
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 3, MARCH 2021 1509

Log-Logarithmic Time Pruned Polar Coding
Hsin-Po Wang and Iwan M. Duursma

Abstract— A pruned variant of polar coding is proposed for
binary erasure channel (BEC). Fix any BEC. For sufficiently
small ε > 0, we construct a series of capacity achieving codes
with block length N = ε−4.9, code rate R = Capacity − O(ε),
block error probability P = ε, and encoding and decoding time
complexity bC = O(log|log ε|) per information bit. The given
per-bit complexity bC is log-logarithmic in N, in Capacity − R,
and in P. Beyond BEC, there is a generalization: Fix a prime
q and fix a symmetric, q-ary-input, discrete-output memoryless
channel. For sufficiently small ε > 0, we construct a series of
error correction codes with block length N = ε−constant, code
rate R = Capacity − O(ε), block error probability P = ε, and
encoding and decoding time complexity bC = O(log|log ε|) per
information bit. Over general channels, this family of codes has
the lowest per-bit time complexity among all capacity-achieving
codes known to date.

Index Terms— Capacity-achieving codes, low-complexity codes,
polar codes, tree pruning.

I. INTRODUCTION

IN THE theory of two-terminal error correcting codes, four
of the most essential parameters of block codes are block

length N , code rate R, block error probability P , and per-bit
time complexity bC. We brief the history below followed by
our contribution over existing works.

Shannon [1] proved that for any discrete memoryless chan-
nel (DMC), there exists a series of block codes such that R
approaches a number denoted by Capacity and P converges
to 0. This property is called capacity achieving. The price
of achieving capacity is that N must approach infinity, i.e.,
it is not possible to achieve capacity at finite block length.
Another price is that bC grows exponentially in N by the
nature of random coding. This makes Shannon’s (and Fano
and Gallager’s) construction unsuitable for practical purposes.

Coding theorists characterize how fast does the triple
(N, R, P) approach (∞, Capacity, 0), extending Shannon’s
theory. They treat R(N) and P (N) as functions in N and
argue about their asymptote. They showed that P alone can
be as good as 2−N (error exponent regime) [2], [3]. They also
showed that R alone can be as good as Capacity − N−1/2

(scaling exponent regime) [4], [5]. But together it is impossible
to achieve (R, P) = (Capacity − N−1/2, 2−N) at once; the
proper asymptote is

(R, P) =
(

Capacity − N−constant, 2−N constant
)
.

Manuscript received May 31, 2019; revised September 29, 2020; accepted
November 13, 2020. Date of publication December 1, 2020; date of current
version February 17, 2021. (Corresponding author: Hsin-Po Wang.)

The authors are with the Department of Mathematics, University
of Illinois at Urbana–Champaign, Urbana, IL 61801 USA (e-mail:
hpwang2@illinois.edu; duursma@illinois.edu).

Communicated by A. Rudra, Associate Editor for Complexity.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2020.3041523.
Digital Object Identifier 10.1109/TIT.2020.3041523

This later paradigm is called moderate deviations regime
borrowed from probability theory. All three aforementioned
regimes use random coding as the main tool, so their bC are
on the order of 2N . See [6]–[9] for recent progress; see also
[10] for an explicit bound that implies a similar result.

Beyond random coding, Reed–Muller code is one of the
earliest codes with explicit construction. To decode Reed–
Muller codes, various algorithms are proposed, each giving its
own trade-off among N, R, P, bC. Among them the most sig-
nificant one is that Reed–Muller codes achieve capacity under
the maximum a posteriori (MAP) decoding over binary erasure
channels (BEC) by Kudekar et al. published in 2017 [11]. That
they achieve capacity is worthwhile by itself so the authors do
not continue to write down an explicit parametrization of N ,
R, and P . That being said, we believe that it is possible to infer
a parametrization from their proof. (Remark: bC over BECs
is polynomial in N thanks to Gaussian elimination. However,
bC is exponential over general channels.)

On a different track, low density parity check (LDPC) codes
are invented to generate codes with proper (N, R, P, bC)-
quadruples for practical use. The construction of LDPC codes
gives the priority to lowering bC. But it is difficult to infer
any parametrization of N , R, and P . It was only recently,
in 2013, that Kudekar et al. proved that LDPC codes achieve
capacity [12]. Yet, their proof does not explicitly parametrize
N and P . Meanwhile, a variant of LDPC codes called
repeat-accumulate (RA) codes puts all efforts on reducing
bC. They finally arrived at capacity achieving codes with
bounded bC over BEC [13], [14]. Bounded complexity is the
best possibility because the encoder should at least read in
all inputs. Similar to before, their proofs do not explicitly
parametrize N and P .

In 2009, Arıkan observed the phenomenon of channel
polarization and proposed accordingly polar codes [15]. Using
Doob’s martingale convergence theorem, Arıkan is able to
show that polar codes achieve capacity with bC = O(log N).
Since then, researchers try to tune polar codes and characterize
the corresponding (N, R, P, bC) asymptote. They find that P
is on the order of 2−N constant

and that Capacity − R (aka gap
to capacity) is on the order of N−constant [16]–[22]. (Just like
random codes except that the constants are off.) In particular,
the following choice of constants is realizable by a series of
polar codes over BECs (see Lemma 3 and below):

(N, Capacity − R, P, bC)

=
(
N, N−1/4.9, 2−N1/120

, O(log N)
)
. (1)

See Table I for a comparison.
Our main contribution is to construct a pruned variant

of polar codes and characterize its (N, R, P, bC) asymptote.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2574-1510
https://orcid.org/0000-0002-2436-3944

1510 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 3, MARCH 2021

TABLE I

A COMPARISON ABOUT THE R–P –bC ASYMPTOTES OF SOME
WELL-KNOWN CAPACITY-ACHIEVING CODES. THE PROPOSED

CODE IS IN THE LAST ROW. “S.” MEANS SYMMETRIC

More precisely, take any arbitrary BEC as an example. Theo-
rem 1 plus Lemma 3 provide a series of pruned polar codes
with

(N, Capacity − R, P, bC)

=
(
N, O(N−1/4.9), N−1/4.9, O(log log N)

)
=

(
ε−4.9, O(ε), ε, O(log|log ε|)

)
.

Here ε > 0 is an auxiliary parameter meant to be small.
As ε → 0 this asymptote is clearly capacity achieving. In
contrast to Asymptote (1), our pruned polar codes loosen P

from 2−N1/120
to N−1/4.9 but improve bC from O(log N) to

O(log log N). The lowered bC is now log-logarithmic in N ,
in P , and in Capacity−R (gap to capacity). This justifies the
title. This is the first time polar codes are tuned and proven
to have bC as low as O(log log N).

Here is a brief preview of the proof technique: we mentioned
above that Arıkan observed the channel polarization phenom-
enon. The phenomenon is caused by the channel transforma-
tion TArı. What TArı does is to transform a channel into two
other channels, one of them has its Bhattacharyya parameter
squared. After n rounds of applying TArı, the majority of good
channels has gone through roughly n/2 times of squaring.
Thus the Bhattacharyya parameters of these good channels
are on the order of 2−2n/2

[23]. We realize that it takes only
O(log n) times of squaring to achieve the order of 2−2n. An
order of 2−2n suffices for achieving capacity; the remaining
applications of TArı can be pruned. Since on average we
prune all but O(log n) many applications of TArı, the per-
bit time complexity is bC = O(log n) = O(log log 2n) =
O(log log N).

Last but not the least, as polar coding applies to a wide
family of channels beyond BEC, our result applies to binary
symmetric channels (BSC), symmetric binary-input discrete-
output memoryless channels (BDMC), and more non-binary
channels. Colloquially speaking, channel polarization is a
universal phenomenon that occurs over any DMC—more
precisely, all but polynomially many channels polarize, and
the pace of polarization is doubly-exponential. In addition to
that, pruning TArı is a versatile technique that harvests channels
as early as when they are sufficiently polarized. When prun-
ing is done properly, the introduced log-logarithm asymptote

reappears over a wide variety of channels. As a consequence,
the proposed code becomes one of the fastest codes (in terms
of the asymptote of the per-bit time complexity) over general
channels.

A. Pruning as a Practical Technique

That TArı can be pruned is not our novel idea. Recent works
on the implementation of polar coding develop a toolbox of
gadgets (including pruning) that accelerate the performance of
polar codes in the real world.

For instance, [24] introduced the so-called simplified suc-
cessive cancellation decoder. It works as follows: During
the construction of polar codes, some synthetic channel, for
instance (W−)−, may find that all its descendants are frozen
(potentially because (W−)− is too bad). In such case, it is
unnecessary to establish the part of the circuit that corresponds
to (W−)−’s children. This results in circuits and trees like
Fig. 4.

