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On Optimal Locally Repairable Codes and

Generalized Sector-Disk Codes
Han Cai, Member, IEEE, and Moshe Schwartz, Senior Member, IEEE

Abstract

Optimal locally repairable codes with information locality are considered. Optimal codes are constructed, whose length is
also order-optimal with respect to a new bound on the code length derived in this paper. The length of the constructed codes
is super-linear in the alphabet size, which improves upon the well known pyramid codes, whose length is only linear in the
alphabet size. The recoverable erasure patterns are also analyzed for the new codes. Based on the recoverable erasure patterns, we
construct generalized sector-disk (GSD) codes, which can recover from disk erasures mixed with sector erasures in a more general
setting than known sector-disk (SD) codes. Additionally, the number of sectors in the constructed GSD codes is super-linear in
the alphabet size, compared with known SD codes, whose number of sectors is only linear in the alphabet size.

Index Terms

Distributed storage, locally repairable codes, sector-disk codes, Goppa codes

I. INTRODUCTION

IN the large distributed storage systems of today, disk failures are the norm rather than the exception. Thus, erasure-coding

techniques are employed to protect the data from disk failures. An [n, k] storage code encodes k information symbols to n
symbols and stores them across n disks in a storage system. Generally speaking, among all storage codes, maximum distance

separable (MDS) codes are preferred for practical systems both in terms of redundancy and in terms of reliability. However, as

pointed in [40], MDS codes such as Reed-Solomon codes suffer from a high repair cost. This is mainly because, for an [n, k]
MDS code, whenever one wants to recover a symbol, one needs to contact k surviving symbols, which is costly, especially in

large-scale distributed file systems.

To improve the repair efficiency, locally repairable codes, such as pyramid codes [24], are deployed to reduce the number

of symbols contacted during the repair process. More precisely, the concept of r-locality for a code C was initially studied in

[18] to ensure that a failed symbol can be recovered by only accessing r ≪ k other symbols which form a repair set.

In the past decade, the original definition has been generalized in different aspects. Firstly, to guarantee that the system can

recover locally from multiple erasures, the notion of r-locality was generalized to (r, δ)-locality, namely, each repair set is

capable of recovering from δ−1 erasures. Secondly, to let code symbols have good availability, the notion of locality has been

generalize to (r, δ)-availability [37] (or (r, δ)c-locality [46]), in which case a code symbol has more than one repair set. Thus,

each repair set can be viewed as a backup for the target code symbol, hence the code symbol can be accessed independently

through each repair set. Finally, to satisfy differing locality requirements, the notion of locality has been generalized to the

hierarchical and the unequal locality cases. Upper bounds on the minimum Hamming distance of locally repairable codes and

constructions for them have been reported in the literature for those generalizations. For examples, the reader may refer to [3],

[5], [9], [11], [13], [24], [25], [30], [31], [33], [35], [36], [42], [43], [45], [47] for (r, δ)-locality, [10], [12], [23], [37], [41],

[44], [46] for (r, δ)-availability, [39] for hierarchical locality, and [28], [48] for unequal locality.

Based on the observation given in [18], locally repairable codes may recover from some special erasure patterns beyond

their minimum Hamming distance. Thus, another research branch for locally repairable codes is the study of their recoverable

erasure patterns. In this aspect, two special kinds of codes have received most of the attention. One is the (δ−1, γ)-maximally

recoverable code first introduced in [4], [18], that can recover from erasure patterns that include any δ− 1 erasures from each

repair set, and any other γ erasures. The (δ−1, γ)-maximally recoverable codes are equivalent to (δ−1, γ)-partial MDS codes

a special kind of array codes that was introduced to improve the storage efficiency of redundant arrays of independent disks

(RAIDs) [4]. The other is (δ− 1, γ)-sector-disk (SD) codes [34] that can recover from erasure patterns that include any δ− 1
erasures from each repair set with consistent indices (i.e., whole disk erasures) and any other γ erasures (i.e., sector erasures).

For construction of SD codes the reader may refer to [4], [6], [8], [17], [18], [33], [34] for example. The main drawback of

all of the reported constructions for SD codes is the requirement for a large finite field.

In this paper, we focus on both (r, δ)-locality and recoverable erasure patterns beyond the minimum Hamming distance. For

(r, δ)-locality we propose constructions of locally repairable codes whose information symbols have (r, δ)-locality and their
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length is super-linear in the field size. The codes generated by our constructions have new parameters compared with known

locally repairable codes. In particular, our codes have a smaller requirement on the field size compared with pyramid codes.

Additionally, we consider the following fundamental problem: how long can a locally repairable codes be, whose information

symbols have (r, δ)-locality? We propose a new upper bound on the length of optimal locally repairable codes. Based on this

bound, we prove that the codes generated by our construction may have order-optimal length. We also analyze recoverable

erasure patterns beyond the minimum Hamming distance in the codes we construct. Based on this analysis, we construct array

codes that can recover special erasure patterns which mix whole disk erasures together with additional sector erasures that

beyond the minimum Hamming distance. These codes generalize SD codes, and we therefore call them generalized sector-disk

(GSD) codes. Finally, the classic Goppa codes are modified into locally repairable codes. In this way, the generated codes not

only share similar parameters with the ones in [11], but also yield optimal locally repairable codes with new parameters.

The remainder of this paper is organized as follows. Section II introduces some necessary notation and results. Section III

proposes a new construction of locally repairable codes and a bound on code length. In Section IV we introduce GSD codes,

and in Section V we modify classical Goppa codes into a class of locally repairable codes. Section VI concludes this paper

with some remarks.

II. PRELIMINARIES

Throughout this paper, the following notation are used:

• For a positive integer n, let [n] denote the set {1, 2, · · · , n};

• For any prime power q, let Fq denote the finite field with q elements;

• An [n, k]q linear code C over Fq is a k-dimensional subspace of Fn
q with a k×n generator matrix G = (g1,g2, · · · ,gn),

where gi is a column vector of length k for all 1 6 i 6 n. Specifically, it is called an [n, k, d]q linear code if the minimum

Hamming distance is d;

• For a subset S ⊆ [n], let |S| denote the cardinality of S, Span(S) be the linear space spanned by {gi : i ∈ S} over Fq

and Rank(S) be the dimension of Span(S).

A. Locally Repairable Codes

Let us recall some necessary definitions concerning locally repairable codes. Assume throughout that C be an [n, k, d]q linear

code with generator matrix G = (g1,g2, · · · ,gn).

Definition 1 ([24], [35]): The ith code symbol of an [n, k, d]q linear code C, is said to have (r, δ)-locality if there exists

a subset Si ⊆ [n] (a repair set) such that

• i ∈ Si and |Si| 6 r + δ − 1; and

• The minimum Hamming distance of the punctured code C|Si
, obtained by deleting the code symbols cj for all j ∈ [n]\Si,

is at least δ.

Furthermore, an [n, k, d]q linear code C is said to have information (r, δ)-locality (denoted as (r, δ)i-locality) if there exists

a k-subset I ⊆ [n] with Rank(I) = k such that for each i ∈ I , the ith code symbol has (r, δ)-locality and all symbol

(r, δ)-locality (denoted as (r, δ)a-locality) if all the n code symbols have (r, δ)-locality.

In [35] (also, [19] for δ = 2), an upper bound on the minimum Hamming distance of linear codes with (r, δ)i-locality was

derived as follows.

Lemma 1 ([35]): The minimum distance of an [n, k, d]q code C with (r, δ)i-locality is upper bounded by

d 6 n− k + 1−

(⌈

k

r

⌉

− 1

)

(δ − 1). (1)

Definition 2: A linear code with (r, δ)i-locality is said to be an optimal locally repairable code if its minimum Hamming

distance meets the Singleton-type bound of Lemma 1 with equality.

According to (1), even for an optimal [n, k, d]q linear code with (r, δ)i-locality (or (r, δ)a-locality), d < n − k + 1 under

the nontrivial case k > r. Thus, for a linear code with (r, δ)i-locality, it is natural to ask if it is possible for an erasure pattern

E ⊂ [n] with size d 6 |E| 6 n− k to be recoverable [19]. Although this problem is still open in general, for the following

two special settings received special attention in some previous works:

Setting I: (e.g., [4], [34]) For a linear code with (r, δ)a-locality, let (r + δ − 1)|n and |{Si : i ∈ [n]}| = n
r+δ−1 , i.e.,

all the n symbols are divided into n
r+δ−1 repair sets. Let s = n

r+δ−1r − k and assume the elements of Si are denoted by

{si,1, si,2, . . . , si,r+δ−1}. An erasure pattern E is required to be recoverable if there exists a (δ − 1)-subset of [r + δ − 1],
{j1, j2, · · · , jδ−1}, and there exists a set E∗ ⊆ E ⊆ [n], |E∗| 6 n

r+δ−1r − k and

(E\E∗) ∩ Si ⊆ {si,j1 , si,j2 , . . . , si,jδ−1
} for each i ∈ [n].
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Setting II: (e.g., [18]) For a linear code with (r, δ)a-locality, let (r+ δ− 1)|n and |{Si : i ∈ [n]}| = n
r+δ−1 , i.e., all the n

symbols are divided into n
r+δ−1 repair sets. Let s = n

r+δ−1r − k. An erasure pattern E is required to be recoverable if there

exists a set E∗ ⊆ E ⊆ [n], |E∗| 6 s and

|(E\E∗) ∩ Si| 6 δ − 1 for each 1 6 i 6
n

r + δ − 1
.

Definition 3: An [n, k, d]q linear code that satisfies the conditions of Setting I is said to be a sector-disk code ((δ−1, s)-SD).

As an intuition, we make the following analogies between a distributed storage system and Setting I. In this analogy, we

have a total of r + δ − 1 disks, each containing n
r+δ−1 sectors, with a total number of sectors in the system which is n. The

ith stripe, i.e., the set containing the ith sector from each disk, is an (r, δ)-repair set, for each i. Finally, an SD code is capable

of correcting δ − 1 whole disk erasures, as well as an extra s erased sectors.

Definition 4: An [n, k, d]q linear code that satisfies the conditions of Setting II is said to be a maximally recoverable code

(MR code).

MR codes are also known as partial MDS (PMDS) codes [4], [6], [8]. It is easy to check that Setting I is a special case

of Setting II, thus, MR codes are also SD codes, but not vice versa. For explicit constructions, the reader may refer to [6],

[34] for SD codes, and [4], [6], [8], [17], [33] for MR codes. Finally, another example of a family of codes that may recover

special erasure patterns beyond the minimum Hamming distance is STAIR codes [29].

B. Packings and Steiner Systems

We now turn to describe some definitions and known facts concerning the combinatorial objects of packings and Steiner

systems.

Definition 5 ([14], VI. 40): Let n > 2 and t, τ be positive integers. A τ -(n, t, 1)-packing is a pair (X,B), where X is a

set of n elements (called points) and B ⊆ 2X is a collection of t-subsets of X (called blocks), such that each τ -subset of X
is contained in at most one block of B. If τ = 2, it is also denoted as an (n, t, 1)-packing. The packing is said to be regular

if each element of X appears in exactly w blocks, denoted as a w-regular τ -(n, t, 1)-packing.

Definition 6 ([14], II. 5): Let n > 2 and t, τ be positive integers. A (τ, t, n)-Steiner system is a pair (X,B), where X is

a set of n elements (called points) and B ⊆ 2X is a collection of t-subsets of X (called blocks), such that each τ -subset of

X is contained in exactly one block of B.

Lemma 2 ([14], II. 5): A (τ, t, n)-Steiner system is a
(n−1
τ−1)
(t−1
τ−1)

-regular τ -(n, t, 1)-packing.

Remark 1: Given positive integers τ , t and n, the natural necessary conditions for the existence of a (τ, t, n)-Steiner

system are that
(

t−i
τ−i

)

|
(

n−i
τ−i

)

for all 0 6 i 6 τ − 1. It was shown in [27] that these conditions are also sufficient except perhaps

for finitely many cases.

III. CONSTRUCTIONS OF LOCALLY REPAIRABLE CODES

In this section, we introduce a general construction of locally repairable codes with information locality. Let k = rℓ + v
with 0 < v 6 r and n = k + (ℓ + 1)(δ − 1) + h with h > 0, where all parameters are integers.

Construction A: Let the k information symbols be partitioned into ℓ+ 1 sets, say,

I(i) = {Ii,1, Ii,2, . . . , Ii,r}, for i ∈ [ℓ],

I(ℓ+1) = {Iℓ+1,1, Iℓ+1,2, . . . , Iℓ+1,v}.

Let S be an h-subset of Fq and denote A , Fq\S. Let A = {Ai : 1 6 i 6 ℓ + 1} be a family of subsets of A with

|Ai| = r + δ − 1 and |Aℓ+1| = v + δ − 1. Define

gi(x) =
∏

θ∈Ai

(x− θ) for 1 6 i 6 ℓ+ 1

and

∆(x) =
∏

16i6ℓ+1

gi(x).

