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Abstract

An impurity measures I : Rd 7→ R+ is a function that assigns a d-dimensional vector v to
a non-negative value I(v) so that the more homogeneous v, with respect to the values of its
coordinates, the larger its impurity. A well known example of impurity measures is the entropy
impurity. We study the problem of clustering based on the entropy impurity measures. Let V
be a collection of n many d-dimensional vectors with non-negative components. Given V and
an impurity measure I, the goal is to find a partition P of V into k groups V1, . . . , Vk so as to

minimize the sum of the impurities of the groups in P, i.e., I(P) =
∑k

i=1 I

(∑
v∈Vi

v

)
.

Impurity minimization has been widely used as quality assessment measure in probability
distribution clustering (KL-divergence) as well as in categorical clustering. However, in con-
trast to the case of metric based clustering, the current knowledge of impurity measure based
clustering in terms of approximation and inapproximability results is very limited.

Here, we contribute to change this scenario by proving that the problem of finding a clustering
that minimizes the Entropy impurity measure is APX-hard, i.e., there exists a constant ε > 0
such that no polynomial time algorithm can guarantee (1+ε)-approximation under the standard
complexity hypothesis P 6= NP . The inapproximability holds even when all vectors have the
same `1 norm.

This result provides theoretical limitations on the computational efficiency that can be
achievable in the quantization of discrete memoryless channels, a problem that has recently
attracted significant attention in the signal processing community. In addition, it also solve a
question that remained open in previous work on this topic [Chaudhuri and McGregor COLT
08; Ackermann et. al. ECCC 11].

1 Introduction

Data clustering is a fundamental tool in machine learning that is commonly used to coherently or-
ganize data as well as to reduce the computational resources required to analyse large datasets. For
comprehensive descriptions of different clustering methods and their applications refer to [16, 18].
In general, clustering is the problem of partitioning a set of items so that, in the output partition,
similar items are grouped together and dissimilar items are separated. When the items are repre-
sented as vectors that correspond to frequency counts or probability distributions many clustering
algorithms rely on so called impurity measures (e.g., entropy) that estimate the dissimilarity of
a group of items (see, e.g., [15] and references therein). In a simple example of this setting, a
company may want to group users according to their taste for different genres of movies. Each user

∗This paper was presented in part at the 36th International Conference on Machine Learning ICML 2019 [13].
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u is represented by a vector, where the value of the ith component counts the number of times u
watched movies from genre i. To evaluate the dissimilarity of a group of users we calculate the
impurity of the sum of their associated vectors, and then we select the partition for which the sum
of the dissimilarities of its groups is minimum. The design of clustering methods based on impurity
measures is the central theme of this paper.

1.1 Problem Description.

An impurity measure I : v ∈ Rd+ 7→ I(v) ∈ R+ is a function that maps a vector v to a non-negative
value I(v) so that the more homogeneous v with respect to the values of its coordinates, the larger
its impurity. One of the most popular/studied impurity measures, henceforth referred to as the
Entropy impurity is based on the Shannon entropy function and it is defined by

IEnt(v) = ‖v‖1
d∑
i=1

vi
‖v‖1

log
‖v‖1
vi

In the Partition with Minimum Weighted Impurity Problem (PMWIP), we are given
a collection of n many d-dimensional vectors V ⊂ Rd with non-negative components and we are
also given an impurity measure I. The goal is to find a partition P of V into k disjoint groups of
vectors V1, . . . , Vk so as to minimize the sum of the impurities of the groups in P, i.e.,

I(P) =
k∑
i=1

I

(∑
v∈Vi

v

)
. (1)

In this paper, our focus is on the Entropy impurity IEnt as defined above. We use PMWIPEnt
to refer to PMWIP with impurity measure IEnt.

1.2 Applications

This kind of clustering is used in a number of relevant applications such as: (i) attribute selection
during the construction of random forest/decision trees [8, 9, 12, 14, 23]; (ii) clustering of words
based on their distribution over a text collection for improving classification tasks [7, 15] and (iii)
quantization of memoryless channels/design of polar codes [32, 22, 21, 29, 27]. The last application
will be discussed more thoroughly in the related work section.

Another interesting application, also mentioned in [10, 4], is the compression of a large collec-
tion of n short files (e.g. tweets) using entropy encoding (e.g. Huffman or Arithmetic coding).
Compressing each file individually might incur a huge overhead since we would need to store the
compression model (e.g. alphabet + codewords) for each of them. Thus, a natural idea is to cluster
them into k � n groups and then compress files in the same cluster using the same model. This
approach leads to an instance of PMWIPEnt since it is possible to generate encodings for proba-
bility distributions whose sizes are arbitrarily close to their Shannon entropy, so that the objective
function in (1) is the total size of the compressed collection ignoring the compression model for
each of the clusters.

Despite of its wide use in relevant applications, clustering being a fundamental problem and
entropy being an essential measure in Information Theory as well as considerably important in
Machine Learning, the current understanding of PMWIP from the perspective of approximation

2



algorithms is very limited as we detail further. This contrasts with what is known for clustering
in metric spaces where the gap between the ratios achieved by the best known algorithms and
the largest known inapproximability factors, assuming P 6= NP , are somehow tight (see [6] and
references therein). Our study contributes to reducing this gap of knowledge.

1.3 Our Results and Techniques

Our main contribution is a proof that PMWIPEnt is APX-Hard even for the case where all vectors
have the same `1-norm. In other words, we show that there exists ε > 0 such that one cannot
obtain in polynomial time an (1+ ε) multiplicative approximation for PMWIPEnt unless P = NP .
Our result implies on the APX-Hardness of MTCKL, the problem of clustering n probability
distributions into k groups where the Kullback-Leibler divergence is used to measure the distance
between each distribution and the centroid of its assigned group. With this result, we settle
a question that remained open in previous work on the MTCKL problem [10, 2]. Finally, our
inapproximability result contributes to the understanding of a problem that has recently attracted
significant attention in the signal processing community, as it provides a theoretical limit, under
the perspective of computational complexity, on the possibility of efficiently quantizing discrete
memoryless channels. In fact, as we explain in Section 2.1, the quantization problem can be
formulated as the PMWIPEnt.

Our proof follows the approach employed by Awasthi [6] to show the APX-hardness of the k-
means clustering problem. As in [6], it consists of mapping hard instances from the minimum vertex
cover problem in triangle-free bounded degree graphs into instances of the clustering problem, in
our case the PMWIPEnt. However, in order to deal with the entropy impurity, we have to overcome
a number of technical challenges that do not arise when one considers the `22 distance employed by
the k-means problem.

1.4 Paper Organization

The paper is organized as follows: in Section 2 we discuss works that are related to ours. More
specifically, we discuss existing work on the problem of quantizing discrete memoryless channels
and on the the problem of clustering probability distributions using Kullback-Leibler divergence.
In Section 3 we present some technical background that is useful to derive our main result. Section
4 is dedicated to our main contribution. Section 5 concludes the paper with some final remarks
and open questions.

