > 0, by using a change of measure

argument, we have

P∞

{

N < (1− ε)bK(Pθ,Pθ0)−1

}

= E1

{

I{N < Kε,b}
r(YN ; θ0)

r(Yk; θ0)

r(Yk; θ)

r(YN ; θ)
e−(Λ(θ0)−Λ(θ))+(θ0−θ)SkN

}

≥ KE1

{

I{N < Kε,b, SkN < C} exp(−kSkN )

}

≥ e−kCP1

{

N < Kε,b, max
n<Kε,b

Skn < C

}

≥ e−kC
[

P1

{

N < Kε,b

}

− P1

{

max
n<Kε,b

Skn ≥ C

}]

,

where K > 0 is a constant such that | r(YN ;θ0)
r(Yk;θ0)

r(Yk;θ)
r(YN ;θ) | > K ,

and k = θ − θ0 > 0. Choosing kC ≤ (1 + ε)(1 − ε)b, then,

we have

P1

{

N <
(1 − ε)b

K(Pθ,Pθ0)

}

(6.24)

≤ ekCP∞

{

N < (1− ε)bK(Pθ,Pθ0)−1

}

+ α1(ε, b).

Recall that R∗
n(F ) is defined in (5.5). Note that

under the condition of 0 < K(Pθ,Pθ0) < ∞, we have

P∞
{

N < Kε,b

}

=
∑Kε,b

i=1 P∞
{

R∗
i (F ) > B

}

≤ ∑Kε,b

i=1
i
B ≤

(logB)2

(K(Pθ,Pθ0))2B
. By letting a suitable kC, we have the first

term on the right hand side of (6.24) ≤ e−yεb, for some

yε > 0, and get the proof of (6.21). �

Next we consider the case that F is a measure on the real

line. Assume there exist constants 0 < c < K(Pθ1 ,Pθ0)/2,

w > 0, and 0 < θ0 < θ < θ1 <∞ such that αΛ′(θ)−Λ(α) >
0 for α ∈ [θ0, θ1], max{αΛ′(θ − w) − Λ(α), αΛ′(θ + w) −
Λ(α)} < c for α ∈ [θ0, θ1], and F (α) has a derivative F ′(α),
which is positive and continuous for θ0 ≤ α ≤ θ1. Since

Pθ1
{

N ≥ (2 logB)/K(Pθ,Pθ0)
}

is arbitrarily small when B
is large enough, and since for all C > 0, Eθ1(N |N > C) ≤
C + (2 logB)/K(Pθ,Pθ0) for large enough B, it suffices to

show that

(logB)Pθ1

{

max
n=1,...,(2 logB)/K(Pθ1 ,Pθ0)

∫

Θ \ [θ0,θ1]

(6.25)

×
n
∑

k=1

exp

(

α
n
∑

i=k

g(Yi, Yi+1)− (n− k + 1)Λ(α)

)

dF (α)

≥ 4B

logB

}

−→B→∞ 0.

Since the proof of (6.25) follows directly as that in (39) of

Pollak [22], we will not repeat it here.

Thus, by Lemmas 1-5, all conditions of Theorems 3 in Fuh

[8] are satisfied, and so the proof of Theorem 1 is complete.

VII. PROOF OF THEOREM 2

To prove Theorem 2, we need the following lemmas first.

Note that the probability and expected value are taken under

Pω and Eω for 1 ≤ ω <∞, we delete ω for simplicity.
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Lemma 6: Under assumptions of Theorem 2. Let 0 < a ≤
b <∞ satisfy Λ′(a) > Λ(b)/b,
[a, b] ⊂ J. For any c > 1 and probability measure G on [a, b],
define

N(c; a, b,G) (7.1)

= inf

{

n|
∫ b

a

r(Yn, α)

r(Y0, α)
exp{αSn − nΛ(α)}dG(α) ≥ c

}

.

Then there exist constants 0 < A,B < ∞ independent of

c, G such that

EθN(c; a, b,G) ≤ A log c+ B

for all θ ∈ [a, b] and c > 1.

PROOF. Define M(γ) = inf{n| r(Yn,γ)
r(Y0,γ)

exp{γSn −
nΛ(γ)} ≥ c}. It follows from a simple modification of

Lemma 2 of Fuh [7] that there exists 0 < D < ∞ such

that Eθ{SM(γ) − [M(γ)Λ(γ) + log c − log r(Yn,α)
r(Y0,α)

]/γ} ≤ D

uniformly in θ ∈ [a, b], γ ∈ [a, b], c > 1. Therefore, by Wald’s

identity for Markov random walks (cf. Fuh and Zhang [11])

that for all θ, γ ∈ [a, b], there exists a constant C

EθM(γ) (7.2)

≤ [(log c− log
r(Yn, α)

r(Y0, α)
)/γ +D]/[Λ′(θ)− Λ(γ)/γ + C]

≤ [(log c− log
r(Yn, α)

r(Y0, α)
)/a+D]/[Λ′(a)− Λ(b)/b+ C].