A linear code with length n can be generated by defining a linear map from the information I = (I1,1, . . . , Iℓ,v) ∈ Fk
q

to a codeword C(I) = (c1,1, . . . , cℓ,r+δ−1, cℓ+1,1, . . . , cℓ+1,v+δ−1, cℓ+2,1, . . . , cℓ+2,h) ∈ Fn
q , thus the [n, k]q linear code is

C = {C(I) : I ∈ Fk
q}. This mapping is performed by the following two steps:

a) Step 1: For 1 6 j 6 ℓ+1, by polynomial interpolation, there exists a unique fj(x) ∈ Fq[x] with deg(fj) < |Aj |−δ+1
such that fj(θj,t) = Ij,t for 1 6 t 6 |Aj | − δ + 1, where Aj = {θj,t : 1 6 t 6 |Aj |}. For 1 6 j 6 ℓ+ 1 and 1 6 t 6 |Aj |,
set cj,t = fj(θj,t).
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b) Step 2: Let

fI(x) = ∆(x)
∑

16i6ℓ+1

fi(x)

gi(x)
.

Set cℓ+2,i = fI(si) for 1 6 i 6 h, where S = {si : 1 6 i 6 h}.

Lemma 3: The code C generated by Construction A is an [n, k]q linear code with (r, δ)i-locality.

Proof: It is easy to verify that C is an [n, k]q linear code. By Construction A, Step 1, for any C ∈ C and 1 6 i 6 ℓ + 1,

(ci,1, ci,1, . . . , ci,|Ai|) is the evaluation of a polynomial with degree at most |Ai| − δ, which means any |Ai| − δ + 1 6 r
components are capable of recovering the remaining components. Thus, the code C has (r, δ)i-locality.

For ease of presentation, we use the evaluation points (instead of the indices of code symbols) to denote erasure patterns. Ad-

ditionally, we shall group the erased positions by the index of the repair set they hit. Namely, we shall use E = {E1, . . . , Eℓ+2}
to denote an erasure pattern, where Ej ⊆ Aj is the set of erasure points in Aj , 1 6 j 6 ℓ + 1, and Eℓ+2 ⊆ S is the set of

erasure points in S.

Theorem 1: Let C be the linear code generated by Construction A. Assume E = {Ei : 1 6 i 6 ℓ + 2} is an erasure

pattern, with Ei ⊆ Ai for 1 6 t 6 ℓ+ 1 and Eℓ+2 ⊆ S. For 1 6 i 6 ℓ+ 1, assume that, in E , there exist w 6 ℓ+ 1 sets with

|Eit | > δ for 1 6 t 6 w and 1 6 it 6 ℓ+ 1. If the erasure pattern E satisfies
∣

∣

∣

∣

∣

∣

⋃

16t6w

Eit

∣

∣

∣

∣

∣

∣

+ |Eℓ+2| 6 h+ δ − 1, (2)

and for any 1 6 j 6 w
∣

∣

∣

∣

∣

∣

Aij ∩





⋃

j 6=t∈[w]

Ait





∣

∣

∣

∣

∣

∣

6 δ − 1, (3)

then the erasure pattern E can be recovered.

Remark 2: Before proving Theorem 1, we want to highlight that the size

∣

∣

∣(
⋃

16t6w Eit) ∪Eℓ+2

∣

∣

∣ dictates whether an

erasure pattern is recoverable, and not the number of erased coordinates, i.e.,
∑

16t6w |Eit |+ |Eℓ+2|. This is to say, if there

are erasures that share the same evaluation point (even in different coordinates), then those erasures as a whole will only

increase the discriminant value by one. In such a case we may recover more than h+ δ− 1 erasures that are guaranteed to be

recoverable by the value of the Singleton-type bound, i.e., h+ δ.

Proof: Since the linear code generated by Construction A has (r, δ)i-locality, the locality is capable of recovering all the

erasures for the case Ei ∈ E with |Ei| 6 δ− 1 and 1 6 i 6 ℓ+1 independently. Thus, in this proof we only need to consider

the case Ei ∈ E with |Ei| > δ and 1 6 i 6 ℓ+ 1, i.e., Eit for 1 6 t 6 w.

Let

Φ(x) , gcd

(

∆(x)

gi1(x)
,
∆(x)

gi2(x)
, · · · ,

∆(x)

giw (x)

)

=
∆(x)

lcm (gi1(x), gi2 (x), . . . , giw(x))
=

∆(x)
∏

θ∈A(x − θ)
,

where A ,
⋃

16t6w Ait . Considering fI(x) in Construction A, it can be rewritten as

fI(x) = Φ(x)
∑

16t6w

f∗
it(x) + g(x) = Φ(x)fE(x) + g(x),

where

g(x) = ∆(x)
∑

j∈[n]\{it : 16t6w}

fj(x)

gj(x)

is a known polynomial determined by the known code symbols by Construction A,

f∗
it(x) =

∆(x)fit(x)

Φ(x)git(x)
=

fit(x)
∏

θ∈A(x − θ)

git(x)
, (4)

and

deg(f∗
it(x)) = |A| − |Ait |+ deg(fit(x)) (5)

for 1 6 t 6 w. Recall that (3) means that for 1 6 t 6 w there exists a set A∗
it
, Ait \

(

⋃

j 6=t,16j6w Aij

)

such that |A∗
it
| > r.

Let

eit,j ,

∏

θ∈A(x− θ)

git(x)

∣

∣

∣

∣

x=θit,j

(6)
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for 1 6 t 6 w and θit,j ∈ Ait . Then, for θit,j ∈ A∗
it

, we have

eit,jcit,j = eit,jfit(θit,j) = f∗
it(θit,j) = fE(θit,j),

where the last equality holds by the fact that f∗
iτ
(θit,j) = 0 for 1 6 τ 6 w, τ 6= t, and θiτ ,j ∈ A∗

it
. Let A∗ =

⋃

16t6w A∗
it

.

Note that for θ ∈ A \A∗ and 1 6 t 6 w, f∗
it
(θ) = 0 if θ 6∈ Ait . For θ ∈ A \A∗, by (4) we have

∑

θit,j=θ∈Ait ,
16t6w

eit,jcit,j =
∑

θit,j=θ∈Ait ,
16t6w

eit,jfit(θit,j) =
∑

θit,j=θ∈Ai,
16t6w

f∗
i (θit,j) = fE(θ),

where eit,j is defined by (6). The last equation implies that if we know all the code symbols in Ait for 1 6 t 6 w
corresponding to the same element θ ∈ A \ A∗ then we know the value of fE(θ). In other words, we know all the values

fE(θ) for θ ∈ (A \A∗) \
(

⋃

16t6w Eit

)

.

Furthermore, for θ = θℓ+2,t ∈ S \Eℓ+2, we have cℓ+2,t = fI(θ) = Φ(θ)fE(θ)+ g(θ), i.e., fE(θ) =
cℓ+2,t−g(θ)

Φ(θ) , where g(x)
can be regarded as a known polynomial. Thus, under the erasure pattern E , we know

∣

∣

∣

∣

∣

∣

A∗ \





⋃

16t6w

Eit





∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

(A \A∗) \





⋃

16t6w

Eit





∣

∣

∣

∣

∣

∣

+ |S| − |Eℓ+2|

=

∣

∣

∣

∣

∣

∣

A∗ \





⋃

16t6w

Eit





∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

(A \A∗) \





⋃

16t6w

Eit





∣

∣

∣

∣

∣

∣

+ h− |Eℓ+2|

>

∣

∣

∣

∣

∣

∣

A∗ \





⋃

16t6w

Eit





∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

(A \A∗) \





⋃

16t6w

Eit





∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣





⋃

16t6w

Eit





∣

∣

∣

∣

∣

∣

− δ + 1

=|A| − δ + 1

>|A| − |Ai|+ deg(fit(x)) = deg(f∗
it(x))

evaluation points and the corresponding value for fE(x), where the two inequalities hold by (2) and (5), respectively. This is

to say that we can recover fE(x) since deg(fE(x)) 6 max16t6w deg(f∗
it
(x)). Now the fact that

∣

∣

∣

∣

∣

∣

Ait ∩





⋃

16j6w,j 6=t

Aij





∣

∣

∣

∣

∣

∣

6 δ − 1

implies that we can also recover fit(x) for 1 6 t 6 w and all the code symbols in Ait for 1 6 t 6 w. Finally, by fI(x) we

can recover all the code symbols in Eℓ+2.

Corollary 1: If the set system A of Construction A satisfies that for any µ-subset D of [ℓ+ 1]
∣

∣

∣

∣

∣

∣

Ai ∩





⋃

j 6=i,j∈D

Aj





∣

∣

∣

∣

∣

∣

6 δ − 1 for i ∈ D, (7)

then the code C generated by Construction A is an [n, k, d]q linear code with (r, δ)i locality and d > min{(µ+ 1)δ, h+ δ}.

Furthermore, if h+ δ 6 (µ+ 1)δ, then the code C is optimal with respect to the bound in Lemma 1.

Proof: By Lemma 3, we only need to prove d > min{(µ+ 1)δ, h+ δ}. To bound the minimum Hamming distance of C,

we consider the following two cases:

For the case h+δ > (µ+1)δ, we prove that the code C is capable of recovering any erasure pattern E = {Ei : 1 6 i 6 ℓ+2}
with

∑

16i6ℓ+1 |Ei| + |Eℓ+2| 6 (µ + 1)δ − 1, where Ei ⊆ Ai for 1 6 i 6 ℓ + 1 and Eℓ+2 ⊆ S. Note that the (r, δ)i-
locality means that we only need to consider the case that |Eit | > δ for 1 6 it 6 ℓ + 1 and 1 6 t 6 w. Note that
∑

16i6ℓ+1 |Ei|+ |Eℓ+2| 6 (µ+ 1)δ − 1 implies that w 6 µ. By (7), we may conclude that
∣

∣

∣

∣

∣

∣

Ait ∩





⋃

t6=j∈[w]

Aij





∣

∣

∣

∣

∣

∣

6 δ − 1.

Now the fact that |Eu+2|+
∑

16t6w |Eit | 6
∑

16i6ℓ+1 |Ei| 6 µδ 6 h+ δ − 1 implies that E is recoverable by Theorem 1.

For the case (µ+1)δ > h+ δ, similarly, we are going to prove that the code C is capable of recovering any erasure pattern

E = {Ei : 1 6 i 6 ℓ + 2} with
∑

16i6ℓ+2 |Ei| 6 h + δ − 1, where Ei ⊆ Ai for 1 6 i 6 ℓ + 1 and Eℓ+2 ⊆ S. Similarly,
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we conclude that there are at most w 6 µ sets Ei1 , Ei2 , · · · , Eiw with |Eil | > δ and 1 6 it 6 ℓ+ 1 for 1 6 t 6 w. Again by

Theorem 1, (7), and the fact that

|Eu+2|+
∑

16t6w

|Eit | 6
∑

16i6ℓ+2

|Ei| 6 h+ δ − 1,

we have that E is recoverable.

Finally, the optimality of C follows directly from Lemma 1 and the fact that h+ δ 6 (µ+ 1)δ.

A. Optimal Locally Repairable Codes with (r, δ)i-Locality Based on Packings or Steiner Systems

Based on Corollary 1, to construct optimal locally repairable codes we only need to find A such that (7) holds. In this

section, we consider the case that A forms a combinatorial structure which satisfies the condition given by (7). We first consider

a condition on the intersection of any pair of sets in A rather than µ sets as in (7).

Theorem 2: Assume the setting of Construction A. Let A be a set system formed by subsets of Fq \ S, where S is

an h-subset of Fq. If there exists a positive integer a such that |Ai ∩ Aj | 6 a for all i 6= j, then the code C generated by

Construction A is an [n, k, d > min{h+ δ, (⌈ δ
a⌉+ 1)δ}]q linear code with (r, δ)i-locality. If additionally, h 6 ⌈ δ

a⌉δ, then the

code C generated by Construction A is an optimal [n, k, d = h+ δ]q linear code with (r, δ)i-locality.

Proof. Let µ = ⌈ δ
a⌉. Then for any µ-subset, R ⊆ A, and for any A′ ∈ R, we have

∣

∣

∣

∣

∣

∣

A′ ∩





⋃

A∈R\{A′}

A





∣

∣

∣

∣

∣

∣

6 (µ− 1)a =

(⌈

δ

a

⌉

− 1

)

a 6 δ − 1,

since |Si ∩ Sj | 6 a. The first claim follows from Corollary 1. Note that µδ > ⌈ δ
a⌉δ > h means that (µ+ 1)δ > h+ δ. Again

by Corollary 1 we have the desired result follows.

Based on Theorem 2, we can use combinatorial designs to generate optimal locally repairable codes via Construction A.

The following corollaries follow directly from Theorem 2.

