
Decoding toric codes on three dimensional simplical complexes

Arun B. Aloshious and Pradeep Kiran Sarvepalli
Department of Electrical Engineering
Indian Institute of Technology Madras

Chennai, India 600 036

Abstract

Three dimensional (3D) toric codes are a class of stabilizer codes with local checks and come under
the umbrella of topological codes. While decoding algorithms have been proposed for the 3D toric code
on a cubic lattice, there have been very few studies on the decoding of 3D toric codes over arbitrary
lattices. Color codes in 3D can be mapped to toric codes. However, the resulting toric codes are not
defined on cubic lattice. They are arbitrary lattices with triangular faces. Decoding toric codes over an
arbitrary lattice will help in studying the performance of color codes. Furthermore, gauge color codes
can also be decoded via 3D toric codes. Motivated by this, we propose an efficient algorithm to decode
3D toric codes on arbitrary lattices (with and without boundaries). We simulated the performance of
3D toric code for cubic lattice under bit flip channel. We obtained a threshold of 12.2% for the toric
code on the cubic lattice with periodic boundary conditions.

1 Introduction

Three dimensional (3D) toric codes [5, 11] are a class of topological quantum codes. They are defined
on lattices in three dimensions. Although the generalization of toric codes to 3D has been known for
quite sometime, they have not been investigated as much as their 2D counterparts. In fact, very little is
known about 3D toric codes on lattices other than the cubic lattice. We do not know if the toric code
on the cubic lattice is the best code among the 3D toric codes. There are many aspects of these codes
which merit further study [1, 16, 17]. In this paper, we focus on one of these aspects, namely, the problem of
efficiently decoding 3D toric codes on arbitrary lattices. There are at least two compelling reasons to study
this problem which we discuss below.

Most of the previous work on the decoding of 3D toric codes has been related to toric code on the
cubic lattice. It was known for a long time that the minimum weight perfect matching algorithm could be
used to efficiently decode the phase flip errors on any 3D toric code [8]. The main challenge in decoding a
3D toric code is the correction of the bit flip errors. For a special case like the cubic lattice, decoders have
been proposed for bit flip errors [9, 15]. For arbitrary lattices correcting bit flip errors was not addressed
until recently [3,13]. So for the rest of the discussion we assume that we are discussing the decoder for bit
flip errors. The problem poses interesting and additional challenges not encountered in the 2D setting.
Efficient decoding algorithms for arbitrary lattices will also enable a comparative study of various 3D
toric codes to determine which code has the highest threshold.

Another reason comes from the fact that 3D color codes can be mapped to 3D toric codes [2, 12, 14].
The toric codes that arise out of these mappings are not defined on cubic lattices. For instance, the
mapping in [2] leads to toric codes on lattices where the faces are always triangular, in contrast to the
cubic lattice where the faces are square. In order to decode the 3D color codes via these mappings, we
must be able to decode 3D toric codes on arbitrary lattices. Further, not only the 3D color codes, but

1

ar
X

iv
:1

91
1.

06
05

6v
1 

 [
qu

an
t-

ph
] 

 1
4 

N
ov

 2
01

9



certain subsystem codes such as the gauge color codes [18–20] can also be decoded via 3D toric codes [2].
These codes provide yet another reason to study the decoding of 3D toric codes on arbitrary lattices.

Contributions. In this paper, we propose a decoder for a 3D toric on an arbitrary lattice. We consider
lattices with periodic boundary conditions as well as those with boundaries. Our approach is inspired
by the decoder for 2D toric codes proposed by Delfosse et al. [6]. It works by mapping the bit flip error
model into erasure model and then decoding the error as an erasure error. There are multiple challenges
in making the generalization from 2D to 3D. Primarily, the topological structure of error operators as well
the stabilizer and logical operators in 3D is different from that of 2D. Here we deal with surfaces and not
chains (paths) as in the case of 2D. We will discuss the challenges and our contributions in more detail
in subsequent sections. Our decoder resulted in a threshold of ' 12.2% for the toric codes on the cubic
lattice. We also simulated this decoder for a non-cubic lattice that arises in the context of stacked color
codes. Here we observed a threshold of about ≈ 13.3% for bit flip channel.

Previous work. We now briefly discuss related previous work for arbitrary lattices. Kubica et al. [13]
proposed a generalization of the Toom’s rule for decoding toric codes on D-dimensional lattices. This has
been called the sweep decoder therein. The sweep decoder is applicable to toric codes on D-dimensional
lattices where D ≥ 2, while our decoder is specifically for 3D toric codes. However, the sweep decoder can
be applied only for certain lattices called causal lattices. It is possible to check whether a lattice is causal
when it is translation invariant. it has been noted in [13, Appendix B] that it is “challenging” to verify if
an arbitrary lattice is causal. Our decoder is applicable for noncausal lattices also as our algorithm does
not make the assumptions made for a lattice to be causal.

Breuckmann et al. [3] proposed a neural network based decoder for the 3D toric code. In principle, it
is possible to use neural network based decoders proposd by them for any stabilizer code, but a numer-
ical study maybe required to validate its usefulness and performance. For codes of short length, neural
decoders offer an attractive alternative. The decoding complexity of the neural decoder is cubic while
the proposed decoder is quadratic, but it can be made almost linear. Furthermore, for longer codes and
lattices that are not translation invariant, neural network decoders could have significant training cost
affecting the complexity of the decoder.

Sullivan [22] proposed a linear programming approach for finding an oriented minimal surface given
an oriented boundary. As noted by the authors of [9] these results could be used to decode 3D toric codes.

On the cubic lattice we obtain a threshold of ' 12.2%, while Kubica et al. obtained a threshold of
14.2%. A higher threshold of 17.2% was obtained by Duivenvoorden et al. [9] while Breuckmann et al.
obtained 17.5% possibly, because these decoders are tailored to the cubic lattice.

Overview. This paper is organized as follows: In Section 2, we briefly review 3D toric codes. In
Section 3, we describe the intuition behind our decoder. We develop a decoding algorithm for the 3D
toric codes with boundaries in Section 4. In Section V, we generalize the decoder to toric codes with
periodic boundary conditions. Finally, in Section VI, we discuss the simulation details and complexity of
our algorithm.

2 Background

The single qubit Pauli group P is defined as follows:

P = {icXαZβ | c ∈ {0,1,2,3};α,β ∈ {0,1}}, (1)

where X, Y Z are the Pauli matrices given by

X =
(

0 1
1 0

)
,Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
(2)

2



A Pauli operator on n qubits is given by E = E1 ⊗ E2 · · · ⊗ En with Ej ∈ P for all j. Let P n denote the
collection all such n-qubit Pauli operators. Pauli operators either commute or anti-commute, hence, for
any P ,P ′ ∈ P n, P P ′ = ±P ′P . We define the support of a Pauli operator E to be the set of qubits on which
the operator acts nontrivially.

supp(E) = {i;Ei , I} (3)

The weight of an operator E is the number of qubits over which E acts nontrivially.

wt(E) = |supp(E)| (4)

A single bit (phase) flip error on ith qubit is denoted as Xi (Zi).
A quantum code code Q is a subspace of the 2n-dimensional complex vector space C

2n . Quantum
stabilizer codes are a class of codes defined by an abelian subgroup S ⊂ P n, where −I < S . In this case the
codespace Q is defined as follows:

Q =
{
|ψ〉 ∈ C2n | S |ψ〉 = |ψ〉 for all S ∈ S

}
. (5)

The subgroup S is called the stabilizer of the code and elements of S stabilizers. Each stabilizer is like
a parity check. Any Pauli error E commutes or anti-commutes with the stabilizer elements. If the error
E commutes with the stabilizer, then we say the syndrome corresponding to that stabilizer is zero. If E
anti-commutes with a stabilizer then the syndrome corresponding to that stabilizer is one.

The elements from the centralizer of S , i.e., the subgroup of Pauli operators which commute with
all the elements of S , cannot be detected by any of the stabilizers. These operators are either stabilizers
which act trivially or logical operators which act nontrivially in the code space. When performing error
correction, it is not necessary to find the exact error that occurred. It is sufficient to find an error that
differs by a stabilizer. The exact decoding problem is to find the most probable class of errors that is
consistent with the observed syndrome. In practice, we often try to find the most likely error up to a
stabilizer generator. We refer the reader to [4, 10] for more details on stabilizer codes.