From 0 < r(y, α) < ∞ for all y via Propo-

sition 1, and
∫ b

a
r(Yn,α)
r(Y0,α)

exp{αSn − nΛ(α)}dG(α) ≥
min( r(Yn,a)

r(Y0,a)
exp{aSn − nΛ(a)}, r(Yn,b)

r(Y0,b)
exp{bSn − nΛ(b)})

it follows that N(c; a, b,G) ≤
max(M(a),M(b)) ≤M(a)+M(b). This and (7.2) complete

the proof of Lemma 6. �

Lemma 7: For given 0 < a ≤ b < ∞, [a, b] ⊂ J, Λ′(a) >
Λ(b)/b, let G be a probability on [a, b], and denote F =
γF0 + (1− γ)G, where F0 is the probability measure wholly

concentrated at {0} and γ ∈ (0, 1). Consider the optimal

stopping problem defined by a prior distribution F on θ when

Y0, Y1, Y2, . . . are a sequence of random variables from a state

space model satisfying C1-C4. Assume each observation costs

c > 0 if θ 6= θ0, zero if θ = θ0, with loss = 1 for stopping if

θ = θ0. Then there exists a constant 0 < M <∞ independent

of c, F such that a Bayes procedure (with probability one)

continues sampling whenever the posterior risk of stopping is

at least Mc.
PROOF. By making use of a similar procedure as that in

pages 2317-2318 of Fuh [8], a Bayes rule exists.

Let ∞ > Q > A/e where A is defined in Lemma 6 and

define TQc to be the first time n ≤ ∞ that the posterior risk

of stopping is at most Qc. It is sufficient to prove for some

Q < M < ∞ that the (integrated) risk of TQc is less than

γ if γ ≥ Mc. Since the (integrated) risk of any generalized

stopping time T is the expected posterior risk of stopping

plus c(1− γ)
∫ b

a
EθTdG(θ), it is sufficient to prove for some

0 < M < ∞ that (1 − γ)
∫ b

a EθTQcdG(θ) < γ/c − Q if

γ ≥Mc.
Choose M > Q such that (1−A/(Qe))M − (B+A/e) >

Q where A,B are the constants defined by Lemma 6. It is

enough to look at c for which Qc < 1. Denote pn(Yn; θ0) :=
pn(Y1, . . . , Yn; θ0). Note that

TQc (7.3)

= inf

{

n|Qc ≥ γpn(Yn; θ0)

γpn(Yn; θ0) + (1− γ)
∫ b

a
pn(Yn; θ)dG(θ)

}

= inf

{

n|
∫ b

a

r(W0, θ0)

r(Wn, θ0)

r(Wn, α)

r(W0, α)
exp{(α− θ0)Sn

−n(Λ(α)− Λ(θ0)}dG(α) ≥
γ

1− γ

1−Qc

Qc

}

≤ inf

{

n|
∫ b

a

r(W0, θ0)

r(Wn, θ0)

r(Wn, α)

r(W0, α)
exp{(α− θ0)Sn

−n(Λ(α)− Λ(θ0)}dG(α) ≥
γ

(1− γ)Qc

}

.

Note that sup0<α<1 −α(logα) = 1/e, applying Lemma 6

to get that if 1 > γ ≥Mc

(1 − γ)

∫ b

a

EθTQcdG(θ)

≤ (1 − γ)

[

A

(

log
γ

Qc
+ log

1

1− γ

)

+B

]

≤ γ

c

A

Q

Qc

γ
log

γ

Qc
+B +A(1 − γ) log

1

1− γ

≤ γ

c

A

Qe
+B +

A

e

≤ γ

c
−
(

1− A

Qe

)

M +B +
A

e
≤ γ

c
−Q.

This completes the proof of Lemma 7. �

PROOF OF THEOREM 2. Without loss of generality, we

assume θ0 = 0, 0 < a < b, (a, b) = J and Λ′(a) > Λ(b)/b.
We first show that the right hand side of (2.22) is a lower

bound of the left hand side of (2.22). Consider the Bayesian

problem defined in Lemma 7 when γ = 1
2 and dG(θ)/dθ =

K(Pθ,Pθ0)/
∫ b

a K(Pα,Pθ0)dα on [a, b]. Let M be the constant

derived in Lemma 7 and let TMc be TQc for Q=M where TQc
is defined in (7.3). TMc is a mixture stopping rule defined by

G and B = (1 −Mc)/(Mc). By virtue of Lemma 7 there

exists a Bayes rule which continues sampling at least as long

as TMc. Hence the Bayes risk is at least the sampling cost of

TMc, whence for any stopping rule T

Pθ0(T <∞) + c

∫ b

a

EθTdG(θ) ≥ c

∫ b

a

EθTMcdG(θ).