2 Related Work

2.1 Connections to quantizer design

Quantization is a fundamental part of digital processing systems used to keep complexity and
resource consumption tractable. Quantization refers to the mapping of a large alphabet to a
smaller one. A typical example is given by making the output of a channel X 7→ Y with a large
output alphabet travel through an additional channel Y 7→ Z (the quantizer) whose output is from
a small alphabet without affecting too much the capacity of the quantized channel X 7→ Z with
respect to the capacity of the original channel X 7→ Y .
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To formalize the connection between our problem and the one of designing optimal quantizers,
let us consider a discrete memory channel (DMC). Let the input be X ∈ X = {1, . . . , d} with
distribution px = Pr(X = x). Let the channel output be Y ∈ Y = {1, . . . , n} and the channel
transition probability be denoted by Py|x = Pr(Y = y | X = x). The channel output is quantized
to Z ∈ Z = {1, . . . , k} for some k ≤ n, by a possibly stochastic channel (quantizer) defined by
Qz|y = Pr(Z = z | Y = y), so that the conditional probability distribution of the quantizer output
Z w.r.t. the channel input X is Tz|x = Pr(Z = z | X = x) =

∑
y∈Y Qz|yPy|x.

The aim of quantizer’s design is to guarantee that the mutal information I(X;Z) between X
and Z is as large as possible, i.e., as close as possible to the mutual information I(X;Y ) between
the input and the non quantized output Y .

It is known that there is an optimal quantizer that is deterministic (see, e.g., [22]), i.e., for each
y ∈ Y there is a unique z ∈ Z such that Qz|y = 1. Therefore, the quantizer design problem can
be cast as finding the k-partition C = C1, . . . , Ck of Y such that Tz|x =

∑
y∈Cz

Py|x guarantees the
maximum mutual information

I(X;Z) =
∑
z∈Z

∑
x∈X

pxTz|x log
Tz|x∑

x′ px′Tz|x′
.

If for each y ∈ Y we define the vector v(y) = (v
(y)
1 , . . . , v

(y)
d ) with v

(y)
x = pxPy|x and let c(z) =∑

y∈Cz
v(y), we have that

Tz|x =
∑
y∈Cz

Py|x =
∑
y∈Cz

v
(y)
x

px
.

Hence,

I(X,Z) =
∑
z

∑
x

px
∑
y∈Cz

v
(y)
x

px
log

 ∑
y∈Cz

v
(y)
x
px∑

x′ px′
∑

y∈Cz

v
(y)

x′
px′


=

∑
x

∑
z

c(z)x log
c
(z)
x

px‖c(z)‖1

=
∑
x

∑
z

c(z)x log
1

px
−
∑
z

‖c(z)‖1
∑
x

c
(z)
x

‖c(z)‖1
log
‖c(z)‖1
c
(z)
x

=
∑
x

px log
1

px
−
∑
z

IEnt(Cz) = H(X)−
k∑
z=1

I(Cz).

Therefore, an optimal quantizer that maximizes the mutual information, is obtained by the
clustering of minimum impurity

sup
Qz|y

I(X;Z) = H(X)− inf
(C1,...Ck)

k∑
z=1

I(Cz).

Efficient techniques for maximizing mutual information in channel output quantization have
been the focus of several recent papers as the problem plays an important role in making the
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implementation of polar codes tractable [30, 28, 31, 21]. The objective in these papers is the
minimization of the additive loss in terms of mutual information due to the quantization, i.e., the
minimization/approximation of the objective function I(X,Y ) − I(X,Z) that (by proceeding as
above) is equivalent, in our notation, to the minimization/approximation of

∆k(X;Y ) = I(X,Y )− I(X,Z) =
∑
z

I(Cz)−
∑
y

I(v(y)).

A main result of [21] is that for arbitrary joint distribution PXY it holds that ∆k(X;Y ) =
O(k−2/(d−1)). In [30] it is shown that there exist channelsX 7→ Y such that ∆k(X;Y ) = Ω(k−2/(d−1)).
The papers [28, 31, 21] also provided polynomial-time approximation algorithm for designing such
quantizers. In addition, for binary input channels (|X | = 2) an optimal algorithm is given in [22]
and [17].

We note that, although the optimal clustering provides an optimal quantizer, in terms of ap-
proximation, because of the additional term in the objective function ∆k(X;Y ) we have that an
approximation guarantee for ∆k(X;Y ) also gives an approximation guarantee on the optimal im-
purity, but not vice versa. On the other hand, our inapproximability result for PMWIPEnt implies
the same inapproximability result for the problem of optimizing ∆k(X;Y ).

A different perspective has been taken in [27] where the multiplicative loss I(X;Z)/I(X;Y ) has
been studied, with the aim of characterizing the fundamental properties of the quantizer attaining
the minimum I(X;Z). In particular the authors of [27] study the infimum of I(X;Z) taken with
respect to all joint distributions with input alphabet X of cardinality d and arbitrary (possibly
continuous) output alphabet Y such that the mutual information I(X; y) is at least β, where β is
a given parameter.

2.2 Clustering with Kullback-Leibler Divergence

PMWIPEnt is closely related to MTCKL defined in [10] as the problem of clustering a set of n
probability distributions into k groups minimizing the total Kullback-Leibler (KL) divergence from
the distributions to the centroids of their assigned groups. Mathematically, we are given a set of n
points p(1), . . . , p(n), corresponding to probability distributions, and a positive integer k. The goal
is to find a partition of the points into k groups V1, . . . , Vk and a centroid c(i) for each group Vi
such that

k∑
i=1

∑
p∈Vi

KL(p, c(i))

is minimized, where KL(p, q) =
∑d

j=1 pj ln(pj/qj) is the Kullback-Leibler divergence between points
p and q.

It is known that in the optimal solution for each i = 1, . . . k the centroid c(i) = (c
(i)
1 , . . . c

(i)
d ) is

given by c
(i)
j =

∑
p∈Vi pj/|Vi|, for each j = 1, . . . , d. Thus, MTCKL is equivalent to the problem of
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finding a partition that minimizes

k∑
i=1

∑
p∈Vi

KL(p, c(i)) =
k∑
i=1

∑
p∈Vi

d∑
j=1

pj(ln pj − ln c
(i)
j ) = (2)

n∑
i=1

d∑
j=1

p
(i)
j ln p

(i)
j −

k∑
i=1

∑
p∈Vi

d∑
j=1

pj ln c
(i)
j = (3)

n∑
i=1

d∑
j=1

p
(i)
j ln p

(i)
j −

k∑
i=1

d∑
j=1

∑
p∈Vi

pj

 ln

(∑
p∈Vi pj

)
|Vi|

= (4)

− 1

log e

n∑
i=1

IEnt(p
(i)) +

1

log e

k∑
i=1

IEnt

(∑
p∈Vi

p

)
(5)

Therefore, the optimal solution of MTCKL is equal to the optimal one of the particular case
of PMWIPEnt in which vi = pi for i = 1, . . . , n. While their optimal solutions match in this case,
PMWIPEnt and MTCKL differ in terms of approximation since the objective function for MTCKL
has an additional constant term −

∑n
i=1 IEnt(p

(i)) so that an α-approximation for MCTKL problem
implies an α-approximation for PMWIPEnt while the converse is not necessarily true.

