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Dispersion Bound for the Wyner-Ahlswede-Körner
Network via a Semigroup Method on Types

Jingbo Liu , Member, IEEE

Abstract— We revisit the Wyner-Ahlswede-Körner network,
focusing especially on the converse part of the dispersion analysis,
which is known to be challenging. Using the functional-entropic
duality and the reverse hypercontractivity of the transposition
semigroup, we lower bound the error probability for each
joint type. Then by averaging the error probability over types,
we lower bound the c-dispersion (which characterizes the second-
order behavior of the weighted sum of the rates of the two com-
pressors when a nonvanishing error probability is small) as the
variance of the gradient of infPU�X�cH�Y�U��I�U; X�� with respect
to QXY, the per-letter side information and source distribution.
In comparison, using standard achievability arguments based on
the method of types, we upper-bound the c-dispersion as the
variance of cıY�U�Y�U� � ıU;X�U; X�, which improves the existing
upper bounds but has a gap to the aforementioned lower bound.
Our converse analysis should be immediately extendable to other
distributed source-type problems, such as distributed source
coding, common randomness generation, and hypothesis testing
with communication constraints. We further present improved
bounds for the general image-size problem via our semigroup
technique.

Index Terms— Shannon theory, concentration of measure,
hypercontractivity, Markov semigroups, functional inequalities,
converse bounds, distributed systems.

I. INTRODUCTION

IN THE Wyner-Ahlswede-Körner (WAK) problem [1], [2],
[49] (Figure 1), a source Y n and a side information Xn are

compressed separately as integers W2 � W2�Y n� and W1 �
W1�Xn�, respectively, and a decoder reconstructs Ŷ n based on
W1 and W2. Consider the discrete memoryless setting where
the per-letter source distribution is QXY , for any c � 0, define

φc�QXY � :� inf
PU�X

�I�U ;X� � cH�Y �U�� (1)

� inf
PU�X

�I�U ;X� 	 cI�U ;Y � � cH�Y ��
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Fig. 1. Source coding with compressed side information.

where �U,X, Y � 
 PU �XQXY , and the cardinality of the
auxiliary can be bounded by �U � � �X � � 2. The following
strong converse result was proved in [1] using the blowing-up
lemma (BUL): if the error probability P�Ŷ n 
 Y n� is below
some � � �0, 1�, then

ln �W1� � c ln �W2� � nφc�QXY � 	O
��

n ln3�2 n
�
. (2)

The first-order term in (2) is tight since it is the precise
single-letter characterization [1], [49]. Note that for any c � 1,
we have φc�QXY � � cH�Y � by the data processing inequal-
ity. Moreover, ln �W1� � c ln �W2� � c ln �W1 � W2� �
cnH�Y � 	O��n�, which follows trivially from a method of
type analysis [10] of the single source compression problem.
Therefore it suffices for us to focus on the case of c � 1.

The study of the second-order rates in information the-
ory, initiated by Strassen [41] and recently popularized by
Hayashi [14], [15] and Polyanskiy-Poor-Verdú [38], [39],
can be viewed as refining the strong converse results. For
example, in (2), the term nφc�QXY � is called the first-order
approximation, whereas the second-order analysis concerns the
asymptotic behavior of the remainder. Common approaches
for the second-order analysis include the information spec-
trum methods (initiated by Polyanskiy-Poor-Verdú [39] and
Hayashi [15]) and the method of types (initiated by Ingber
and Kochman [16]). In most solved cases from the network
information theory (see e.g., the summary in [42]), the second-
order term behaves as

�
nVQ�1���, where V is called the

dispersion which depends on the channel/source distributions,
and Q�1 denotes the inverse function of the Gaussian tail
probability.

While recent research has succeeded in characterizing the
second-order rates for various single-user and selected multi-
user problems (see e.g., [20], [39], [42]), it remained a formi-
dable challenge to precisely characterize second-order term in
(2) for the WAK problem. Indeed, [42, Section 9.2.2, 9.2.3]
listed the second-order rate in WAK as a major open problem,
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since previous converse techniques (e.g. straightforward uses
of method of types, information spectrum methods, or meta-
converses) appear insufficient for cases where the auxiliary
random variable satisfies a Markov chain. In fact, the WAK
problem represents a typical challenge in a class of distributed
source coding problems (or more generally, distributed source-
type problems including common randomness generation [3]
or hypothesis testing [4]) involving side information (a.k.a.
a helper). Recently, Watanabe [46] examined the converse
bound obtained by taking limits in the Gray-Wyner network,
yielding a strong converse for WAK but not appearing to
improve the second-order term. In [44], Tyagi and Watanabe
proposed an approach of dealing with such Markov chain
constraints, by replacing it with a bound on the conditional
mutual information and then taking the limits. While their
approach yields strong converses in interesting applications
such as Wyner-Ziv and wiretap channels, it is not clear whether
such an approach yields sharper second-order estimates in (2).

To our knowledge, the first proof of an O��n� second-
order converse was by a novel semigroup method due to the
author and van Handel and Verdú [30].1 The O��n� rate
is sharp for � � 1�2 since an Ω��n� bound follows by
applying the central limit theorem to the standard random
coding argument. The converse technique in [30] is based on
functional-entropic duality and the reverse hypercontractivity
of semigroups, which is widely applicable to multiuser infor-
mation theory problems. It appears that all previous strong
converses via BUL or the image-size characterization in [1],
[10] can be upgraded to an O��n� second-order converse (see
the further discussions in [22, Chapter 4,5]).

While there have been many applications of (the forward)
hypercontractivity, mostly in the converse proofs (see e.g.,
[17], [26], [31], [32], [50]), the applications of the reverse
hypercontractivity have been very rare; see the discussion [33]
(see however, an application in [37, Section 4]). Besides the
applications in operational problems, some pure mathematical
aspects of hypercontractivity and its reverse also received some
recent attentions in the information theory community [6]–[8],
[18], [24], [25], [34].

The connection between our analysis of the WAK prob-
lem and (reverse) hypercontractivity is two-folded: First,
the entropic quantity (1) has an equivalent functional formu-
lation which is related to hypercontractivity of the conditional
expectation operator QY �X ; see e.g. [5, Theorem 5(b)] and
[6, Theorem 1(e)]. This connection has been well-studied in
the literature. The second connection, which is the novelty of
[30] and the present paper, is the reverse hypercontractivity of
certain Markov semigroup operators that replaces the blowing-
up lemma machinery. To our knowledge, [30] is among the
rare applications of the reverse hypercontractivity of Markov
semigroups beyond the obviously related settings such as
Markov chain mixing times.

1Almost concurrently, Zhou-Tan-Yu-Motani [51] and Oohama [35] amended
the technique in an earlier version of Oohama [35] and announced an O��n�
converse for WAK. Their proof is based on a novel single-letterization method
for the information spectrum together with sophisticated method of types
analysis. See also [36].