2.1 3D Toric code

Let Γ be a lattice in 3D. We denote the vertices of Γ as C0(Γ ), edges as C1(Γ ), faces as C2(Γ ) and volumes
as C3(Γ ). The set of edges in the boundary of any face f is given by ∂(f ). We also denote the set of faces
in the boundary of a volume ν by ∂(ν), and the set of vertices in boundary of edge e is given by ∂(v). Let
ι(e) denote the faces incident on e. We denote by A4B the symmetric difference between two sets A and B
given by

A4B = {a ∈ A∪B;a < A∩B}. (6)

Note that the symmetric difference is associative. We can extend the operators ∂ and ι to appropriate
collections of edges, faces and volumes. For a set of volumes V , set of faces F and set of edges E, we
define the boundary operators ∂(V ), ∂(F) and co-boundary ι(E) as

∂(V ) = 4
ν∈V

∂(ν), (7)

∂(F) = 4
f ∈F

∂(f ), (8)

ι(E) = 4
e∈E
ι(e). (9)

A 3D toric code on is a stabilizer code defined on a 3D lattice Γ . Qubits are placed on faces of Γ . Two
types of stabilizer generators are defined, one of X type attached to volumes and one of Z type attached

3



to faces. For each edge e in C1(Γ ), we have a Z type stabilizer Be and for each volume ν in C3(Γ ), we have
a X type stabilizer Aν where Be and Aν are given by

Be =
∏

f :e∈∂(f )

Zf =
∏
f ∈ι(e)

Zf (10)

and
Aν =

∏
f ∈∂(ν)

Xf , (11)

where Xf and Zf are Pauli operators acting on the qubit placed on the face f and identity elsewhere. The
stabilizer generators of the toric code on the cubic lattice are shown in Fig. 1.

(a) (b)

Figure 1: Stabilizer generators of a 3D toric code. We allow for boundaries. Qubits are placed on faces. The faces
can have half edges in their boundary. (a) A X type stabilizer attached to an edge. The shaded faces show the
support of the stabilizer. These are faces incident on that edge. (b) A Z type stabilizer attached to a volume. The
support of the stabilizer is the boundary of the volume.

The decoding problem on a toric code can be split into decoding of bit flip (X) errors and phase flip
(Z) errors separately, as it is a Calderbank-Steane-Shor (CSS) code [4].

Decoding of Z errors in 3D toric code can reduced to the graph matching problem in a complete
graph. Efficient algorithms are known which perform well. Therefore, we focus on the decoding of the
bit flip errors in this paper.

Bit flip errors are detected by Z type stabilizer generators Be. A single qubit error on a face causes
nonzero syndrome on the boundary of the face. So the syndrome will be nonzero on the edges in ∂(f ).
Since qubits can be uniquely associated to faces, we also say the boundary of a qubit without confusion.

In general, a bit flip error E creates a nonzero syndrome on the edges of the lattice. These are precisely
the edges e whose stabilizer generators Be anticommute with the error E. A collection of edges σ form a
cycle if the vertices incident on the edges have an even number of edges from the collection. A cycle is
said to be simple if all the vertices in the cycle have degree two and are connected.

Under periodic boundary conditions, the nonzero syndrome corresponds to a collection of edges
which form a union of (simple) cycles in the lattice. In case there are boundaries, the syndrome can
also be nonzero on edges which do not form a cycle.

Since Z type stabilizers and Z type logical operators commute with all the X type stabilizers, they will
produce a nonzero syndrome. So an error E and EM, where M is a stabilizer or a logical operator will
lead to the same syndrome.

The decoding problem is to estimate the error which caused the observed syndrome. In graphical
terms this is equivalent to finding a set of faces whose boundary is the collection of edges with nonzero

4



syndrome. The estimate need not be the exact set of faces on the error occurred. It suffices if the estimate
is equivalent to the original error up to a stabilizer. In graphical terms this means that the boundary of
error estimate and the original error is a closed volume of trivial homology. The minimum weight decoder
for bit flip error in 3D toric code is described as follows:

Ê = argmin
F⊆C2(Γ )

|F| such that SE = ∂(F) (12)

3 Intuition behind the decoding algorithm

Before we give the complete decoder, we give the intuition behind the decoding algorithm and illustrate
the main ideas by considering a simple error pattern. In a 3D toric code with periodic boundary condition,
the edges carrying a nonzero syndrome form a collection of simple cycles of trivial homology. They are
precisely the edges which form the boundary of faces (qubits) which are in error. Specifically, we consider
the case when the syndrome is a simple cycle. Suppose now that σ is a simple cycle and the boundary of
an error E. (The boundary of an error is the boundary of the support of that error i.e. ∂(E) = ∂(supp(E)).)

The decoding problem is to estimate an error that is equivalent to E up to a stabilizer. In graphical
terms this means we have to find a surface whose boundary is σ and which is homologically equivalent
to the original error. A simpler problem is to estimate an error that has the lowest weight (support) and
having the same boundary.

In general, there are an exponentially many errors with the same syndrome. More precisely, we have
2nx+k X type errors have same syndrome, where nx is number of independent X type stabilizer genera-
tors and k is the number of encoded qubits. Here the number of stabilizer generators nx grows linearly
with the length of the code. Given the boundary of the error i.e., the nonzero syndrome, there are four
components to our decoding algorithm. The corresponding steps are repeated to obtain an error estimate.

i) Exploring potential qubits in error.
ii) Freezing error on certain qubits.

iii) Terminate exploration.
iv) Peeling: Iterative estimation of error on qubits.

In the first step of our algorithm we identify the set of qubits, denoted E, that could have caused the
measured syndrome. At the least, this set must contain the qubits which participate in failed checks. So,
we initialize E with the set of faces (qubits) incident on the edges with the nonzero syndrome. However,
this set of qubits need not contain E or an equivalent error consistent the syndrome. So we need to
explore further, until we find a set of qubits which completely explains the syndrome. This motivates us
to explore the qubits further, and identify qubits which could explain the syndrome and then estimate
the error on them.

Suppose we have a set of potential candidates E. If this set supports a stabilizer, then there are two or
more solutions which are equivalent homologically. What this means is that some errors on some qubits
in E can be set to zero. However, we do not choose these qubits arbitrarily. Suppose that ς ⊆ E is the set
of qubits which support a stabilizer and q ∈ ς be the last qubit in that was added to E. We set the error on
q to be zero. We call this process freezing.

What freezing also does is to reduce the number of potential solutions. Every qubit that is frozen will
reduce the number of potential solutions by a factor of two. Instead of considering only stabilizers in the
support of E, we also consider logical operators. The reason for this is that if there is a logical operator
in the support of E, once again the error can be explained in two different ways. We repeat this process
until all the qubits have been considered as potential candidates for E.

Suppose that there are no more qubits left to explore. At this stage the error is unique, because
all solutions equivalent up to a stabilizer or a logical operator have been removed. There is exactly

5



(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Figure 2: (a) Two dimensional perspective of the decoder in which qubits are on faces and checks on edges. (b) a
valid syndrome (Thick edges shows non zero syndrome and other edges with zero syndrome), (c) and (d) are two
possible error support that are consistent with the non zero syndromes shown in (b). (e) shows faces that may be
in error because of highlighted non zero syndrome. (f),(g) and (h) are consecutive addition of faces to potential
solutions. In (h), we have one solution within the support but we do not have a simple test to verify. So continue
growing and reach till (i) after which the last face is marked as not in error because adding that face will make two
solution in the support.

one assignment of errors that will explain the syndrome. Mathematically speaking, at this juncture,
we have a system of linear equations with a unique solution. Such a system of equations can be solved by
first identifying the equations which involve exactly one variable. Then back substituting this variable’s
solution in other equations. This corresponds to the last step of the decoding, namely, peeling. Thus we
estimate the error iteratively.

4 Decoding 3D toric codes with boundaries

In this section we focus on 3D toric codes with boundaries, see Fig. 1 for an example of such a code. The
decoding ideas can be presented somewhat more simply for this case. First, we will take a closer look at
the 3D toric code with boundaries. Then following the discussion in previous section, we identify a set of
faces E such that there is exactly one error supported in E whose syndrome matches with the measured
syndrome. To find this set we start with an empty set and add faces to E such that the set contains exactly
one solution until all the qubits have been considered.

4.1 Toric codes with boundaries

In this section we consider 3D toric codes with boundaries from a slightly different perspective than
considered previously in literature. This perspective is useful in developing the decoding algorithm.
These codes do not have periodic boundary conditions in any direction.

The ideas presented here for these codes could be applied for codes with a combination of boundaries
and periodic boundaries.

6



Assumptions on the lattices. One can encode information by punching holes in the lattices. This creates
boundaries in the interior of the lattice.

In this paper we assume that the following conditions on the lattice Γ .
(L1) Γ does not have any boundaries in the interior.
(L2) The boundary of any face in Γ and Γ ∗ is a closed path or an open path starting and ending with partial

edges. See Fig. 3 for an illustration.
Note that we allow for partial edges in Γ . On the other hand, because of the assumption (L2) we do
not allow for faces of the form shown in Fig. 4 are not allowed. Specifically, we do not allow when the
boundary consists i) of a disjoint set of paths, ii) of an open path that terminates on vertices.