In [10] an O(log n) approximation for MTCKL is given. Some (1+ ε)-approximation algorithms
were proposed for a constrained version of MTCKL where every element of every probability distri-
bution lies in the interval [λ, v] [3, 1, 4, 25]. The algorithm from [3, 4] runs in O(n2O(mk/ε log(mk/ε)))
time, where m is a constant that depends on ε and λ. In [1] the running time is improved to
O(ngk + g2O(k/ε log(k/ε)) logk+2(n)) via the use of weak coresets. Recently, using strong coresets,
O(ngk + 2poly(gk/ε) time is obtained [25]. We shall note that these algorithms provide guarantees
for µ-similar Bregman divergences, a class of metrics that includes domain constrained KL di-
vergence. By using similar assumptions on the components of the input probability distributions,
Jegelka et. al. [19] show that Lloyds k-means algorithm—which also has an exponential time
worst case complexity [33]—obtains an O(log k) approximation for MTCKL. For PMWIPEnt, an
O(log2 min{k, d}) is presented in [13].

In terms of computational complexity, Chaudhuri and McGregor [10] proved that the variant
of MTCKL where the centroids must be chosen from the input probability distributions is NP-
Complete. The NP-Hardness of MTCKL, that remained open in [10], was established in Ackermann
et. al. [2], where it is also mentioned that the APX-hardness of k-means in R2 would imply the
same kind of hardness for MTCKL. However, it is not known whether the former is APX-Hard.
Our result provides an important progress in this line of investigation since it establishes the APX-
hardness of MTCKL. We shall mention that, in terms of restricted instances, one of the authors
proved recently that PMWIPEnt is NP -Complete, even when k = 2, via a simple reduction from
Partition [23].

3 Preliminaries

In this section we introduce some notation and discuss some technical material that will be useful
to establish our main result. We start with some notation.
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3.1 Notation

Let G = (V,E) be a simple undirected graph. A vertex cover in G is a set of vertices S such that
each edge e ∈ E is incident to some vertex of S. A vertex cover S is minimal if for every v ∈ S,
S \ {v} is not a vertex cover. A star in G is a subgraph G′ of G such that there exists one vertex
in G′, the centre of the star G′, that is incident to all edges in G′. If a star G′ has p edges we say
that it is a p-star.

We say that G is a D-bounded degree graph if for each vertex v ∈ V the degree of v is at most
D. We say that G is D-regular, if for each v ∈ V the degree of v is D. A triangle in G is a set
of three vertex u, v and w such that uv, uw, vw ∈ E. We say that G is triangle-free if it has no
triangle.

For a set of vectors C we use IEnt(C) to denote the impurity of C, that is, IEnt(C) =
IEnt(

∑
v∈C v).

We define the entropy impurity of a set of edges C from a graph G, over the vertex set V =
{v1, . . . , vn}, as follows:

IEnt(C) = 2|C| ·H
(
dC(v1)

2|C|
, . . . ,

dC(vn)

2|C|

)
(6)

where H() denotes the Shannon entropy and dC(v) denotes the number of edges of C incident in v

3.2 Bounds on the Entropy Impurity for Graphs

We now present bounds on the entropy impurity of sets of edges focussing in particular on subsets
of edges from triangle-free graphs, which will be the basis of our hardness proof in the next section.

Fact 1. If C is a set of edges forming a p-star, then we have IEnt(C) = 2p+ p log p.

We also have that the 3-bounded triangle-free graphs with p-edges have impurity at least 2p+
p log p as recorded in the following Lemma 1.

To establish the lemma we will exploit Facts 2 and 3 presented in the sequel. The former is a
direct consequence of the Schur concavity of the Shannon entropy function (see, e.g., [26]) while
the latter is a special case of Turan’s and Mantel’s theorem about triangle-free graphs (see, e.g.,
[20]).

Fact 2. Let p = (p1, . . . pn) and q = (q1, . . . qn) be probability distributions such that for each
i = 1, . . . , n− 1 it holds that

• pi ≥ pi+1;

• qi ≥ qi+1;

•
∑i

j=1 pi ≤
∑i

j=1 qi.

Then, H(p) ≥ H(q).

Fact 3. Let n and m denote the number of vertices and edges of a triangle-free graph. Then
n ≥ d

√
4me.

Lemma 1. Let C be a set of p edges from a 3-bounded degree triangle-free graph. Then IEnt(C) ≥
2p+ p log p.
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Proof. Recalling the definition in (6) with |C| = 2p and denoting by dC(v) the number of edges of
C incident in v and by v1, . . . , vn the vertices of the underlying graph, we have

IEnt(C) = 2pH

(
dC(v1)

2p
, . . . ,

dC(vn)

2p

)
, (7)

where H() denotes the Shannon entropy. Since the entropy function is invariant upon permutations
of the components, for the rest of this proof, we will assume w.l.o.g., that the vertices are sorted in
non increasing order of degree, i.e., dC(vi) ≥ dC(vi+1) for i = 1, . . . , n−1. Let ñ denote the number
of vertices incident on edges in C. Equivalently, under the standing assumption, ñ is the largest
index i such that dC(vi) > 0.

The desired result will follow from showing that the entropy on the right hand side of (7) is
lower bounded by 1 + log p

2 . We will split the analysis into several cases.

Case 1. p ≥ 9.
Since the edges in C are from a 3-bounded degree graph, we have dC(vi) ≤ 3 for i = 1, . . . , n.

Hence,

H

(
dC(v1)

2p
, . . . ,

dC(vn)

2p

)
=

ñ∑
j=1

dC(vi)

2p
log

2p

dC(vi)
≥

ñ∑
j=1

dC(vi)

2p
log

2p

3
= 1 + log

p

3
≥ 1 +

1

2
log p,

where, in the first inequality we are using dC(vi) ≥ 3 and the last inequality follows from p ≥ 9.

Case 2. ñ ≥ p+ 1.
By the standing assumptions, we have dC(v1) ≥ · · · ≥ dC(vp+1) > 0. Therefore, by Fact 2, we

have that

H

(
dC(v1)

2p
, . . . ,

dC(vn)

2p

)
≥ H

(
p

2p
,

1

2p
, . . .

1

2p
, 0, . . . , 0

)
= 1 +

1

2
log p. (8)

By Fact 3, for p = 3, we have that the triangle-free condition implies ñ ≥ 4 = p+ 1, hence the
last case also covers p = 3.

Under the condition in Fact 3, it remains to consider the cases 4 ≤ p ≤ 8 with d
√

4pe ≤ ñ ≤ p,
i.e., (i) p = 4, ñ = 4, (ii) p = 5, ñ = 5, (iii) p = 6, ñ ∈ {5, 6}, (iv) p = 7, ñ ∈ {6, 7}, and (v)
p = 8, ñ ∈ {6, 7, 8}. For each one of these cases we shall show a probability distribution w(p,ñ) such

that the inequality H(w(p,ñ)) ≥ 1+ log p
2 holds and by Fact 2 also H(w(p,ñ)) ≤ H

(
dC(v1)

2p , . . . , d
C(vn)
2p

)
holds for every choice of a triangle-free set C with p edges incident to ñ vertices.

Case 3. p = 4, ñ = 4. The only triangle-free graph on ñ = 4 vertices with p = 4 edges is given by
a polygon with 4 vertices, i.e., dC(vi) = 2, for i = 1, 2, 3, 4. In this case we have

H

(
dC(v1)

2p
, . . . ,

dC(v4)

2p

)
= H

(
2

8
,
2

8
,
2

8
,
2

8

)
= 2 = 1 +

log p

2
,

as desired.