Let us also remark that the reverse hypercontractivity is
known to imply sub-gaussian concentration (i.e. BUL) in
rather general settings. Here, the Markov semigroup corre-
sponds to a Dirichlet form which is the inner product of a
certain notion of gradients. indeed, reverse hypercontractivity
of such a reversible semigroup is equivalent to the modified
log-Sobolev inequality [33], which in turn implies concen-
tration by a general convexity argument [45, Lemma 3.16].
Therefore, the improvement on the converse bounds by the
reverse hypercontractivity over BUL may be attributed to
the fact that we have identified the right (stronger) tool to
attack the given problem. More recently, a similar method
based on the reverse hypercontractivity of semigroups has suc-
cessfully improved the (first-order) outer-bound for the relay
channel [27], [28].

The idea of [30] is roughly described as follows: first we
note that an entropic quantity related to φc has an equivalent
functional formulation (52) which contains quantities such
as

�
ln fdP . If one directly takes f to be the indicator

function of a decoding set, then generally
�
ln fdP � 	�

which is useless. However, using a machinery called reverse
hypercontractivity, we design some “dominating operator” Λ
such that

�
ln�Λf�dP � ln

�
fdP , and

�
fdP is the probability

of correct decoding which we desired. For all source and
channel networks where a strong converse was proved in [10],

we can now bound the second-order term as C
�
n ln 1

1�� .
One deficiency of the machinery of [30] is the inability to

estimate the sign of the second-order term correctly when � �
1�2: for example, in the WAK problem, one would expect (e.g.
by analyzing achievability schemes) that ln �W1��c ln �W2�	
nφc�QXY � is positive when � � 1�2 and negative when � �
1�2, but the method of [30] always lower bound it by 	C�

n,
for all � � �0, 1�, where C � 0 is some constant depending on
QXY , c and �. In other words, the sign is wrong for � � 1�2.
In this paper, we integrate the semigroup technique with the
method of types, which is capable of showing, among others,
that for sufficiently small (but independent of n) �, we have
ln �W1� � c ln �W2� 	 nφc�QXY � � C

�
n where C � 0 is

some constant depending on QXY , c and �. More precisely,
let us define the c-dispersion as

Vc :� lim
��0

lim sup
n��

�lnMc�n, �� 	 nφc�QXY ��2
2n ln 1

�

(3)

where Mc�n, �� denotes the infimum of �W1���W2�c over codes
for which P�En� � �. Then, under a mild differentiability
assumption on φc���, we show that

Vc � Var
�
∇φc�QXY

�X,Y �
�

(4)

� Var�E�cıY �U �Y �U� � ıU ;X�U ;X��XY �� (5)

where �U,X, Y � 
 QUXY :� QU �XQXY , QU �X is any
infimizer for (1), and we used the notations

ıY �U �y�u� :� 1
QY �U �y�u�

, ��y, u�; (6)

ıU ;X�u;x� :� QX�U �x�u�
QX�x� , ��u, x�. (7)
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We can take �U � � �X � � 2 [1]. We remark that the second-

order bound C
�
n ln 1

1�� (for some constant C � 0 depending
on c and QXY ) in [30], as well as the strong converse exponent
in [36], does not give a nontrivial bound on the dispersion,
whereas the present bound (4) is analogous to the dispersion
formula in most other previously solved problems from the
network information theory. Let us also remark, however, that
(4) only captures the asymptotics as � � 0; we do not show
a second-order converse bound of the form

�
nVQ�1��� for

any �.
Instead of the semigroup associated with the Glauber

dynamics (a.k.a. Gibbs sampler) used in [30], the present paper
uses the transposition semigroup and its reverse hypercon-
tractivity estimate in [13], which is a tailor-made for type-
class analysis. We remark that the reverse hypercontractivity
estimate for the transposition semigroup is order-wise the same
as the Glauber dynamics; see [13].

Apart from reverse hypercontractivity and functional-
entropic duality, another interesting ingredient in our proof
is an argument in analyzing certain information quantity for
the equiprobable distribution on a type class (Lemma 2).
We need this because, unlike Glauber dynamics, the standard
tensorization argument for the reverse hypercontractivity (see
e.g., [33]) does not apply to the transposition semigroup,
and an interesting induction argument is used instead. More
precisely, we perform an algebraic expansion employing the
symmetry of the type class, but which is different from the
standard tensorization argument for the i.i.d. distribution. This
gives rise to a certain martingale, whose variance equals the
gap to the same quantity evaluated for the i.i.d. distribution.

On the achievability side, [48] previously showed that Vc ���
Var�cıY �U �Y �U�� ��

Var�ıU ;X�U ;X��
�2

. In this paper
we use the method of types to show an improved bound

Vc � Var
�
cıY �U �Y �U� � ıU ;X�U ;X�� . (8)

The achievability proof uses standard techniques. We remark
that generally, (5) can indeed be smaller than the right side of
(8), due to the reduction of the variance by conditioning on
the sources. In contrast, note that in the single source lossy
compression problem, conditioning on the source does not
decrease the variance (see Proposition 1.1 ahead).

The paper is organized as follows: the main results about
the converse and achievability bounds on the dispersion are
presented in Section II. We review and compare with the
classical (pre)image-size approach [1], [10] in Section III,
and present our new estimates via the semigroup method
on types. Some basic properties of the related information-
theoretic quantities are discussed in Section IV, which serves
as a preparation for the converse and achievability proofs of
the main results in Section V and VI. The second one is the
new one which we intended to refer to in the title.

Notation. Given an alphabet Y , define H��Y� as the set
of all nonnegative functions on Y , and H�0,1	�Y� the set of
functions from Y to �0, 1�. For f � H��Y�, define P �f� :�
EP �f �, and define PY �X�f� :� EPY �X��

�f�Y �� as a function
on H��X �. Given an n-type PXY , let Tn�PX� be the set of all
xn with type PX , and Txn�PY �X� the set of all yn such that

�xn, yn� is type PXY . The total variation distance is denoted
by �P 	Q�. We use PX � PY �X � PY to define an output
distribution PX for a given input and a random transformation.
Define the Gaussian tail probability Q�t� :� ��

t
1

2π
e�

x2
2 dx,

for t � R. The bases for all exponentials and entropic quantities
are natural. Unless otherwise stated, the constants used in
bounding (e.g. E,F ,G,λ) may depend on c and QXY . Given
a probability measure Q on X , and a functional φ on the
probability simplex ΔX , the gradient ∇ φ�Q can be regarded
as a function on X , and �∇ φ�Q , Q� :� �

∇ φ�Q dQ.