Corollary 2: Let S be an h-subset of Fq. If there exists a (τ+1)-(q−h, r+δ−1, 1)-packing (Fq\S,B) and 0 6 h 6 ⌈ δ
τ ⌉δ,

then there exists an optimal [n, k, d]q linear code with (r, δ)i-locality, where n = |B|(r+ δ−1)+h− r+v, k = (|B|−1)r+v,

and d = h+ δ.

Corollary 3: If there exists a (τ + 1, r + δ − 1, q − h)-Steiner system and 0 6 h 6 ⌈ δ
τ ⌉δ, then there exists an optimal

[n, k, d]q linear code with (r, δ)i-locality, where

n =

(

q−h
τ+1

)

(r + δ − 1)
(

r+δ−1
τ+1

) + h+ v − r,

k =

(
(

q−h
τ+1

)

(

r+δ−1
τ+1

) − 1

)

r + v,

and d = h+ δ.

B. Optimal Locally Repairable Codes with Order-Optimal Length: (r, δ)i-Locality

Finding the maximal length of optimal locally repairable codes with (r, δ)a-locality was the subject of [11], [22], for the

cases of δ = 2 and δ > 2, respectively. Both constructions and bounds are proposed there. It is therefore natural to further ask

how long can optimal locally repairable codes with (r, δ)i-locality be. This question is also important to us in order to analyze

the performance of Construction A.

Theorem 3: Let n = k + ℓ(δ − 1) + h, δ > 2, k = ℓr. Assume there exists an optimal [n, k, d]q linear code C with

(r, δ)i-locality. For any given integer 0 6 a 6 h define T (a) = ⌊(d− a− 1)/δ⌋. If T (a) > 2, then

n 6







r+δ−1
r

(

T (a)−1
2(q−1) q

2(h−a−1)
T (a)−1 + a+ 1

)

− h(δ−1)
r , if T (a) is odd,

r+δ−1
r

(

T (a)
2(q−1)q

2(h−a)
T(a) + a

)

− h(δ−1)
r , if T (a) is even,

where h can be rewritten as h = d− δ.

The technical proof and its supporting lemmas are included in Appendix A.

Throughout the paper we shall look at the asymptotics of families of codes with locality. In the terminology of Theorem 3 we

assume r, δ, h, d (and therefore a) are all constants. If the codes we study are optimal (with respect to the bound of Lemma 1),
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then k may be derived from n. Thus, we are left with the asymptotics of n as a function of the field size q. Therefore, we

shall say the family of codes is order optimal if, up to a constant factor, it attains the bound of Theorem 3, namely,

n =







Θ
(

q
2(h−a−1)
T (a)−1

−1
)

if T (a) is odd,

Θ
(

q
2(h−a)
T (a)

−1
)

if T (a) is even.

Now, based on Theorem 3, we can analyze the performance of Construction A. The number of blocks of a packing is upper

bounded by the following Johnson bound [26]:

Lemma 4 ([26]): The maximum possible number of blocks of a (τ +1)-(n1, r+ δ− 1, 1)-packing (X,B) is bounded by

|B| 6

⌊

n1

r + δ − 1

⌊

n1 − 1

r + δ − 2

⌊

n1 − 2

r + δ − 3
. . .

⌊

n1 − τ

r + δ − 1− τ

⌋

. . .

⌋⌋⌋

.

Thus, the number of blocks for a (τ + 1)-(n1, r + δ − 1, 1)-packing can be as large as O(nτ+1
1 ), when τ , r, and δ are

regarded as constants.

Corollary 4: Let n1 = q − h. If there exists a (τ + 1)-(n1, r + δ − 1, 1)-packing with blocks B, |B| = Ω(nτ+1
1 ), and

0 6 h 6 ⌈ δ
τ ⌉δ, then there exists an optimal [n, k, d]q linear code with (r, δ)i-locality, where n = |B|(r+ δ− 1)+ h+ v− r =

Ω(qτ+1), k = (|B| − 1)r + v and d = h + δ. Furthermore, if h > δ + 1, v = r, and τ = δ − 1 the code based on the

(τ + 1)-(n1, r + δ − 1, 1)-packing has order-optimal length, where r, h, and δ are regarded as constants.

Proof. By Corollary 2, we have n = |B|(r + δ − 1) + h + v − r = Ω(qτ+1) for the code generated by Construction A. In

Theorem 3, setting a = h− δ− 1, we have T (a) = ⌊d−1−a
δ ⌋ = ⌊h+δ−a−1

δ ⌋ = 2. Therefore, for the case v = r, by Theorem 3

again

n 6
r + δ − 1

r

(

T (a)

2(q − 1)
q

2(h−a)
T(a) + a

)

−
h(δ − 1)

r
=

r + δ − 1

r

(

1

q − 1
qδ+1 + a

)

−
h(δ − 1)

r
= O(qδ).

Thus, for the case τ = δ − 1 and v = r, the code C has length n = Ω(qτ+1) = Ω(qδ), which is order optimal with respect to

the bound in Theorem 3, when h, r, and δ are regarded as constants.

Corollary 5: Let n1 = q − h. If there exists a (τ + 1, r + δ − 1, n1)-Steiner system and 0 6 h 6 ⌈ δ
τ ⌉δ, then there exists

an optimal [n, k, d]q linear code with all symbol (r, δ)-locality, where

n =

(

n1

τ+1

)

(r + δ − 1)
(

r+δ−1
τ+1

) + h,

k =
r
(

n1

τ+1

)

(

r+δ−1
τ+1

) ,

and d = h+ δ. In particular, for the case h > δ+ 1 and τ = δ− 1, the code based on the (δ, r+ δ− 1, q− h)-Steiner system

has order-optimal length, where h, r, and δ are regarded as constants.

Proof. The first part of the corollary follows directly from Corollary 2 and Definition 6. For the second part, the fact h > δ+1
means that we can set a = h− δ − 1 and T (a) = ⌊d−1−a

δ ⌋ = ⌊h+δ−a−1
δ ⌋ = 2 in Theorem 3, which also means the code C

has length

n 6
r + δ − 1

r

(

T (a)

2(q − 1)
q

2(h−a)
T(a) + a

)

−
h(δ − 1)

r
=

r + δ − 1

r

(

1

q − 1
qδ+1 + a

)

−
h(δ − 1)

r
= O(qδ).

Now the conclusion comes from the fact that the upper bound is O(qδ) and the constructed code has length n =
( n1
τ+1)(r+δ−1)

(r+δ−1
τ+1 )

+

h = Ω(qδ), where we assume h, r, and δ are constants.

Remark 3: For the existence of packings in general the reader may refer to [38] and the survey in [14, VI.40].

Remark 4: Given positive integers τ , r and δ > 2, the natural necessary conditions for the existence of a (τ + 1, r +
δ − 1, t − r + v)-Steiner system are that

(

r+δ−1−i
τ+1−i

)

|
(

t−r+v−i
τ+1−i

)

for all 0 6 i 6 τ . It was shown in [27] that these conditions

are also sufficient except perhaps for finitely many cases. While q might not be a prime power, any prime power q > q will

suffice for our needs. It is known, for example, that there is always a prime in the interval [q, q + q21/40] (see [2]). Thus, by
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Corollary 5, for all large enough t, there exists an optimal [n, k, d]q locally repairable code, with (r, δ)i-locality, where q is a

prime power with t 6 q 6 t+ t21/40 and

n = (r + δ − 1) ·

(

t−r+v
τ+1

)

(

r+δ−1
τ+1

) + h = Ω(tτ+1) = Ω(qτ+1),

k =
r
(

t−r+v
τ+1

)

(

r+δ−1
τ+1

) ,

d = h+ δ.

Remark 5: One well known construction for optimal locally repairable codes with (r, δ)i-locality is that of pyramid codes.

The pyramid code is based on an MDS code whose length is upper bounded by q+d−2 (and by the MDS conjecture this may

be reduced to q+1 for q odd [1]). Thus, the length of pyramid code is upper bounded by q+d−1−δ+ k
r δ 6 q+d−1−δ+ q−1

r δ

(we note that q+2−δ+ k
r δ 6 q+2−δ+ q−d+2

r δ according to MDS conjecture for the case of q odd), where d > δ. According

to our construction and bound (in Theorem 3), it follows that the pyramid code is sub-optimal in terms of asymptotic length,

since we construct locally repairable codes with (r, δ)i-locality and length n = Ω(qδ).

Example 1: Set n = 24, k = 14, δ = 2, r = 2, and h = 3. Let A = {Ai : Ai , {3, 6, 5}+ i ⊆ Z7, i ∈ Z7}. According

to Construction A, we can construct a linear code C with (2, 2)i-locality over F11, whose parity check matrix can be given as:

H =

































7 5 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0
0 0 7 5 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0
0 0 0 0 7 5 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0
0 0 0 0 0 0 3 9 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0
0 0 0 0 0 0 0 0 3 9 0 0 0 0 0 0 0 0 10 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 9 3 0 0 0 0 0 0 0 10 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 7 5 0 0 0 0 0 0 10 0 0 0
5 10 2 7 7 1 1 6 3 5 1 3 2 8 0 0 0 0 0 0 0 10 0 0
1 4 8 5 1 9 3 3 6 3 4 2 9 5 0 0 0 0 0 0 0 0 10 0
2 6 10 7 3 6 7 3 8 8 7 2 4 2 0 0 0 0 0 0 0 0 0 10

































.

Verified by a computer program, the minimum Hamming distance of C is 5. Thus, in this setting, Construction A generates a

[24, 14, 5]11 optimal linear code with (2, 2)i-locality, consistent with the result in Theorem 2. Note that, to construct a code

sharing the same parameters via the pyramid code, we need an MDS code with parameters [18, 14, 5]q. However, according to

the MDS conjecture this MDS code exists only under the condition that q > 17. Without the help of MDS conjecture, based

on the result proposed in [1], we have q > 16 for this special setting.

Remark 6: For the case δ = 2 and d = 5, optimal linear codes with all symbol (r, 2)-locality and order-optimal length

Θ(q2) have been introduced in [7], [22], [25]. The constructions in [7], [25] are given by parity-check matrices with 3 or 4
global parity checks, which means they only work for the cases d = 5, 6. One can verify that our construction still works for

more general cases even if we restrict to the case δ = 2.

Remark 7: For the case δ > 2 and d = 2δ + 1, optimal linear codes with all symbol (r, 2)-locality and order-optimal

length Θ(qδ) have been introduced in [11]. However, the construction in [11] should satisfy the condition h 6 r+ δ−1, which

is not need for Construction A.

IV. GENERALIZED SECTOR-DISK CODES

By Theorem 1, we may have extra benefits if

∣

∣

∣

⋃

|Ei|>δ,i∈[ℓ+1]Ei

∣

∣

∣ <
∑

|Ei|>δ,i∈[ℓ+1] |Ei|. In this section, we are going

to use this property to construct array codes that can recover from special erasure patterns beyond the minimum Hamming

distance. The basic idea of those construction is to let all the code symbols share the same evaluation point in step 1 of

Construction A in the same column of an array code. Then for this array code, one erased column may only increase the value
∣

∣

∣

⋃

|Ei|>δ,i∈[ℓ+1]Ei

∣

∣

∣ by one. Hence, when we consider sector-disk-like erasure patterns, we may get some extra benefit beyond

the minimum Hamming distance. We begin with some definitions.

Definition 7: Let C be an optimal [n, k, d]q linear code with (r, δ)i-locality. Then the code C is said to be an (s, γ)-
generalized sector-disk code (GSD code) if the codewords can be arranged into an array

C =











c1,1 c1,2 · · · c1,a
c2,1 c2,2 · · · c2,a

...
...

. . .
...

cb,1 cb,2 · · · cb,a











such that:
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(I) all the erasure patterns that contain any s columns and additional γ cells can be recovered; and

(II) sb+ γ > d− 1.

Remark 8: If the code C has (r, δ)a-locality, the repair sets are exactly the rows, and then the (d− δ, δ − 1)-GSD code

is exactly the (d− δ, δ − 1)-SD code [34]. Compared with SD codes, GSD codes relax the conditions in the following three

aspects:

• GSD codes only require (r, δ)i-locality, whereas SD codes require (r, δ)a-locality;

• A row in an array codeword of a GSD code is not necessary a repair set;

• The number of column erasures is not restricted to δ − 1 as in SD codes.

In the following construction, we use Construction A to generate GSD codes.

Construction B: Let S be an h-subset of Fq and let (X = Fq \ S,A = {Ai : 1 6 i 6 ℓ + 1}) be a t-regular

(m, r + δ − 1, 1)-packing, where Ai = {θi,j : 1 6 j 6 r + δ − 1} for 1 6 i 6 ℓ+ 1. Based on A and S, we can generate a

locally repairable code C according to Construction A. Define column vectors Vτ ∈ Ft
q for τ ∈ Fq as

V ⊺
τ = (ciτ,1,jτ,1 , ciτ,2,jτ,2 , . . . , ciτ,t,jτ,t),

where

θiτ,b,jτ,b = τ, for 1 6 b 6 t.