Case 4. p = 5, ñ ≥ 5.
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By by the assumptions 3 ≥ dC(v1) ≥ · · · ≥ dC(v5) > 0, and Fact 2, we have that

H

(
dC(v1)

2p
, . . . ,

dC(vn)

2p

)
≥ H

(
3

10
,

3

10
,

2

10
,

1

10
,

1

10
, 0, . . . , 0

)
= log 5 +

8

10
− 6

10
log 3 ≥ 1 +

log 5

2
(9)

The desired result now follows by noticing that the last quantity in (9) is equal to 1 + 1
2 log p.

Case 5. p = 6, ñ ∈ {5, 6}.

Subcase 5.1 p = 6, ñ = 5

By direct inspection, it is not hard to see that there is no triangle-free graph on 5 vertices
where three of them have degree 3. Hence, we have that the following conditions must hold

3 ≥ dC(v1) ≥ dC(v2) > 0 and 2 ≥ dC(v3) ≥ dC(v4) ≥ dC(v5) > 0.

Therefore, by Fact 2, we have

H

(
dC(v1)

2p
, . . . ,

dC(vn)

2p

)
≥ H

(
3

12
,

3

12
,

2

12
,

2

12
,

2

12
, 0, . . . , 0

)
= 1 +

log 6

2
(10)

The desired result now follows by noticing that the last quantity in (10) is equal to 1+ 1
2 log p.

Subcase 5.2 ñ = 6

By Fact 2 and the assumption 3 ≥ dC(v1) ≥ · · · ≥ dC(v6) > 0, we have

H

(
dC(v1)

2p
, . . . ,

dC(vn)

2p

)
≥ H

(
3

12
,

3

12
,

3

12
,

1

12
,

1

12
,

1

12
, 0, . . . , 0

)
= 2 +

3

12
log 3 ≥ 1 +

log 6

2
(11)

The desired result now follows by noticing that the last quantity in (11) is equal to 1+ 1
2 log p.

Case 6. p = 7, ñ ∈ {6, 7}.
By Fact 2, and the assumption 3 ≥ dC(v1) ≥ · · · ≥ dC(v6) > 0, we have that

H

(
dC(v1)

2p
, . . . ,

dC(vn)

2p

)
≥ H

(
3

14
,

3

14
,

3

14
,

3

14
,

1

14
,

1

14
, 0, . . . , 0

)
= 1 + log 7− 6

7
log 3 > 1 +

log 7

2
(12)

The desired result now follows by noticing that the last quantity in (12) is equal to 1 + 1
2 log p.

Case 7. p = 8, ñ ∈ {6, 7, 8}.
By Fact 2 and the assumption 3 ≥ dC(v1) ≥ · · · ≥ dC(v6) > 0, we have that

H

(
dC(v1)

2p
, . . . ,

dC(vn)

2p

)
≥ H

(
3

16
,

3

16
,

3

16
,

3

16
,

3

16
,

1

16
, 0, . . . , 0

)
= 4− 15

16
log 3 > 1 +

3

2
(13)

The desired result now follows by noticing that the last quantity in (13) is equal to 1 + 1
2 log p.
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4 Hardness of Approximation of PMWIPEnt

The goal of this section is to establish our main result.

Theorem 1. PMWIPEnt is APX-Hard.

This section is split into two subsections. In Section 4.1 we present a gap preserving reduction
from vertex cover to our clustering problem. In Section 4.2 we establish its correctness.

4.1 A Gap Preserving Reduction

We start by recalling some basic definitions and facts that are useful for establishing limits on the
approximability of optimization problems (see, e.g., [34, chapter 29]).

Given a minimization problem A and a parameter ε > 0 we define the ε-Gap-A problem as the
problem of deciding for an instance I of A and a parameter k whether: (i) I admits a solution of
value ≤ k; or (ii) every solution of I have value > (1 + ε)k. In such a gap decision problem it is
tacitly assumed that the instances are either of type (i) or of type (ii).

Fact 4. If for a minimization problem A there exists ε > 0 such that the ε-Gap-A problem is
NP -hard, then no polynomial time (1 + ε)-approximation algorithm exists for A unless P = NP.

We will use the following definition of a gap-preserving reduction.

Definition 1. Let A,B be minimization problems. A gap-preserving reduction from A to B is a
polynomial time algorithm that, given an instance x of A and a value k, produces an instance y of
B and a value κ such that there exist constants ε, η > 0 for which

1. if OPT (x) ≤ k then OPT (y) ≤ κ;

2. if OPT (x) > (1 + ε)k then OPT (y) > (1 + η)κ;

Fact 5. Fix minimization problems A,B. If there exists ε such that the ε-Gap-A problem is NP -
hard and there exists a gap-preserving reduction from A to B then there exists η such that the
η-Gap-B problem is NP -hard

We will now specialize the above definitions for a restricted variant of the problem of finding a
minimum vertex cover in a graph and for our clustering problem PMWIPEnt.

Definition 2. For every ε > 0, the ε-Gap-MinVC-4 (gap) decision problem is defined as follows:
given a 4-regular graphs G = (V,E) and an integer k, decide whether G has a vertex cover of size
k or all vertex covers of G have size > k(1 + ε).

Definition 3. For every η > 0, the η-Gap-PMWIPEnt (gap) decision problem is defined as follows:
given a set of vectors U , an integer k, and a value κ, decide whether there exists a k-clustering
C = (C1, . . . Ck) of the vectors in U such that the total impurity IEnt(C) =

∑k
`=1 IEnt(C`) is at most

κ or for each k-clustering C of U it holds that IEnt(C) > (1 + η)κ.

The following result is a consequence of [11, Theorems 17 and 19].

Theorem 2. [11] There are constants 0 < α < α′ < 1 and 4-regular graphs G = (V,E) such that
it is NP -Complete to decide whether G has a vertex cover of size α|V | or all vertex covers of G
have size > α′|V |. Hence for ε = α′

α − 1, the ε-Gap-MinVC-4 is NP-Complete.
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In order to show the APX-hardness of PMWIPEnt, we employ a gap-preserving reduction from
minimum vertex cover (MVC) in 4-regular graphs to PMWIPEnt. This reduction is obtained by
combining: (i) a gap-preserving reduction from MVC in 4-regular graphs to MVC in 4-bounded
degree triangle-free graphs [24]; (ii) an L-reduction from MVC in 4-bounded degree graphs to
MVC in 3-bounded degree graphs [5]; (iii) a gap-preserving reduction from instances of MVC in
3-bounded degree triangle-free graphs obtained via (i)-(ii) to instances of PMWIPEnt.

We will first recall the maps at the bases of the reductions (i) and (ii). The proofs that they
define gap-preserving reduction (Theorem 3) will be included in the appendix for the sake of self-
containment.