Figure 3: Allowable faces in Γ and Γ ∗. Note that a face can have partial edges in its boundary. If a face has partial
edges, then they must exactly two. A partial edge is incident on exactly one vertex.

Figure 4: Disallowed faces in Γ and Γ ∗.

We say two cells are adjacent to each other if they share a face. We say two volumes ν0 and νm are
connected if there is a sequence of volumes ν1, . . . , νi ,νi+1, . . . , νm−1 such that νi and νi+1 are adjacent to
each other for 0 ≤ i ≤m− 1. Let fi be a face adjacent to νi−1 and νi . The sequence of faces {fi}mi=1 is called
a face-path connecting ν0 and νm.

Definition 1 (Face path). A face path ρ is a sequence of faces {fi}mi=1 along with sequence of volumes Λ(ρ) =
{νi}m−1

i=1 such that fi , fi+1 ∈ ∂(νi) and for all i , j,νi , νj .

We say ρ is a face path from face f1 to face fm. We also say ρ is a face path from volume ν0 to νm if
f1 ∈ ∂(ν0), fm ∈ ∂(νm) and ν0,νm , νi for 1 ≤ i < m. If ν0 = νm, then we say the face path is a simple face
cycle. A more general notion of face cycles is as follows.

Definition 2 (Face cycle). We call a sequence of faces ρ as a face cycle if for all volumes ν, the faces of ∂(ν)
occurs even number of times in ρ and for all faces f in ρ , |ι(f )| = 2.

While a simple face cycle is always a face path, in general it is not necessary that a face cycle is a face
path. A face cycle is a face path if and only if such a face cycle is a simple face cycle.

The assumptions on the lattice which we stated earlier can be also formulated in terms of the face
paths. This reformulation makes some of the proofs easier. The assumptions on (faces of) Γ ∗ imply that
for all edges e in Γ , the set of faces ι(e) can be rearranged to be either a face cycle as in Fig. 5 or a face path
as in Fig. 5. We will not have edges of the form shown in Fig. 6.

7



f1
f2

f3

f6f4
f5

e

ν1ν2

ν3

ν4 ν5

ν6

f ′1
f ′2

f ′3

f ′6f ′4
f ′5

e

ν′1ν′2

ν′3

ν′4 ν′5

Figure 5: The assumption (L2) on the lattice implies that the edges of Γ must take the form shown in the figure.
More precisely, ι(e) must be a face path up to rearrangement of the faces. The green faces are incident on two
volumes while the gray faces are incident only on one volume. In ι(e), there are either zero or exactly two gray faces.

f ′1
f ′2

f ′3

f ′6f ′4
f ′5

e

ν′1ν′2

ν′4 ν′5

Figure 6: The assumption (L2) disallows certain edges, such as the edge e. Green faces are incident on two volumes.
Gray faces are incident on exactly one volume. Edges like e are not allowed in Γ because in Γ ∗, the face corresponding
to this edge will violate (L2).

If ι(e) is a face path, then it is a face path between two faces both of which are incident on exactly one
volume. Therefore, ι(e) contains exactly zero or two faces which are incident on only one volume.

Remark 3. If the lattice Γ satisfies the condition (L2), then for any edge e ∈ C1(Γ ), the set of faces in ι(e) can be
arranged to form a face path. So we say that ι(e) is a face path.

No boundaries in the interior of Γ implies that any face cycle ρ in Γ is the set of faces incident on a
collection of edges ρ = ι(A), for some A ⊆ C1(Γ ).

Remark 4. If Γ satisfies (L1), then any face cycle ρ in Γ implies ρ = ι(A), for some A ⊆ C1(Γ ).

Since a face is incident on at most two volumes, we can make the following observation.

Remark 5. Any face in the face path ρ is not incident on any volume other than the volumes in Λ(ρ)∪{ν0,νm}.

Note that there exist faces which are incident only on one volume. In a face path, these faces can occur
only as f1 or as fm. If f1 is incident on only one volume, then ν0 does not exist. This is because f1 is already
incident on ν1 by definition, therefore it cannot be incident on ν0. Similarly, if fm is incident on only one
volume, then νm does not exist.

Remark 6. An even number of faces from the face path are incident on any volume of Γ except ν0 and νm
provided ν0 and/or νm exist.

8



Remark 7. If two faces are connected in Γ , then the edges associated to those two faces form a path in Γ ∗ with f
and f ′ being the first and last edges of that path. As a consequence, if Γ ∗ is connected, then every pair of faces in
Γ are also connected by a face path.

Faces which are incident on only one volume play an important role in determining the number of
logical qubits encoded by the code. They can also used to define the X and Z logical operators. For this
reason, we will look at them closely. Let F be the set of faces, where each face is incident on only one
volume of Γ .

F = {f ∈ C2(Γ ) : |ι(f )| = 1} (13)

where ι(f ) is the set of volumes ν ∈ C3(Γ ) such that f ∈ ∂(ν).
We now define an equivalence relation on F . This allows us to define a canonical set of logical opera-

tors. Suppose a sequence of faces ρ = (f = f1, f2, . . . , fm = f ′) forms a face path between two faces f , f ′ We
denote the operator

W Z
f ,f ′ (ρ) =

m∏
i=1

Zfi (14)

Similarly, we can define the following operator for a face path ρ = (f1, . . . , fm) connecting two volumes ν
and ν′.

W Z
ν,ν′ (ρ) =

m∏
i=1

Zfi (15)

These operators W Z
f ,f ′ will be either logical operators or stabilizers if f and f ′ are in F . Lemma 8

makes this more precise.

Lemma 8 (Operators from face paths between boundaries). Let a 3D toric code be defined on a lattice Γ , and
F be defined as in Eq. (13). For any pair of faces f , f ′ ∈ F , and a face path ρ from f to f ′, the operatorW Z

f ,f ′ (ρ),
as in Eq. (14), is either a stabilizer or a logical operator.

Proof. From Remark 6, all volumes except ν0 and νm will have even number of faces from ρ. Since
f1, fm ∈ F , ν0 and νm do not exist for ρ. Thus any volume will have even number faces from ρ. Hence all
volume stabilizers will commute with the operator W Z

f ,f ′ (ρ). Therefore, W Z
f ,f ′ (ρ) must be a stabilizer or

logical operator.

Lemma 9 (Operators from simple face cycles). Let ρ be a simple face cycle from f to f ′ where f , f ′ are in
boundary of same volume. Then W Z

f ,f ′ is a stabilizer or a logical operator.

Proof. Any volume νi ∈ Λ(ρ) contains even number of faces fi , fi−1 ∈ ∂(νi), hence all Aνi commute with
W Z
f ,f ′ (ρ). All other volumes of Γ do not have any faces of ρ. Hence all volume stabilizers Aν commute with

the operator W Z
f ,f ′ (ρ). All edges stabilizers commute with W Z

f ,f ′ (ρ) because they are of Z type. Therefore

all stabilizers of the toric code commute with W Z
f ,f ′ (ρ). Hence W Z

f ,f ′ (ρ) must be a stabilizer or a logical
operator.

As we will see in Section 4.3, we need to know when a set of faces support a logical operator that
occurs on F . For this we need the following notion.

Definition 10 (Face equivalence). We say two faces f , f ′ ∈ F are equivalent if there exist a face path ρ between
f and f ′ such that W Z

f ,f ′ (ρ) is a stabilizer.

9



(a) (b)

Figure 7: (a) Set of all faces with degree one F (b) A partition of F into two different equivalence classes. Each
equivalence class is shown in a different color. Any two faces f , f ′ of same color are connected by a face path ρ such
that W Z

f ,f ′ (ρ), see Eq. (14), is a stabilizer.

We assume that any face f is equivalent to itself. Any face path ρ from face f to f ′ intersects at most
twice in F i.e., |ρ ∩ F | ≤ 2. If ρ intersects more than twice, then there exists a face fi ∈ F for 1 < i < m.
Any such face is incident on two distinct volumes νi−1 and νi contradicting that fi is in F .

Face equivalence gives rise to a partition of F .

F =
K⋃
j=1

Fj , (16)

where Fi ∩Fj = ∅ for distinct i and j. Let {Fj}Kj=1 be the partition of F under face equivalence. Then two
faces f , f ′ ∈ Fi are equivalent. The partition also helps define the logical operators of toric codes with
boundaries. First, we show the following lemma relating the operator W Z

f ,f ′ and logical operators.

Lemma 11. Let f ∈ Fi and f ′ ∈ Fj where i , j. Then for any face path ρ from f to f ′, the operator W Z
f ,f ′ (ρ) is a

Z-type logical operator.

Proof. By Lemma 8, we know that W Z
f ,f ′ (ρ) is a Z-type logical operator or a stabilizer. Suppose that it is

not a logical operator. Then f is equivalent to f ′. In that case, f and f ′ belong to Fi contradicting that f
and f ′ are in distinct equivalence classes Fi and Fj .