Arrange the h global parity symbols as the last ⌈h
t ⌉ columns. If there are empty cells in the array, then we fill them with 0.

Theorem 4: Let C be the t×(m+⌈h
t ⌉) array code generated by Construction B. Then each element of the first m columns

has (r, δ)-locality. If h 6 δ2, then the code can recover from any h+ δ − 1 erasures. Furthermore:

(I) The code C can recover from any erasure pattern of y 6 2 columns from the first m columns and any other h − y − 1
erasures.

(II) If
(

y
2

)

6 δ, then the code C can recover from any erasure pattern of y columns from the first m columns and any other

h− 2−
(

y
2

)

erasures.

(III) The code C can recover from any erasure pattern of y < (δ+1)δ
2 − 1 columns from the first m columns and any other

min{ (δ+1)δ
2 − y − 1, h+ δ − 1− y} erasures.

Proof: By Lemma 3 and Theorem 1, we only need to prove that the desired erasure patterns satisfy (2) and (3). Since

A forms a t-regular (m,w, 1)-packing, for the condition given by (3) we consider a sufficient condition that is the erasure

pattern contains at most δ repair sets with each of them containing more than δ erasures.

For case (I) and y = 2, say the erased columns are marked by θ1 and θ2. We focus on the repair sets with more than δ
erasures. In those repair sets, there is at most one repair set that contains θ1 and θ2, while the remaining repair sets contain at

most one of them. For this case, we need at least δ− 2+ (δ− 1)(δ− 1)+ δ− 2 = δ2 − 3 > h− 3 erasures before we achieve

δ + 1 repair sets with each of them containing more than δ erasures. Thus, the code C can recover from any erasure pattern

of y = 2 columns from the first m columns and any other h− 3 erasures. The same analysis proves the case y = 1.

For the case (II), we assume that the erased columns are marked by elements in Θ = {θ1, θ2, · · · , θy}. Note that A is an

(m, r + δ − 1, 1)-packing, which means that each 2-subset of Θ appears in at most one repair set. This is to say, for any δ
repair sets Aj1 , Aj2 , · · · , Ajδ we have

∑

16i6δ

|Θ ∩ Aji | 6 2

(

y

2

)

+ δ −

(

y

2

)

=

(

y

2

)

+ δ,

which means for any Eji ⊆ Aji
∑

16i6δ

|Θ ∩ Eji | 6 2

(

y

2

)

+ δ −

(

y

2

)

=

(

y

2

)

+ δ.

Therefore, for this case, we need at least δ2 + δ− 2−
(

y
2

)

− δ > h− 2−
(

y
2

)

erasures before we achieve δ+1 repair sets each

of which contains more than δ erasures. In other words, the code C can recover from any erasure pattern of y columns from

the first m columns and any other h− 2−
(

y
2

)

erasures.

For the case (III), we assume that the erased columns are marked by elements in Θ = {θ1, θ2, · · · , θy}. Note that A is an

(m,w, 1)-packing, which means that Ai ∩ Aj 6 1 for 1 6 i, j 6 m with i 6= j. for any δ + 1 repair sets Aj1 , Aj2 , · · · , Ajδ+1

we have ∣

∣

∣

∣

∣

∣





⋃

16i6δ+1

Aji





∣

∣

∣

∣

∣

∣

>
∑

16i6δ+1

|Aji | −

(

δ + 1

2

)

.

Thus, for any Eji ⊆ Aji with |Eji | > δ for 1 6 i 6 δ + 1, we have
∣

∣

∣

∣

∣

∣





⋃

16i6δ+1

Eji





∣

∣

∣

∣

∣

∣

>
∑

16i6δ+1

|Eji | −

(

δ + 1

2

)

> (δ + 1)δ −

(

δ + 1

2

)

,
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which means that we need at least
(

δ+1
2

)

− y − 1 erasures before we achieve δ + 1 repair sets each of which contains more

than δ + 1 erasures. Thus, the code C can recover from any erasure pattern of y columns from the first m columns and any

other
(

δ+1
2

)

− y − 1 erasures if h+ δ − 1− y >
(

δ+1
2

)

− y − 1 > 0.

Example 2: Set n = 24, k = 14, δ = 2, r = 2, and h = 3. Let A = {Ai : Ai , {3, 6, 5}+ i ⊆ Z7, i ∈ Z7}. According

to Construction B, we can modify the code in Example 1 into a 3× 8 array code, whose parity-check matrix can be given as:

H =

































0 0 0 10 0 0 7 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 10 0 7 0 0 0 0 0 5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 10 0 0 7 0 0 0 0 5 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 3 0 0 0 0 0 0 0
0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 10 0 3 0 0 0 0
0 9 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0
0 0 10 0 0 7 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0
6 1 0 0 5 2 5 0 3 2 0 8 10 7 0 7 1 0 1 3 0 10 0 0
3 4 0 0 3 9 1 0 2 8 0 5 4 1 0 5 3 0 9 6 0 0 10 0
3 7 0 0 8 4 2 0 2 10 0 2 6 3 0 7 7 0 6 8 0 0 0 10

































.

Verified by a computer program, the array code can recover any from any 2 column erasures from the first 7 columns, which

is consistent with the result in Theorem 4. Note that this kind of erasure pattern is beyond the minimum Hamming distance

d = 5 as shown in Example 1.

By Construction B, we can generate codes that may recover from some special erasure patterns beyond the minimum

Hamming distance. However, all those erasure patterns do not treat columns equally, and distinguish between two types of

columns. If this is an unwanted feature, we may arrange the global parity checks across columns, as done in the following

construction.

Construction C: Let S be a h-subset of Fq and let (X ⊆ Fq \ S,A = {Ai : 1 6 i 6 ℓ + 1}) be a t-regular

(m, r + δ − 1, 1)-packing, where Ai = {θi,j : 1 6 j 6 r + δ − 1} for 1 6 i 6 ℓ + 1. Let n = v|X | = vρ with v > t,
then based on A and S, we can generate a locally repairable code C according to Construction A. List the elements of X as

(x1, x2, · · · , xρ). Define column vectors Vxa
∈ Fv

q for a ∈ [ρ] as

V ⊺
xa

= (cixa,1,jxa,1 , cixa,2,jxa,2 , . . . , cixa,t,jxa,t
, cℓ+2,(a−1)h/ρ+1, cℓ+2,(a−1)h/ρ+2, · · · , cℓ+2,ah/ρ),

where

θixa,b,jxa,b
= xa, for 1 6 b 6 t. (8)

Remark 9: In Construction C, the fact that (X ⊆ Fq \ S,A = {Ai : 1 6 i 6 ℓ + 1}) is a regular packing means that

n− h = tρ. Thus, by n = vρ, we have ρ | h and v = t+ h/ρ. This is to say the array given by (8) is well defined.

Corollary 6: Let C be the v × ρ array code generated by Construction C. Then C has (r, δ)i-locality. If h 6 δ2, then the

code can recover from any h+ δ − 1 erasures. Furthermore:

(I) The code C can recover from any erasure pattern of y 6 2 columns and any other h− y(v − t+ 1)− 1 erasures.

(II) If
(

y
2

)

6 δ, then the code C can recover from any erasure pattern of y columns and any other h − 2 −
(

y
2

)

− y(v − t)
erasures.

(III) The code C can recover from any erasure pattern of y < (δ+1)δ
2 − 1 columns and any other min{ (δ+1)δ

2 − y(v− t+1)−
1, h+ δ − 1− y(v − t+ 1)} erasures.

Proof: Note that any y columns of C can be regarded as y columns from the first m columns and y(v − t) erasures

(sectors) from the global check symbols, for the code generated by Construction B. Thus, the desired results follows directly

from Theorem 4, respectively.

For the case r ∤ k and h = r − v, we may modify Construction C as follows.

Construction D: Let S be an (r − v)-subset of Fq and let (X ⊆ Fq \ S,B = {Bi : 1 6 i 6 ℓ + 1}) be a t-regular

(m, r + δ − 1, 1)-packing. Let Ai = Bi for 1 6 i 6 ℓ and Aℓ+1 ⊆ Bℓ+1. Let n = t|X | = tρ and k = ℓr + v, then based

on A and S, we can generate a locally repairable code C according to Construction A. List the elements of Bℓ+1 \ Aℓ+1 as

(x1, x2, . . . , xr−v) and X as (x1, x2, · · · , xρ). Define column vectors Vxa
∈ Fv

q for a ∈ [ρ] as

V ⊺
xa

=

{

(cixa,1,jxa,1 , cixa,2,jxa,2 , . . . , cixa,t−1,jxa,t−1 , cℓ+2,a), if 1 6 a 6 r − v,

(cixa,1,jxa,1 , cixa,2,jxa,2 , . . . , cixa,t,jxa,t
), otherwise,

where θixa,b,jxa,b
= xa, 1 6 b 6 t− 1 for 1 6 a 6 r − v and 1 6 b 6 t for r − v + 1 6 a 6 ρ.

Corollary 7: Let C be the t× ρ array code generated by Construction D. Then C has (r, δ)i-locality. If h 6 δ2, then the

code can recover any h+ δ − 1 erasures. Furthermore:

(I) The code C can recover from any erasure pattern of y 6 2 columns and any other h− 2y − 1 erasures.
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(II) If
(

y
2

)

6 δ, then the code C can recover from any erasure pattern of y columns and any other h− 2−
(

y
2

)

− y erasures.

(III) The code C can recover from any erasure pattern of y < (δ+1)δ
2 −1 columns and any other min{ (δ+1)δ

2 −2y−1, h+δ−1−2y}
erasures.

Proof: Note that any y columns of C can be regarded as y columns from the first m columns and at most y erasures

(sectors) from the global check symbols, for the code generated by Construction B. Thus, the desired results follows directly

from Theorem 4, respectively.

Based on known results about regular packings, we derive some parameters of GSD codes resulting from our constructions.

In particular, we use two well known classes of Steiner systems that are the affine geometries and projective geometries.

Lemma 5 ([14]): Let β > 2 be an integer and q1 a prime power, then there exists a (2, q1, q
β
1 )-Steiner system.

Based on affine geometries and Construction D, we have the following conclusion for GSD codes.

Corollary 8: Let β > 2 be an integer and q1 a prime power. Set q1 = r+ δ− 1, n =
qβ1 (qβ1 −1)

q1−1 , δ > 2, k = (
qβ−1
1 (qβ1 −1)

q1−1 −

1)r+ v with 1 6 v 6 r− 1, and h = r− v = q1 − δ− v+1. Let C be the
qβ1 −1
q1−1 × qβ1 array code generated by Construction D

using a (2, q1, q
β
1 )-Steiner system from Lemma 5. If h 6 δ2, then the code C is an [n, k, h+ δ− 1]q optimal locally repairable

code with (r, δ)i-locality, where q > qβ1 + h. Furthermore:

(I) If y 6 2 and y(
qβ1 −1
q1−1 − 2) > δ, then the code C is a (y, h− 2y − 1)-GSD code.

(II) If
(

y
2

)

6 δ and y
qβ1 −1

q1−1 − 1−
(

y
2

)

− y > δ, then the code C is a (y, h− 2−
(

y
2

)

− y)-GSD code.

(III) If y < (δ+1)δ
2 − 1 and y

qβ1 −1
q1−1 + γ > h + δ − 1, then the code C is a (y, γ)-GSD code, where γ = min{ (δ+1)δ

2 − 2y −
1, h+ δ − 1− 2y} erasures.

Herein, we highlight that the second restriction of each item comes from the requirement in Definition 7-(II).

Proof: The proof follows directly from Corollary 7, Lemma 5, and Definition 7.

Lemma 6 ([14]): Let β > 2 be an integer and q1 a prime power, then there exists a (2, q1 + 1,
qβ+1
1 −1

q1−1 )-Steiner system.

Based on projective geometries and Construction D, we have the following conclusion for GSD codes.

Corollary 9: Let β > 2 be an integer and q1 a prime power. Set q1 + 1 = r + δ − 1, n =
(qβ+1

1 −1)(qβ1 −1)

(q1−1)2 , δ > 2,

k = (
(qβ+1

1 −1)(qβ1 −1)

(q1−1)(q21−1)
− 1)r + v with 1 6 v 6 r − 1, and h = r − v = q1 − δ − v + 2. Let C be the

qβ1 −1

q1−1 ×
qβ+1
1 −1

q1−1 array

code generated by Construction D using a (2, q1 +1,
qβ+1
1 −1
q1−1 )-Steiner system from Lemma 5. If h 6 δ2, then the code C is an

[n, k, h+ δ − 1]q optimal locally repairable code with (r, δ)i-locality, where q >
qβ+1
1 −1
q1−1 + h is a prime power. Furthermore:

(I) If y 6 2 and y(
qβ1 −1
q1−1 − 2) > δ, then the code C is a (y, h− 2y − 1)-GSD code.