II. MAIN RESULTS

We will analyze and present our dispersion bounds using
the weighted sum-rate formulation; see e.g. [42, Section 6.4].
That is, for any c � 0 and D � R, we estimate the error
probability of the best code for which ln �W1� � c ln �W2� �
nφc�QXY � � D

�
n. Furthermore we only need to focus on

the c � 1 case, since otherwise, as argued at the beginning of
the introduction, the problem degenerates into single-source
coding.

A. Converse

All converse analysis in this paper assumes finite alphabets
X and Y , and that φc��� (defined in (1)) has bounded second
derivatives in a neighborhood of QXY . The main ingredient
of the converse proof is the following bound in the case where
the source sequences are equiprobably distributed on a given
type class.

Lemma 1: Given QXY and c � 1, there exists λ � �0, 1�
and E � 0 such that the following holds: For any n � 1
and n-type PXY such that �PXY 	QXY � � λ, let �Xn, Y n�
be equiprobable on the type class Tn�PXY �. If there exists
a WAK coding scheme for �Xn, Y n� with error probability
� � �0, 1�, then

ln �W1� � c ln �W2�

� nφc�PXY � 	 2c

�
n

minx PX�x� ln
1

1 	 �

	E lnn� c ln�1 	 ��. (9)

By averaging the error probability bounded in Lemma 1
over the types, we obtain the following converse for stationary
memoryless sources:

Theorem 1: Fix c � 1, D � R, and QXY . Let �Xn, Y n� 

Q�n

XY . If a WAK coding scheme satisfies

ln �W1� � c ln �W2� � nφc�QXY � �D
�
n (10)

for all n then we lower bound the error probability

lim inf
n�� P�En� � sup

δ�
0,1�
δQ

	
D�c

�
8

minx QX �x� ln 1
1�δ�

Var
∇φc�QXY

X,Y ��



. (11)

In particular, the c-dispersion (see (3)) satisfies

Vc � Var�∇φc�QXY
�X,Y �� (12)

� Var�E�cıY �U �Y �U� � ıU ;X�U ;X��XY ��. (13)

Proofs of Lemma 1 and (11) are given in Section V.
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B. Achievability

As alluded, we also use the method of types (in lieu of the
information spectrum approach of [48]) to obtain the following
improved upper bound on c-dispersion.

Theorem 2: Fix QXY on finite alphabets, c � 1, and D � R.
Then there exists a WAK scheme scheme such that

ln �W1� � c ln �W2� � nφc�QXY � �D
�
n, �n; (14)

lim sup
n��

P�En� �Q

�� D�
Var

�
cıY �U �Y �U��ıU ;X�U ;X��


�.
(15)

In particular, the c-dispersion (see (3)) satisfies

Vc � Var
�
cıY �U �Y �U� � ıU ;X�U ;X�� . (16)

Proof of Theorem 2 is given in Section VI. We remark that
generally there is a gap between the bounds on c-dispersion
in Theorem 1 and Theorem 2.

III. IMAGE-SIZE AND PREIMAGE-SIZE BOUNDS

In this section, we review the “preimage-size” method in
the original work of Ahlswede et al. [1] and the related
“image-size” method popularized by the classical book of
Csiszár and Körner [10], and discuss how the techniques
in the present paper will bear on them. These methods,
introduced more than 40 years ago, have remained the only
way towards the strong converse of a number of multiuser
information theory problems in [10] until recently (see e.g.
the discussion in [42]). The present paper does not use the
precise forms of these images, and the current section is not
at all needed for understanding the proofs of the converse
results in Section II-A. Yet, for the interest of readers who are
conversant with the classical literature, we will present here
some new estimates for the (pre)image-size for a type class
using our semigroup technique.

Consider a random transformation QY n�Xn between finite
sets Xn and Yn, where n � 1. Let � � �0, 1�, and B � Yn.
In [1] the authors introduced

Ψ��B� :� �xn � Xn : QY n�Xn�B�xn� � 1 	 ��. (17)

For ease of comparison with the image-size later, we shall call
Ψ��B� the �1 	 ��-preimage of B. Now let us fix a QXnY n

compatible with QY n�Xn , and an arbitrary reference measure
νY n (which is set as the counting measure in the application to
the WAK problem). For any a � R and � � �0, 1�, [1] defined

Ŝn�c, �� :� 1
n

ln min νY n�B� (18)

where the minimum is over B such that

1
n

lnQXn�Ψ��B� � Cn� � a (19)

and Cn denotes the strongly typical set, which is the set of xn

such that the deviation of the empirical distribution from QX

is in ω� 1

n
��o�1� (see [1, Definition 4]). The main technical

result of [1] is that, in the i.i.d. case where QXnY n � Q�n
XY

and νY n � ν�n
Y , we have

lim
n��

Ŝn�c, �� � min�	D�PY �U �νY �PU �� (20)

where the minimum is over PUXY such that PXY � QXY

and 	I�U ;X� � a. The constraint of PX � QX , which
is important to the information-theoretic applications, comes
from the restriction to typical sets. If the intersection with the
strongly typical set was removed in (19), then a similar result
would hold in (20), with PXY � QXY relaxed to PY �X �
QY �X in the constraints of the minimization over PUXY [1,
Lemma 1A].

Since a closed convex set can be expressed as the intersec-
tion of closed half spaces, the above results from [1] can be
equivalently stated in terms of extremal sum rates:

lim
n�� sup

B�Yn

�
1
n

lnQXn�Ψ��B� � Cn� 	 c

n
ln νY n�B�

�
� sup

PU�X

�	I�U ;X� � cD�PY �U�νY �PU �� (21)

and

lim
n�� sup

B�Yn

�
1
n

lnQXn�Ψ��B�� 	 c

n
ln νY n�B�

�
� sup

PXY : PY �X�QY �X

�	D�PX�QX� � cD�PY �νY �� (22)

for all c � 0 (equivalently, for all c � 1, since this range
is enough to characterize the convex set, which can be seen
by the strong data processing inequality). Note that there is no
need of conditioning on U on the right side of (22), since U in
[1, Lemma 1A] only serves to convexify the region, whereas
the sum-rate characterization corresponds to intersection of
half-spaces which is automatically convex.

Let us now turn to the related concept of image-size.
Consider QY n�Xn and νY n as above. The following is taken
from [10, Definition 6.2]:

Definition 1: For any η � �0, 1�, an η-image of A � Xn

is any set B � Yn for which QY n�Xn�B�xn� � η, for all
xn � A. Define the η-image size of A

g�A, νY n , η� :� min
B : η-image of A

νY n�B�. (23)

In many applications such as the WAK problem, we are
interested in maximizing the measure of a set while minimiz-
ing the corresponding image size. Since the preimage of the
image of a set always contains the original set, it is easy to see
that the image-size problem is equivalent to the preimage-size
problem in such settings.