[24] called the synthetic channel (W−)− a rate-zero node.
Similarly, a rate-one node is a synthetic channel that is so
good that all of its descendants are utilized. In such case,
the authors argue that it could save some time by shortcutting
the classical successive cancellation decoder. In particular, they
replace butterfly devices that do soft-decision (calculation of
a posteriori probabilities) by simplified butterfly devices that
do hard-decision (exclusive-or of bits). This, however, does
not achieve the log-logarithmic asymptote because there are
O(log N) many decisions to do per information bit.

[25] introduced the so called relaxed polarization where
a channel is further polarized only if a certain criterion is
met. For instance, if (W−)+ is the only channel that meets
the criterion among all depth-2 synthetic channels, it will
undergo another round of polar transformation that results in
circuits and trees like Fig. 5. In contrast to [24], they replace
soft-decisions by nothing, so the total number of decisions is
reduced. See [25, Section IV.C] for more clarification. This
notion of lazy-polarization is dual to our notion of pruning.
Similar ideas can be found in [26]–[32].

Alongside their huge success in optimizing practical polar
codes, [25] analyzed the mathematical asymptote of how many
decisions are reduced for the first time. They showed that
one can, and only can, save the number of butterfly devices
by a constant fraction while keeping the exponential block
error probability. This means that their complexity remains
O(log N) per information bit. See also [33] for the analysis
of the latency of [24], [25]’s code.

On top of that, we deliberately tolerate a polynomial error
probability in exchange for a log-logarithmic complexity. To
sum up, both [25] and we are pruning polar codes; it is the
new pruning rule we come up with that results in a different
limit behavior of codes.

B. Organization

Section II reviews channel polarization and develops a
general tree notation for later use. Section III states the main
result, Theorem 1, and demonstrates applications to BEC and
to other channels. Section IV proves the main result.

WANG AND DUURSMA: LOG-LOGARITHMIC TIME PRUNED POLAR CODING 1511

Fig. 1. The starting point of polar code construction. Two horizontal lines
marked W are two independent copies of a BEC W . The box on the left
is the building block of encoder. The box on the right is the building block
of decoder. Pin A to pin B form a BEC which is denoted by W−. It is a
synthetic channel that is more noisy than W . Pin C to pin D form another
BEC which is denoted by W+. It is a synthetic channel that is more reliable
than W . Cf. [15, Fig. 1].

II. PRELIMINARY

A. Channel Polarization and Tree Notation

Channel polarization [15] is a method to synthesize some
channels to form some extremely-reliable channels and some
extremely-noisy channels. The user then can transmit uncoded
messages through extremely-reliable ones while padding pre-
dictable symbols through extremely-noisy ones. We summa-
rize channel polarization as follows.

Say we are going to communicate over a BEC W . One
of Arıkan’s contributions is the abstraction of two butterfly
devices and . (Cf. [15, Figs. 9, 10, and 5].) The
butterfly devices work in a way that when we wire two
independent copies of W like Fig. 1 does, pin A and B form
a more noisy synthetic channel W− while pin C and D form
a more reliable synthetic channel W+.

Arıkan treated Fig. 1 as a recursive function where nested
calls to the function will generate circuits like Fig. 2. In
particular, the circuit in Fig. 2 generates eight synthetic
channels ((W−)−)−, ((W−)−)+, and all the way up to
((W+)+)+. As the circuit gets larger and larger, we will
end up getting 2 number of calls channels, from (. . . (W−)− . . .)−

to (. . . (W+)+ . . .)+. Arıkan observed that synthetic chan-
nels generated in this way tend to be either extremely reli-
able or extremely noisy. That is to say, they polarize. He called
this phenomenon channel polarization.

The relation among W, W−, . . . , ((W+)+)+ is summa-
rized by a channel transformation TArı as is discussed in
[15, Section II]. We reproduce and improve [15, Fig. 6]
in Fig. 3. It is a tree whose vertexes are channels. Each parent-
child-child triple represents the fact that the butterfly devices
turn two independent copies of the parent channel into an
upper child channel and a lower child channel.

We introduce in the next subsection that it is possible to
prune circuits and trees to reduce complexity. We will take
advantage of the fact that circuits and trees correspond to each
other and only argue about trees. Eventually we will show how
to prune trees without having to sacrifice R and P too much.

B. Pruning Circuits and Trees

As mentioned in the introduction, the observation that cir-
cuits and trees can be pruned to attain a lower complexity has
been made several times in the past ([24]–[32]). For instance,
Fig. 4 illustrates a circuit-tree pair that saves two butterfly
devices, which potentially saves some time comparing to

Fig. 2. Fig. 1 works like a recursive function. We can call the function three
times to obtain this circuit. At the middle column there are eight independent
copies of BEC W . The inner layer of butterfly devices will turn them into four
independents copies of W− and four independents copies of W+. The second
layer of butterfly devices will turn them into (W−)−, (W−)+, (W+)−,
and (W+)+, each of two independent copies. Finally the outer layer of
butterfly devices will turn them into ((W−)−)−, ((W−)−)+, ((W−)+)−,
((W−)+)+ , ((W+)−)−, ((W+)−)+, ((W+)+)− , and ((W+)+)+. Cf.
[15, Figs. 2 and 3].

Fig. 3. Fig. 2 explains how the circuit transforms a channel to another.
This operation can be encoded by a tree with auxiliary labels. In the tree,
each vertex is a channel. A vertex is either a leaf or has two children.
When a channel has two children, they form a parent-child-child triangle
which represents the fact that the parent channel, say w, is transformed
into w− (upper child) plus w+ (lower child) by the butterfly devices.
Instead of verbosely spamming “butterfly devices,” we put a TArı at the
center of each such triangle. It represents that butterfly devices serve as a
channel transformation and that it is Arıkan who first recognizes/invents this
transformation.

Figs. 2 and 3. Fig. 5 illustrates another circuit-tree pair that
saves six butterfly devices, which potentially saves more time.

Roughly speaking, we expect that the more the circuit and
the tree are pruned, the more butterfly devices are saved.
Having less butterfly devices potentially saves more time.
However, the saving in time, if any, does not come for
free. Since the resulting synthetic channels are different form
before, P changes. Thus a user has to recompute/remeasure P
and to make sure whether the new P is affordable. An extreme,
degenerate case is that one does not discard any butterfly
device; use polar coding as it was proposed by Arıkan. Another
extreme point is that one drops all butterfly devices; this saves
100% of time but then there is no coding at all. The log-
logarithmic behavior is somewhere in between.

1512 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 3, MARCH 2021

Fig. 4. The top part is a pruned circuit where the butterfly devices
applied to (W−)− are dropped. As a result, this circuit does not generate
((W−)−)− or ((W−)−)+ and leaves the two copies of (W−)− intact. The
complete list of generated channels reads: (W−)−, (W−)− , ((W−)+)− ,
((W−)+)+, ((W+)−)− , ((W+)−)+ , ((W+)+)−, ((W+)+)+. The
bottom part is a pruned tree that illustrates the fact that (W−)− does not
undergo the third round of application of TArı and has no children. On the
other hand, other “depth-2” channels (W−)+, (W+)− , (W+)+ undergo
TArı and generate what they used to generate in Fig. 3.

In the next subsection, we review channel parameters H , I ,
Pe, and Z , followed by the stochastic processes {Ki}, {Ii},
{Zi}, and {Hi}. Then we generalize the processes. We will
show how they relate to trees, especially to pruned trees. Being
able to relate trees to processes makes it possible to control
the behavior of codes properly.

C. Channel Parameters and Processes

Let W : X → Y be a symmetric DMC. Let q be the
size of the input alphabet X . We assume the uniform input
distribution.

The conditional entropy H(W) of a channel W is the
Shannon entropy of the input conditioned on the output
(assuming base-q logarithm). More formally,

H(W) := −
∑
x∈X

∑
y∈Y

PXY (x, y) logq PX|Y (x | y)

It measures the noise—unreliability—of a channel. For BEC,
H(W) coincides with the erasure probability of W .

The symmetric capacity I(W) of W is defined to be
the mutual information between the input and the output
(assuming base-q logarithm).

I(W) :=
∑
x∈X

∑
y∈Y

PXY (x, y) logq

PX|Y (x | y)
PX(x)

Over symmetric channels with uniform inputs, it coincides
with the complement 1 − H(W).

The bit error probability Pe(W) of W is the error proba-
bility of the MAP decoder applied to W . In detail,

Pe(W) :=
∑
y∈Y

PY (y)
(
1 − max

x∈X
PX|Y (x | y)

)
.

Fig. 5. The top part is a pruned circuit where the butterfly devices applied
to (W−)−, (W+)−, and (W+)+ are dropped. They (each of two copies)
are left intact. The bottom part is a pruned tree that encodes what happens
in the circuit: only (W−)+ undergoes the third round of application of TArı
and has children. The complete list of generated channels reads: (W−)−,
(W−)−, ((W−)+)− , ((W−)+)+, (W+)− , (W+)− , (W+)+, (W+)+.