Next, we define the logical X operators. Given a set T ⊆ C2(Γ ), let us define XT as follows.

XT =
∏
f ∈T

Xf . (17)

Lemma 12. The operator XFi is an X type logical operator.

Proof. First we show that XFi commutes with all the Z type stabilizers. In other words XFi commutes
with Be for any edge e in C1(Γ ). By Remark 3, ι(e) is a face path or a face cycle. If ι(e)∩Fi = ∅, then there
is no overlap between Be and XFi , therefore they commute. Suppose not that ι(e)∩ Fi , ∅, then ι(e) is a
face path but not a face cycle. Further, the terminal faces of the face path should be from F . Since the
intermediate faces of a face path are incident on two volumes only these terminal faces are from F . Let
these terminal faces be f , f ′. Now f and f ′ are face equivalent, because the face path ι(e) from f to f ′

is exactly the stabilizer Be. Therefore, f , f ′ ∈ Fi , and XFi overlaps exactly twice with Be and it commutes
with Be. Thus XFi is a stabilizer or a logical operator.

Let f ∈ Fi and f ′ ∈ Fj , where i , j. Consider a face path ρ from f to f ′. (By assumption all our graphs
are connected and there exists a face path between any pair of faces f and f ′.) Note that the intermediate

10



faces of a face path should be incident on at least two volumes. Therefore, none of the intermediate faces
of the Z-type logical operator W Z

f ,f ′ (ρ) are supported on Fi and only the faces f and f ′ can be supported

by Fi . By assumption f ′ is not in Fi , therefore, W Z
f ,f ′ (ρ) has support on exactly one face in Fi . Therefore,

it anticommutes with XFi , which implies that XFi cannot be stabilizer and must be a logical operator.

Note that for toric code with boundaries, any logical Z type operator is equivalent to W Z
f ,f ′ for some

f , f ′ ∈ F and any X type logical operator is equivalent to XFi for some i.
Here, we explain the breadth first approach to find a set of faces with unique solution in it.

4.2 Breadth first approach

We use an algorithm similar to breadth first search to find the potential qubits in error. This set E is
first initialized as the empty set. If there is a nonzero syndrome on an edge e, then there is at least one
qubit incident on e that is in error. Hence, the faces f incident on e, denoted ι(e), are potential candidates
supporting the error. We add one by one all the faces in ι(e) to E while ensuring that addition of f does
not lead to a stabilizer or a logical operator in the support of E. By requiring that E does not support
stabilizers and logical operators, we ensure that that E does not lead to multiple solutions.

In the next stage, we consider all the edges (one by one) which are incident on the qubits in E but have
not yet been explored. (These edges will carry zero syndrome.) We consider adding the qubits which are
incident on this set of edges. Again the addition of the qubits is such that the added qubits will not lead to
a stabilizer or a logical operator within E. This process is repeated for all faces in E which contain an edge
which has not been explored yet. That is all the qubits incident on that edge have not been considered for
inclusion in E.

In principle we can stop when E supports an error which explains the measured syndrome. However,
testing for the existence of a solution at each step would increase the complexity of the algorithm. There-
fore, we do not test for the existence of a solution. Instead, we continue to add more faces to E until all
the faces have been explored. At the end of this process, we would have explored all the qubits and E
would be a set of potential qubits which can support exactly one error consistent with the syndrome.

To summarize, we do a breadth first kind of search with nonzero syndromes as root. Instead of avoid-
ing loops in normal breadth first search, we avoid stabilizers and logical operators in the potential can-
didates. To achieve this, we need to test the presence of support of stabilizer and/or logical operator in
a given set of qubits. There are exponential number of stabilizers in the code. The number of logical
operator to be searched is also exponential in the number of qubits. This is because we have many expo-
nential representatives for single logical operator. We make this exponential search into linear search in
the following discussion.

4.3 Test for stabilizer and logical operator

As we discussed earlier, we need to be able to identify if a given collection of faces support a stabilizer or
a logical operator. This can be characterized in topological terms. Consider an X type stabilizer generator
Aν attached to the volume ν, see Eq. (11). The stabilizer Aν has its support on ∂(ν), the boundary of the
volume ν. This boundary divides the complex into two distinct volumes which are not connected to each
other. We call such a collection of faces a cut set. In general, a collection of faces is called a face cut set if
their removal leads to two or more volumes which are not connected. In the dual complex, the face path
is a path and the face cut set is an edge cut set. A formal definition is given below.

Definition 13 (Cut set). A collection of faces K ⊆ C2(Γ ) is said to be cut set of Γ if there exists two volumes
ν and ν′ such that for any face path ρ = {f1, f2, . . . fm} with f1 ∈ ∂(ν), fm ∈ ∂(ν′) and ν,ν′ < Λ(ρ) , we have
K∩ ρ , ∅.

11



Cut set (Stabilizer)

ν

ν′

Cut set (Logical operator)

ν

ν′

Figure 8: Two different cut sets. The shaded faces constitute the cut set. The volumes ν and ν′ are separated by the
cut set. The cut set on the left arise from the support, while the one on the right from a logical operator.

Examples of cut sets arising from stabilizer generators and logical operators are shown in Fig 8. The
collection of faces Fc being a cut set implies that we have a stabilizer or logical operator with support
within Fc.

This suggests that we can test for the presence of a stabilizer or a logical operator in a collection of
faces by testing for the presence of a cut set in that collection. The complexity of this test is linear in
length of the code.

However, not all stabilizers can be identified by a cut set. Consider the stabilizer
∏
ν∈C3

Aν . The
support of this stabilizer is given by ∂(C3) and it is the set of all faces which are incident on only one
volume. The support of this stabilizer encloses all the volumes and it is not a cut set, see Fig. 7(a).

There are also some logical operators whose support is not cut set. Therefore, we need to be able to
determine if a stabilizer or a logical operator is support in E even when they do correspond to a cut set.

Observe that in Fig. 7 when the support of a stabilizer or a logical operator is not a cut set, then the
support is a subset of F . This is true in general. For instance, consider a stabilizer whose support is not
a cut set. If there is at least one face in the support which is incident on two different volumes ν and ν′,
then face is a cut set for ν and ν′.

Lemma 14. Suppose that M is an X type stabilizer or a logical operator whose support is not a cutset. Then
each face in the support of M is incident exactly on one 3-cell. In other words, supp(M) ⊆ F .

Proof. First we show that if a support of stabilizer M is not a cutset, then suppM ⊆ F . If M is a stabilizer,
then it can be written as a product of volume stabilizers Aν . The support of M is ∂(A). If A , C3(Γ ),
then the support of M forms a cutset for a volume ν ∈ A and ν′ < A contradicting that supp(M) is not a
cutset. Therefore M =

∏
ν∈C3(Γ )Aν . Suppose a face f is incident on two volumes ν and ν′. Then AνAν′

has no support on f . Therefore M does not have support of faces which are incident on two volumes.
Alternatively, supp(M) ⊆ F .

Now, we show that if M is a logical operator for which suppM is not a cutset, then suppM ⊆ F .
Suppose that M is a logical operator with supp(M) not a cutset. If supp(M) ⊆ F , then the lemma holds.
Assume therefore, that supp(M) \ F , ∅. Suppose f ∈ supp(M) \ F , then f is incident on two volumes ν
and ν′. Since, supp(M) is not a cutset, there exists some face path ρ from ν to ν′ such that ρ∩supp(M) = ∅.
So W Z

ν,ν′ (ρ) commutes with M. Now ρ∪ {f } is a face cycle. Therefore W Z
ν,ν′ (ρ)Zf commutes with M. But

since f ∈ suppM, Zf anticommutes withM. HenceW Z
ν,ν′ should anticommutes withM which contradicts

our assumption.

Now we explain how we detect if such stabilizers and logical operators are supported in a collection
of faces. We add dummy volumes on each boundary and construct a new lattice Γ̃ in which the support
of every stabilizer or logical operator is a cut set.

12



ν̄1

ν̄1

(a)

ν̄1

ν̄2

(b)

ν̄1

ν̄2

(c)

Figure 9: (a) An artificial volume ν̄1 is added adjacent to all the shaded faces (b) Another artificial volume ν̄2
is added below the shaded faces. (c) Final augmented lattice Γ̃ with all the artificial volumes. One volume per
equivalance class of F .

Now, we can construct Γ̃ by adding new volumes to Γ . Since Fi is the support of a logical operator
which is not a cut set and the support of the stabilizer which is not a cut set is F , it is enough to construct
new lattice such that Fi are cut sets. We can add new volumes ν̄i for each Fi such that its boundary is Fi .
That is ∂(ν̄i) = Fi . Fig. 9 shows an example for new volumes and construction of Γ̃ .