Let us remark that the BUL technique of [1] shows that the
gap between the two supremums on the two sides of (21),
i.e., the second-order term is O��n ln3�2 n�, whereas in [29]
we used the semigroup technique to show that2 the second-
order term is O��n� which is order-wise optimal. Recall
that the method of [1] proceeds by first defining a measure
PXn which is the conditioning of QXn on the r-blowup of a
certain preimage, and then connect the probability of sets and

2More precisely, we did not explicitly state an image-size bound in [29], but
such a result is clearly contained in our proof of the WAK converse therein.
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relative entropy terms via the data processing inequality. It is
clear from their proof that, if an O��n� second-order bound
were possible via the BUL technique, then r must satisfy the
following conditions:

1) For any A � Xn such that QXn�A� is bounded away
from 0 and 1, the r-blowup of A, denoted as Ar, satisfies
QXn�Ar� � 1 	O�n�1�2�.

2) For such A we also have the cardinality bound �Ar� �
eO

n��A�.

In the stationary memoryless setting it is easy to see that there
is no r satisfying the two conditions simultaneously, and a
careful analysis (see e.g., [29]) reveals that O��n ln3�2 n�
is the best second-order bound via BUL. In fact, the sub-
optimality is not only because of BUL, but also inherent in the
data-processing argument: an analysis in [29] shows that it is
impossible to design a new set transformation A �� Ã so that
the data-processing argument gives a o��n lnn� second-order
bound.

We now turn to (pre)image-size analysis for type classes.
Below we shall define Ψ���� and g��� similarly as (17) and
(23) but with the i.i.d. distribution QXnY n replaced by PXnY n

which is the equiprobable distribution on some n-type PXY .
The first-order terms are the same as (21) and (22). The BUL
approach does not yield an O��n� second-order term, since
we can verify that when the i.i.d. distribution QXn is replaced
by the equiprobable distribution PXn on Tn�PX�, it is still
impossible to choose r to fulfill conditions 1) and 2) above. In
contrast, we can indeed prove an O��n� second-order bound
using our semigroup techniques:

Theorem 3: Given QXY and c � �0,��, there exists λ �
�0, 1� and E � 0 such that the following holds: Let n � 1 and
PXY be an n-type such that �PXY 	QXY � � λ. Let PXnY n be
the equiprobable distribution on Tn�PXY �. For any � � �0, 1�,
and B � Yn, we have

lnPXn �Ψ��B��
� c lnPY n�B� � n sup

PU�X

�cI�U ;Y � 	 I�U ;X��

�E lnn� c

1 	 �
� 2c

�
n

minx PX�x� ln
1

1 	 �
. (24)

Equivalently, for any A � Xn,

lnPXn�A�
� c ln g�A, PY n , 1 	 �� � n sup

PU�X

�cI�U ;Y � 	 I�U ;X��

�E lnn� c

1 	 �
� 2c

�
n

minx PX�x� ln
1

1 	 �
. (25)

Remark 1: The first order terms in (24) and (25) are
optimal, as in the i.i.d. case (21) and (22), since otherwise
we would obtain a converse result that contradicts the achiev-
ability. The first-order tightness can also be argued directly as
in the proof of [1, Theorem 1,2]: Let PUXY � PU �XPXY

where PU �X is a maximizer for (24). Assume without loss of
generality that U � �1, . . . , �U ��. For each u define the integer
nu :� nPU �u�; if PU �u� is not an integer we can perturb
PU �X by O�1�n� so that it is, and the proof will still work by a

continuity argument. Let �αn� be a sequence in ω� 1

n
��o�1�.

Define x
u� :� �xn1�����nu�1�1, . . . , xn1�����nu� � Xnu , and
define y
u� similarly. Put B � �yn : � �Py�u� 	 PY �U�u� �
αn,�u�. We have the following estimates from standard large
deviation analysis (e.g. writing the probabilities in terms
of combinatorial numbers and approximating them via the
Stirling formula):

PY n�B� � e�nI
U ;Y ��o
n� (26)

and

PXn�xn : x
u� � TnPU 
u��PX�U�u�,�u� � e�nI
U ;X��o
n�.
(27)

In the above we assumed that PX�U�u is an nPU �u�-
type (if not, we can still perturb PU �X and PX by
O�1�n� to ensure it is, and continue the proof with a
continuity argument). For large n we have �xn : x
u� �
TnPU 
u��PX�U�u�,�u� � Ψ��B�, so Ψ��B� is lower bounded
by the right e�nI
U ;X��o
n�. This shows the first-order tight-
ness.

Some steps of the proof overlap with that of Lemma 1,
which we shall avoid repeating.

Proof of Theorem 3: Using the same arguments from the
line (46) to (49) ahead, we see that, for any c � 0 (note that
these steps do not require c � 1), B � Yn, and t � 0,�

P
c�1� 1

t �
Y n�Xn �B�xn�dPXn�xn�

� ed expe

�
nt

minx PX�x�
�
P c

Y n�B� (28)

where

d :� sup
SXn

�cD�SY n�PY n� 	D�SXn�PXn�� (29)

in which the supremum is over SXn supported on Tn�PX�,
and SY n is induced by SXn and the random transformation
PY n�Xn . Using Markov’s inequality, for any � � �0, 1�, we can
lower bound the left side of (28) by PXn�Ψ��B���1	��c
1� 1

t �.
Thus we have obtained

PXn �Ψ��B��
� P c

Y n�B� expe

�
d�c inf

t�0

�
nt

minx PX�x� �
�
1� 1

t

�
ln

1
1	�

��
(30)

� P c
Y n�B� expe

	
d�c ln

1
1 	 �

�2c

�
n

minx PX�x� ln
1

1	�



.

(31)

In Lemma 2 ahead we show that there exists E depending
only on QXY and c such that

d � c ln �Tn�PY �� 	 nφc�PXY � �E lnn (32)

� nH�PY � 	 nφc�PXY � �E lnn (33)

� sup
PU�X

�cI�U ;Y � 	 I�U ;X�� �E lnn (34)
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Therefore we have established (24). Then (25) is obtained by
setting B to be the �1 	 ��-image of A, and noting that A �
Ψ��B�.

Once a preimage size bound such as (24) is obtained, one
can connect it to the error probability in the WAK problem
with a reverse Markov inequality argument, as did in [1] as
well as our previous work [29]; see Remark 3 ahead. There
is an extra parameter created in the reverse Markov inequality
step, corresponding to the parameter � in Ψ����, which needs to
be chosen carefully when one cares about the prefactor in the
second-order rate. As demonstrated in the proof of Lemma 1
in the present paper, however, these extra steps of applying
the reverse Markov inequality and introducing the preimage
are not necessary, and the whole proof can proceed more
seamlessly using the functional inequalities.