The Bhattacharyya parameter of W , denoted by Z(W), is
designed to be an upper bound on Pe(W). It is defined in
Arıkan’s work over binary channels [15] and in [34], [35]
over general channels. The definitions that will be mentioned
in the sequel is the q = 2 version

Z(W) :=
∑

y

√
W (y | 0)W (y | 1).

Over BECs, Z(W) coincides with H(W). We will use them
interchangeably.

Recall the processes {Ki}, {Ii}, and {Zi} as defined in
[15, Section IV, third paragraph]. Therein, {Ki} is the process
starting from K0 := W ; and Ki+1 is either K−

i or K+
i ,

each with probability 1/2. The process of mutual infor-
mation {Ii} is defined to be Ii := I(Ki). The process
of Bhattacharyya parameter {Zi} is defined to be Zi :=
Z(Ki). Moreover, we define the process of conditional
entropy {Hi} to be Hi := H(Ki). Clearly Ii + Hi = 1
over symmetric channels with uniform inputs. Here is our
generalization.

Denote by T a finite rooted tree of channels with root
channel W . Convention: the root has depth 0; the depth of
a tree is the depth of the deepest leaf; and the tree with only
one vertex has depth 0. Therefore, the circuit corresponding
to T consists of an array of butterfly devices with 2 depth(T)
columns and 2depth(T)−1 rows. The array contains 2depth(T)

independent copies of W . For any leaf channel w, the circuit
generates 2depth(T)−depth(w) copies of w.

Given a finite channel tree T with root channel W , define
three discrete-time stochastic processes {Ki∧τ}, {Ii∧τ},
{Hi∧τ} and a stopping time τ as follows: Start from the
root channel K0∧τ := W . For any i � 0, if Ki∧τ is a leaf,
let Ki+1∧τ be Ki∧τ . If, otherwise, Ki∧τ has two children,
choose either child with equal probability as Ki+1∧τ . Since
T is finite, there is always a smallest index j such that Kj∧τ

WANG AND DUURSMA: LOG-LOGARITHMIC TIME PRUNED POLAR CODING 1513

Fig. 6. Recall the tree in Fig. 5. On the left is a possible trajectory of the
process {Ki∧τ}. We begin with K0∧τ being the root channel W . It has
children. The first “coin toss” chooses the lower child W+ as K1∧τ . It has
children. The second coin toss chooses the upper child (W+)− as K2∧τ . It
has no child. The process stabilizes. So K2∧τ = K3∧τ = K4∧τ = · · · =
Kτ and τ = 2. The probability measure of this trajectory is 1/8. On the
right is another possible trajectory of the process {Ki∧τ}. We begin with
K0∧τ being the root channel. It has children. The first coin toss chooses the
upper child W− as K1∧τ . It has children. The second coin toss chooses the
lower child (W−)+ as K2∧τ . It has children The third coin toss chooses
the upper child ((W−)+)− as K3∧τ . It has no child. The process stabilizes
with K3∧τ = K4∧τ = K5∧τ = · · · = Kτ and τ = 3. The probability
measure of this trajectory is 1/4.

reaches a leaf, or equivalently Kj∧τ = Kj+1∧τ = Kj+2∧τ =
ad infinitum. Define a random variable τ to be this smallest
index. Then τ is the stopping time that records when Ki∧τ

“stops evolving.” Let Kτ be the channel Ki∧τ when it stops
evolving. That is, Kτ = limi→∞ Ki∧τ . Let Ii∧τ := I(Ki∧τ).
Let Hi∧τ := H(Ki∧τ). Let Iτ be I(Kτ) = limi→∞ Ii∧τ . Let
Hτ be H(Kτ) = limi→∞ Hi∧τ .

Readers might have noticed that the notations Ki∧τ , Ii∧τ ,
and Hi∧τ coincide with what Gallager calls stopped process
[36, Theorem 9.7.1]. One may as well stick to the operational
definition presented above.

Recall the pruned tree in Fig. 5. We give two possible
trajectories in Fig. 6. Note that this tree is a nontrivial example
where τ is not a constant. As a random variable, τ depends on
which child of Ki∧τ is chosen at each step. It turns out that
P{τ = 2} = 3/4 and P{τ = 3} = 1/4. For the tree in Fig. 4,
P{τ = 2} = 1/4 and P{τ = 3} = 3/4. For the tree in Fig. 3,
however, τ = 3 with probability 1.

By [15, Proposition 8], {Ii} is a martingale. Hence {Ii∧τ}
is a martingale by [37, Theorem 5.2.6]. Since W is symmetric,
Hi∧τ = 1 − Ii∧τ forms a martingale as well. A useful
consequence by applying [37, Theorem 5.7.6] to {Ii} is

I(W) = I0 = E[Iτ]. (2)

Remark: {Ii} being a martingale plays two crucial roles in
Arıkan’s work. For one: the martingale convergence theorem
applies. For two: I(W) = I0 = E[In] so P{I∞ = 1} = I(W).
Equality (2) generalizes this argument in the manner that we
can now decide whether to prune a branch or not on a channel-
by-channel basis. This creates a new level of flexibility to
balance bC and other parameters.

In the next subsection we show how trees and processes
relate to codes. Only after we establish the relation between
trees and (N, R, P, bC) can we optimize how we are going to
prune the tree.

D. From Trees to Codes and Communication

Recall that in a given tree T , non-leaf vertexes represent
channels that are consumed to obtain their children. They are

not available to users. Leafs of T , on the other hand, represent
channels that are available to users. A user who wants to send
messages using T can: 1) choose a subset A of leafs of T ;
2) transmit uncoded messages through leaf channels in A;
and 3) pad predictable symbols through the remaining leaf
channels. Leafs in A and the corresponding channels are said
to be chosen or utilized. Leafs outside A and the corresponding
channels are said to be frozen.

This makes the tree-leafs pair (T ,A) a block code. We want
to characterize this block code by analyzing these four parame-
ters: block length N , code rate R, block error probability P ,
and per-bit time complexity bC. Here is how to read-off these
parameters from (T ,A).

The block length N of (T ,A) is the number of copies of
W in the corresponding circuit. In terms of a function of the
tree, it is

N := 2depth(T).

N does not depend on A, so we can talk about “the block
length of T ” without defining A in advance. The multiplicity
of a synthetic channel w is the number of occurrences of w
in the circuit; this is further equal to 2depth(T)−depth(w) =
NP{{Ki} passes w}.

The code rate R of (T ,A) is the number of synthetic
channels w in A (counting with multiplicity) divided by N .
In terms of stochastic processes, it is the probability that Kτ

is utilized.

R := P{Kτ ∈ A}.

The block error probability P of (T ,A) is the probability
that any utilized leaf channel in A fails to transmit the
message. For a classical polar code, the block error probability
is at most

∑
w∈A Z(w) as stated in [15, Proposition 2]. For a

pruned polar code, the block error probability is at most the
weighted sum

P �
∑
w∈A

(NP{Kτ = w})Pe(w).

To paraphrase, since Pe(w) is the bit error probability of each
individual utilized channel, it suffices to apply the union bound
where each Pe(w) is weighted by the multiplicity of w in the
circuit.

The per-block time complexity of (T ,A) is how long
T ’s circuit takes to execute. It is bounded from above by
the number of butterfly devices multiplied by the time each
butterfly device spends. (No parallelism allowed in our model.)
The design of the butterfly devices suggests that each butterfly
device spends constant time. Thus the per-block time complex-
ity is proportional to the number of butterfly devices. As each
leaf channel Kτ at depth τ must go through τ many ’s

and τ many ’s, the total number of butterfly devices
is exactly 2NE[τ]. Hence the per-block time complexity is
proportional to NE[τ].

The per-bit time complexity bC is the amortized time each
information bit should pay. Naturally it is proportional to
NE[τ]/NR = E[τ]/R. In this work, we are pursuing capacity
achieving codes so R ≈ I(W) is about a constant. Therefore,

1514 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 3, MARCH 2021

the per-bit time complexity is proportional to

E[τ]. (3)

E[τ] does not depend on A, so we can talk about “the
complexity of T ” without defining A in advance.

We are almost ready to show readers how to prune trees
except that we will phrase pruning in an opposite tone: Instead
of starting from a huge, heavy tree and pruning the vast
majority of its vertexes, we grow a tree from scratch and
decide channel-by-channel whether or not each channel should
have children. Doing so fits the stochastic processes paradigm
more properly because usually we are not allowed to look into
the future (see the descendants) before we make the decision
(whether it should have children or not). We assure that this
is a matter of wording style and has nothing to do with the
actual properties of codes.