From the construction of Γ̃ , we see that every face in Γ̃ is incident on two volumes, at most one of
which could be a dummy volume.

Now we can identify the logical operator or stabilizer using the cut set in Γ̃ . The following lemma
formalizes this.

Lemma 15 (Cut sets in augmented lattice). For a 3D toric code with boundaries on Γ , a set of faces E is a cut
set in Γ̃ if and only if there exists an nontrivial X type logical operator or stabilizer with support in E.

Proof. In Γ̃ the support of any X stabilizer or logical operator is the boundary of a collection of volumes
V . Observe that V ( C3(Γ̃ ) because X∂(V ) = I when V = C3(Γ̃ ). Consider any face path ρ from a volume ν
from V and another volume ν′ from C3(Γ̃ ) \V . Let us consider a face path f1, . . . , fm from ν to ν′ and none
of fi is from ∂(V ). Since f1 < ∂(V ) and ν = ν0 ∈ V , we have ν1 ∈ V . In general, if νi ∈ V and fi+1 < ∂(V ),
then νi+1 ∈ V . Thus we get ν′ ∈ V because all fi < ∂(V ). This contradicts our assumption that ν′ < V .
Hence any stabilizer or logical operator support will be a cut set.

Now consider any cutset Fc. Pick any volume ν. Let V be the collection of volumes each of which is
connected to ν by a face path ρ such that ρ∩Fc = ∅. This implies ∂(V ) ⊂ Fc. The set V , C3(Γ̃ ) because Fc is
a cut set.

∏
v∈V X∂(v) is a logical operator or stabilizer because each X∂(v) is a logical operator or stabilizer.

Hence for any cutset Fc, there exists a stabilizer with support within Fc.

Lemma 15 will enable us to check if a stabilizer or logical operator is supported in a given set of faces.
We summarize the algorithm to find the potential support of error in the follwoing algorithm 1,

13



Algorithm 1 Identifying potential qubits in error for toric codes with boundaries

Input: A 3D complex Γ , collection of edges SE carrying nonzero syndrome.
Output: Collection of faces E ⊆ C2(Γ ) such that there exists E ′ ⊆ E and ∂(E ′) = SE

1: Construct Γ̃ by adding dummy volumes ν̄i with ∂(ν̄i) = Fi where Fi is a equivalence class obtained
from Eq. (16).

2: Initialize the boundary as B = SE , E = ∅ and mark all faces as unexplored.
3: while there exist unexplored faces do
4: B′ = ∅ {Boundary for next stage}
5: for all unexplored faces f incident on the boundary B do
6: Mark the face f as explored.
7: if the set E ∪ {f } is not a cut set in Γ̃ then
8: Update E = E ∪ {f } {f is a potential qubit in error}
9: Update B′ = B′ ∪∂(f )

10: end if
11: end for
12: B = B′ \B
13: end while
14: Return E and exit

In line 7 of Algorithm 4 we need a method to test whether a set of faces E is a cut set or not. If E is a
cutset, then every volume ν is reachable from any other volume ν′ through faces not in E. The complexity
of this step isO(|C2(Γ )|). In other words it is linear in the number of qubits. It is same as the error trapping
algorithm used for detecting closed volumes in [15].

The set of faces returned by Algorithm 1 satisfy the following properties.

Lemma 16. Let E be the set of faces returned by Algorithm 1. Then the following properties hold
(a) If A is a nonempty collection of faces such that XA is a stabilizer or a logical operator, then A * E.
(b) If any face f < E, then E ∪ {f } supports a stabilizer or a logical operator XB where B ⊆ E ∪ {f }.

Proof. First let us prove (a). Assume XA be a stabilizer and A ⊂ E. Let f be the last face added to E from
the set A. While adding f , let the set of erasures be E ′. Hence we have E ′ ⊂ E. The face f will not be
added to E ′ because f ∪E ′ is a cutset by Lemma 15. Thus f will not be present in E. Therefore we cannot
have a stabilizer of a logical operator XA with A ⊂ E.

Next we prove (b). From Algorithm 1, we do not add a face f to E, only if f along with a subset of
E (set of faces in E while checking the cutset for E ∪ {f }) is a cutset. This implies that for any face f < E,
f ∪E is a cutset. This proves (b).

4.4 Finding the unique solution

From Algorithm 1, we obtain a collection of faces E which support an error E such that ∂E is the nonzero
syndrome. Now we show how to find supp(E). First, we show that the existence of a solution within E
and then show that it is unique.

Theorem 17. Let SE be the support of nonzero syndrome input and E be the set of faces returned by Algorithm 1.
Then, there exist a unique set of faces Ê ⊆ E such that ∂(Ê) = SE .

Proof. Suppose that E ′ is a set of faces such that ∂E ′ is sE the boundary observed. If E ′ is not a subset of E,
then there exists some f in E ′ \E. Since this face was not added to E, then it means that E ∪{f } supports a
stabilizer or a logical operator. Let the support of this operator be A∪{f } Thus the boundary of f is same

14



as the boundary of A. We can replace f in E ′ by A ⊆ E. Thus we can obtain another set E ′′ which does not
have the face f . We repeat this process with E ′′ until its support is entirely in E. At which point we have
a set Ê ⊆ E whose boundary is the observed syndrome SE . This shows that there exists a solution in E.

If there exists another solution Ê ′ ⊆ F such that Ê ′ = SE , then XÊXÊ ′ has zero syndrome. Therefore, it
must be a stabilizer or a logical operator with support Ê4Ê ′, where 4 is the symmetric difference of sets.
Now, Ê4Ê ′ ⊂ E. However, this contradicts Lemma 16 which claims that E does not support a stabilizer or
logical operator.

Now finding the unique solution from the available support is the task to be solved. One can think of
the set E as a set of erasures and sovle a system of linear equations. Alternatively, we can estimate this
iteratively using the peeling decoder used for classical codes, for instance see [7, 15]. For completeness,
we give the algorithm adapted to our perspective, see Algorithm 2.

In general, when we using peeling to correct for erasures, it can fail to give a unique solution when the
set of erasures supports a stabilizer or logical operator. Peeling also fails in the sense, it cannot proceed
further, when every check involves two or more erased qubits. This problem can lead to a decoding failure
in our algorithm as well.

A third case of decoder failure which occur due to the presence of Klein bottle-like structure as was
observed in [9, 15]. We conjecture that the occurrence of such patterns will be rare because we do not
consider an arbitrary erasure pattern but one which is initiated from the nonzero syndromes.

Since the algorithm finds the nearest faces first, we claim that Klein bottle-like structure is a rare case
which happens only for specific syndrome patterns. In such cases we can either solve the system of linear
equations or declare decode failure. Another way to solve this is to freeze an arbitrary face to be not in
error and then continue peeling. There is a chance that we have frozen the actual error to be not in error
which does not clear the non zero syndromes. We can repeat the algorithm to clear such cases or declare
decoder failure. In our case, we have declared decoder failure.

Algorithm 2 Peeling for toric codes with boundaries [15]

Input: A 3D lattice Γ , a collection of edges SE which is the support of non zero syndrome and a collection
of faces of possible error positions E.

Output: A collection of faces Ê ⊂ E such that ∂(Ê) = SE . {XÊ gives the same syndrome as SE .}
1: B = SE {Nonzero syndromes}
2: Initialize the error estimate support Ê = ∅.
3: while there exists an edge e in Γ which is incident on exactly one face f in E do
4: if the edge e is in B then
5: Update Ê = Ê ∪ {f }
6: Update the nonzero syndrome B = B4∂(f )
7: end if
8: Update E = E \ {f }
9: end while

10: if B = ∅ then{All nonzero syndromes are cleared }
11: Return Ê.
12: else
13: Return Decoder failure
14: end if

15



4.5 Putting all the pieces together

Now, we summarize the decoding algorithm for toric codes with boundaries. Given the syndromes, first
we find a set of faces E such that there exists a unique solution within E explaining the observed syn-
drome. Then we treat the set E as erasures and estimate the unique solution using erasure decoding
algorithm. This method is summarized in Algorithm 3.

Algorithm 3 Decoding 3D toric codes with boundaries

Input: 3D lattice Γ , collection of edges SE with nonzero syndrome.
Output: Collection of faces Ê such that ∂(Ê) = E

1: Find potential qubits in error using Algorithm 1 with SE as input and obtain E.
2: Estimate Ê using Algorithm 2 with E and SE as inputs.
3: if Ê , ∅ then
4: Return Ê and exit.
5: else
6: Report decoder failure and exit.
7: end if

This concludes our discussion on toric codes with boundaries. We next study 3D codes without bound-
aries.