Thus if Pθ0(T <∞) ≤ 1/ε =Mc/(1−Mc), then

∫ b

a

EθTdG(θ) ≥
∫ b

a

EθTMcdG(θ) −M/(1−Mc). (7.4)

There exist a1, b1 such that 0 < a1 < a < b < b1 < ∞
and Λ′(a1) > Λ(b1)/b1. Define Λ = inf{n|

∫ b1
a1

exp{θSn −
nΛ(θ)}K(Pθ,Pθ0)dθ/

∫ b

a
K(Pθ,Pθ0)dθ ≥ B}. By defini-

tion, TMc ≥ Λ. Λ is a mixture stopping rule defined by

dF (θ)/dθ = K(Pθ,Pθ0)/
∫ b1
a1
K(Pα,Pθ0)dα on [a1, b1] and
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B′ = B
∫ b

a
K(Pθ,Pθ0)dθ/

∫ b1
a1
K(Pθ,Pθ0)dθ. Thus by Theo-

rem 1

EθTMc ≥ EθΛ (7.5)

=
1

2K(Pθ,Pθ0)
[2 logB′ + log logB′] +Oθ(1),

where lim supε→∞ supa≤θ≤b |Oθ(1)| ≤ ∞. Combining (7.4)
and (7.5), and replacing B′ by B yields

∫ b

a

EθTdG(θ)

≥
∫ b

a

[2 logB + log logB +O(1)]dθ/2(

∫ b

a

K(Pθ,Pθ0)dθ).

Hence by definition of G, we have

∫ b

a

[2K(Pθ,Pθ0)EθT − (2 logB + log logB)]dθ ≥ O(1)

for all T satisfying Pθ0{T <∞} ≤ 1/B.

To show that the equality is attained by the weighted SRP

rule. By Theorem 1, we need only to show that for the

weighted SRP detection rule (5.6) satisfies Pθ0{Nb < ∞} ≤
1/c, for any c > 1.

Recall that Pθ(y, dz) defined in (4.18), and denote

Q(w, dw′) :=
∫

θ∈J P
θ(w, dw′)dF (θ). Then it is easy to see

that Q(w, ·) is a transition kernel. By definition of Nb, we

have

Pθ0{Nb <∞} (7.6)

=

∫

{Nb<∞}

1

LRn(F )
dQ ≤ 1

c
Q{Nb <∞} ≤ 1

c
.

This establishes the desired property, and thus completing the

proof of (2.22). �

APPENDIX

We give a proof of Proposition 1 which also corrects

notations error in Lemma 8 of Fuh [8], in the setting of hidden

Markov models.

PROOF OF PROPOSITION 1. Note that

Hn+1(y, w)

= P∞{Rn+1,p ≤ y|Nq,b > n+ 1,Wn+1 = w}

=

∫

w′∈W

∫ B(w′)

0

P∞{Rn+1,p ≤ y,Wn ∈ dw′,

Rn,p ∈ dt|Nq,b > n+ 1,Wn+1 = w}

=

∫

w′∈W

∫ B(w′)

0

P∞{Rn+1,p ≤ y|Wn = w′, Rn,p = t,

Nq,b > n+ 1,Wn+1 = w}
×P∞{Rn,p ∈ dt,Wn ∈ dw′|Nq,b > n+ 1,Wn+1 = w}

=

∫

w′∈W

∫ B(w′)

0

ρ(t, y, w)P∞{Rn,p ∈ dt,Wn ∈ dw′|

Nq,b > n+ 1,Wn+1 = w}.

Since

P∞{Rn,p ∈ dt,Wn ∈ dw′|Nq,b > n+ 1,Wn+1 = w}
= P∞{Rn,p ∈ dt,Wn ∈ dw′|Nq,b > n,

Nq,b > n+ 1,Wn+1 = w}

=

(

P∞{Nq,b > n+ 1,Wn+1 ∈ dy|Rn,p = t, Nq,b > n,

Wn = w′}
)/(∫

w,w′∈W

∫ B(w′)

0

P∞{Nq,b > n+ 1,

Wn+1 ∈ dw|Rn,p = t, Nq,b > n,Wn = w′}

×P∞{Rn,p ∈ dt|Nq,b > n,Wn = w′}
P∞{Rn,p ∈ dt|Nq,b > n,Wn = w′}

×P∞{Nq,b > n|Wn = w′}P(w′, dw)

P∞{Nq,b > n|Wn = w′}P(w′, dw)

)

=
ζ(t, w′, w)dHn(t, w

′)P(w′, dw)
∫

w,w′∈W
∫ B(w′)

0
ζ(t, w′, w)dHn(t, w′)P(w′, dw)

.

It follows that

Hn+1(y, w)

=

∫

w′∈W
∫ B(w′)

0 ρ(t, y, w)ζ(t, w′, w)dHn(t, w
′)P(w′, dw)

Q(Hn)

= TBHn(y, w).

The existence of the fixed point follows the same argument

as that of Lemma 11 in Pollak [21]. �
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