(II) If
(

y
2

)

6 δ and y
qβ1 −1

q1−1 − 1−
(

y
2

)

− y > δ, then the code C is a (y, h− 2−
(

y
2

)

− y)-GSD code.

(III) If y < (δ+1)δ
2 − 1 and y

qβ1 −1
q1−1 + γ > h + δ − 1, then the code C is a (y, γ)-GSD code, where γ = min{ (δ+1)δ

2 − 2y −
1, h+ δ − 1− 2y} erasures.

Proof: The proof follows directly from Corollary 7, Lemma 6, and Definition 7.

Lemma 7 ([14]): For any β > 2 and prime power q1, there exists a (3, q1 + 1, qβ1 + 1)-Steiner system.

Similarly, based on Steiner systems from spherical geometries and Construction D, we have the following conclusion for

GSD codes.

Corollary 10: Let β > 2 be an integer and q1 a prime power. Set q1 + 1 = r + δ − 1, n = (qβ1 + 1)
(q

β
1
2 )

(q12 )
, δ > 2,

k = (
(qβ1 +1)(q

β
1
2 )

(q1+1)(q12 )
− 1)r + v with 1 6 v 6 r − 1, and h = r − v = q1 − δ − v + 2. Let C be the

(q
β
1
2 )

(q12 )
× (qβ1 + 1) array code

generated by Construction D using a (2, q1 + 1,
qβ+1
1 −1
q1−1 )-Steiner system from Lemma 5. If h 6 δ2, then the code C is an

[n, k, h+ δ − 1]q optimal locally repairable code with (r, δ)i-locality, where q > qβ1 + 1 + h is a prime power. Furthermore:

(I) If y 6 2 and y(
(q

β
1
2 )

(q12 )
− 2) > δ, then the code C is a (y, h− 2y − 1)-GSD code.

(II) If
(

y
2

)

6 δ and y
(q

β
1
2 )

(q12 )
− 1−

(

y
2

)

− y > δ, then the code C is a (y, h− 2−
(

y
2

)

− y)-GSD code.

(III) If y < (δ+1)δ
2 − 1 and y

(q
β
1
2 )

(q12 )
+ γ > h + δ − 1, then the code C is a (y, γ)-GSD code, where γ = min{ (δ+1)δ

2 − 2y −

1, h+ δ − 1− 2y} erasures.

Proof: The proof follows directly from Corollary 7, Lemma 7, and Definition 7.
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TABLE I
A COMPARISON OF MR-CODES, SD-CODES, AND GSD-CODES

s γ Type n Ref. Comment

any 1 MR Θ(q) [4]
1, 2, 3 2 SD Θ(q) [34]

any 2 SD Θ(q) [6]

any 3 MR Θ(q1/3) [20]

1 any MR Θ(q1/(γ−1)) [18] r|(k + γ)
any any MR Θ(log q) [8] s = δ − 1
any any MR Θ(q1/γ) [17] s = δ − 1
any any MR Θ(q1/r) [33] s = δ − 1

any any GSD Θ(q2−1/β) Cor. 8,9 β > 2 is a constant

any any GSD Θ(q3−2/β) Cor. 10 β > 2 is a constant

any any GSD Θ(q2) Cor. 8,9 q1 is a constant

any any GSD Θ(q3) Cor. 10 q1 is a constant

any any GSD Θ(q2) Cor. 11 e, u, h are constants
any any GSD Θ(qτ ) Cor. 7 Remark 10 (non-explicit)
any any GSD Θ(qτ ) Cor. 7 Remark 11 (non-explicit)

For regular packings, we have the following lemma due to a recursive construction from [26]. A direct construction is also

supplied for the reader’s convenience in Appendix B.

Lemma 8 ([26]): Let n2 = pm1
1 pm2

2 · · · pmu
u , where pi are distinct primes, and mi > 0, for all i. If e| gcd(pm1

1 − 1, pm2
2 −

1, · · · , pmu
u − 1), then there exists a 1

eu

∏

16i6u(p
mi

1 − 1)-regular (en2, e, 1)-packing.

Based on regular packings we can also generate GSD codes as follows.

Corollary 11: Let n2 = pm1
1 pm2

2 · · · pmu
u and e| gcd(pm1

1 − 1, pm2
2 − 1, · · · , pmu

u − 1), where pi are distinct primes, and

mi > 0, for all i. Define p =
∏

16i6u(p
mi

1 − 1). Set e = r + δ − 1, n = n2p/e
u−1, δ > 2, k = (n2p/e

u − 1)r + v with

1 6 v 6 r − 1, and h = r − v = e− δ + 1− v. Let C be the p/eu × en2 array code generated by Construction D. If h 6 δ2,

then the code C is an [n, k, h + δ − 1]q optimal locally repairable code with (r, δ)i-locality, where q > en2 + h is a prime

power. Furthermore:

(I) If y 6 2 and y(p/eu−1 − 2) > δ, then the code C is a (y, h− 2y − 1)-GSD code.

(II) If
(

y
2

)

6 δ and yp/eu−1 − 1−
(

y
2

)

− y > δ, then the code C is a (y, h− 2−
(

y
2

)

− y)-GSD code.

(III) If y < (δ+1)δ
2 − 1 and yp/eu−1 + γ > h+ δ − 1, then the code C is a (y, γ)-GSD code, where γ = min{ (δ+1)δ

2 − 2y −
1, h+ δ − 1− 2y} erasures.

Table I lists some known results about SD codes and MR code (PMDS codes) as a comparison with the GSD codes we

have constructed. The main point of comparison is the asymptotics of the length of the code with respect to the field size.

For this table, n = m(r + δ − 1) is the total number of sectors for a codeword, k is the number of sectors for information

symbols, r+ δ− 1 is the number of columns (i.e., the code has (r, δ)a-locality), and q is the field size. For a fair comparison

with our results in Corollaries 8–11, we consider r, δ, and γ, as constants when we consider the relationship between n and

q. We further make the following remarks:

Remark 10: By Corollaries 8 and 9, there exist GSD codes with n = Θ(q2), where h, r, and δ are regarded as constants,

i.e., q1 is a constant, as already written in Table I. Note that if we regard β > 2 as a constant then n = Θ(q
2β−1

β ) with

q = Θ(qβ1 ). In addition, for general cases by using Steiner systems with parameters (τ, r + δ − 1, n1), Steiner systems are

capable of yielding optimal locally repairable codes (similarly, GSD codes) with length n = Θ(qτ ) as shown in Corollary 5

and Remark 5. Here we apply the fact that Steiner systems are regular packings, which means that the locally repairable codes

in Corollary 5 and Remark 5 can yield GSD codes by Construction D and Corollary 7. For example, in Corollary 10, we have

n = Θ(q3) for the case τ = 3, where q1 + 1 = r + δ − 1 is regarded as a constant. However, the problem of constructing

Steiner systems in general is widely open in combinatorics. For a summary of combinatorial designs and linear codes, the

reader may refer to [16] for example.

Remark 11: According to Corollary 11, there exist GSD codes with n =
∏

16i6u(p
mi
i (p

mi
i −1))

eu = Θ(q2), where q >
e
∏

16i6u p
mi

i + h and we consider e = r + δ − 1, u, and h as constants. In particular, for the case δ = 2, this code has

order-optimal length with respect to the bound in Theorem 3. Similarly, for τ > 2, to generate codes with length n = Θ(qτ )
we need regular τ -(n1, r + δ − 1, 1)-packings with τ > 2 (see Definition 5), where we also need to apply Construction D to

rearrange the locally repairable codes into GSD codes.

Example 3: Set n = 9 × 73 = 657, k = 7 × 72 + 1 = 505, δ = 3, r = 7, and h = 6. Let A = {Ai : i ∈ [73]} be a

(2, 9, 73)-Steiner system. According to Construction D, we can generate a 9× 73 array code, which forms a (2, 1)-GSD code
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(or a (1, 3)-GSD code). This code is an optimal [657, 505, 9]q>79 locally repairable code with (7, 3)i-locality when viewed as

a one dimensional linear code.

V. LOCALLY REPAIRABLE CODES VIA CLASSICAL GOPPA CODES

In this section, inspired by the classical Goppa code [21], we apply a similar method to construct locally repairable codes.

Construction E: Let G1(x) and G2(x) be two polynomials over Fqm with degree δ − 1 and h, respectively. Let S =
(γ1, γ2, · · · , γn) be a sequence of length n over Fqm . Also, let S1, . . . , Sℓ+1 ⊆ Fqm be subsets such that |Si| = r + δ − 1 for

1 6 i 6 ℓ, |Sℓ+1| 6 h, as well as,
⋃

16i6ℓ+1

Si = {γi : 1 6 i 6 n}.

and

G1(γi)G2(γi) 6= 0 for 1 6 i 6 n.

Define the code Γqm(S = {S, S1, . . . , Sℓ},G = {G1, G2}) as a set of vectors V = (v1, v2, . . . , vn) ∈ Fn
qm such that

∑

16j6r+δ−1

vi,j
x− γi,j

≡ 0 (mod G1(x)) for 1 6 i 6 ℓ

and
∑

16j6n

vj
x− γj

≡ 0 (mod G2(x)),

where for 1 6 i 6 ℓ and 1 6 j 6 r+δ−1, we denote v(i−1)(r+δ−1)+j as vi,j , and γ(i−1)(r+δ−1)+j as γi,j , and Si = {γi,j}
r+δ−1
j=1 .

Lemma 9: The code Γqm(S,G) generated by Construction E is an [n, k]qm linear code with k > n− ℓ(δ− 1)− h, whose

code symbol vi,j has (r, δ)-locality for 1 6 i 6 ℓ and 1 6 j 6 r + δ − 1.

Proof: By the properties of classical Goppa codes (refer to [32] Chapter 12.3 for more details), the parity-check matrix

of Γqm(S,G) may be written as

P =















P1,1 0 · · · 0 0
0 P1,2 · · · 0 0
...

...
. . .

...
...

0 0 · · · P1,ℓ 0
P2,1 P2,2 · · · P2,ℓ P2,ℓ+1















,

where

P1,i =















G−1
1 (γi,1) G−1

1 (γi,2) G−1
1 (γi,3) · · · G−1

1 (γi,r+δ−1)
G−1

1 (γi,1)γi,1 G−1
1 (γi,2)γi,2 G−1

1 (γi,3)γi,3 · · · G−1
1 (γi,r+δ−1)γi,r+δ−1

...
...

...
...

G−1
1 (γi,1)γ

δ−3
i,1 G−1

1 (γi,2)γ
δ−3
i,2 G−1

1 (γi,3)γ
δ−3
i,3 · · · G−1

1 (γi,r+δ−1)γ
δ−3
i,r+δ−1

G−1
1 (γi,1)γ

δ−2
i,1 G−1

1 (γi,2)γ
δ−2
i,2 G−1

1 (γi,3)γ
δ−2
i,3 · · · G−1

1 (γi,r+δ−1)γ
δ−2
i,r+δ−1















for 1 6 i 6 ℓ, and
(

P2,1 P2,2 P2,3 · · · P2,ℓ P2,ℓ+1

)

=















G−1
2 (γ1) G−1

2 (γ2) G−1
2 (γ3) · · · G−1

2 (γn)
G−1

2 (γ1)γ1 G−1
2 (γ2)γ2 G−1

2 (γ3)γ3 · · · G−1
2 (γn)γn

...
...

...
...

G−1
2 (γ1)γ

h−2
1 G−1

2 (γ2)γ
h−2
2 G−1

2 (γ3)γ
h−2
3 · · · G−1

2 (γn)γ
h−2
n

G−1
2 (γ1)γ

h−1
1 G−1

2 (γ2)γ
h−1
2 G−1

2 (γ3)γ
h−1
3 · · · G−1

2 (γn)γ
h−1
n















and in particular,

P2,i =















G−1
2 (γi,1) G−1

2 (γi,2) G−1
2 (γi,3) · · · G−1

2 (γi,r+δ−1)
G−1

2 (γi,1)γi,1 G−1
2 (γi,2)γi,2 G−1

2 (γi,3)γi,3 · · · G−1
2 (γi,r+δ−1)γi,r+δ−1

...
...

...
...

G2−1(γi,1)γ
δ−3
i,1 G−1

2 (γi,2)γ
δ−3
i,2 G−1

2 (γi,3)γ
δ−3
i,3 · · · G−1

2 (γi,r+δ−1)γ
δ−3
i,r+δ−1

G−1
2 (γi,1)γ

δ−2
i,1 G−1

2 (γi,2)γ
δ−2
i,2 G−1

2 (γi,3)γ
δ−2
i,3 · · · G−1

2 (γi,r+δ−1)γ
δ−2
i,r+δ−1














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for 1 6 i 6 ℓ. Thus, by the fact G1(γi,j) 6= 0 for 1 6 i 6 ℓ and 1 6 j 6 r + δ − 1, we have the code symbol vi,j has

(r, δ)-locality, i.e., the matrix P1,i is a parity-check matrix of a code with minimum Hamming distance at least δ. Now the

desired result follows from the fact that the code determined by P has parameters [n, k > n− h− ℓ(δ − 1)]qm .