In some other applications, however, it still seems conve-
nient to use the notation of image-size. For example, the set A
in Definition 1 may be naturally associated with a codebook;
see the proof of the strong converse of the asymmetric broad-
cast channel with a common message in [10]. For stationary
memoryless settings, it is shown in [22, Chapter 5] that the
semigroup and functional inequality techniques still apply
in those more involved image-size applications, yielding the
optimal

�
n rate, and simplifying the proofs (e.g. avoiding the

“maximal code lemma” previously used in [10, Chapter 16]).
It should be possible to extend the approach in [22, Chapter 5]
using semigroup on types to further estimate the second-order
prefactors in the corresponding coding theorems.

IV. BASIC PROPERTIES OF THE

SINGLE-LETTER EXPRESSION

To better interpret our results and prepare for the proofs, it
is instructive to understand some of the basic properties of the
single-letter rate expressions. To fix ideas, let us first recall
the situation in the simpler and well-studied problem of lossy
compression of a single source (see e.g. [21]). In that problem,
we are given a single source with per-letter distribution QX ,
and a per-letter distortion d: U�X � R on the reconstruction
alphabet and the source alphabet.

Proposition 1: If PU �X is an optimizer for ϕλ�QX� :�
infPU�X

�I�U ;X� � λE�d�U ;X���, then the stationarity con-
dition implies that the ıU ;X�u;x� � λd�u, x� is

1) independent of u, PU �XQX-a.s., and in
particular, Var�E�ıU ;X�U ;X� � λd�U,X��X�� �
Var�ıU ;X�U ;X� � λd�U,X��, where �U,X� 

PU �XQX ;

2) equal to ∇ϕλ�QX �x�, regardless of the choice of the
optimal PU �X . It is known (e.g. [19]) that the dispersion
equals Var �∇ϕλ�QX �X��.

Now in WAK, our lower and upper bounds on the dispersion
in Theorem 1 and Theorem 2, although different, are both
analogous to the solution in single-user lossy source coding
in certain senses. More precisely, we observe Proposition 2 and
Proposition 3 below, which are parallel to the two properties
listed above for single-user lossy compression.

Proposition 2: For any QXY on finite alphabets and
c � 1, let PU �X be optimal in the definition of φc��� in

(1) and suppose that U is finite3. Then E�cıY �U �Y �U� �
ıU ;X�U ;X��UX� is independent of U almost surely.

Proof: Let us introduce the notations

f�P �
U �X� � cH�Y ��U �� � I�U �;X ��, (35)

g�u, x, y� � cıY �U �y�u� � ıU ;X�u;x�, (36)

where P �
U �X is any random transformation from X to

U , and �U �, X �, Y �� 
 P �
U �XQXY . The first order term

in the Taylor expansion of f�P �
U �X� 	 f�PU �X� equals�

u,x,y g�u, x, y��P �
U �X 	PU �X��u�x�QXY �x, y�, which must

vanish by the optimality of PU �X . In particular, fix any x
such that QX�x� 
 0, and consider P �

U �X such that �P �
U �X 	

PU �X��u�x�� � 0 for all u, unless x� � x. By the first order
condition for such P �

U �X , we have�
u

E�g�U,X, Y ��U � u,X � x��P �
U �X 	 PU �X��u�x� � 0.

(37)

This shows that for that particular x,
�E�g�U,X, Y ��U � u,X � x��u : PU�X
u�x��0, viewed as
a vector of dimension ��u : PU �X�u�x� � 0��, is orthogonal
to the subspace of vectors whose coordinates sum to zero,
so itself must be a vector with constant coordinates. This
means that E�g�U,X, Y ��U � u,X � x� is independent of
u, PU �XQX -almost surely.

We remark that cıY �U �y�u� � ıU ;X�u;x� is generally not
independent of u. Below is an explicit example.

Binary symmetric sources: Suppose that X and Y are both
equiprobable on �	1, 1� and E�XY � � ρ. Consider any c �
�ρ�2,��. Remark that c � ρ�2 is the degenerate case since ρ2

is the strong data processing constant. Let U be equiprobable
on �	1, 1� and such that U 	X	Y and E�UX� � η, where
η is defined as the solution to

c �
ln 1�η

1�η

ρ ln 1�ηρ
1�ηρ

. (38)

Note that the η satisfying (38) maximizes cH�Y �U��I�U ;X�
for the given c and ρ. Using Mrs. Gerbers lemma (see e.g. [11])
one can show that such PU �X is an infimizer for (1). We can
compute that

cıY �U �1�1� � ıU ;X�1; 1� � c ln
2

1 � ρη
� ln�1 � η�;

(39)

cıY �U �1� 	 1� � ıU ;X�	1; 1� � c ln
2

1 	 ρη
� ln�1 	 η�.

(40)

Proposition 3: For any QXY on finite alphabets and c � 1,
suppose that φc��� is differentiable at QXY . Then for any
optimal PU �X ,

E�cıY �U �Y �U� � ıU ;X�U ;X��X,Y � � ∇ φc�Q �X,Y �. (41)

In particular, the left side does not depend on the choice of
the optimal PU �X .

3This is merely a simplifying assumption and is without loss of generality.
Indeed, Carathéodory’s theorem implies that one can take �U � � �X � � 2 [1].
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Proof: Recall that φc�QXY � is defined as the infimum
of cH�Y �U� � I�U ;X� over PU �X . As a general fact, the
derivative of an infimum equals the partial derivative of the
objective function evaluated at an optimizer, under suitable
differentiability assumption (see e.g. the calculation in [23,
Lemma 13]. Now for fixed PU �X , the partial derivative of
cH�Y �U�� I�U ;X� with respect to QXY equals the left side
of (41).

V. PROOF OF THE CONVERSE

A. Overview

1) Fixed Composition Argument: Imagine that a genie tells
both encoders and the decoder the joint type of the source, and
they all design coding strategies for each type. A converse for
this oracle setup gives a converse to the original problem in
the stationary memoryless setting. For the purpose of second-
order rate analysis, the intuition behind many previously
solved problems (including the challenging ones such as the
Gray-Wyner network [47]) may be described as follows. One
roughly sees a dichotomy: for some “good types”, the error
probability essentially equals 0, and for the rest “bad types”,
the error probability is essentially 1. Thus the total error
probability is tightly approximated by the probability of those
“bad types”.

2) Challenge of Fixed Composition Argument for WAK:
In network information theory problems where the auxil-
iary in the single-letter expression satisfies a Markov chain,
a straightforward fixed composition argument as described
above does not seem to give even a strong converse (unsur-
prisingly, since otherwise the authors of [1], [10] who are
familiar with the method of types would not have needed
the blowing-up lemma for strong converses in these works).
Moreover, when the blowing-up lemma is applied to a type
class, we can verify that the second-order term is still
O��n ln3�2 n�, no better than the i.i.d. case. In fact, the above
0-1 dichotomy may not be true when the auxiliary satisfies a
Markov chain.