From 4-regular graphs to 4-bounded degree triangle-free graphs. Let G′ = (V ′, E′) be a
4-regular graph. Let n = |V ′| and m = |E′|. Hence m = 2n. Since in every graph there is a cut
containing at least half of the edges, we can select Ê ⊆ E′ with |Ê| = m/2 = n such that the graph
with vertex set V ′ and set of edges Ê is bipartite and, as a consequence, triangle-free. For each
e = (u, v) ∈ E′ \ Ê define a new set of vertices Ve = {u′, v′} and let

VH = V ′ ∪
⋃

e=(u,v)∈E′\Ê

Ve EH = Ê ∪
⋃

e=(u,v)∈E′\Ê

{(u, u′), (u′, v′), (v′, v)}

.
Finally let H = (VH , EH). In words, H is obtained from G′ by a double subdivision of the n

edges not in Ê.
By construction we have that the graph H has bounded degree 4 and it is also triangle-free.

Let R(1) be a function that maps a 4-regular graph G′ to a 4-bounded degree triangle-free graph
H according to the procedure defined above.

From 4-bounded degree graphs to 3-bounded degree graphs. Let H = (VH , EH) be a 4-
bounded degree graph and for each vertex v ∈ VH of degree 4, denote the neighbours of v by
w1, w2, w3, w4. Let G = (V,E) be the graph obtained from H by the following transformation: for
each vertex v ∈ VH of degree 4: substitute v with a three vertex path whose vertices are denoted
by va, vb, vc and add edges (va, w1), (va, w2), (vc, w3), (vc, w4).

Let R(2) be a function that maps a 4-bounded degree graph H to a 3-bounded degree graph G
according to the procedure defined above.

Fig. 1 shows an example of the successive application of maps R(1) and R(2) starting from a
4-regular graph G′ and obtaining a 3-bounded degree and triangle-free graph G.

Definition 4 (3-bounded degree triangle-free hard graphs). Let

GR(1),R(2) = {G = R(2)(R(1)(G′)) | G′ is a 4-regular graph }

be the set of 3-bounded degree triangle-free graphs obtained from some 4-regular graph by successively
applying functions R(1) and R(2).

The following result is a direct consequence of the properties of mappings R(1),R(2), and The-
orem 2. Its proof is deferred to the appendix.
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u v u v

G'=(V',E') H=(VH,EH) G=(V,E)

u' v'
w1

w2

v

w3

w4 w1

w2 w3

w4

va
vb vc

Figure 1: The transformations R(1) and R(2). On the left the graph G′ = (V,E′) with the cut set
Ê ⊆ E′ in bold. The center picture shows the corresponding graph H = R(1)(G′) obtained by the
double subdivision of the edges E′ \ Ê. On the right the graph G = R(2)(H) obtained by reducing
the degree of the 4 degree vertices, using the transformation depicted on top.

Theorem 3. There are constants 0 < β < β′ < 1 such that it is NP -hard to decide whether a
graph G = (V,E) ∈ GR(1),R(2) has a vertex cover of size β|V | or all vertex covers of G have size
> β′|V |.

From graphs in GR(1),R(2) to PMWIPEnt instances. Let G = (V,E) be a triangle-free and 3-

bounded degree graph from GR(1),R(2) , i.e., obtained from a 4-regular graph via successively applying

functions R(1),R(2). Denote by v1, . . . , vn the vertices in V . We construct (in polynomial time) a
set of |E| binary vectors U = {ve | e ∈ E}, each of them of dimension n, by stipulating that if
e = (vi, vj) then only the i-th and j-th components of ve are 1 and all others are 0.

We denote by R(3) a function that maps each graph in GR(1),R(2) to a set of vectors U as
described above.

Note that if EC is a set of edges in a graph G with C being its corresponding set of vectors
from U = R(3)(G) then we have that IEnt(EC) = IEnt(C) as defined in (6).

4.2 A gap preserving reduction based on R(3)

In this section, focussing on set of vectors U = R(3)(G) obtained from 3-bounded degree triangle-
free graphs via the mapping defined in the previous section, we show that there exist η and κ for
which it is hard to distinguish whether there is a k-clustering for U with total impurity smaller
than κ or all k-clusterings for U have impurity at least (1 + η)κ. In other words, we show that
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the gap problem η-Gap-PMWIPEnt is NP -hard and, as a consequence, by Fact 4, PMWIPEnt is
APX-Hard.

The proof will consists of two parts: first we show how to fix κ so that condition 1) of Definition
1 is satisfied—which we do in Lemma 2 and Corollary 1; and then we derive η so that condition 2)
of Definition 1 is also satisfied—which will be done via a series of propositions leading to Lemma
3.

Proving condition 1) of Definition 1. The following lemma, which is key for our development,
is based on establishing a relationship between minimal vertex covers and star decompositions in
our hard instances for 3-bounded graphs, i.e., graphs from GR(1),R(2) .

Given a graph G and the set of vectors U = R(3)(G) we will find it convenient to visualize
vectors in U in terms of their corresponding edges in G. Therefore, for a subset of C ⊆ U we will
say that C is a p-star if the corresponding set of edges form a star in G, i.e., if |C| = p and there
exists a coordinate j ∈ [n] such that for each vectors ve ∈ C the jth components of ve is 1.

Lemma 2. Let G = (V,E) be a triangle-free 3-bounded degree graph in GR(1),R(2) and let U =

R(3)(G) be the corresponding set of vectors obtained as described in the previous section. If G has
a minimal vertex cover of size k then there is a k-clustering C of U where each C ∈ C is either a
2-star or a 3-star.

Proof. Let G′ = (V ′, E′) be the 4-regular graph from which we derived G, i.e., G = R(2)(R(1)(G′)).
Recall that each vertex v of G′ is replaced with 3 vertices va, vb and vc in G and there exists a set
of |V ′|/2 edges Ê ⊆ E′ such that each edge uv /∈ Ê is replaced with the path uu′v′v.

We first argue that if G admits a minimal vertex cover of size k then there exists a minimal
vertex cover S for G, also with size k, that satisfies the following properties:

1. For a vertex v in G′ exactly one of the following conditions holds: (i) va, vc ∈ S and vb /∈ S
or (ii) va, vc /∈ S and vb ∈ S

2. For an edge e = uv ∈ E′ \ Ê exactly one vertex in the set {u′, v′} belongs to S

To see this, we will show that if S is a minimal vertex cover violating these properties then it
is possible to locally modify S in order to satisfy then both, hence becoming the desired S.

Let S be a minimal vertex cover of G. Let us first focus on property (1). Fix some vertex v
from G′. If vb /∈ S, then we must have va, vc ∈ S, for otherwise S does not cover the edges incident
in vb. If vb ∈ S we cannot have that both va and vc are in S, for otherwise S would not be minimal
since vb can be removed. Hence, if vb ∈ S at most one vertex in {va, vc} belongs to S. If this is the
case, i.e., S contains vb and exactly one vertex from {va, vc}, we can modify S by replacing vb with
the vertex between va and vc which is not in S. The resulting new S is a minimal vertex cover with
the same cardinality which also satisfies (1).

For property (2), let us fix an edge uv ∈ E′ \ Ê, and let u, u′, v′, v be the corresponding path in
G. We first note that at least one of the vertices u′, v′ must be in S, for otherwise S does not cover
edge u′v′. In addition, if both belong to S then neither u nor v can belong to S, for otherwise the
cover would not be minimal. In this case, however, we can replace v′ with v obtaining a minimal
cover with the same cardinality and satisfying (2).