5 Decoding 3D toric codes with periodic boundaries

In this section, we consider decoding bit flip errors on 3D toric codes on lattices with periodic boundary
conditions. For clarity of presentation, we restrict our attention to the case when the code is periodic in
all three directions. Such a code encodes three logical qubits.

Recall that in Section 3, we had identified four pieces in the design of the decoding algorithm. We
begin by exploring the neighbourhood of the nonzero syndromes to try and explain the syndrome that
we observed. Then we try to freeze errors on certain qubits. More precisely, we freeze a qubit f if it along
with E, the potential qubits that have been explored, supports a stabilizer or a logical operator. This
required us to test for the presence of a cutset in E ∪ {f }. This is the step that fails for codes with periodic
boundary conditions. It only fails for certain nontrivial logical X operators and not the X stabilizers.
Consider the logical operator shown in Fig. 10(a). The support of this operator is not a cut set. Since
any two volumes ν and ν′ can be connected by a face path which no support in the logical operator.
Similarly, all the three X logical operators there exists one or more equivalent logical operators which do
not correspond to a cut set.

16



(a) (b)

Figure 10: (a) An X logical operator L which is not a cutset. Any pair of volumes ν and ν′ are connected by a face
path not intersecting with supp(L). (b) By adding an artificial boundary X (blue faces) the support of the logical
operator becomes a cut set along with X . Observe now that any face path between ν and ν′ intersects with X or the
support of L.

To overcome this problem, we could add artificial boundaries ensuring that the support of every
logical operator is a cutset. In Fig. 10, we illustrate for the logical operator XL where L = supp(XL). Here,
we have added an artificial boundary X . Note that X is not a cut set. This implies that X cannot contain
the support of a stabilizer. Now, the support of the logical operator XL and X , i.e. L∪X , is a cut set. With
this modification, the supports of X stabilizers are still cut sets as before.

However, there remain other logical operators which do not correspond cut sets with X . This is
illustrated in in Fig. 11.

Figure 11: Figure shows another logical operator which is not a cut set with an artificial boundary shown in
Fig. 10(a).

So we extend the artificial boundary. Specifically, we take this to be the union of the supports of all
the independent X type logical operators. In other words,

X = ∪i supp(Xi) (18)

This is illustrated in Fig. 12. However, this is not yet a complete solution. For a logical operator XL, where
L ⊆ X , then L∪X will not be a cut set. We avoid this situation by not considering the qubits in X while
exploring. In other words, we do not add qubits in X to E. What this ensures is that if a solution exists in
E, it will be unique.

However, the algorithm is not yet complete. For instance, if the original error is restricted to X , then
E does not contain a solution. We address this by decoding on X separately at the end. We will show that
this resolves any other problems created due to the addition of boundaries and/or not considering X in
the initial exploration.

We use the toric code defined on arbitrary lattice and encodes three logical operators. Logical X
corresponds to non trivial plane and logical Z operators corresponds to a non trivial face cycle in all
three directions. Test for a logical operator is not same as that of codes with boundaries. The same

17



procedure of breadth first search approach can be used to find the potential qubits in error. But to test
for stabilizer and logical operator we use a different approach which we discuss in the next section.

5.1 Finding a potential set of qubits that can explain the syndrome

For toric codes with periodic boundaries, the augmented lattice Γ̃ is same as Γ because of the absence
of the faces with degree one. In case of toric codes with boundaries, the stabilizer

∏
ν∈C3

Aν did not
correspond to a cut set in Γ . So we had to test for it separately. In the present case,

∏
ν∈C3

Aν = I and it
does not to be tested separately. All stabilizers correspond to cut sets.

Since the stabilizer
∏
ν∈C3

Aν = I , we can have all stabilizer identified by a cut set. Formally we can
state this in the following lemma.

Lemma 18 (Stabilizer cut set). For 3D toric code on a lattice Γ with periodic boundary conditions, the collection
of faces Fc is a cut-set for Γ if and only if a nontrivial stabilizer is supported in Fc.

Proof. Since any nontrivial stabilizer can be written X∂(V ) =
∏
ν∈V X∂(ν) for some V ( C3(Γ ). V , C3(Γ ).

So for any two volumes ν from V and ν′ from C3(Γ ) \ V , any face path ρ between ν and ν′ must have
nonempty overlap with ∂(V ). Hence support of a stabilizer is a cutset.

If Fc is a cutset in Γ , then we can get a collection of volumes V such that ∂(V ) ⊂ Fc. For a collection
of volumes V in Γ , we have ∂(V ) is a support of stabilizer. Hence we have a support of stabilizer ∂(V ) ⊂
Fc.

As mentioned some logical operators of these toric codes do not form a cut set. To make the support
of every logical operator a cut set, we shall add artificial boundaries. We formally explain this concept of
artificial boundary in the following discussion. Denote by L the set of logical qubits encoded by the toric
code.

Definition 19 (Artificial boundary). For a 3D toric code, the artificial boundary X is defined as as a set of
faces in C2(Γ ) that contains the support of all the logical X-type operators but does not contain the support of a
stabilizer.

X =
⋃
i∈L

supp(X̄ri ), (19)

where X̄ri is a representative of X̄i .

If we allow X to contain the support of a stabilizer, then for all faces f ∈ C2(Γ ) we have X ∪{f } as a cut
set and no face will be added to E. Thus E will remain empty and the decoding algorithm will not work. .
For this reason we do not include the support of a stabilizer in X . The existence of such a X can be shown
as follows.

Lemma 20 (Existence of artificial boundary). The boundary X as defined in Eq. (19) exists.

Proof. Consider the set X ′ =
⋃
i∈L

supp(X̄i
r ′ ) such that there exists a stabilizer XS with support on S ⊂ X .

We claim that we can always construct an artificial boundary X based on Definition 19.
Take a logical operator X̄r

′

j such that T = supp(X̄j
r ′ )∩S , ∅. Starting from i = 1, for all logical operators

if supp(X̄i
r ′ )∩ T , ∅, then update T = supp(X̄i

r ′ )∩ T . Repeat this for all independent logical operators X̄i
in a sequence. Now, for each logical operators X̄i , if supp(X̄i

r ′ )∩ T , ∅, then set the new representative
X̄i
r as X̄i

r ′XS otherwise X̄i
r = X̄i

r ′ . Then the new operators X̄ri has support in X ′ but none of them are
supported on T . Thus, X =

⋃
i∈L

supp(X̄i
r ) is a proper subset of X ′ and not supported in T . Since T ⊆ S and

18



(a) (b)

Figure 12: Two examples of X for a toric code which encodes 3 logical qubits. Observe that X is not a cutset in Γ .
The shaded faces shows the faces in X .

T * X , it follows that X does not contain the stabilizer XS . We can repeat this process till all stabilizers
in the support of the artificial boundary are removed. Thus we can always find an artificial boundary X .
as defined in definition 19.

Note that this artificial boundary is not unique. See Fig. 12 for examples of artificial boundary satis-
fying the conditions in Definition 19.

Also for any artificial boundary X and for any single qubit logical operator X̄i , we have an equivalent
operator X̄i such that supp X̄i

r ⊂ X and X̄i = X̄i
rXS where XS is a X-type stabilizer with support S. For

any set of faces F , if there exists a logical operator supported by F , then F combined with X will support
a stabilizer.

Recall that using Lemma 18 we can check for the presence of a stabilizer in a subset of faces E. Now
we check for the presence of a logical operators in E by testing for the presence of a cut set in E ∪X . The
following lemma proves this formally.

Lemma 21 (Detecting logical operators outside X ). Let Γ be a 3D toric code and X be an artificial boundary
as in Eq. (19) and E be some collection of faces such that E ∩ X = ∅. Let X̄i be any logical operator such that
supp X̄i ⊆ E. Then, E ∪X is a cutset in Γ .

Proof. From the definition of X as given in Eq. (19), we see that there exists an X logical operator X̃i that
is equivalent to X̄i which is supported in X . The equivalence of X̄i and X̃i implies that XS = X̃iX̄i is a
stabilizer. Further, S ⊆ supp(X̄i)∪ supp(X̃i). By assumption, supp(X̄i) ⊆ E and supp(X̃i) ⊆ X and Eq. (20)
follows.

S ⊆ X ∪E (20)

From Lemma 18 and Eq. (20), X ∪E is a cutset in Γ .

For a logical operator with support within X , Lemma 21 cannot be used. The proof assumes that the
combination of logical operators will yield a nontrivial stabilizer which is not true if the logical operator
is entirely in X .

From Lemmas 18 and 21, by checking for cut set in X ∪ E, we can identify and remove the presence
of logical operators and stabilizers from E except for logical operators within X . Therefore, adding the
qubits in X to E would lead to multiple solutions in E. To avoid this we do not add faces from X to E. We
correct the errors in X separately. We give the algorithm for clearing the errors in C2(Γ ) \X below.