To bound the Hamming distance of Γqm(S,G), we define an auxiliary code over the splitting field of G1(x)G2(x). Let

Fqm1 be the splitting field of G1(x)G2(x) and let B1 = {b1,1, b1,2, . . . , b1,δ−1} and B2 = {b2,1, b2,2, . . . , b2,h} be the roots

of G1(x) and G2(x) over Fqm1 , respectively. Define the code Γqm1 (S,G) as a set of vectors V ∗ = (v∗1 , v
∗
2 , . . . , v

∗
n) ∈ Fn

qm1

such that
∑

16j6r+δ−1

v∗i,j
x− γi,j

≡ 0 (mod G1(x)) (9)

and
∑

16j6n

v∗j
x− γj

≡ 0 (mod G2(x)), (10)

where for 1 6 i 6 ℓ and 1 6 j 6 r + δ − 1, we denote v∗(i−1)(r+δ−1)+j as v∗i,j .

Lemma 10: For the code Γqm1 (S,G), if G1(x)G2(x) has δ− 1+ h distinct roots over Fqm1 , then its parity-check matrix

can be written as

P ∗ =















P ∗
1,1 0 · · · 0 0
0 P ∗

1,2 · · · 0 0
...

...
. . .

...
...

0 0 · · · P ∗
1,ℓ 0

P ∗
2,1 P ∗

2,2 · · · P ∗
2,ℓ P ∗

2,ℓ+1















,

where for 1 6 i 6 ℓ P ∗
1,i = (p

(i)
t,j) is a (δ − 1) × (r + δ − 1) Cauchy matrix with p

(i)
t,j = 1

b1,t−γi,j
for 1 6 t 6 δ − 1 and

1 6 j 6 r + δ − 1 and (P ∗
2,1, P

∗
2,2, . . . , P

∗
2,ℓ+1) = (pt,j) is an h × n Cauchy matrix with pt,j = 1

b2,t−γj
for 1 6 t 6 h

and 1 6 j 6 n. In particular, P ∗
2,i = (p

(i)
t,j) is a (δ − 1) × (r + δ − 1) Cauchy matrix with p

(i)
t,j = 1

b2,t−γi,j
for 1 6 i 6 ℓ,

1 6 t 6 δ − 1 and 1 6 j 6 r + δ − 1.

Proof. Obviously, if V ∗ ∈ Γqm1 (S,G) is a codeword, then (9) and (10) imply that P ∗V ∗ = 0. For any vector V ′ ∈ Fn
qm1 with

P ∗V ′ = 0, we have
∑

16j6r+δ−1

v′i,j
x− γi,j

≡ 0 (mod x− b1,i)

for 1 6 i 6 δ − 1 and
∑

16j6n

v′j
x− γj

≡ 0 (mod x− b2,j),

for 1 6 j 6 h. Now the fact that G1(x)G2(x) has h+ δ − 1 distinct roots means that

∑

16j6r+δ−1

v′i,j
x− γi,j

≡ 0 (mod G1(x) =
∏

16i6δ−1

(x− b1,i))

and
∑

16j6n

v′j
x− γj

≡ 0 (mod G2(x) =
∏

16i6h

(x− b2,i)),

i.e., V ′ ∈ Γqm1 (S,G). This completes the proof.

Theorem 5: Assume G1(x)G2(x) has δ − 1 + h distinct roots over Fqm1 . For any t+ 1-subset D of [ℓ], if
∣

∣

∣

∣

∣

∣

Si ∩





⋃

j 6=i,j∈D

Sj





∣

∣

∣

∣

∣

∣

6 δ − 1 for i ∈ D (11)

and

Sℓ+1 ∩ Si = ∅ for 1 6 i 6 ℓ, (12)

then the code Γqm1 (S,G) has minimum Hamming distance d > min{(t+ 1)δ, h+ δ}.

However, before proving the theorem, we first prove two technical lemmas which will be used in the proof.
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Lemma 11: Let E = {E1, E2, . . . , Eτ} be a set of subsets of Fqm1 , and let Θ = {θi : 1 6 i 6 h1} ⊆ Fqm1 \(
⋃

16j6τ Ej).
Define an h1 × τ matrix, M(E ,Θ), whose (i, j) entry is

M(E ,Θ)i,j =
1

fEi
(θj)

, (13)

where

fEi
(x) =

∏

θ∈Ei

(x− θ) for 1 6 i 6 τ.

If, for any t− 1 sets Ei1 , Ei2 , · · · , Eit−1 ∈ E , |
⋃

16j6t−1 Eij | < h1, and any Ei ∈ E cannot be covered by t 6 τ − 1 other

elements of E , i.e.,

Ei 6⊆
⋃

16j6t,ij 6=i

Eij for any {ij : 1 6 j 6 t} ⊆ [τ ]\{i}, (14)

then any t columns of M(E ,Θ) are linearly independent over Fqm1 .

Proof: We assume to the contrary that there exist t columns of M(E ,Θ) that are linearly dependent over Fqm1 , which

form a sub-matrix of M(E , θ) given by

M ′ ,















1
fEi1

(θ1)
1

fEi2
(θ1)

· · · 1
fEit1

(θ1)

1
fEi1

(θ2)
1

fEi2
(θ2)

· · · 1
fEit1

(θ2)

...
...

...
1

fEi1
(θh1

)
1

fEi2
(θh1

) · · · 1
fEit1

(θh1
)















,

where Θ ⊆ Fqm1 \(
⋃

16j6τ Ej) means that M ′ is well defined. Since Rank(M ′) < t, there exists a function f(x) =
∑

16j6t1
ei

1
fEij

(x) where θ1, . . . , θh1 are roots of f(x) = 0, and where (e1, e2, . . . , et1) 6= 0. Denote E =
⋃

16j6t Eij . It

follows that

f∗(x) , fE(x)





∑

16j6t

ej
fEij

(x)



 = 0

with degree at most max{|
⋃

16j 6=s16t Eij | : 1 6 s1 6 t} < h1 has h1 roots over Fqm1 , which means f∗(x) = 0. However,

by (14), for any given 1 6 s1 6 t there exists a θ ∈ Θ such that

fE\Eis1
(θ) 6= 0

and

fE\Eis2
(θ) = 0 for all 1 6 s2 6= s1 6 t.

Thus, fE\Eij
(θ) for 1 6 j 6 t are linearly independent over Fqm1 , which is a contradiction with (e1, e2, . . . , et1) 6= 0.

Remark 12: When δ = 1, M(E ,Θ) is exactly the well-known Cauchy matrix and the result in Lemma 11 is just the

known property of Cauchy matrices.

Lemma 12: Let W = (α1, α2, · · · , αn) ∈ Fn
qm1 and let W ∗ = {αi : 1 6 i 6 n}. Denote Wi = {αi,j , α(i−1)(τ)+j :

1 6 j 6 τ } for 1 6 i 6 n
τ , where τ is an integer factor of n. Let δ be an integer with δ 6 m1, Θ1 = {θ1,i : 1 6 i 6

δ − 1} ⊆ Fqm1 \W ∗, Θ2 = {θ2,i : 1 6 i 6 h} ⊆ Fqm1 \(W ∗ ∪Θ1), and let M be a matrix satisfying

M =















M1,1 0 · · · 0
0 M1,2 · · · 0
...

...
. . .

...

0 0 · · · M1,n
τ

M2,1 M2,2 · · · M2,n
τ















,

where for 1 6 i 6 n
τ M1,i = (m

(i)
t,j) is a (δ − 1)× τ Cauchy matrix with m

(i)
t,j = 1

θ1,t−αi,j
for 1 6 t 6 δ − 1 and 1 6 j 6 τ

and (M2,1,M2,2, . . . ,M2,n
τ
) = (mt,j) is an h × n Cauchy matrix with mt,j = 1

θ2,t−αj
for 1 6 t 6 h and 1 6 j 6 n. If

|Θ1 ∪Θ2| = h+ δ − 1 and |Wi| = τ , then the matrix M can be rewritten as

M = LM∗R =















L1 0 · · · 0 0
0 L2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Ln
τ

0
0 0 · · · 0 Ih





























M∗
1,1 0 · · · 0
0 M∗

1,2 · · · 0
...

...
. . .

...

0 0 · · · M∗
1,n

τ

M∗
2,1 M∗

2,2 · · · M∗
2,n

τ

























R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...

0 0 · · · Rn
τ











,



16

where, for 1 6 i 6 n
τ , |Ai| 6= 0, M∗

1,i = (Iδ−1, 0(δ−1)×(τ−δ+1)) and M∗
2,i = (Mi,M(Ei,Θ2)) with

Ei = {Ei,j = {αi,1, . . . , αi,δ−1, αi,j} : δ 6 j 6 τ}

and M(Ei,Θ2) defined by (13) and (11).

Proof: We prove this lemma by induction on δ. For the base case we consider the case δ = 2. Note that

(

M1,i

M2,i

)

is a

Cauchy matrix for 1 6 i 6 n
τ . This, together with the facts |Θ1 ∪ Θ2| = h + δ − 1, |Wi| = τ , and Θ1 ∪ Θ2 ⊆ Fqm1 \W ∗,

means that

(

M1,i

M2,i

)

can be rewritten as

(

M1,i

M2,i

)

=

(

L
(2)
i 0
0 Ih

)

(

M
(2)
1,i

M
(2)
2,i

)

R
(1)
i for 1 6 i 6

n

τ
,

where

M
(2)
1,i =

(

1 0 0 . . . 0
)

1×τ

and

M
(2)
2,i =













1
θ2,1−αi,1

1
(θ2,1−αi,1)(θ2,1−αi,2)

1
(θ2,1−αi,1)(θ2,1−αi,3)

. . . 1
(θ2,1−αi,1)(θ2,1−αi,τ )

1
θ2,2−αi,1

1
(θ2,2−αi,1)(θ2,2−αi,2)

1
(θ2,2−αi,1)(θ2,2−αi,3)

. . . 1
(θ2,2−αi,1)(θ2,2−αi,τ )

...
...

...
...

1
θ2,h−αi,1

1
(θ2,h−αi,1)(θ2,h−αi,2)

1
(θ2,h−αi,1)(θ2,h−αi,3)

. . . 1
(θ2,h−αi,1)(θ2,h−αi,τ )













and the lemma follows for this case.

For the induction hypothesis we assume that the desired results hold for 2 6 δ 6 u. For the induction step, namely, the case

δ = u+ 1, similarly, Θ1 ∪Θ2 ⊆ Fqm1 \W ∗ means that

(

M1,i

M2,i

)

can be rewritten as

(

M1,i

M2,i

)

=

(

L
(u+1)
i 0
0 Ih

)

(

M
(u+1)
1,i

M
(u+1)
2,i

)

R
(u)
i for 1 6 i 6

n

τ
, (15)

where

M
(u+1)
1,i =











1 0 0 . . . 0
0 1

θ1,2−αi,2

1
θ1,2−αi,3

. . . 1
θ1,2−αi,τ

...
...

...
...

0 1
θ1,δ−1−αi,2

1
θ1,δ−1−αi,3

. . . 1
θ1,δ−1−αi,τ











=

(

1 0

0 M
(u)
1,i

)

and

M
(u+1)
2,i =













1
θ2,1−αi,1

1
(θ2,1−αi,1)(θ2,1−αi,2)

1
(θ2,1−αi,1)(θ2,1−αi,3)

. . . 1
(θ2,1−αi,1)(θ2,1−αi,τ )

1
θ2,2−αi,1

1
(θ2,2−αi,1)(θ2,2−αi,2)

1
(θ2,2−αi,1)(θ2,2−αi,3)

. . . 1
(θ2,2−αi,1)(θ2,2−αi,τ )

...
...

...
...

1
θ2,h−αi,1

1
(θ2,h−αi,1)(θ2,h−αi,2)

1
(θ2,h−αi,1)(θ2,h−αi,3)

. . . 1
(θ2,h−αi,1)(θ2,h−αi,τ )













= T
(u)
i

(

1 M
(u)
2,i

)

with T
(u)
i = diag( 1

θ2,1−αi,1
, 1
θ2,2−αi,1

, . . . , 1
θ2,h−αi,1

). By the induction hypothesis,

M (u) =



















M
(u)
1,1 0 · · · 0

0 M
(u)
1,2 · · · 0

...
...

. . .
...

0 0 · · · M
(u)
1,n

τ

M
(u)
2,1 M

(u)
2,2 · · · M

(u)
2,n

τ



















=















L′
1 0 · · · 0 0
0 L′

2 · · · 0 0
...

...
. . .

...
...

0 0 · · · L′
n
τ

0

0 0 · · · 0 Ih





























M ′
1,1 0 · · · 0
0 M ′

1,2 · · · 0
...