3) New Machineries: In the present paper, we perform
fixed composition analysis in the nonvanishing error regime,
and the second-order rate is improved to O��n�. In lieu
of the blowing-up lemma, we use the dual representation
of φc��� as well as a semigroup technique – both ingredi-
ents integrate naturally and are responsible for the improved
rates. We remark that the O��n� rate is the same order
as the i.i.d. case solved in [30]; If it were o��n� instead,
we could have bounded the second-order term prefactor as�

Var
�
∇φc�QXY

�X,Y �
�
Q�1��� for each � � �0, 1�. In

reality, the bound on the second-order prefactor is not so
clean, and involves nuisance constants depending on QX (see
(11)). However, the nuisance constants disappear in computing
dispersion where we take � � 0. A technical part of the
converse is to show that there exists a certain “dominating
operator” Λ satisfying desired norm estimates. This is done
in Section VII, where we use the estimate of the modified
log-Sobolev constant in [13].

B. Proof of Lemma 1

Suppose that f : Xn � W1, g : Yn � W2 are the encoders,
and V : W1 �W2 �� Yn denotes the decoder. For each w �
W1, define the “correctly decodable set”:

Bw :� �yn : V �w, g�yn�� � yn�. (42)

Let PXnY n be the equiprobable distribution on Tn�PXY �, and
let PY n�Xn be the induced random transformation. By the
assumption,�

PY n�Xn�Bf
xn��xn�dPXn�xn� � 1 	 �. (43)

Next, we lower bound the error probability using the functional
inequality and reverse hypercontractivity approach. We intro-
duce a “dominating” linear operator Λn,t : H��Y� � H��Y�,
apply it to the indicator function of a decodable set, and
plug the resulting function into the functional inequality. To
streamline the presentation, we postpone the definition of Λn,t

to (171). The key properties of Λn,t, the proofs of which is
deferred to Section VII, are the following: for f � H�0,1	�Yn�
and t � 1��n,

� Lower bound (173) PY n�Xn�ln Λn,tf� �
O��n� lnPY n�Xn�f�,

� Upper bound (178) PY n�Λn,tf� �
exp�O��n��PY n�f�.

Now, for any t � 0,

�1 	 ��c�1� 1
t �

�
�
P

c�1� 1
t �

Y n�Xn �Bf
xn��xn�dPXn�xn� (44)

�
�

w�W1

�
xn : f
xn��w

P
c�1� 1

t �
Y n�Xn �Bw�xn�dPXn�xn� (45)

� �W1�
�
P

c�1� 1
t �

Y n�Xn �Bw� �xn�dPXn�xn� (46)

� �W1�
�

expe

�
cPY n�Xn�xn�ln Λn,t1Bw� �

�
dPXn (47)

� ed�W1�P c
Y n�Λn,t1Bw� � (48)

� ed�W1� expe

�
cnt

minx PX�x�
�
P c

Y n�Bw�� (49)

� ed�W1� expe

�
cnt

minx PX�x�
�
�W2�c � �Tn�PY ���c. (50)

Here,

� (44) used Jensen’s inequality.
� For (46), we can clearly choose some w� � W1 such that

this line holds.
� (47) used the precise form of the lower bound stated

above. This is the reverse hypercontractivity step.
� In (48), we defined4

d :� sup
SXn

�cD�SY n�PY n� 	D�SXn�PXn�� (51)

where the supremum is over SXn supported on Tn�PX�,
and SXn � PY n�Xn � SY n . (48) follows by taking

4Although not used in the proof, we remark that the largest c � 1 for which
d � 0 equals the reciprocal of the strong data processing constant.
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f � Λn,t1Bw� in the following basic functional-entropic
duality result (see e.g. [24, Theorem 1]):

d � sup
f�H�
Yn�

�
lnPXn�ecPY n�Xn 
ln f�� 	 c lnPY n�f�

�
.

(52)

For completeness, we recall the proof of the � part in
(52): given any f � H��Yn�, define SXn by dSXn

dPXn
�

e
cPY n�Xn �ln f�

PXn

�
e

cPY n�Xn �ln f�
� . We have

lnPXn�ecPY n�Xn 
ln f�� 	 c lnPY n�f�
� SXn�cPY n�Xn�ln f�� 	D�SXn�PXn� 	 c lnPY n�f�

(53)

� cSY n�ln f� 	D�SXn�PXn� 	 c lnPY n�f� (54)

� cD�SY n�PY n� 	D�SXn�PXn� (55)

� d (56)

where (55) follows from the Gibbs’ variation formula.
� (49) used the precise form of the upper bound stated

above.
� (50) used �Bw�� � �W2�.

We thus obtain

ln �W1� � c ln �W2�
� 	d� c ln �Tn�PY ��
	 inf

t�0

�
cnt

minx PX�x� � c

�
1 � 1

t

�
ln

1
1 	 �

�
(57)

� 	d� c ln �Tn�PY �� � c ln�1 	 ��

	 2c

�
n

minx PX�x� ln
1

1 	 �
. (58)

Finally, Lemma 2 in Section V-D ahead shows that 	d �
c ln �Tn�PY �� � nφc�PXY � 	 E lnn, and the proof of
Lemma 1 is completed.

Remark 2: From the proof we see that the result continues
to hold if the Y-encoder is allowed to access the message of
the X -encoder: g : Y �W1 � W2.

Remark 3: We used Jensen inequality to get (46) from (43).
In contrast, [1] used a reverse Markov inequality, essentially
deducing from (43) that

PXn�xn : PY n�Xn�xn�Bw�� � 1 	 ��� � �� 	 �

���W1� (59)

for any �� � ��, 1�, which gives rise to a new parameter �� to
be optimized. It is possible to follow (59) with the functional
approach as we did in [30]. However, proceeding with (46) is
more natural and better manifests the simplicity and flexibility
of the functional approach [30].