In this context, we say apply TArı to w if we want w to
have children. We say do not apply TArı to w if we want the
opposite, that w should be a leaf. Here are two heuristic rules
that guide the application of TArı: 1) That N := 2depth(T)

suggests that we should set a boundary n and do not apply
TArı once we reach depth n. This guarantees that the block
length N will never exceed 2n. We assume the worst case
scenario N := 2n. 2) A mediocrely reliable channel increases
P too much if we utilize it, but sacrifices R too much if
we freeze it. Either way it becomes an obstacle to capacity
achieving. To avoid the dilemma, the only chance is applying
TArı to polarize it further. This suggests that we should make
decisions based on a threshold for “mediocre reliability.”

E. Growing Tree and Choosing Leafs as Code Construction

We showed how to estimate the parameters of a block code
(T ,A) if T and A are explicitly given. Now we state how we
are going to grow a good tree of prescribed depth n (instead
of pruning the perfect binary tree of depth n). Here n is an
integer to be assigned. Let ε > 0 be small. Let Y (w) be
min{I(w), H(w)}.

Begin with W as the only vertex of a new rooted tree. We
announce the following rule:

Apply TArı to w if and only if

depth(w) < n and Y (w) > ε2−n.
(4)

The rule says: for each leaf w, if both depth(w) < n and
Y (w) > ε2−n are met, apply TArı to w to obtain w− and
w+; and then append w− and w+ as the children of w.
If, otherwise, either criterion is not met, we do not apply
TArı and leave w as a leaf. See Appendix A for a possible
execution of the rule. We will see later that Y (w) serves as
a judgement of whether w is sufficiently polarized or not.
Having T , we declare A by a criterion

w ∈ A if and only if
w is a leaf and H(w) � ε2−n.

(5)

In Rule 4 and Criterion 5 we implicitly divide channels
into four classes: 1) For channels that are mediocrely reliable,
i.e., ε2−n < I(w) < 1 − ε2−n, we apply TArı to polar-
ize w further. 2) For channels that are sufficiently reliable,

i.e., H(w) � ε2−n, we stop applying TArı and collect them
in our pocket A. Doing so as early as possible maximizes
the save on butterfly devices. Nevertheless, every channel we
put in A contributes to the overall block error probability P .
We must choose wisely what to and what not to put in A.
3) For channels that are incredibly noisy, i.e. I(w) � ε2−n, it
becomes inefficient to extract any capacity from w. We should
just “let go” the noisy channels and save butterfly devices. The
earlier we let them go the more butterfly devices we save.
Nevertheless, since E[Iτ] = I(W) is conserved, letting go a
channel means giving up the capacity it carries. We must not
give up too much capacity as we want R → I(W). 4) For
channels that are mediocrely reliable at depth n, there is no
chance to polarize them further. We shall let them go.

We now have both T and A properly defined in terms of
W , ε and n. We will show in the coming section how this
(T ,A), as a block code, performs.

III. MAIN RESULT AND APPLICATIONS

Theorem 1 (Main Theorem): Let W be any symmetric
channel. Assume that there exist β� > 0 and μ� < ∞ such
that as i → ∞,

P

{
Ii < 2−2β�i} � H(W) − O(2−i/μ�

) (6)

and

P

{
Hi < 2−2β�i} � I(W) − O(2−i/μ�

). (7)

Then there exists a series of pruned polar codes with block
length N , code rate R, block error probability P , and per-bit
time complexity bC satisfying

(N, I(W) − R, P, bC)

=
(
N, O(N−1/μ�

), N−1/μ�
, O(log log N)

)
as N → ∞. Let ε be N−1/μ�

, then the quadruple can be
rewritten as (

ε−μ�
, O(ε), ε, O(log|log ε|)

)
as ε → 0.

Sketch: The general strategy is to grow a tree according
to the framed rule (4) and choose/freeze leafs according to
the framed criterion (5). The processes {Ki} and the random
variable Kτ are thus uniquely determined. In order to control
how Kτ behaves, we gain control of how {Ki} behaves in
terms of Inequalities (6) and (7).

Section IV serves as a formal proof of the theorem. The
code will be constructed in Section IV-A. We characterize its
block length N , per-bit time complexity bC, and block error
probability P in Section IV-B. Section IV-C computes the code
rate R.

A. On the Precondition and Applications

The preconditions, Inequality (6) and (7), characterize the
so-called moderate deviations behavior of polar codes. As
commented in the introduction, it is expected that all polar
codes enjoy some sort of moderate deviations asymptote,
meaning that

P

{
Hi � 2−N constant

}
� I(W) − O(N−constant).

WANG AND DUURSMA: LOG-LOGARITHMIC TIME PRUNED POLAR CODING 1515

On the other hand, the precise constants over various channels
are yet to be figured out. On this path, the earliest result dated
back to 2013, by Guruswami–Xia [16].

Proposition 2 [16, Theorem 1]: Let W be a symmetric
BDMC. There exists μ� < ∞ such that

P

{
Zi � 2−20.49i

}
� I(W) − O(2−i/μ�

). (8)

Intuitively speaking, this lemma shows that Zi goes to zero
doubly-exponentially fast. Recall that in Rule 4, we do not
apply TArı if Hi � ε2−n. Here ε2−n is polynomial in N
so Hi will reach this threshold in log-logarithmic steps. All
TArı afterwards are pruned. This is the main reason why the
complexity is log-logarithmic.

The prior result is followed by a generalization with a family
of explicit constants.

Lemma 3 [17, Theorem 3 and Inequality (56)]: Let W be
a symmetric BDMC. Let μ be the scaling exponent and γ be
such that 1/(1 + μ) < γ < 1. Then

P

{
Zi � 2−2

iγh
−1
2 (γμ+γ−1

γμ
)}

� I(W) − O
(
2

−i(1−γ)
μ

)
. (9)

Here h−1
2 is the inverse function of the binary entropy

function. And the scaling exponent μ is a number such that
([38]–[41])

P{Zi is “small”} � I(W) − O(2−i/μ).

Here “small” is some function in i that examines if a channel
is reliable enough. Different works use different functions but
it could be proven that a large class of functions all determine
the same μ.

Over BECs, we know Z(W) = H(W) = 1 − I(W) and
the recursion reads

Zi+1 =

{
1 − (1 − Zi)2 w.p. 1/2,

Z2
i w.p. 1/2;

Ii+1 =

{
I2
i w.p. 1/2,

1 − (1 − Ii)2 w.p. 1/2.

As a consequence, Inequalities such as (8) and (9) can be
“flipped” to obtain their counterparts at the noisy-end over
BECs. For instance

P

{
Ii � 2−2

iγh
−1
2 (γμ+γ−1

γμ
)}

� H(W) − O
(
2

−i(1−γ)
μ

)
. (10)

This and Inequality (9) together provide instances of constants
β� and μ� for the precondition of the main theorem. More
precisely, we know the scaling exponent μ over BECs is at
most 3.639 [17, Theorem 2]. So we let μ := 3.639 and γ :=
1261/4900. Then Inequality (9) becomes

P

{
Hi � 2−2i/119.5

}
� I(W) − O

(
2i/4.9

)
.

Its noisy-end counterpart becomes

P

{
Ii � 2−2i/119.5

}
� H(W) − O

(
2i/4.9

)
.

So we know Theorem 1 holds for (μ�, β�) = (4.9, 1/120) over
BECs.

Corollary 4: Let W be any BEC. There exists a series of
pruned polar codes with block length N , code rate R, block
error probability P , and per-bit time complexity bC satisfying

(N, I(W) − R, P, bC) =
(
ε−4.9, O(ε), ε, O(log|log ε|)

)
as ε → 0.

Over other channels, how to fulfill Inequalities (6) and (7)
is not so clear. One reason is that known results about
moderate deviations behavior (generalizations of Inequalities
(8) and (9)) are limited to symmetric prime-ary-input discrete-
output memoryless channels. In fact, the following is the best
known result.

Lemma 5 [20]: Let W be a symmetric prime-ary-input
discrete-output memoryless channel. For some β� > 0, there
exists μ� < ∞ such that

P

{
Hi � 2−2β�i} � I(W) − O(2−i/μ�

). (11)

(Appendix B translates their result into our terminology.)
Moreover, even if a moderate deviations behavior is avail-

able, it does not immediately imply its noisy-end counterpart
(cf. how we derive Inequality (10)). Therefore, we have to
provide the flipped version by itself.

Lemma 6: Let W be a symmetric prime-ary-input discrete-
output memoryless channel. There exist β� > 0 and μ� < ∞
such that

P

{
Ii � 2−2β�i} � H(W) − O(2−i/μ�

). (12)

The proof of the lemma is heavily inspired by [20], [41].
It will be given in Appendix C. Now Lemmas 5 and 6 and
Theorem 1 jointly imply a general version of Corollary 4.

Corollary 7: Let W be any symmetric prime-ary-input
discrete-output memoryless channel. For some μ� < ∞, there
exists a series of pruned polar codes with block length N ,
code rate R, block error probability P , and per-bit time
complexity bC satisfying

(N, I(W) − R, P, bC) =
(
εμ�

, O(ε), ε, O(log|log ε|)
)

as ε → 0.
That constitutes the application of the main theorem to the

pruned polar code over general channels. We prove the main
theorem in the next section.