...
. . .

...

0 0 · · · M ′
1,n

τ

M ′
2,1 M ′

2,2 · · · M ′
2,n

τ

























R′
1 0 · · · 0
0 R′

2 · · · 0
...

...
. . .

...

0 0 · · · R′
n
τ











(16)



17

where for 1 6 i 6 n
τ , M ′

1,i = (Iu, 0u×(τ−δ+1)) and M ′
2,i = (M ′

i ,M(E ′
i ,Θ2)) with

E ′
i = {E′

i,j = {αi,2, . . . , αi,δ−1, αi,j} : u+ 1 6 j 6 τ}.

Combining (15) and (16), we have

M =















M1,1 0 · · · 0
0 M1,2 · · · 0
...

...
. . .

...

0 0 · · · M1,n
τ

M2,1 M2,2 · · · M2,n
τ















=















L1 0 · · · 0 0
0 L2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Ln
τ

0
0 0 · · · 0 Ih





























M∗
1,1 0 · · · 0
0 M∗

1,2 · · · 0
...

...
. . .

...

0 0 · · · M∗
1,n

τ

M∗
2,1 M∗

2,2 · · · M∗
2,n

τ

























R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...

0 0 · · · Rn
τ











.

Here, for 1 6 i 6 n
τ , Ri = R′

iR
(u)
i , Li = L

(u)
i

(

1 0
0 L′

i

)

, M∗
1,i =

(

1 0
0 M ′

1,i

)

and

M∗
2,i = T

(u)
i

(

1,M ′
2,i

)

=
(

T
(u)
i 1, T

(u)
i M ′

i , T
(u)
i M(E ′

i,Θ2)
)

= (Mi,M(Ei,Θ2))

with Mi = (T
(u)
i 1, T

(u)
i M ′

i) and

Ei = {Ei,j = {αi,1, . . . , αi,δ−1, αi,j} : u+ 1 6 j 6 τ}.

By induction, this completes the proof.

Proof of Theorem 5: By Lemma 10 the parity-check matrix can be given as

P ∗ =















P ∗
1,1 0 · · · 0 0
0 P ∗

1,2 · · · 0 0
...

...
. . .

...
...

0 0 · · · P ∗
1,ℓ 0

P ∗
2,1 P ∗

2,2 · · · P ∗
2,ℓ P ∗

2,ℓ+1















,

where for 1 6 i 6 ℓ P ∗
1,i = (p

(i)
u,j) is a (δ − 1) × (r + δ − 1) Cauchy matrix with p

(i)
u,j = 1

b1,u−γi,j
for 1 6 u 6 δ − 1 and

1 6 j 6 r + δ − 1 and (P ∗
2,1, P

∗
2,2, . . . , P

∗
2,ℓ+1) = (pu,j) is an h× n Cauchy matrix with pu,j = 1

b2,u−γj
for 1 6 u 6 h and

1 6 j 6 n.

We consider the case that there are at most e 6 min{(t+ 1)δ − 1, h+ δ − 1} erasures in total, i.e., e =
∑

16i6ℓ+1 |Ei| 6
min{tδ, h+δ−1}. To bound the Hamming distance we only need to consider erasure patterns such that Ei ⊆ Si for 1 6 i 6 ℓ+1
and |Ei| > δ for 1 6 i 6 ℓ. Let P ∗(E) be the sub-matrix formed by the columns corresponding to Ei 1 6 i 6 ℓ + 1, that

is the column (0, . . . , 0, 1
b1,1−γi,j

, . . . , 1
b1,δ−1−γi,j

, 0 . . . , 0, 1
b2,1−γi,j

, . . . , 1
b2,h−γi,j

)⊺ is chosen if γi,j ∈ Ei ⊆ Si. It is easy to

check that P ∗(E) can be written as

P ∗(E) =















P E
1,i1

0 · · · 0 0
0 P E

1,i2 · · · 0 0
...

...
. . .

...
...

0 0 · · · P E
1,it1

0

P E
2,i1

P E
2,i2

· · · P E
2,it1

P E
2,ℓ+1















,
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by deleting the all zero rows. For the case t1 = 0, Rank(P ∗(E)) = Rank(P E
2,ℓ+1) = |Eℓ+1| the erasure pattern can be

recovered. For the case t1 > 1, the fact that (P ∗
2,1, P

∗
2,2, . . . , P

∗
2,ℓ+1) = (pu,j) is an h× n Cauchy matrix with pu,j =

1
b2,u−γj

for 1 6 u 6 h and 1 6 j 6 n means that

Rank(P ∗(E)) =Rank















P E
1,i1 0 · · · 0 0
0 P E

1,i2
· · · 0 0

...
...

. . .
...

...

0 0 · · · P E
1,it1

0

P E
2,i1 P E

2,i2 · · · P E
2,it1

P E
2,ℓ+1















>Rank





















P E
1,i1

0 · · · 0 0
0 P E

1,i2
· · · 0 0

...
...

. . .
...

...

0 0 · · · P E
1,it1

0

P E,h1

2,i1
P E,h1

2,i2
· · · P E,h1

2,it1
0

0 0 · · · 0 I|Eℓ+1|





















,

where h1 = h− |Eℓ+1| and P E,h1

2,ij
is the sub-matrix formed by the first h1 rows of P E

2,ij for 1 6 j 6 t1.

Recall that e =
∑

E∈E |E| 6 min{(t+ 1)δ − 1, h+ δ − 1}, which means

t1 6

{
⌊

(t+1)δ−1−|Eℓ+1|
δ

⌋

6 t, if h1 + δ − 1 > (t+ 1)δ − 1− |Eℓ+1|,
⌊

h1+δ−1
δ

⌋

< t, if h1 + δ − 1 < (t+ 1)δ − 1− |Eℓ+1|.
(17)

According to (11), for i ∈ {ij : 1 6 j 6 t1}
∣

∣

∣

∣

∣

∣

∣

∣

Ei ∩









⋃

16j6t1
ij 6=i

Eij









∣

∣

∣

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

∣

∣

∣

Si ∩









⋃

16j6t1
ij 6=i

Sij









∣

∣

∣

∣

∣

∣

∣

∣

6 δ − 1,

which means that the elements of each Ei may be indexed Ei = {αi,u : 1 6 u 6 τi} such that

{αi,t : δ 6 t 6 τi} ∩ Eij = ∅ for 1 6 j 6 t1, ij 6= i.

For 1 6 j 6 t1, let Eij = {{αij ,1, . . . , αij ,δ−1, αij ,u} : δ 6 u 6 τij} and E∗ =
⋃

16j6t1
Eij . By Lemma 12,

Rank(P ∗(E)) > t1(δ − 1) + |Eℓ+1|+Rank(M(E∗,Θ3)),

where Θ3 = {γ2,i : 1 6 i 6 h1}. Thus, by Lemma 11, (11), (12), and (17), M(E∗,Θ3) has full rank, i.e., Rank(P ∗(E)) >
|Eℓ+1|+

∑

16i6t1
|Ei|. This is to say, the erasure pattern can be recovered, which means d > min{(t+ 1)δ, h+ δ}.

Corollary 12: Assume G1(x)G2(x) has δ − 1 + h distinct roots over Fqm1 . Let S be a set system of Fqm such that for

any t+ 1-subset D of [ℓ]
∣

∣

∣

∣

∣

∣

Si ∩





⋃

j 6=i,j∈D

Sj





∣

∣

∣

∣

∣

∣

6 δ − 1 for i ∈ D

and

Sℓ+1 ∩ Si = ∅ for 1 6 i 6 ℓ.

If h+ δ 6 (t+1)δ and Sℓ+1 6= ∅, then the code Γqm(S,G) is an optimal [n, k, d = h+ δ]qm linear code with (r, δ)i-locality.

Proof. By Theorem 5, the facts Γqm(S,G) ⊆ Γqm1 (S,G) and h+ δ 6 (t+1)δ show that Γqm(S,G) has minimum Hamming

distance at least h+ δ. Thus, by Lemma 9, Γqm(S,G) is an [n, k, d > h+ δ]qm with k > n− ℓ(δ− 1)− h and those symbols

with (r, δ)-locality have rank at least k1 = n− ℓ(δ − 1)− h = ℓr. By Lemma 1,

d 6 n− k + 1−

(⌈

k1
r

⌉

− 1

)

(δ − 1) 6 n− k + 1− (ℓ− 1)(δ − 1) 6 h+ δ,

which together with the fact d > h + δ show that d = h + δ and k = k1. This is also to say that Γqm(S,G) is an optimal

linear code with (r, δ)i-locality with respect to the bound in Lemma 1.

For the case Sℓ+1 = ∅, the following corollary follows directly from Theorem 5 and Lemma 9.
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Corollary 13: Let n = ℓ(r + δ − 1) and 0 < h 6 r. Assume G1(x)G2(x) has δ − 1 + h distinct roots over Fqm1 . Let S
be a set system of Fqm such that for any t+ 1-subset D of [ℓ]

∣

∣

∣

∣

∣

∣

Si ∩





⋃

j 6=i,j∈D

Sj





∣

∣

∣

∣

∣

∣

6 δ − 1 for i ∈ D

If h+ δ 6 (t+1)δ and Sℓ+1 = ∅, then the code Γqm(S,G) is an [n = ℓ(r+ δ− 1), k, d > h+ δ]qm code with (r, δ)a-locality,

where

n− ℓ(δ − 1) = ℓr > k > ℓr − h.

Furthermore, if k = ℓr − h, then Γqm(S,G) is an [n, k, d = h+ δ] optimal locally repairable code with (r, δ)a-locality.

Remark 13: For the case k = ℓr − h and h 6 r, i.e., Sℓ+1 = ∅, the codes generated by Construction E share similar

parameters with those constructed in [11]. However, Construction E may also work for the case of Sℓ+1 6= ∅ in which we may

construct optimal locally repairable codes with new parameters as shown in Corollary 12.

VI. CONCLUSION

In this paper, we first introduced a construction of locally repairable codes with (r, δ)i-locality. To analyze the performance

of our construction, an upper bound was derived for the length of optimal locally repairable codes with (r, δ)i-locality. Our

main goal, with this bound, is to find a connection between the length of the code and the field size over which the code is

constructed. Using combinatorial structures (packings in general, and Steiner systems in particular) we arrive at the conclusion

that, in some cases, the optimal locally-repairable codes we constructed have order-optimal length, which is super-linear in

the field size. We also suggested another construction for optimal locally repairable codes, this time, taking inspiration from

Goppa codes. The construction share a similarity in the combinatorial structures they require. Finally, we defined generalized

sector-disk codes. We showed that the locally repairable codes of our constructions are capable of yielding GSD codes, and

compared their parameters with sector-disk (SD) codes, and maximally recoverable (MR) codes.

In general, it seems that constructions of locally repairable codes have focused mainly on (r, δ)a-locality, perhaps due to their

symmetry. We believe our constructions and bound show that codes with (r, δ)i-locality are also of theoretical and applicative

interest. Several open questions remain, including finding SD/MR/GSD codes for all possible parameters, and finding more

codes that are capable of correcting special erasure patterns beyond what is guaranteed due to their Hamming distance.

APPENDIX A

PROOF OF THEOREM 3

Lemma 13: Let C be an [n, k]q linear code with (r, δ)i-locality and r|k. Let A be the set of all the repair sets of information

symbols, where we highlight that there may exist some information symbols that share the same repair set. For any 1 6 j 6 k
r ,

if there exists a j-subset V ⊆ A and ∆ > 0 is an integer such that for any A ∈ V
∣

∣

∣

∣

∣

∣

A ∩





⋃

A′∈V\{A}

A′





∣

∣

∣

∣

∣

∣

6 |A| − δ + 1 (18)

and

|V|(r + δ − 1)−

∣

∣

∣

∣

∣

⋃

A∈V

A

∣

∣

∣

∣

∣

> ∆ > 0,

then there exists a set S ⊆ [n] with Rank(S) = k − 1 and

|S| > k − 1 +
k

r
(δ − 1).

Proof: Let V = {Ai1 , Ai2 , . . . , Aij} and

A∗
it ⊆ Ait \





⋃

A′∈V\{Ait}

A′



 (19)
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with |A∗
it
| = δ − 1 for 1 6 t 6 j, which is possible in light of (18). Define a (|Ait | − δ + 1)-subset A′

it
, Ait \ A∗

it
for

1 6 t 6 j. By definition 1, we have Rank(A′
it) = Rank(Ait) for 1 6 t 6 j. Note that (19) implies that A∗

it for 1 6 t 6 j are

pairwise disjoint, which also means that

Rank





⋃

16t6j

Ait



 =Rank





⋃

16t6j

(Ait \A
∗
it)





6

∣

∣

∣

∣

∣

∣

⋃

16t6j

Ait \A
∗
it

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

⋃

16t6j

Ait

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

⋃

16t6j

A∗
it

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

⋃

16t6j

Ait

∣

∣

∣

∣

∣

∣

− j(δ − 1),

(20)

where the second equality holds by (19). This is to say that

jr − Rank





⋃

16t6j

Ait



 >j(r + δ − 1)−

∣

∣

∣

∣

∣

∣

⋃

16t6j

Ait

∣

∣

∣

∣

∣

∣

= ∆ > 0,

i.e., Rank
(

⋃

16t6j Ait

)

6 jr − 1.