In order to compute the desired clustering for U we work on the graph G1 obtained from G by
undoing the transformation R(1) that was employed to remove triangles from the 4-regular graph
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G′. More precisely, G1 = R(2)(G). Note that S1 = S ∩ V (G1) is a minimal cover from G1. In fact,
if va(vc) is in S1 then vb does not belong to S1 (item 1 above) so that we cannot remove va(vc).
Similarly, if vb ∈ S1 then va /∈ S1 so that we cannot remove vb from S1.

Now we build a star decomposition for G1 and then we transform it into a star decomposition
for G. For every vertex v ∈ S1 we will construct a set D1(v) consisting of the edges of the star
centred at v.

Let A = {vertices in S1 of degree 3 in G1} and B = {vertices in S1 of degree 2 in G1}. Note
that A consists of the vertices of type va or vc while B consists of those of type vb.

Initially, for every v ∈ S1 we add to D1(v) the edges that connect v to the vertices in V (G1)\S1.
Since S1 is a minimal cover, after this assignment, we have |D1(v)| ≥ 1 for every v ∈ S1. In addition,
we also have |D1(v)| = 2 for every node v ∈ B due to the item 1 above.

We then extend the sets D1(v) by applying the following procedure:

E1 ← edges with both endpoints in S1 (those not yet assigned to a set D1(v))
While there exists an edge e = uv ∈ E1, with |D1(v)| = 2 do

Remove e from E1 and add it to D1(u)

Let G′1 = (S1, E1), where E1 is the set of edges left unassigned at the end of the above procedure.
Let v ∈ A. If v is isolated in G′1 then |D1(v)| ≥ 2. Otherwise, if v is non-isolated, then its degree in
G′1 is 2. Thus, the non-isolated vertices in G′1 form a collection of disjoint cycles. Hence, for each
v in the cycle we add to D1(v) exactly one of the two edges incident to it. This way, we increase
the cardinality of each v in the cycle by 1 so that |D1(v)| ≥ 2 for every v ∈ S1, that is, they are
centres of stars of size at least 2.

From the star decomposition for G1 we can obtain a family of sets {D(v)}v∈V that will induce
a star decomposition for G as follows: initially, for v ∈ A∪B, we set D(v) = D1(v). Then, for each
e = uv ∈ E′ \ Ê we proceed as follows: if uv ∈ D1(u) we create a star centred at v′ with edges vv′

and v′u′ so that D(v′) = {vv′, v′u}. In addition, we set D(u) = (D(u) \ e) ∪ {uu′}.
Then, we define the clustering C of vectors in U by creating a cluster for each star in the

decomposition of G and putting in the cluster the vectors corresponding to the edges of the star it
represents.

Corollary 1. Let G = (V,E) be a triangle-free 3-bounded degree graph from GR(1),R(2), and let

U = R(3)(G) be the corresponding set of vectors obtained as described in the previous section.
If G has a minimal vertex cover of size k then there is a k-clustering C for U with impurity
IEnt(C) = 6k + 3(|U | − 2k) log 3.

Proof. Let C be the k-clustering given by Lemma 2 and let x and y denote the number of 2-stars
and 3-stars in C, respectively. Then 2x + 3y = |U | and x + y = k, whence, x = 3k − |U | and
y = |U | − 2k. Finally, from Fact 1 we have

IEnt(C) = 6x+ y (6 + 3 log 3) = 6k + 3(|U | − 2k) log 3.

The consequence of the last corollary is that when A denotes the problem of finding the minimum
vertex cover of a graphs in GR(1),R(2) and B denote the problem PMWIPEnt, the reduction that

maps a graphs G = (V,E) ∈ GR(1),R(2) to the instance (U, k) of PMWIPEnt defined by U = R(3)

satisfies property 1 in Definition 1, with κ = 6k + 3(|E| − 2k) log 3.
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Proving condition 2) of Definition 1. We now want to show that when the minimum vertex
cover of the graph G has size at least k(1 + ε) then the impurity of every k-clustering is at least a
constant times larger than 6k+3(|U |−2k) log 3, which is the impurity of the clustering in Corollary
1, which exists when the minimum vertex cover of G has cardinality ≤ k. This will imply that our
reduction satisfies also the second property in Definition 1.

In the following, C will denote a clustering of minimum impurity for the instance of PMWIPEnt
obtained via the reduction, when, for some constant ε > 0, the size of the minimum vertex cover
for G is at least k(1 + ε).

We will use the following notation to describe such a clustering C of minimum impurity.

• a: number of clusters in C consisting of a 3-star; we refer to these clusters as the a-group of
clusters;

• b: number of clusters in C consisting of a 2-star; we refer to these clusters as the b-group of
clusters;

• c: number of cluster in C consisting of a 1-star (single edge); we refer to these clusters as the
c-group of clusters;

• d: number of clusters in C consisting of 2 edges without common vertex (2-matching); we
refer to these clusters as the d-group of clusters;

• e: number of remaining clusters in C; we refer to these clusters as the e-group of clusters;

• q: number of edges in the e-group of clusters.

In the definitions above the letters a, b, c, d and e are used to denote both the size and the type
of a group of clusters. We believe this overloaded notation helps the readability.

In Fig. 2, we summarize the impurities of small clusters significant to our analyses, according
to the above grouping.

The following proposition will be useful in our analysis.

Proposition 1. Let x ≥ 2 and let n1,n2 be positive integers. We have that

n1(2x+ x log x) + n2(2(x+ 1) + (x+ 1) log(x+ 1)) ≥ (n1 + n2)(2x+ x log x),

where x = (n1x+ n2(x+ 1))/(n1 + n2).

Proof. It is enough to prove that

n1x log x+ n2(x+ 1) log(x+ 1) ≥ (n1 + n2)x log x.

This inequality follows from Jensen inequality since f(x) = x log x is convex in the interval [2,∞]

The next two propositions give lower bounds on the sum of the impurities of the clusters in the
e-group.

Proposition 2. The total impurity of the clusters in the e-group is at least 2q + (q/e) log(q/e).
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Figure 2: The types of small clusters C of edges, |C| ≤ 3 that we can have from a triangle-free
graph, together with the corresponding impurity IEnt(C). The numbers on the vertices form the
distribution q such that IEnt(C) = 2|C| ·H(q) as in (6).

Proof. Let C1, . . . , Ce be the clusters in the e-group. Note that each one of these clusters has
cardinality ≥ 3. Let p = bq/ec. Then, we have p ≥ 3. Suppose that there exist clusters Ci, Cj such
that |Ci| = x and |Cj | = y with y > x+ 1. Let C ′i be an (x+ 1)-star and C ′j be a (y− 1)-star, then
we have

IEnt(Ci) + IEnt(Cj) ≥ 2x+ x log x+ 2y + y log y

≥ 2(x+ 1) + (x+ 1) log(x+ 1) + 2(y − 1) + (y − 1) log(y − 1)

≥ IEnt(C
′
i) + IEnt(C

′
j),

where the first inequality follows from Lemma 1, the second inequality holds true for each 3 ≤ x ≤
y − 2 and the last inequality follows from Fact 1.