IV. PROOF OF THEOREM 1 (THE MAIN THEOREM)

In this section, we prove the main theorem. First of all,
Inequalities (6) and (7) imply

P

{
Yi > 2−2β�i} � O(2−i/μ�

). (13)

Here Yi := min(Hi, Ii). We are going to use the preconditions
in this particular form. In the upcoming subsections, we will
construct the code by growing a tree and selecting leafs. We
will compute the “average depth” E[τ] of the tree. We will
then capture the code’s N , bC, P , and R in this order.

1516 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 3, MARCH 2021

A. Tree Construction and Average Depth

We are ready to analyze the stated construction. We will first
prove a lemma regarding E[τ] and then analyze N, bC, P, R in
that order. Once we can control all four parameters we obtain
the main theorem, Theorem 1.

Lemma 8: Given W and ε, assign n := −μ� log2 ε. Then
Rule (4), i.e.,

Apply TArı to w if and only if
depth(w) < n and Y (w) > ε2−n,

grows a channel tree T with E[τ] = O(log|log ε|).
Proof: Grow the tree and observe the processes {Ki∧τ}

and {Yi∧τ}. By the rule, the channel Ki∧τ has children if and
only if depth(Ki∧τ) < n and Y (Ki∧τ) > ε2−n. Conversely,
the channel Ki∧τ has no child if and only if depth(Ki∧τ) �
n or Y (Ki∧τ) � ε2−n. The stopping time τ , by definition,
is the least index j such that Kj∧τ has no child. So τ is the
least index j such that depth(Kj) � n or Y (Kj) � ε2−n.
Equivalently, τ is the least index j such that j � n or Yj �
ε2−n. More formally,

τ = min({j : Yj � ε2−n} ∪ {n}).

For stopping times defined in the form “when is the first
time something happens,” they are usually studied through the
events {τ > i} indexed by i ∈ N∪{0}. To rephrase it, knowing
“when does something first happen” is equivalent to knowing
“whether something had happened before time i.” In our case,
the predicate τ > i is equivalent to whether i � n or Yj �
ε2−n for some j � i. We relax the criteria to whether Yi �
ε2−n. Symbolically,

{τ > i} ⊆ {Yi > ε2−n} = {Yi > ε1+μ�
}.

The equality is due to our choice of n := −μ� log2 ε.
Whether Yi > ε1+μ�

or not can be relaxed to a disjunction
Yi > 2−2β�i

or 2−2β�i
> ε1+μ�

. We have seen the first
disjunct before (in Inequality (13)) and can control how often
it happens. The second disjunct is new; we solve for i and
deduce that 2−2β�i

> ε1+μ�
implies i < O(log|log ε|). More

formally,

{τ > i} ⊆
{
Yi > 2−2β�i

or i < O(log|log ε|)
}

.

Now whether τ > i happens is divided into two cases:
1) If i is small enough—i < O(log|log ε|)—we have little
idea about whether τ > i or not. (It probably is; we do not
expect decent polarization this early.) 2) If i is large enough
to violate i < O(log|log ε|), then {τ > i} is dominated by

the first disjunct Yi > 2−2β�i
. And Inequality (13) bounds its

probability measure from above. Putting 1) and 2) together,
we have a joint bound

P{τ > i} �
{

1 when i < O(log|log ε|),
O(2−i/μ�

) otherwise.
(14)

Now we recall a useful restatement of Fubini’s theorem
in probability theory [37, Lemma 2.2.8]; it reads E[τ] =∑∞

i=0 P{τ > i}. This reassures what we claimed above—that
when does something first happen (LHS) is related to whether

that thing happened before i (RHS). The summation on the
RHS is from i = 0 to ∞ but we divide them into two cases:
1) When 0 � i < O(log|log ε|), we have little control over

the probability of Yi > 2−2β�i
. We hence sum O(log|log ε|)

many 1’s (the trivial upper bound of probabilities). The sum
is O(log|log ε|). 2) When O(log|log ε|) � i � ∞ we have
the upper bound O(2−i/μ�

). We are summing a geometric
series; the sum is O(1). Putting 1) and 2) together, we have a
complete estimate

E[τ] =
∞∑

i=0

P{τ > i}

=
O(log|log ε|)∑

i=0

P{τ > i} +
∞∑

i=O(log|log ε|)
P{τ > i}

�
O(log|log ε|)∑

i=0

1 +
∞∑

i=O(log|log ε|)
O(2−i/μ�

)

= O(log|log ε|) + O(1)
= O(log|log ε|).

This finishes the computation of the average depth E[τ].

B. Code Length, Error Probability, and Complexity

Lemma 8 contains the most technical steps in this work.
This is the first time the concept of stopping time is introduced
to the field of polar codes, and it plays key roles in the proof.
Now we have completed Lemma 8, i.e., the construction of
the tree T and the computation of its average depth E[τ], it
remains to: 1) read off N and bC from T ; 2) define A; and
3) read off P and R from (T ,A).

For the block length N : Rule 4 stops applying TArı at depth
n. In other words, the rule grows a tree of depth (at most)
n, where n was defined to be −μ� log2 ε in Lemma 8. No
matter what A will be selected, the code (T ,A) possesses
block length N � 2n = ε−μ�

.
For per-bit time complexity bC: As proven in Lemma 8,

the stopping time of the tree T has expectation E[τ] =
O(log|log ε|). By the discussion that leads to Formula (3), the
code (T ,A) possesses per-bit time complexity bC = E[τ] =
O(log|log ε|) = O(log log N) regardless of how A will be
chosen.

For block error probability P : This quantity depends on A
so we now declare A by Criterion (5), i.e.,

w ∈ A if and only if
w is a leaf and H(w) � ε2−n.

Next we attempt to calculate P :

P �
∑
w∈A

NP{Kτ = w}Pe(w) (union bound)

�
∑
w∈A

NP{Kτ = w}H(w) (by [42, (16)])

�
∑
w∈A

NP{Kτ = w}ε2−n (by (5))

� Nε2−n = ε. (see below)

WANG AND DUURSMA: LOG-LOGARITHMIC TIME PRUNED POLAR CODING 1517

Here (see below) uses that {Kτ = w} are disjoint events so
their probability measures sum to 1, at most. This proves that
the code (T ,A) possesses block error probability P � ε.

So far we proved that the code (T ,A) has parameter triple

(N, P, bC) =
(
N, N−1/μ�

, O(log log N)
)

=
(
εμ�

, ε, O(log|log ε|)
)
.

The code rate of the code (T ,A) is less straightforward to see
so we place the calculation in a separate subsection.

C. The Code Rate

We claim and are going to prove that the code (T ,A)
possesses code rate R � I(W) − O(ε).

The sample space of the process {Ki∧τ} is partitioned into
the following three events:

G := {1 − ε2−n � Iτ � 1},
M := {ε2−n < Ii < 1 − ε2−n for all i � n},
B := {0 � Iτ � ε2−n}.

Compare this to the analysis after Criterion 5. Event G means
Kτ is a good channel; corresponding to 2). Event M means
τ = n and Kn is mediocre; corresponding to 4). Event B
means Kτ is a bad channel; corresponding to 3).

M is contained in event {τ > n−1} (that Ki is sufficiently
polarized for some i does not happen). By the proof of
Inequality (14) we have

P{τ > n − 1} �
{

1 if n − 1 < O(log|log ε|),
O

(
2−

n−1
μ�

)
otherwise.

Recall n := −μ� log2 ε, so n − 1 < O(log|log ε|) does not
happen as ε → 0. The “otherwise” bound O(2−(n−1)/μ�

)
applies:

P(M) � P{τ > n − 1} = O
(
2−

n−1
μ�

)
= O(2−n/μ�

). (15)

Use this to rewrite the capacity as follows; here I(•) is the
indicator function of events:

I(W) = I0 = E[Iτ] (by (2))

= E[Iτ I(G)] + E[Iτ I(M)] + E[Iτ I(B)] (partition)

� E[I(G)] + E[I(M)] + ε2−n
E[I(B)] (see below)

= P(G) + P(M) + ε2−n
P(B) (EI is P)

� P(G) + O(2−n/μ�
) + ε2−n. (by (15))

Here (see below) is by Iτ � 1 for G and M , and by 1−ε2−n �
Hτ for B. Use the last line to bound the code rate:

R = P{Kτ ∈ A} = P(G) (by (5))

� I(W) − O(2−n/μ�
) − ε2−n (rewrite I(W))

= I(W) − O(ε) (n := −μ� log2 ε)

This proves the claim that R � I(W) − O(ε).
The proof of Theorem 1 ends here.

V. DISCUSSION

We anticipate generalizations of the main theorem to all
DMCs. More precisely, let W be any DMC. Let {Ki} be the
stochastic process of synthetic channels generated by some
well-selected �-by-� kernel. Let {Hi} be the stochastic process
of the conditional entropies of {Ki}. We ask the following
question.