For the case j < k
r , the fact that C has (r, δ)i-locality, i.e., Rank

(
⋃

A∈A A
)

= k means that there exists an Aij+1 such

that Rank
(

⋃

16t6j+1 Ait

)

> Rank
(

⋃

16t6j+1 Ait

)

. This is to say

∣

∣

∣Aj+1 ∩
(

⋃

16t6j+1 Ait

)∣

∣

∣ 6 |Aj+1| − δ + 1. Let

A∗
ij+1

⊆ Aij+1 \
(

⋃

16t6j+1 Ait

)

with |A∗
ij+1

| = δ− 1 and A′
ij+1

= Aij+1 \A
∗
ij+1

. Note that Aij+1 is a repair set of C. Thus,

Rank(A′
ij+1

) = Rank(Aij+1 ) by Definition 1 and

Rank





⋃

16t6j+1

Ait



 =Rank



A′
ij+1

∪





⋃

16t6j

Ait









6Rank





⋃

16t6j

Ait



 +

∣

∣

∣

∣

∣

∣

A′
ij+1

\





⋃

16t6j

Ait





∣

∣

∣

∣

∣

∣

6Rank





⋃

16t6j

Ait



 +

∣

∣

∣

∣

∣

∣

Aij+1 \





⋃

16t6j

Ait





∣

∣

∣

∣

∣

∣

− δ + 1

=

∣

∣

∣

∣

∣

∣

⋃

16t6j+1

Ait

∣

∣

∣

∣

∣

∣

− (j + 1)(δ − 1),

where the last equality holds by (20). Recall that Rank(
⋃

16t6j Ait) < jr which means that Rank(
⋃

16t6j+1 Ait) < (j+1)r.

Repeat the preceding analysis k
r − j times, then we can find Ait with 1 6 t 6 k

r such that
∣

∣

∣

∣

∣

∣

⋃

16t k
r

Ait

∣

∣

∣

∣

∣

∣

− Rank





⋃

16t k
r

Ait



 >
k

r
(δ − 1)

and Rank
(

⋃

16t k
r
Ait

)

< k. Thus, we can extend the set
⋃

16t6 k
r
Ait to be a set S with Rank(S) = k − 1 and

|S| − Rank(S) = |S| − k + 1 >

∣

∣

∣

∣

∣

∣

⋃

16t6 k
r

Ait

∣

∣

∣

∣

∣

∣

− Rank





⋃

16t6 k
r

Ait



 >
k

r
(δ − 1),

which means the desired result follows.

Theorem 6: Let C be an optimal [n, k, d]q linear code with (r, δ)i-locality. If r|k and r < k, then there exist k
r repair sets

V = {Ai1 , Ai2 , . . . , Ai k
r

}, such that |Ait | = r + δ − 1, Ait for 1 6 t 6 k
r are pairwise disjoint and Rank(

⋃

16t6 k
r
Ait) = k.

Furthermore, the punctured code C|Ait
for 1 6 t 6 k

r is an [r + δ − 1, r, δ]q MDS code.
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Proof: Since the code C has (r, δ)i-locality, we have Rank(
⋃

A∈A A) = k, where A denotes the set of all repair sets of

information symbols. Note that for each repair set A ∈ A, by Definition 1, we have Rank(A) 6 r. This means that we can

find Ait for 1 6 t 6 k
r such that Rank

(

⋃

16t6j Ait

)

> Rank
(

⋃

16t6j−1 Ait

)

for 2 6 j 6 k
r . We claim that those k

r repair

sets are pairwise disjoint and |Ait | = r + δ − 1 for 1 6 t 6 k
r . Note that for j > t we have |Ait ∩Aij | 6 |Aj | − δ + 1, since

Rank
(

⋃

16t6j Ait

)

> Rank
(

⋃

16t6j−1 Ait

)

. Now by Lemma 13, if 2(r+δ−1)−|Ait ∪Aij | > 0 then we have a set S with

rank k− 1 and |S| = k− 1+ k
r (δ− 1), which contradicts with the fact that C is optimal, i.e., d = n− k+1− (kr − 1)(δ− 1).

Thus, for j > t and 1 6 j, t 6 k
r , we have 2(r+ δ− 1)− |Ait ∪Aij | = 0, i.e., Ait ∩Aij = ∅ and |Ait | = |Aij | = r + δ − 1,

since |Ait | 6 r + δ − 1 and |Aij | 6 r + δ − 1.

Now, we only need to prove that Rank
(

⋃

16t6 k
r
Ait

)

= k. If that is not the case, then we have Rank
(

⋃

16t6 k
r
Ait

)

6 k−1.

Note that

∣

∣

∣

⋃

16t6 k
r
Ait

∣

∣

∣ = k + k
r (δ − 1), which is also a contradiction with d = n− k + 1 − (kr − 1)(δ − 1). Therefore, the

desired result follows. Finally, for 1 6 t 6 k
r , the fact that Rank(Ait) = r, |Ait | = r + δ − 1, and d(C|Ait

) > δ, shows that

C|Ait
is an [r + δ − 1, r, δ]q MDS code.

We are now in a position to prove Theorem 3.

Proof: By Theorem 6, and up to a rearrangement of the code coordinates, the parity-check matrix P of code C can be

arranged in the following form,

P =



















L(1) 0 0 . . . 0 0

0 L(2) 0 . . . 0 0

0 0 L(3) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . L(ℓ) 0
H1 H2 H3 . . . Hℓ Hℓ+1



















,

where L(i) = (Iδ−1, Pi) is a (δ − 1) × (r + δ − 1) matrix for all 1 6 i 6 w and we do row linear transformations to make

sure each L(i) has canonical form. Define

M1 ,



















Iδ−1 0 0 0 . . . 0 0 0
0 0 Iδ−1 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . Iδ−1 0 0

0 H
(1)
1 0 H

(1)
2 . . . 0 H

(1)
ℓ Hℓ+1



















, (21)

where Iδ−1 denotes the (δ − 1)× (δ − 1) identity matrix and H
(1)
i = Hi,2 −Hi,1Pi with Hi = (Hi,1, Hi,2) and 1 6 i 6 ℓ.

For any integer 0 6 a 6 h, let

M2,a =
(

H
(1)
1 H

(1)
2 H

(1)
3 . . . H

(1)
ℓ H

(a)
ℓ+1

)

,

where H
(a)
ℓ+1 denotes the matrix generated by deleting any a columns from Hℓ+1.

Now, for any 0 6 a 6 h, the fact that any d − 1 columns of P are linearly independent over Fq means that any T (a) =
⌊d−a−1

δ ⌋ columns of M2 are linearly independent over Fq. This is because any T (a) columns of M2,a correspond to at most

T (a)δ columns of P by adding the first δ − 1 columns in related blocks, and by (21) they have full column rank. Therefore,

M2,a is the parity-check matrix of a linear code C1,a, with parameters [ℓr + h− a, k′ > k = ℓr, d2 > T (a) + 1]q.

In what follows, we distinguish between two cases, depending on the parity of T (a).
Case 1: T (a) is odd. In this case, we consider the shortened code C2,a of C1,a with parameters [ℓr+h−a−1, k′ > ℓr, d2 > t]q.

By the Hamming bound [32] we have

qℓr 6
qℓr+h−a−1

∑

06i6
T (a)−1

2

(

ℓr+h−a−1
i

)

(q − 1)i
6

qℓr+h−a−1

(ℓr+h−1
T (a)−1

2

)

(q − 1)
T (a)−1

2

6
qℓr+h−a−1

(

ℓr+h−a−1
T(a)−1

2

)

T (a)−1
2

(q − 1)
T (a)−1

2

,

which means

ℓr + h− a− 1 6
T (a)− 1

2(q − 1)
q

2(h−a−1)
T (a)−1 .

This is to say,

n 6
r + δ − 1

r

(

T (a)− 1

2(q − 1)
q

2(h−a−1)
T (a)−1 − h+ a+ 1

)

+ h =
r + δ − 1

r

(

T (a)− 1

2(q − 1)
q

2(h−a−1)
T (a)−1 + a+ 1

)

−
h(δ − 1)

r
.
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Case 2: T (a) is even. Similarly, by the Hamming bound, we have

qℓr 6
qℓr+h−a

∑

16i6T (a)
2

(

ℓr+h−a
i

)

(q − 1)i
6

qℓr+h−a

(ℓr+h−a
T(a)

2

)

(q − 1)
T (a)

2

6
qℓr+h−a

(

ℓr+h−a
T (a)

2

)

T(a)
2

(q − 1)
T (a)

2

,

which means

n = ℓ(r + δ − 1) + h 6
r + δ − 1

r

(

T (a)

2(q − 1)
q

2(h−a)
T (a) + a

)

−
h(δ − 1)

r
.

Finally, recall that by Lemma 1, C is optimal means that h = d− δ. This completes the proof.

APPENDIX B

REGULAR PACKINGS

We present a direct construction of regular packings based on a kind of cyclotomy. The generated regular packings are not

new, and may obtained recursively via [26], and via generalized cyclotomy [15], [49]. Thus, the construction and proof herein

are brought for the reader’s convenience only.

According to the unique factorization theorem, a positive integer n has the following unique decomposition

n = pm1
1 pm2

2 · · · pmu
u ,

where p1 < p2 < · · · < pu are primes and m1,m2, . . . ,mu are positive integers. For 1 6 i 6 u, let Fp
mi
i

be the finite field

with size pmi

i and αi be one of its primitive elements. Let e be a positive integer with

e | gcd(pm1
1 − 1, pm2

2 − 1, · · · , pmu
u − 1).

For e > 1, define

βe , (α
pm1−1

e

1 , α
pm2−2

e

2 , . . . , α
pmu−1

e
u ) ∈ T , Fp

m1
1

× Fp
m2
2

× · · · × Fpmu
u

.

It is easy to verify that D0 = 〈βe〉 = {β0
e ,β

1
e , · · · ,β

e−1
e } ⊆ T ∗ , F∗

p
m1
1

× F∗
p
m2
2

× · · · × F∗
pmu
u

is a subgroup of (T ∗, ·) with

order e, where

βi
e , (α

i pm1−1
e

1 , α
i pm2−2

e

2 , . . . , α
i pmu−1

e
u ) ∈ T.

For J ∈ A , Z pm1−1
e

× Z pm1−1
e

× . . .Z pmu−1
e

, define BJ ⊆ Ze × T as

BJ , {(0,αJβ0
e), (1,α

Jβ1
e), . . . , (e− 1,αJβe−1

e )}, (22)

where α , (α1, α2, . . . , αu) and αJ , (αj1
1 , αj2

2 , . . . , αju
u ) for J = (j1, j2, . . . , ju). Based on BJs, we can generate a set

system as:

Construction F: Let X = Ze × T , then we may construct a set

B = {BJ,ǫ = BJ + (0, ǫ) : J ∈ A, ǫ ∈ T }. (23)

Theorem 7: The set system (X,B) generated by Construction F is a

∏
16i6u(p

mi
1 −1)

eu -regular packing with parameters

(en, e, 1).

Proof: By Construction F, it is sufficient to prove that any pair of elements of X appears in at most one of the blocks

in B. Assume to the contrary that there exists a pair {x1 = (i1, γ1), x2 = (i2, γ2)} ⊆ X that appears in two blocks, i.e.,

{x1, x2} ⊆ BJ1,ǫ1 and {x1, x2} ⊆ BJ2,ǫ2 , where i1, i2 ∈ Ze and γ1, γ2 ∈ T. By (22) and (23), there exist four elements

t1,1, t1,2, t2,1, t2,2 ∈ Ze such that

(0, ǫ1) + (t1,1,α
J1βt1,1

e ) = (i1, γ1) = (0, ǫ2) + (t2,1,α
J2βt2,1

e ) (24)

and

(0, ǫ1) + (t1,2,α
J1βt1,2

e ) = (i2, γ2) = (0, ǫ2) + (t2,2,α
J2βt2,2

e ). (25)

These equalities imply that t1,1 = t2,1, t1,2 = t2,2 and

αJ1βt1,2−t1,1
e = αJ2βt2,2−t2,1

e ,

i.e.,

αJ1 = αJ2 . (26)

Note that J1, J2 ∈ A = Z pm1−1
e

×Z pm1−1
e

× . . .Z pmu−u
e

and α = (α1, α2, · · · , αu), where αi is a primitive element of Fp
mi
i

.

Thus, by (26), we have J1 = J2. Again by (24) and (25), we have ǫ1 = ǫ2, a contradiction. Thus, the desired result follows.
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