C. Proof Theorem 1

Let PXY be an arbitrary n-type such that �PXY 	QXY � � λ
as in Lemma 1. Then if the error probability conditioned on
type PXY is less than δ � �0, 1�, we have

nφc�QXY � �D
�
n � nφc�PXY � 	 2c

�
n

minx PX
x� ln 1
1�δ

	E lnn	 c ln 2. (60)

Remark that the last two terms will be immaterial for the
asymptotic analysis. Note that by the Taylor expansion, there
exists F � 0 (depending on QXY and c) such that for any
PXY in the λ-neighborhood of QXY ,

φc�PXY � � φc�QXY � � �∇ φc�Q , PXY 	QXY �

	 F �PXY 	QXY �2. (61)

Combining the two bounds above, the error conditioned on
type PXY exceeds δ if

n�∇ φc�Q , PXY 	QXY �

� D
�
n� 2c

�
n

minx PX�x� ln
1

1 	 δ

�E lnn� nF �PXY 	QXY �2 � c ln 2. (62)

Now particularize PXY to be the empirical distribution of
�Xn, Y n� 
 Q�n

XY . Then with probability 1 	 O�e�n1	3 �
we have �PXY 	 QXY � � n�1�3 (by Hoeffding’s inequal-
ity) and 1

minx PX
x� � 2
minx QX
x� , and (62) holds if

(for some G � 0)
n�

i�1

φc�Q �Xi, Yi� 	 E�φc�Q �X,Y ��

� D
�
n� 2c

�
2n

minx QX�x� ln
1

1 	 δ
�Gn1�3. (63)

Thus by CLT, we conclude that the probability of type with
error exceeding δ is at least

Q

��D � c
�

8
minx QX
x� ln 1

1�δ�
Var�∇ φc�Q �X,Y ��


�	 o�1�. (64)

Averaging over types, we obtain

lim inf
n�� P�En� � δQ

	
D�c

�
8

minx QX �x� ln 1
1�δ�

Var
∇φc�QXY

X,Y ��



. (65)

and (11) follows by taking the infimum over δ.
To bound the c-dispersion, we will take δ � 1�2 in the

above. For any � � �0, 1�, set D� � R to be such that

1
2
Q

��D� � c
�

8
minx QX
x� ln 2�

Var�∇ φc�Q �X,Y ��


�� �� �2. (66)

Then

Vc � lim inf
��0

lim sup
n��

�lnMc�n, �� 	 nφc�QXY ��2
2n ln�1��� (67)

� lim inf
��0

lim sup
n��

D2
�

2 ln 2 	 2 lnQ

	
D��c

�
8

minx QX �x�
ln 2�

Var
∇φc�Q
X,Y ��




(68)
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where the last line follows since given � � �0, 1�, for
sufficiently large n any code with ln �W1� � c ln �W2� �
nφc�QXY � � D�

�
n has error probability larger than �,

which implies that lnMc�n, �� 	 nφc�QXY � � �
nD�.

Since clearly D� � �� as � � 0, we can further lower
bound (68) as

lim inf
D��

lim sup
n��

D2

	2 lnQ

	
D�c

�
8

minx QX �x�
ln 2�

Var
∇φc�Q
X,Y ��




� lim
D��

D2	
D�c

�
8

minx QX �x� ln 1
1�δ�

Var
∇φc�QXY

X,Y ��


2 (69)

� Var�∇φc�QXY
�X,Y �� (70)

where (69) uses the fact that limr��
ln Q
r�

r2 � 	 1
2 . The

equivalent expression for the gradient was shown in (41). This
establishes the dispersion bound in Theorem 1.

D. Single-Letterization on Types

Given an n-type PXY , let PXnY n be the equiprobable
distribution on Tn�PXY �, and let PY n�Xn be the induced
random transformation defined for distributions supported on
Tn�PX�. Let

ψc,n�PXY � :� inf
SXn

�cH�SY n� �D�SXn�PXn��. (71)

Here, the infimum is over SXn supported on Tn�PX�, and we
have set SY n by SXn � PY n�Xn � SY n . We will show that
ψc,n�PXY � � nφc�PXY � 	 O�lnn�, which is useful for the
converse proof,

For pedagogical purposes, let us first imagine that in the
definition of ψc,n above, PXnY n is replaced by some i.i.d.
distribution Q�n

XY , and the constraint that SXn is supported on
Tn�PX� is dropped. Then we simply have the tensorization
property ψc,n�QXY � � nψc,1�QXY �, which is also known
as the single-letterization process in almost all information-
theoretic converses (see for the case of WAK [49]). The proof
of tensorization relies on the chain rule of the relative entropy
and the fact that QX
1Y
1�X1�x,Y1�y � Q

�
n�1�
XY , for all x and

y, in the i.i.d. case.
Now for PXnY n which is the equiprobable distribution

on Tn�PXY �, the distribution PX
1Y
1�X1�x,Y1�y depends on
x and y, which is why we cannot directly run the same
single-letterization argument directly. However we will show
that ψc,n�PXY � is still approximated by nφc�PXY � up to
a logarithmic error. To get a sense of the logarithmic error,
consider the toy problem of approximating the entropy of the
equiprobable distribution PXn on a type PX :

nH�PX� 	 �X � ln�n� 1� � H�PXn� � nH�PX�. (72)

Of course, for this toy problem it suffices to count the cardinal-
ity of Tn�PX� to obtain (72), as was done in [10, Lemma 2.3].
Unfortunately, the counting argument does not seem to be
easily extendable, so we try the following single-letterization

method instead: Let Xn 
 PXn . For each k � 1, . . . , n	 1,
define the functions

Δk�x1, . . . , xk� :� PXk�1�Xk�xk 	 PXk�Xk�1�xk�1 , (73)

and the random variable (viewed as vector in R
�X �) Δk :�

Δk�X1, . . . , Xk�. Then

H�Xn� � H�X1� �H�X2�X1� � � � � �H�Xn�Xn�1�
(74)

�
n�1�
k�0

E�H�PX � Δ1 � � � � � Δk��. (75)

Now if PX is fully supported on X , we can choose E � 0
depending only on PX large enough such that

H�SX� � H�PX� 	
〈

ln
1
PX

, SX 	 PX

〉
	E�SX 	 PX�2.

(76)

Using (76) to lower bound (75), and noting that Δ1, . . . ,Δn�1

is a martingale sequence, we have

H�Xn� � nH�PX� 	E
n�1�
k�0

E�Δ1 � . . . ,Δk�2 (77)

� nH�PX� 	E
n�1�
k�0

�n	 k�E�Δk�2 (78)

� nH�PX� 	E
n�1�
k�1

�n	 k� � 4
�n	 k�2 (79)

� nH�PX� 	 4E�1 � ln�n	 1�� (80)

where follows from the fact that �Δk� � �Δk� � 2
n�k with

probability 1. Compare the logarithmic gaps in the left side
of (72) and in (80). We now extend the above analysis to
bound (71):

Lemma 2: Given QXY and c � 1, there exists λ � �0, 1�
and E � 0 such that for any n � 1 and n-type PXY such that
�PXY 	QXY � � λ, we have

ψc,n�PXY � � nφc�PXY � 	E lnn. (81)

Proof: Under the assumption that φc has bounded second
derivatives in a neighborhood of QXY , there exists λ � �0, 1�
and E� � 0 large enough such that