Question 9: Assume that the kernel is polarizing. That is,
limi→∞ Hi ∈ {0, 1}. Do there exist β� > 0 and μ� < ∞ such
that as i → ∞,

P

{
1 − Hi < 2−�β�i} � H(W) − O(�−i/μ�

)

and

P

{
Hi < 2−�β�i} � 1 − H(W) − O(�−i/μ�

)?

Furthermore, if it does, we want to know the answer to the
question below.

Question 10: Does there exist a series of pruned polar
codes (presumably generated in a similar way) with block
length N , code rate R, block error probability P , and per-
bit time complexity bC satisfying

(N, I(W) − R, P, bC) =
(
ε−μ�

, O(ε), ε, O(log|log ε|)
)

as ε → 0?
We expect both question can be answered affirmatively

as there are promising tools available. For instance, [43]
showed how to achieve the true capacity of a non-symmetric
channel. The framework in [35] deals with prime-power input
alphabet; and [34] deals with arbitrary finite input alphabet.
The arguments in [20], [41] seem to be able to show the
existence of scaling exponents over more general channels.

APPENDIX

A. Execution of Rule (4)

We present a possible execution of Rule (4), i.e.,

Apply TArı to w if and only if
depth(w) < n and Y (w) > ε2−n.

Let W be a BEC with erasure probability H(W) = Z(W) =
0.6; let ε = 1.2. We should have determined n by ε; but
we choose n = 3 for simplicity. Note that ε2−n = 0.15.
Moreover, we should have applied TArı to channels. But for
BEC, the Bhattacharyya parameter uniquely determines the
channel; so we made a shortcut: by applying TArı to a number
a to obtain other numbers b and c, we mean to apply TArı

to the BEC of erasure probability a to obtain two BECs of
erasure probabilities b and c, respectively. See Fig. 7 for steps
zero to three. See Fig. 8 for steps four to seven.

B. Comments on Lemma 5

[20] proved that there exists polar code with error proba-
bility exp(−Nβ) and polynomial gap to capacity. We know
that the error probability is about the size of Hi when Ki is

1518 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 3, MARCH 2021

Fig. 7. Step zero: Start with W and write down Z(W), which is 0.6. Step
one: Both 0.6 and 1 − 0.6 are larger than ε2−n = 0.15. Apply TArı to 0.6
to obtain two synthetic channels 1 − (1 − 0.6)2 = 0.84 and 0.62 = 0.36.
Append them as the children of 0.6. Step two: Both 0.84 and 1 − 0.84
are larger than ε2−n. Apply TArı to 0.84 to obtain two synthetic channels
1−(1−0.84)2 = 0.9744 and 0.842 = 0.7056. Append them as the children
of 0.84. Step three: Both 0.36 and 1 − 0.36 are larger than ε2−n. Apply
TArı to 0.36 to obtain two synthetic channels 1− (1− 0.36)2 = 0.5904 and
0.362 = 0.1296. Append them as the children of 0.36.

a synthetic channel that is used to communicate. Thus their
result implies that

P

{
Hi < e−2βi

}
= code rate

� I(W) − polynomial(block length)

= I(W) − 2−i/O(1).

To be even more precise, we now show how [19, Lemmas 2.8
and 3.1 and Theorem 2.5] yield that inequality for Arıkan’s
kernel [11

0
1].

Lemma 3.1 of [19] reads: Consider M = [1α
0
1] for nonzero

α ∈ Fq. For every ε > 0, matrix M⊗2 satisfies (1/4, 2 − ε)-
exponential polarization. We plug in α = 1 and ε = 1/4, then
[110

1]⊗2 satisfies (1/4, 7/4)-exponential polarization.
Lemma 2.8 of [19] reads: If mixing matrix M satisfies (η, b)-

exponential polarization, then Arıkan martingale associated
with M is (η, b)-exponentially locally polarizing. We apply
this with (η, b) = (1/4, 7/4). Realize that the Arıkan martin-
gale of [11

0
1]

⊗2 is the even terms of the usual martingale {Hi}.
Thus, we conclude that {H2i} is (1/4, 7/4)-exponentially
locally polarizing.

Theorem 2.5 of [19] reads: Let Λ < η log2 b. Then if
a [0, 1]-bounded martingale X0, X1, X2, . . . satisfies (η, b)-
exponential[sic] local polarization then it also satisfies Λ-
exponentially strong polarization. From here, we know that
{H2i} satisfies Λ-exponential strong polarization for some
Λ < log2(7/4)/4. Take Λ = log2(3/2)/4.

According to Definition 2.1 of [19], {Xt} has Λ-exponen-
tially strong polarization if for every 0 < γ < 1 there exist
constants α < ∞ and 0 < ρ < 1 such that for every t,

P

{
2−2Λ·t

< Xt < 1 − γt
}

� α · ρt.

Therefore, from all we got above, we made a choice γ = 1/2
and obtain

P

{
2−1.5i/4

< H2i < 1 − 2−i
}

� α · ρi.

Similar to Section IV-C, we now partition the sample space
into three events

G :=
{

1 − 2−1.5i/4 � I2i � 1
}
,

M :=
{

2−i < I2i < 1 − 2−1.5i/4
}
,

B :=
{

0 � I2i � 2−i
}
.

Fig. 8. Steps four and five: 1− 0.9744 is smaller than ε2−n. Do not apply
TArı; let 0.9744 be a leaf. Both 0.7056 and 1−0.7056 are larger than ε2−n.
Apply TArı to 0.7056 to obtain two synthetic channels 1− (1− 0.7056)2 =
0.9133 and 0.70562 = 0.4978. Append them as the children of 0.7056. Steps
six and seven: Both 0.5904 and 1−0.5904 are larger than ε2−n. Apply TArı
to 0.5904 to obtain two synthetic channels 1− (1−0.5904)2 = 0.8322 and
0.59042 = 0.3485. Finally 0.1296 is smaller than ε2−n. Do not apply TArı;
let 0.1296 be a leaf. Now we reach depth n = 3; terminate.

Note that P(M) = P

{
2−1.5i/4

< H2i < 1 − 2−i
}

= O(ρt).
Then we can rewrite the capacity as follows

I(W) = I0 = E[I2i] (martingale)

= E[I2iI(G)] + E[I2iI(M)] + E[I2iI(B)] (partition)

� E[I(G)] + E[I(M)] + 2−i
E[I(B)] (by definition)

= P(G) + P(M) + 2−i
P(B) (EI = P)

� P(G) + O(ρi) + 2−i.

Here (by definition) is by I2i � 1 for G and M , and by
Ii � 2−i for B.

Keep only P(G) on the right hand side and move the rest
to the left; we finally arrive at P(G) � I(W)−2−i−O(ρi) =
I(W)−O(ρi) where we assume 1/2 < ρ < 1 (if not, replace
ρ by 1/2). So

P

{
H2i < 2−1.5i/4

}
� I(W) − O(ρi).

We are almost there except that we need to bound the odd
terms H2i+1. Invoking the fact that Hi+1 � 2Hi (due to
martingale), we know that an odd term is at most twice its
preceding even term. That is to say,

P

{
H2i+1 < 2 · 2−1.5i/4

}
� I(W) − O(ρi).

Now choose a β� > 0 such that 22β�
< 1.51/4 and

choose a μ� < ∞ such that 2−2/μ�
> ρ. Then we conclude

Inequality (11) of LEMMA 5.

C. Proof of Lemma 6

Fix a prime q. Fix a q-ary-input discrete symmetric mem-
oryless channel W . We want to find constants μ� < ∞ and
β� > 0 such that the process {Ii} satisfies

P

{
Ii � 2−2β�i} � 1 − I(W) − O(2−i/μ�

).

We borrow terminologies and lemmas from [41] for a head
start.

By [40, Definition 1.8], the matrix [11
0
1] is mixing. By

[ibid., Theorem 1.10], the process {Ii} corresponding to [11
0
1]

is locally polarizing. By [ibid., Theorem 1.6], the process
{Ii} corresponding to [11

0
1] is strongly polarizing. By [ibid.,

Definition 1.4], the process {Ii} is such that for all γ > 0 there

WANG AND DUURSMA: LOG-LOGARITHMIC TIME PRUNED POLAR CODING 1519

Fig. 9. A script grows trees using Rule 4 and computes the exact E[τ]
accordingly. The result for various n is shown above. The gray, thin rays are
of slopes 1, 4/5, 3/4, 2/3, and 1/2, respectively.

exist η < 1 and β < ∞ such that Ii is (γi, βηi)-polarizing.
By [ibid., Definition 1.2], Ii is such that for all γ > 0 there
exist η < 1 and β < ∞ such that P{Ii ∈ (γi, 1− γi)} < βηi.