The above inequality says that if we replace Ci, Cj with C ′i, C
′
j , the impurity of the resulting

set of e clusters is not larger than the impurity of the original e-group. Moreover, the total number
of edges has not changed. By repeated application of such a replacement we eventually obtain a
group of e clusters C̃ = {C̃1, . . . , C̃e} each of cardinality p or p+ 1 and containing in total e edges
and such that

∑
i=1 IEnt(Ci) ≥

∑
i=1 IEnt(C̃i). In particular, the total impurity of such clusters is

not larger than the total impurity of the original e clusters. Note that these new e clusters need
not exist and are only used here for the sake of the analysis.

Let n1 be the number of clusters in C̃ with p edges and n2 be the number of clusters in C̃ with
p+ 1 edges and let p = n1p+n2(p+1)

n1+n2
. Then, q = n1p+ n2(p+ 1) and e = n1 + n2, hence p = q/e.
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Finally, by applying Proposition 1, we have the desired result:

e∑
j=1

IEnt(Ci) ≥
e∑
j=1

IEnt(C̃i)

= n1(2p+ p log p) + n2(2(p+ 1) + (p+ 1) log(p+ 1))

≥ (n1 + n2)(2p+ p log p) = 2q +
q

e
log

q

e
.

The following fact that can be proved by inspecting a few cases will be useful.

Fact 6. If a cluster C has 3 edges and it is neither a 3-star nor a triangle then its impurity is at
least 2 + 6 log 3

Proposition 3. If q < 4e then the total impurity of the clusters in the e-group is lower bounded
by 16(q − 3e) + (4e− q)× (2 + 6 log 3)

Proof. We first consider the case where every cluster in the e-group has either 3 or 4 edges. Let x
and y be the number of clusters with 3 and 4 edges, respectively. Since x+ y = e and 3x+ 4y = q
we get that x = 4e− q and y = q− 3e. It follows from Lemma 1 that the impurity of a cluster with
4 edges is at least 16. Moreover, since triangles and 3-stars are not allowed in a e-group, it follows
from Fact 6 that the impurity of a cluster with 3-edges is at least (2 + 6 log 3). Thus, in the case
under consideration, the total impurity is lower bounded by 16(q − 3e) + (4e− q)× (2 + 6 log 3).

Thus, it suffices to show that the e-group with q edges and minimum impurity has only clusters
with 3 or 4 edges. Let us assume for the sake a contradiction that the e-group with minimum
impurity has one cluster C with r > 4 edges. In this case, there exist r − 3 clusters of cardinality
3 in the e-group, for otherwise the average cardinality would be ≥ 4, violating the assumption
q < 4e. Let D1, . . . Dr−3 be these clusters. Moreover, let C ′ be a 3-path structure and D′1, . . . D

′
r−3

be 4-stars. We have

|C ′|+
r−3∑
j=1

|D′j | = 3 + 4(r − 3) = r + 3(r − 3) = |C|+
r−3∑
j=1

|Dj |. (14)

Furthermore, by definition clusters of cardinality 3 that are in the e-group are not 3-stars. Thus,
by Fact 6 we have that for each i = 1, . . . r − 3, it holds that IEnt(Di) ≥ 2 + 6 log 3 and by Lemma
1, it holds that IEnt(C) ≥ 2r + r log r. Then

IEnt(C) +
r−3∑
j=1

IEnt(Dj) ≥ 2r + r log r + (r − 3) (2 + 6 log 3)

> (2 + 6 log 3) + 16(r − 3)

= IEnt(C
′) +

r−3∑
i=1

IEnt(D
′
i),

where the second inequality holds for each r > 4.
The above inequalities together with (14) say that if we replace C,D1, . . . Dr−3 with C ′, D′1, . . . D

′
r−3,

the impurity of the resulting set of e clusters is smaller than the impurity of the original set of e
clusters. Moreover, the total number of edges does not change. Thus, we reach a contradiction,
which establishes the proof.
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Proposition 4. If the minimum vertex cover for G has size at least k(1 + ε) then the following
inequality holds: c+ d+ q ≥ kε/2.

Proof. If it does not hold we could construct a vertex cover of size smaller than k(1+ε) by selecting
a vertices to cover the edges of the 3-stars, b vertices to cover the edges of the 2-stars and one vertex
per edge of the other clusters. The number of edges in these other clusters is c+ 2d+ q. Hence, we
must have a+ b+ c+ 2d+ q ≥ k(1 + ε). Since a+ b ≤ k we conclude that c+ d+ 2q ≥ kε, so that
c+ d+ q ≥ c/2 + d/2 + q ≥ kε/2

Let C(k) denote the k-clustering only consisting of 2-stars and 3-stars described in Lemma 2 and
Corollary 1, which exists when the minimum vertex cover of the graph G has size ≤ k.

We will now show that, if the minimum size of a vertex cover for G is at least k(1 + ε) then the
impurity of the minimum impurity clustering C (for the instance obtained via the reduction) is at
least a constant factor larger than the impurity of C(k).

Lemma 3. Let G = (V,E) be a triangle-free and 3-bounded degree graph and let U = R(3)(G) be
the corresponding set of vectors obtained as described in section 4.1 above. If every vertex cover
in G has size ≥ k(1 + ε), then there exists a constant η > 0 such that IEnt(C) ≥ κ(1 + η), where
κ = IEnt(C(k)).

Proof. Let E be the sum of the impurities of the clusters in the e-group. Then, the impurity of C
is given by

IEnt(C) = (6 + 3 log 3)a+ 2c+ 8d+ 6b+ E (15)

Since a + b + c + d + e = k and 3a + 2b + c + 2d + q = |U | we get that a = c + 2e + |U | − q − 2k
and b = 3k − |U | − 2c− d− 3e+ q. Replacing a and b in the righthand side of 15 we get that

IEnt(C) ≥ (3 log 3− 4)c+ 2d+ (6 log 3− 6)e− (3 log 3)q + (3 log 3)|U |+ (6− 6 log 3)k + E

Thus,
IEnt(C)− IEnt(C(k)) ≥ (3 log 3− 4)c+ 2d+ (6 log 3− 6)e− (3 log 3)q + E

Let ∆ = IEnt(C)−IEnt(C(k)). We split the analysis into two cases according to whether p = q/e ≥ 4
or p = q/e ≤ 4
Case 1 p ≥ 4. In this case,

∆ ≥ (3 log 3− 4)c+ 2d+ [(log p+ 2− 3 log 3)p+ 6(log 3− 1)]e (16)

= (3 log 3− 4)c+ 2d+ (log p+ (2− 3 log 3) +
6(log 3− 1)

p
)q (17)

≥ (2.5− 1.5 log 3)(c+ d+ q) (18)

≥ (1.25− 0.75 log 3)kε (19)

where the inequality (17)-(18) holds because function f(x) = (2 − 3 log 3) + log x + 6(log 3 − 1)/x
is increasing in the interval [4,∞] and f(4) = 2.5 − 1.5 log 3. The last inequality follows from
Proposition 4.
Case 2 p < 4. We have that
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∆ ≥ (3 log 3− 4)c+ 2d− (3 log 3)q + (6 log 3− 6)e+ E (20)

≥ (3 log 3− 4)c+ 2d+ (30 log 3− 46)e+ (14− 9 log 3)q (21)

≥ (3 log 3− 4)c+ 2d+ (2.5− 1.5 log 3)q (22)

≥ (2.5− 1.5 log 3)(c+ d+ q) (23)

≥ (1.25− 0.75 log 3)kε (24)

where (21) follows from (20) due to the lower bound on E given by Proposition 3, (22) follows from
(21) because q < 4e and the last inequality follows from Proposition 4.