19



Algorithm 4 Exploring potential qubits in error for toric codes with periodic boundaries

Input: A 3D complex Γ , collection of edges SE carrying nonzero syndrome and an artificial boundary X
as given in Eq. (19).

Output: Collection of faces E ⊆ C2(Γ ) \X such that there exists E ′ ⊆ E ∪X and ∂(E ′) = SE
1: Initialize the boundary as B = SE , E = ∅ and mark all faces as unexplored.
2: while there exist unexplored faces in C2(Γ ) \X do
3: B′ = ∅ {Boundary for next stage}
4: for all unexplored faces f ∈ C2(Γ ) \X incident on the boundary B do
5: Mark the face f as explored.
6: if the set X ∪E ∪ {f } is not a cut set in Γ then
7: Update E = E ∪ {f } { f is a potential qubit in error}
8: Update B′ = B′ ∪∂(f )
9: end if

10: end for
11: B = B′ \B
12: end while
13: Return E and exit

Lemma 22. Let E be the set of faces returned by Algorithm 4. Then the following properties hold
(a) If A is a nonempty collection of faces such that XA is a stabilizer, then A * E ∪X . If XA is a logical operator

and A * X , then A * E ∪X .
(b) If any face f < E ∪X , then X ∪E ∪ {f } supports a stabilizer or a logical operator XB where B ⊆ E ∪ {f } and

f ∈ B.

Proof. The proof is similar to that of Lemma 16.

The previous algorithm gives a potential set of qubits which can explain the measured syndrome. Our
next task is to find the qubits in E which are in error. This we address in the following section.

5.2 Projecting the error to the boundary X

We now show the existence of a solution in X ∪E so that after peeling along E, the error pattern has been
projected to X . Later we can find the remaining part of error which is projected to X .

Theorem 23. Let SE be the support of syndrome and E the set of faces returned by Algorithm 4.
(a) Existence: There exists a set of faces Ê ⊂ E ∪X such that ∂(Ê) = SE .
(b) Uniqueness: If there are two sets of faces Ê1, Ê2 ⊂ E ∪X such that ∂(Ê1) = ∂(Ê2) = SE , then Ê14Ê2 ⊂ X . In

other words Ê1 \X = Ê2 \X .

Proof. (a) First part of the proof is similar to that of Lemma 17. We have SE as the support of nonzero
syndrome due to an X-type error with support F ⊆ C2(Γ ). If F ⊆ E ∪X , then the existence is shown. If
F * E ∪X , then there exists a face f ∈ F \ E ∪X . By Lemma 22(b), f is not added to E because there
exists a stabilizer or logical operator with support B ⊆ {f } ∪ E ∪X . Let F′ = F∆B. Then the operator
XF′ has the same syndrome as XF and it does not have any support on f . Further, F′ \E∪X is a proper
subset of F \E ∪X . We can repeat this process with F′ until all the faces F \E ∪X have been removed.
At this point we have a solution that is entirely in the support of E ∪X .

(b) If Ê1, and Ê1 have the same boundary, then XÊ1
and XÊ2

have the same syndrome. Then XÊ1
XÊ2

must

be a stabilizer or a logical operator with support Ê14Ê2. If we have Ê1, Ê2 ⊆ E ∪X , then Ê14Ê2 ⊆ E ∪X
which is the support of a stabilizer or a logical operator. If Ê14Ê2 is the support of a stabilizer, then by

20



Lemma 22, Ê14Ê2 * E ∪X contradicting our previous conclusion. If Ê14Ê2 is the support of a logical
operator, then by Lemma 22, Ê14Ê2 ⊆ X .

Now, we can find an estimate of the error in C2(Γ ) \ X using the following algorithm. It also makes
use of peeling algorithm given earlier. There are some modifications, we give the details below. After the

Algorithm 5 Peeling for toric codes without boundaries

Input: Γ : A 3D lattice, X : an artificial boundary, SE : Edges carrying nonzero syndrome, E: potential faces
in error.

Output: A collection of faces Ê ⊂ E and an updated syndrome SX such that there exists a collection of
faces E ′ ⊂ X and ∂(E ′) = SX and S ′E .

1: Initialize the error estimate support Ê = ∅.
2: while there exists an edge e which is incident on only one face f ∈ E ∪X do
3: if e carries nonzero syndrome then { e ∈ SE}
4: Ê = Ê ∪ {f }
5: SE = SE∆∂(f ) { Update syndrome}
6: end if
7: E = E \ {f } {R}emove f from E.
8: end while
9: if nonzero syndromes are cleared in the interior then{ (SE ⊆ ∪f ∈X∂(f )}

10: Return Ê, SX = SE and exit.
11: else
12: Return decoder failure
13: end if

completion of Algorithm 5, either there is a decoder failure or the error has been projected to X . For a
valid input, Algorithm 5 will fail if the syndrome has not been projected to E. The failure can happen if
the error takes the shape of Klein bottle-like structure.

5.3 Estimating residual error in X

At this stage the residual error is restricted to X . We can estimate this error, using the same ideas as
outlined before in Section 3. By design X does not contain any stabilizer. Therefore, multiple solutions in
a set of potential faces E are due to the presence of logical operators alone. We avoid multiple solutions
by exhaustively checking for the presence of all logical operators within E ⊆ X . For the lattices that we
consider, the number of logical operators is O(1). So checking for the presence of logical operators can be
performed efficiently. The complete procedure is given in Algorithm 6.

21



Algorithm 6 Estimating residual error in X .

Input: A 3D lattice Γ , Artificial boundary X , and the collection of edges carrying non zero syndromes SE .
Output: Collection of faces such that Ê ⊂ X with SE = ∂(Ê).

1: Initialize E = ∅, EX = X and B = SE .
2: while EX , ∅ do
3: B′ = ∅
4: for all faces f ∈ EX and ∂(f )∩B , ∅ do
5: if E ∪ {f } do not support a logical operator then
6: Update E = E ∪ {f }.
7: B′ = B′ ∪∂(f )
8: end if
9: Update EX = EX \ {f }.

10: end for
11: B = B′ \B
12: end while
13: Initialize Ê = ∅ , B = SE .
14: while there exists an edge e such that it is incident on only one face f ∈ E do
15: if e ∈ B then
16: Ê = Ê ∪ {f } and B = B∆∂(f )
17: end if
18: E = E \ {f }
19: end while
20: Return Ê.

For toric codes on cubic lattices and some similar lattices, we have an alternative algorithm. Those
lattices should posses the following properties:

(i) We can pick X =
⋃
i∈L

supp(X̄i
r ) such that for all independent logical operators X̄ri and X̄rj , supp(X̄i

r )∩

supp(X̄j
r ) = ∅.

(ii) Let E>2 be the collection of edges in X that are incident on more than two faces. The edges in E>2 do
not contain a homologically trivial cycle.

For example, see the choice of X given in Fig. 12(a). The three independent logical operators within
X are colored differently and it can be seen that they do not intersect. If we remove the edges that are
incident on more than two faces, then X will be split into three disconnected surfaces Xi where

Xi = supp(X̄ri ), (21)

for i = 1,2,3. We can decode within these Xi independently ignoring the edges incident on more than
two faces. This is because Xi ∩Xj = ∅. The second property implies that no collection of faces exists in X
such that its boundary is within E>2. These edges turn out to be dependent checks and can be ignored. In
any surface Xi , there are exactly two solutions. This can be easily computed in time |Xi | for each partial
boundary Xi as in Fig. 2. We give the complete details for this special case in Algorithm 7.

22



Algorithm 7 Estimating residual error in X for cubic lattice.

Input: A 3D lattice Γ , Artificial boundary X , supp X̄ri , i = 1,2,3, and the collection of edges carrying non
zero syndromes SE .

Output: Collection of faces such that Ê ⊂ X with ∂(Ê) = SE .
1: E>2 = {e ∈ C1(Γ ) : |ι(e)∩X | > 2}
2: for i = 1,2,3 do

3: S ′E =

SE ∩ ⋃
f ∈supp(X̄ri )

∂(f )

 \E>2

4: Initialize E = supp(X̄ri ) \ {f } { Unexplored faces}
5: Initialize Êi = {f } for some f ∈ supp(X̄ri ) { Estimate for ith plane}
6: Initialize B′ = S ′E∆(∂(f ) \E>2). { Updated syndrome}
7: while there exist f ′ ∈ E such that ∂(f ′)∩∂(E) \E>2 , ∅ do
8: if ∂(f ′)∩∂(E) \E>2 ⊆ B′ then
9: Update Êi = Êi ∪ {f ′}

10: Update B′ = B′∆(∂(f ′) \E)>2
11: end if
12: Update E = E \ {f ′}.
13: end while
14: if |Ê1| > 1

2 |supp X̄ri | then
15: Ê1 = supp X̄ri \ Ê1
16: end if
17: end for
18: Return X̂ = ∪iX̂i .