Choose γ = 1/2. We obtain: there exists η < 1 such that
P{Ii ∈ (2−i, 1 − 2−i)} < O(ηi). Since η < 1, the right
hand side O(ηi) converges to 0 exponentially fast. This means
that the majority of Ii are either exponentially small (i.e.,
0 � Ii � 2−i) or exponentially close to 1 (i.e., 1 − 2−i �
Ii � 1). What we want to show consists of two parts: 1) The
proportion of Ii that is exponentially small is about 1−I(W);
the proportion of Ii that is exponentially close to 1 is about
I(W). 2) Exponentially small Ii’s are doubly-exponentially

small (i.e., 0 � Ii � 2−2β�i
); the close-to-1 counterpart is

doubly-exponentially close to 1 (i.e., 1 − 2−2β�i � Ii � 1).
(Remark: part of the statement overlaps Lemma 5; we state
for both noisy-end and reliable-end for better comparison.)

Now we go for 1). Observation: the result we want to prove
and the tool we have in hand are symmetric in Ii and in 1−Ii.
It suffices to show, say, that the small-Ii part of the statement
holds. The close-to-1 part follows by symmetry (or by what
we have done in the previous appendix).

Now we show P{0 � Ii � 2−i} � I(W) − O(ηi). Similar
to Sections B and IV-C, we partition the sample space into
three events

G := {1 − 2−i � Ii � 1},
M := {2−i < Ii < 1 − 2−i},
B := {0 � Ii � 2−i}.

Then P(M) = P{Ii ∈ (2−i, 1 − 2−i)} = O(ηi). Next we
rewrite the conditional entropy

1 − I(W) = 1 − I0 = E[1 − Ii] (martingale)

= E[(1 − Ii)I(G)] + E[(1 − Ii)I(M)] + E[(1 − Ii)I(B)]

� 2i
E[I(G)] + E[I(M)] + E[I(B)] (by definition)

= 2i
P(G) + P(M) + P(B) (EI = P)

� 2−i + O(ηi) + P(B)

Fig. 10. The same figure as Fig. 9 with log-axis to show the linearity of the
data points.

Here (by definition) is by Ii � 0 for B and M , and by Ii �
1 − 2−i for G. Already we have that P{0 � Ii � 2−i} =
P(B) � 1−I(W)−O(ηi)−O(2−i). We may assume η > 1/2.
Thus P{0 � Ii � 2−i} � 1 − I(W) − O(ηi). The flipped
version P{1 − 2−i � Ii � 1} � I(W) − O(ηi) also holds by
mirroring the argument. This finishes the 1) part.

Now we go for the small-Ii part of 2). We need a lemma;
[40, Lemma 6.3] reads: Let X1, X2 ∈ Fq be a pair of random
variables, and let A1, A2 be pair of discrete random variables,
such that (X1, A1) and (X2, A2) are independent. Then

1 − H(X1 + X2 | A1, A2)
� (1 − H(X1 | A1))(1 − H(X2 | A2)) · poly(q).

Write the constant poly(q) as Q. Let (X1, A1) and (X2, A2)
be the two copies of Ki, then (X1 + X2|A1, A2) is the upper
child K+

i . Furthermore, “1−H” is “I ,” so the lemma means

I(K+
i) � I(Ki)I(Ki)Q,

which simplifies to Ii+1 � QI2
i whenever Ki+1 is the upper

child.
With the lemma in place, we can really start dealing with

the small-Ii part of 2). Clearly Ii < 1/Q2 implies QI2
i � I1.5

i .
So we deduce that whenever Ii < 1/Q2 and Ki+1 is the upper
child, Ii+1 � I1.5

i . Another case is when Ki+1 is the lower
child. We enlarge Q such that Q � 25 (that is, we replace
Q with max(Q, 25)). Then whenever Ii < 1/Q2 and Ki+1

is the lower child, Ii+1 � 2Ii � Q0.2Ii < I−0.1
i Ii = I0.9

i .
Combining the two cases of Ki+1, we find that if Ii < 1/Q2

then Ii+1 is (at most) I1.5
i or I0.9

i , each with probability 1/2.
We conclude this paragraph by rewriting this formally: when
Ii < 1/Q2,

Ii+1 �
{

I1.5
i w.p. 1/2 (upper child case),

I0.9
i w.p. 1/2 (lower child case).

Let n be a large number. We know P{0 � In � 2−n} �
1 − I(W) − O(ηn). Now we continue the process for i =
n, . . . , 4n. We want to show that at step 4n, the bad channels

1520 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 3, MARCH 2021

have doubly-exponentially small capacity. That is, we want
P

{
0 � I4n � 2−24β�n

}
� 1 − I(W) − O(η4n) for some β�.

There are two obstacles: a) If Ii � 1/Q2, we lose control on
Ii+1. We want to avoid this. b) Even if Ii < 1/Q2, we want
Ii to go through the 1.5-th power instead of the 0.9-th power.
Let A be the event that In < 2−n but Ii > 1/Q2 for some
n < i < 4n. When that happens, let σ be the lowest i such
that Ii > 1/Q2. When that does not happen, we let σ be 4n.
Let B be the event that among 3n chances, Ii undergoes the
1.5-th power less than n times. We now control A and B.

For A, we have P(A) = P{Iσ � 1/Q2} � E[Iσ]Q2 �
E[In]Q2 � Q22−n by [37, Theorem 5.7.6]. For B, by Hoeffd-
ing’s inequality [44, Theorem 2.8], there exists ρ < 1 such that
P(B) < O(ρn). Enlarge η < 1 by replacing it with max(η, ρ).
We see that both A and B are rare events in the sense that
their probability measures are both in O(ηn).

Finally we look at what happens outside A∪B: If In < 2−n

and neither A nor B happens, then Ii undergoes the 1.5-th
power n times, at least; and undergoes the 0.9-th power 2n
times, at most. Thus I4n is at most In to the (1.5n · 0.92n)-th
power. The exponent 1.5n · 0.92n is at least 20.28n, so I4n �
(2−n)2

0.28n � 2−20.28n

= 2−20.07·4n

.
We review what we have so far: First the probability that

0 � In � 2−n is at least 1 − I(W) − O(ηn). And then we
continue the process for i = n, . . . , 4n. We lose some Ii in A;
this costs us Q22−n. We lose some Ii in B; this costs us
O(ηn). As n → ∞ the constant Q does not matter; we lose
2O(ηn). What are left are some Ii such that I4n � 2−20.07·4n

.

Therefore, we have just proven that P

{
I4n � 2−20.07·4n

}
�

1 − I(W) − 3O(ηn). Now we choose μ� > 0 and β� > 0
such that P

{
I4n � 2−24β�n

}
� 1− I(W)−O(2−4n/μ�

). This
finishes the small-Ii part of 2).

For the close-to-1 part of 2), [20] (i.e., Lemma 5) has that
P

{
1−In � 2−2β�n

}
� I(W)−O(2−n/μ�

) for some constants

β�, μ�. One can also prove it barehanded by applying the same
trick we did for the small-Ii part of 2) to the Bhattacharyya
parameters. This is the last piece of the proof. Now 2) is
finished. The proof of Lemma 6 is complete.

D. Simulation

We write a script to support Theorem 1. The script: 1)
sets I(W) = 0.6; 2) loops for n = 1, . . . , 29; 3) for each
n, evaluates 2−n/4.9 as ε; 4) generates the channel tree by
Rule 4; and 5) traverses the tree to compute the exact E[τ].
The E[τ] are plotted in Figs. 9 and 10.

Notice that, for one, the curve in Fig. 9 does not grow
proportionally to n (recall that τ = n for classical polar codes).
For two, it grows linearly in Fig. 10, which reassures E[τ] =
O(log log N) = O(log n) as Lemma 8 stated.

Starting from n � 10, our scheme prunes 20% of butterfly
devices. After n � 12 it saves 25% of butterfly devices. At
n = 16 it reduces by 33% for the first time. Once n � 25,
one-half are left.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948.

[2] R. G. Gallager, Information Theory and Reliable Communication.
New York, NY, USA: Wiley, 1968.

[3] A. Barg and G. D. Forney, “Random codes: Minimum distances and
error exponents,” IEEE Trans. Inf. Theory, vol. 48, no. 9, pp. 2568–2573,
Sep. 2002.

[4] V. Strassen, “Asymptotische abschätzungen in Shannons informa-
tionstheorie,” in Trans. 3rd Prague Conf. Inf. Theory. Prague,
Czechia: Publishing House of the Czechoslovak Academy of Sciences,
1962, pp. 689–723. [Online]. Available: https://www.math.cornell.
edu/~pmlut/strassen.pdf

[5] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5,
pp. 2307–2359, May 2010.

[6] Y. Altug and A. B. Wagner, “Moderate deviation analysis of channel
coding: Discrete memoryless case,” in Proc. IEEE Int. Symp. Inf. Theory,
Jun. 2010, pp. 265–269.