From the inequalities (16)-(19) and (20)-(24) we have

IEnt(C)
IEnt(C(k))

≥ IEnt(C(k)) + (1.25− 0.75 log 3)kε

IEnt(C(k))
≥ 1 +

(1.25− 0.75 log 3)ε

(6 + 3 log 3)
,

where the last inequality follows because IEnt(C(k)) = 6k + 3(|U | − 2k) log 3 and |U | ≤ 3k so that
IEnt(C(k)) ≥ (6 + 3 log 3)k. Thus, we can set

η =
(1.25− 0.75 log 3)ε

(6 + 3 log 3)
, (25)

Proof of Theorem 1. Let 0 < β < β′ be the constant in Theorem 3 and ε = β′

β − 1.
By the previous lemma, there exists an η = η(ε) > 0 (as in (25)) such that for every graph

G = (V,E) ∈ GR(1),R(2) and k, the set of vectors U = R(3)(G) produced according to our reduction
is such that if G has a vertex cover of size ≤ k then U has a k-clustering of impurity ≤ κ and if all
vertex covers of G have size > (1 + ε)k then all k-clustering of U have impurity > (1 + η)κ, where
κ = 6k + 3(|E| − 2k) log 3

This, together with Theorem 3 implies that the η-Gap-PMWIPEnt is NP-hard. Hence, by Fact
4, if P 6= NP there is no polynomial time (1 + η)-approximation algorithm for PMWIPEnt.

The same arguments in our reduction can also be used to show the inapproximability of instances
where all vectors have `1 norm equal to any constant value, and in particular 1, i.e., the case where
PMWIPEnt corresponds to MTCKL. In summary we have the following.

Corollary 2. MCTKL is APX-Hard.

5 Conclusions

In this paper we proved that PMWIPEnt is APX-Hard even for the case where all vectors have the
same `1-norm. This result implies that MTCKL is APX-Hard resolving a question that remained
open in previous work [10, 2]. Since there exist logarithmic approximations for both PMWIPEnt
and MTCKL (under different parameters) [10, 13], the main question that remains open is whether
a constant approximation factor for these problems is possible.
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Proof of Theorem 3

Proof. The proof consists in showing that we can obtain a gap preserving reduction from ε-Gap-
MinVC-4 by composition of the function R(1) and R(2) defined in Section 4.1.

Let G′ = (V ′, E′) be a 4-regular graph. Let n = |V ′| and m = |E′|. Hence m = 2n. Let
H = (VH , EH) = R(1)(G′). By definition, H has bounded degree 4 and it is also triangle-free. Let
N = |VH | and M = |EH |. We have N = 3n and M = 4n.

With reference to the definition of the function R(1) in the Section 4.1, let Ê be the set of n
edges from E′ such that the graph Ĝ = (V̂ , Ê) induced by Ê is bipartite and H is obtained from
G′ by a double subdivision of the edges in E′ \ Ê.
Observation 1. Let A′ ⊆ V ′ be a minimal vertex cover of G′. Then, AH = A′∪

⋃
e=(u,v)∈E′\Ê{f(e)}

with

f(e) =

{
v′ u ∈ A′

u′ u /∈ A′

is a minimal vertex cover of H of size |A′|+ n.

Observation 2. Let AH be a minimum size vertex cover of H. Then, for each e = (u, v) ∈ E′ \ Ê we
have that if both u′ and v′ are in AH then neither u nor v are in AH , for otherwise, the minimality
of AH would be violated. Let Ẽ = E′ \ Ê. Then, the set

A′H =

AH \ ⋃
e=(u,v)∈Ẽ|u′,v′∈AH

{u′, v′}

 ∪ ⋃
e=(u,v)∈Ẽ|u′,v′∈AH

{u, v′}

is a vertex cover of H of size equal to |AH |, hence minimum.
Notice that for every edge e = (u, v) ∈ Ẽ exactly one vertex between u′ and v′ and at least one

between u, v is contained in A′H . Therefore A′ = A′H ∩ V ′ is a vertex cover of G′ of size |A′H | − n.
Moreover, A′ is a minimum size vertex cover of G′ for otherwise (by Observation 1) there would be
a vertex cover of H of size smaller than |A′|+ n = |AH |.

Putting together the above observations, we have the following.
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Claim 1. For 0 < α < α′, if G′ has a (minimum) vertex cover of size αn then H has a vertex cover
of size (α + 1)n = α+1

3 N ; and if all vertex covers of G′ have size > α′n then every vertex cover of

H has size > (α′ + 1)n = α′+1
3 N .

Now let G = (V,E) = R(2)(H). Since H has n = N/3 vertices of degree 4 and G is obtained from
H by adding, for each vertex of degree 4 in H, two new vertices and two new edges, we have that
|V | = |VH |+ 2n = 5n = (5/3)N and |E| = |EH |+ 2n = 6n = 2N = (6/5)|V |.

Observation 3. Let CH be a vertex cover of H. Let CH(4) be the set of vertices of H which have
degree 4 and are in CH . Let UH(4) be the set of vertices of H of degree 4 which are not in CH .
Then there is a vertex cover C of G defined by

C = (CH \ CH(4)) ∪
⋃

v∈CH(4)

{va, vc} ∪
⋃

v∈UH(4)

{vb},

and |C| = |CH | − |CH(4)| + 2|CH(4)| + |UH(4)| = |CH | + |CH(4)| + |UH(4)| = |CH | + N/3, since
the number of vertices in H of degree 4 is equal to N/3.

Observation 4. Let C be a minimum size vertex cover of G. Notice that for each v ∈ VH of degree
4 either |{va, vb, vc}∩C| = 2 or {va, vb, vc}∩C = {vb}. Then, let VH(4) be the set of vertices in VH
of degree 4. We have that, setting

C− =
⋃

v∈VH(4)
|{va,vb,vc}∩C|=2

({va, vb, vc} ∩ C) ∪
⋃

v∈VH(4)
{va,vb,vc}∩C={vb}

{vb}

and
C+ =

⋃
v∈VH(4)

|{va,vb,vc}∩C|=2

{v},

the set of vertices
CH = (C \ C−) ∪ C+

is a vertex cover of H of size |CH | = |C| − |VH(4)| = |C| −N/3.
By using the same argument employed before (counter-positive) if all vertex covers of H have

size > cN , for some constant 0 < c < 1, then every vertex cover of G have size > (c+ 1/3)N.

Putting together Claim 1 and Observations 3 and 4 we have the following.

Claim 2. If G′ has a (minimum) vertex cover of size αn then G has a vertex cover of size α+2
3 N =

α+2
5 |V |. Moreover, if all vertex covers of G′ have size > α′n then every vertex cover of G has size

> α′+2
3 N = α′+2

5 |V |.

Fix β = α+2
3 and β′ = α′+2

3 , with α, α′ from Theorem 2. By Claim 2 and Theorem 2, we have
that there are constants 0 < β < β′ < 1 such that it is NP -hard to decide whether a triangle-free
3-bounded degree graphs G = (V,E) in family GR(1),R(2) has a vertex cover of size β|V | or all vertex
covers of G have size > β′|V |. The proof is complete.
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