5.4 Complete decoding algorithm for periodic 3D toric codes

To summarize, to decode 3D toric codes without boundary, we introduce an artificial boundary X . We
first correct the errors in the rest of the lattice, i.e., C2(Γ ) \ X using Algorithm 4 and 5. This leaves the
errors on X uncorrected. In effect, we project the error onto X . We then proceed to correct the errors
remaining in X using Algorithm 7 or 6. Whenever, there is a decoding failure we can run the decoder
another time with a different X . Typically a decoding failure due to the presence of Klein bottle-like
structure is not observed in the second run.

The algorithm converges and finds one E such that ∂(E) = S. The choice is made on a greedy approach.

23



Algorithm 8 Decoding 3D toric codes with periodic boundaries

Input: 3D lattice Γ , collection of edges SE with nonzero syndrome.
Output: Collection of faces Ê such that ∂(Ê) = SE .

1: Inititalize Ê ′ = ∅
2: Find potential qubits in error using Algorithm 4 with nonzero syndromes SE and artificial boundary
X and obtain E.

3: Do peeling using Algorithm 5 over E and SE and obtain Ê.
4: Update Ê ′ = Ê ′ ∪ Ê and SE = SE∆∂(Ê).
5: if SE *

⋃
f ∈X

∂(f ) then

6: Repeat lines 2- 4 using different X .
7: end if
8: Clear residual syndrome on X using Alg. 6 and obtain Ê.
9: Update Ê ′ = Ê ′ ∪ Ê and SE = SE∆∂(Ê).

10: if SE = φ then
11: Return Ê = Ê ′ and exit.
12: else
13: Report decoder failure and exit.
14: end if

The computational complexity of the Algorithm 8 is O(n2) where n is number of qubits. This is
because at each stage of finding potential qubits in error, we go through all the n faces and check for
stabilizer or logical operator for a worst case of n faces. This makes the complexity of algorithm as O(n2).
The running time of all the other steps in the decoding is less than n2. Hence the overall complexity of
our algorithm is O(n2).

We can reduce the complexity of decoding by the following modification. In Algorithm 4, lines 6–9
can be modified as follows. Instead of checking if the set X ∪E ∪ {f } is a cut set, we go ahead and add the
face to E but we keep track of the sequence in which it is added to E. When all faces have been explored,
starting from any volume ν we remove faces which are added last so that the there exists a unique face
path from ν to any other volumes through these removed faces. Thus we can get rid of cutset and also
freezing these removed faces which are added last to E.

This ensures that the updated set E will not be a cut set. We conjecture that the resulting complexity
will be superlinear but subquadratic.

6 Simulation details

We simulated the decoding algorithm for the toric code on a cubic lattice of size L × L × L with periodic
boundaries. The simulation results are plotted in Fig. 13. Each sample in the figure is obtained by running
the algorithm repeatedly for 105 iterations or 300 logical errors. The choice of X was made as shown in
Fig. 12(a). Only a negligible number of Klein bottlelike structures were observed in the first iteration.
These failures vanished after the second iteration. We obtained a threshold of 12.2% for bit flip errors.
This is comparable to the results obtained in [13, 15]. Other decoders [3, 9] that are optimized for the
cubic lattice perform better with threshold of 17.2% and 17.5%.

We have also used this decoder to decode stacked color codes [21]. These codes can be projected to
toric codes. The toric codes obtained there contain boundaries and the faces consist only of triangles. We
did not notice decoding failures due peeling while simulating those those codes. For the bit flip channel
we obtained a threshold of 13.2%, see [2].

24



0.11 0.12 0.13 0.14

10−1

Physical error rate

Lo
gi

ca
le

rr
or

ra
te

L = 6
L = 7
L = 8
L = 9
L = 10

Figure 13: Simulation results on performance of bit flip error in 3D toric code with periodic boundaries. Length of
the code for each block length L is 3×L3.

7 Conclusion

We proposed a 3D toric code decoder for the bit flip channel. This implicitly transforms the decoding
problem to a decoding problem over an erasure channel. The proposed decoder is applicable to a large
class of lattices including certain 3D lattices for which the method proposed in [13] may not be applicable.
A fruitful direction for further research is to incorporate syndrome measurement errors during decoding.
Another avenue for further research is to determine bounds for the performance of the algorithm.

References

[1] R. Alicki, M. Horodecki, P. Horodecki, and R. Horodecki. On thermal stability of topological qubit
in kitaev’s 4d model. Open Systems & Information Dynamics, 17(01):1–20, 2010.

[2] Arun B. Aloshious and Pradeep Kiran Sarvepalli. Projecting three-dimensional color codes onto
three-dimensional toric codes. Phys. Rev. A, 98:012302, Jul 2018.

[3] Nikolas P. Breuckmann and Xiaotong Ni. Scalable Neural Network Decoders for Higher Dimensional
Quantum Codes. Quantum, 2:68, May 2018.

[4] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum error correction via codes
over gf(4). In Proceedings of IEEE International Symposium on Information Theory, pages 292–, June
1997.

[5] Claudio Castelnovo and Claudio Chamon. Topological order in a three-dimensional toric code at
finite temperature. Phys. Rev. B, 78:155120, Oct 2008.

[6] Nicolas Delfosse and Naomi H. Nickerson. Almost-linear time decoding algorithm for topological
codes. Arxiv: 1709.06218 2017.

[7] Nicolas Delfosse and Gilles Zémor. Linear-Time Maximum Likelihood Decoding of Surface Codes
over the Quantum Erasure Channel. Arxiv: 1703.01517 2017.

25



[8] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological quantum memory.
Journal of Mathematical Physics, 43(9):4452–4505, 2002.

[9] K. Duivenvoorden, N. P. Breuckmann, and B. M. Terhal. Renormalization group decoder for a four-
dimensional toric code. IEEE Transactions on Information Theory, 65(4):2545–2562, April 2019.

[10] Daniel Gottesman. Stablizer Codes and Quantum Error correction. Phd thesis, California Institute of
Technology, 1997.

[11] Alioscia Hamma, Paolo Zanardi, and Xiao-Gang Wen. String and membrane condensation on three-
dimensional lattices. Phys. Rev. B, 72:035307, Jul 2005.

[12] Aleksander Kubica and Nicolas Delfosse. Efficient color code decoders in d ≥ 2 dimensions from
toric code decoders. Arxiv: 1905.07393 2019.

[13] Aleksander Kubica and John Preskill. Cellular-automaton decoders with provable thresholds for
topological codes. Arxiv: 1809.10145 2018.

[14] Aleksander Kubica, Beni Yoshida, and Fernando Pastawski. Unfolding the color code. New Journal
of Physics, 17(8):083026, Aug 2015.

[15] Abhishek Kulkarni and Pradeep Kiran Sarvepalli. Decoding the three-dimensional toric codes and
welded codes on cubic lattices. Phys. Rev. A, 100, 012311, 2019.

[16] Michael Vasmer and Dan E. Browne. Universal Quantum Computing with 3D Surface Codes. Arxiv
1801.04255 2018.

[17] Sergey Bravy, Bernhard Leemhuis and Barbara M.Terhal . Topological order in an exactly solvable
3D spin model. Annals of Physics Volume 326, Issue 4, April 2011, Pages 839-866.

[18] Kubica, A. and M. E. Beverland (2015). Universal transversal gates with color codes: A simplified
approach. Phys. Rev. A, 91, 032330.

[19] Bombín, H. (2015). Single-shot fault-tolerant quantum error correction. Phys. Rev. X, 5, 031043.

[20] Brown, B. J., N. H. Nickerson, and D. E. Browne (2016). Fault-tolerant error correction with the
gauge color code. Nature Communications, 7, 12302 EP –.

[21] Jochym-O’Connor, T. and S. D. Bartlett (2016). Stacked codes: Universal fault-tolerant quantum
computation in a two-dimensional layout. Phys. Rev. A, 93, 022323.

[22] John Mathew Sullivan. A crystalline approximation theorem for hypersurfaces. Princeton University,
Ph.D.Thesis, 1990.

26


	1 Introduction
	2 Background
	2.1 3D Toric code

	3 Intuition behind the decoding algorithm
	4 Decoding 3D toric codes with boundaries
	4.1 Toric codes with boundaries
	4.2 Breadth first approach
	4.3 Test for stabilizer and logical operator
	4.4 Finding the unique solution
	4.5 Putting all the pieces together

	5 Decoding 3D toric codes with periodic boundaries
	5.1 Finding a potential set of qubits that can explain the syndrome
	5.2 Projecting the error to the boundary X
	5.3 Estimating residual error in X
	5.4 Complete decoding algorithm for periodic 3D toric codes

	6 Simulation details
	7 Conclusion