[7] Y. Polyanskiy and S. Verdu, “Channel dispersion and moderate devia-
tions limits for memoryless channels,” in Proc. 48th Annu. Allerton Conf.
Commun., Control, Comput. (Allerton), Sep. 2010, pp. 1334–1339.

[8] Y. Altug and A. B. Wagner, “Moderate deviations in channel coding,”
IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4417–4426, Aug. 2014.

[9] M. Hayashi and V. Y. F. Tan, “Erasure and undetected error probabilities
in the moderate deviations regime,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2015, pp. 1821–1825.

[10] E. Arikan, “A packing lemma for polar codes,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2015, pp. 2441–2445.

[11] S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, E. Şaşoğlu, and
R. L. Urbanke, “Reed–Muller codes achieve capacity on erasure chan-
nels,” IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4298–4316, Jul. 2017.

[12] S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially coupled
ensembles universally achieve capacity under belief propagation,” IEEE
Trans. Inf. Theory, vol. 59, no. 12, pp. 7761–7813, Dec. 2013.

[13] H. D. Pfister, I. Sason, and R. Urbanke, “Capacity-achieving ensembles
for the binary erasure channel with bounded complexity,” IEEE Trans.
Inf. Theory, vol. 51, no. 7, pp. 2352–2379, Jul. 2005.

[14] H. D. Pfister and I. Sason, “Accumulate–repeat–accumulate codes:
Capacity-achieving ensembles of systematic codes for the erasure chan-
nel with bounded complexity,” IEEE Trans. Inf. Theory, vol. 53, no. 6,
pp. 2088–2115, Jun. 2007.

[15] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[16] V. Guruswami and P. Xia, “Polar codes: Speed of polarization and
polynomial gap to capacity,” in Proc. IEEE 54th Annu. Symp. Found.
Comput. Sci., Oct. 2013, pp. 310–319.

[17] M. Mondelli, S. H. Hassani, and R. L. Urbanke, “Unified scaling of
polar codes: Error exponent, scaling exponent, moderate deviations, and
error floors,” IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 6698–6712,
Dec. 2016.

[18] S. Fong and V. Tan, “Scaling exponent and moderate deviations asymp-
totics of polar codes for the AWGN channel,” Entropy, vol. 19, no. 7,
p. 364, Jul. 2017. [Online]. Available: http://www.mdpi.com/1099-
4300/19/7/364

[19] J. Błasiok, V. Guruswami, and M. Sudan, “Polar codes with expo-
nentially small error at finite block length,” 2018, arXiv:1810.04298.
[Online]. Available: http://arxiv.org/abs/1810.04298

[20] J. Błasiok, V. Guruswami, and M. Sudan, “Polar codes with
exponentially small error at finite block length,” in Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2018) (Leibniz International Pro-
ceedings in Informatics (LIPIcs)), vol. 116, E. Blais, K. Jansen,
J. D. P. Rolim, and D. Steurer, Eds. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, p. 34. [Online]. Avail-
able: http://drops.dagstuhl.de/opus/volltexte/2018/9438

[21] H.-P. Wang and I. Duursma, “Polar-like codes and asymptotic trade-
off among block length, code rate, and error probability,” 2018,
arXiv:1812.08112. [Online]. Available: http://arxiv.org/abs/1812.08112

[22] H.-P. Wang and I. Duursma, “Polar codes’ simplicity, random
codes’ durability,” 2019, arXiv:1912.08995. [Online]. Available:
http://arxiv.org/abs/1912.08995

[23] E. Arikan and E. Telatar, “On the rate of channel polarization,” in Proc.
IEEE Int. Symp. Inf. Theory, Jun. 2009, pp. 1493–1495.

[24] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-
cancellation decoder for polar codes,” IEEE Commun. Lett., vol. 15,
no. 12, pp. 1378–1380, Dec. 2011.

WANG AND DUURSMA: LOG-LOGARITHMIC TIME PRUNED POLAR CODING 1521

[25] M. El-Khamy, H. Mahdavifar, G. Feygin, J. Lee, and I. Kang, “Relaxed
polar codes,” IEEE Trans. Inf. Theory, vol. 63, no. 4, pp. 1986–2000,
Apr. 2017.

[26] L. Zhang, C. Zhong, L. Ping, Z. Zhang, and X. Wang, “Simplified
successive-cancellation decoding using information set reselection for
polar codes with arbitrary blocklength,” IET Commun., vol. 9, no. 11,
pp. 1380–1387, Jul. 2015.

[27] Y. Zhang, Q. Zhang, X. Pan, Z. Ye, and C. Gong, “A simplified belief
propagation decoder for polar codes,” in Proc. IEEE Int. Wireless Symp.
(IWS), Mar. 2014, pp. 1–4.

[28] M. El-Khamy, H. Mahdavifar, G. Feygin, J. Lee, and I. Kang, “Relaxed
channel polarization for reduced complexity polar coding,” in Proc.
IEEE Wireless Commun. Netw. Conf. (WCNC), Mar. 2015, pp. 207–212.

[29] D. Wu, A. Liu, Q. Zhang, and Y. Zhang, “Concatenated polar codes
based on selective polarization,” in Proc. 12th Int. Comput. Conf.
Wavelet Act. Media Technol. Inf. Process. (ICCWAMTIP), Dec. 2015,
pp. 436–442.

[30] A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Flexible length
polar codes through graph based augmentation,” in Proc. 11th Int. ITG
Conf. Syst. Commun. Coding, Feb. 2017, pp. 1–6.

[31] X. Wu, L. Yang, and J. Yuan, “Information coupled polar codes,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2018, pp. 861–865.

[32] X. Wu, L. Yang, Y. Xie, and J. Yuan, “Partially information coupled
polar codes,” IEEE Access, vol. 6, pp. 63689–63702, 2018.

[33] M. Mondelli, S. A. Hashemi, J. Cioffi, and A. Goldsmith, “Sublin-
ear latency for simplified successive cancellation decoding of polar
codes,” IEEE Trans. Wireless Commun., early access, Sep. 16, 2020,
doi: 10.1109/TWC.2020.3022922.

[34] E. Sasoglu, E. Telatar, and E. Arikan, “Polarization for arbitrary discrete
memoryless channels,” in Proc. IEEE Inf. Theory Workshop, Oct. 2009,
pp. 144–148.

[35] R. Mori and T. Tanaka, “Source and channel polarization over finite
fields and Reed–Solomon matrices,” IEEE Trans. Inf. Theory, vol. 60,
no. 5, pp. 2720–2736, May 2014.

[36] R. G. Gallager, Stochastic Processes: Theory for Applications.
Cambridge, U.K.: Cambridge Univ. Press, 2013.

[37] R. Durrett, Probability: Theory Examples, 4th ed. New York, NY, USA:
Cambridge Univ. Press, 2010. [Online]. Available: https://services.math.
duke.edu/~rtd/PTE/PTE4_1.pdf

[38] S. B. Korada, A. Montanari, E. Telatar, and R. Urbanke, “An empirical
scaling law for polar codes,” in Proc. IEEE Int. Symp. Inf. Theory,
Jun. 2010, pp. 884–888.

[39] S. H. Hassani, K. Alishahi, and R. L. Urbanke, “Finite-length scaling for
polar codes,” IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5875–5898,
Oct. 2014.

[40] J. Błasiok, V. Guruswami, P. Nakkiran, A. Rudra, and M. Sudan, “Gen-
eral strong polarization,” 2018, arXiv:1802.02718. [Online]. Available:
http://arxiv.org/abs/1802.02718

[41] J. Błasiok, V. Guruswami, P. Nakkiran, A. Rudra, and M. Sudan,
“General strong polarization,” in Proc. 50th Annu. ACM SIGACT Symp.
Theory Comput. New York, NY, USA: Association for Computing
Machinery, 2018, pp. 485–492, doi: 10.1145/3188745.3188816.

[42] M. Feder and N. Merhav, “Relations between entropy and error proba-
bility,” IEEE Trans. Inf. Theory, vol. 40, no. 1, pp. 259–266, Jan. 1994.

[43] J. Honda and H. Yamamoto, “Polar coding without alphabet extension
for asymmetric models,” IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 7829–7838, Dec. 2013.

[44] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequali-
ties. Oxford, U.K.: Oxford Univ. Press, 2013. [Online]. Available:
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001

Hsin-Po Wang received the bachelor’s degree in mathematics from National
Taiwan University in 2015. He is currently pursuing the Ph.D. degree with
the Department of Mathematics, University of Illinois at Urbana–Champaign.

Iwan M. Duursma received the Ph.D. degree in mathematics from the
University of Eindhoven in 1993. After positions with CNRS IML Luminy,
University of Puerto Rico, Bell-Labs, AT&T Research, and University of
Limoges, he is currently a Professor with the University of Illinois at
Urbana–Champaign.

http://dx.doi.org/10.1109/TWC.2020.3022922
http://dx.doi.org/10.1145/3188745.3188816

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