φc�SXY � � φc�PXY � � �∇ φc�PXY
, SXY 	 PXY �

	E��SXY 	 PXY �2 (82)

for any PXY : �PXY 	 QXY � � λ and any SXY in the
probability simplex (the Taylor expansion proves (82) for SXY

in a neighborhood of PXY . Then using the boundedness of
φc��� we can extend (82) to all SXY by choosing E� large
enough). Here � � � denotes the 
2 norm, although any norm
admitting an inner product would work. Consider any SXn

supported on Tn�PX�, and put SXnY n � SXnPY n�Xn . Let I
be equiprobable on �1, . . . , n� and independent of �Xn, Y n�
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under S. Let X�I denote the coordinates excluding the I-th
one. We have

H�SY n� � H�SYI �I �SI� �H�SY
I �IYI
�SIYI � (83)

� H�SYI �I �SI� �H�SY
I �IXIYI
�SIXIYI �, (84)

D�SXn�PXn�
� D�SXI �I�PXI �SI� �D�SX
I �IXI

�PX
I �XI
�SIXI � (85)

� D�SXI �I�PXI �SI��D�SX
I �IXIYI
�PX
I �XIYI

�SIXIYI �
(86)

where (86) follows from X�I 	 IXI 	 YI under S (this
is because for any �i, xn�, we have SYI �
IXI��
i,xi� �
SYI �
I,Xn��
i,xn� � SY �X�xi

). Noting that PXI � PX and
SIXIYI � SI�XI

PXY , we can bound the weighted sum of the
first terms in the above two expansions:

cH�SYI �I �SI� �D�SXI �I�PXI �SI� � φc�PXY �. (87)

To bound the weighted sum of the second terms in (84) and
(86), for any �x, y�, define

P xy
XY �x�, y�� :� 1

n�1 �nPXY �x�, y��	1
x�,y���
x,y��, ��x�, y��.
(88)

That is, P xy
XY denotes the �n	 1�-type obtained by removing

one pair �x, y� from sequences of the type n-type PXY . Then

cH�SY
I �IXIYI
�SIXIYI ��D�SX
I �IXIYI

�PX
I �XIYI
�SIXIYI�

�
�

x,y,i

ψc,n�1�P xy
XY �SIXIYI �i, x, y� (89)

�
�
x,y

ψc,n�1�P xy
XY �PXY �x, y�. (90)

Summarizing and iterating,

ψc,n�PXY � � φc�PXY � � E�ψc,n�1�PXY � Δ1�� (91)

� . . . (92)

�
n�1�
k�0

E�φc�PXY � Δ1 � � � � � Δk�� (93)

where we defined the sequence Δ1,Δ2, . . . of random vectors
in the following way: conditioned on Δ1, . . . ,Δk, denote the
probability vector Sk :� PXY ��k

i�1 Δi, and then Δk�1 :�
Sxy

k 	Sk with probability Sk�x, y� for each �x, y�. Thus Δ1�
� � � � Δk is a zero mean martingale, and

ψc,n�PXY � � nφc�PXY � 	E�
n�1�
k�1

E�Δ1 � � � � � Δk�2

(94)

� nφc�PXY � 	E�
n�1�
k�1

�n	 k�E�Δk�2 (95)

� nφc�PXY � 	E�
n�1�
k�1

�n	 k� � 4
�n	 k�2 (96)

� nφc�PXY � 	 4E��1 � ln�n	 1�� (97)

where (94) uses (82), noting that the the linear term (second
term on the right side of (82)) vanishes upon taking the

expectation; (95) follows since the martingale property implies
that E�Δi�Δi�� � 0 for i � i�; (96) follows from the fact that
�Δk� � �Δk� � 2

n�k with probability 1. Taking E � 10E�

completes the proof.

Remark 4: The first-order term in (81) is tight, since
otherwise we would get a converse result contradicting the
achievability. The first-order tightness can also be argued
directly: Suppose that PUXY � PU �XPXY where PU �X is
a maximizer in the definition of φc. Assume without loss of
generality that U :� �1, . . . , �U ��. Split �1, . . . , n� into blocks
of sizes n1, . . . , n�U � where nu :� nPU �u� is assumed to
be an integer (if not, perturb PU �X by O�1�n� so that it is,
and the proof will still work with a continuity argument).
Denote x
u� and y
u� to be the sub-vectors corresponding
to the u-blocks. Let SXn in the definition of ψc,n�PXY � to
be equiprobable on �xn : x
u� � Tnu�PX�U�u�,�u� where
we assumed that PX�U�u is nu-type (if not, perturb PU �X
and PX by O�1�n�, and continue the proof by an approx-
imation argument). Computing the size of the type classes
leads to

D�SXn�PXn� � nI�U ;X� � o�n�. (98)

Moreover, since it is easy to see that SXn and hence SY n ,
is invariant under permutations within the same u-block, we
have

H�SY n�

� HS� �PY �1� , . . . , �PY ��U���

�
�

P �1�,...,P ��U��

HS�Y n�P 
1�, . . . , P 
�U ���PS�P 
1�, . . . , P 
�U ���

(99)

� o�n���
P �1�,...,P ��U��

ln
����yn : �PY �1� � P 
1�, . . . , �PY ��U�� � P 
�U ��

����
� PS�P 
1�, . . . , P 
�U ��� (100)

Here, HS� �PY �1� , . . . , �PY ��U�� � denotes the entropy of the ran-
dom variables �PY �1� , . . . , �PY ��U�� which are the empirical
distributions of Y 
1�, …, Y 
�U �� where Y n 
 SY n . The
summation is over nu-types P 
u�, and PS�P 
1�, . . . , P 
�U ���
denotes the probability that �PY �u� � P 
u�, for each u. Let
�αn� be a sequence in ω� 1


n
� � o�1�. We can verify that

PS�� �PY �u� 	 PY �U�u� � αn,�u�

� min
xn�supp
SXn �

PS�� �PY �u� 	 PY �U�u� � αn,�u�Xn � xn�
(101)

� 1 	 o�1� (102)

by computing the number of configurations and standard
approximations of combinatorial numbers. Since the logarithm
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in (100) is O�n�, we have

H�SY n�
� o�n���
� �P

Y �u��PY �U�u��αn,�u

ln
����yn : �PY �1� �P 
1�, . . . , �PY ��U�� �P 
�U ��

����
� PS�P 
1�, . . . , P 
�U ��� (103)

� o�n�� �
� �P

Y �u��PY �U�u��αn,�u

ln
����yn : �PY �u� � PY �U�u,�u

����
� PS�P 
1�, . . . , P 
�U ��� (104)

� o�n� � nH�Y �U� � �1 	 o�1�� (105)

� o�n� � nH�Y �U� (106)

where (104) is by continuity. This together with (98) shows
the first-order tightness.

VI. PROOF OF THE ACHIEVABILITY

In this section we prove Theorem 2. We first make a few
preliminary observations about the optimization problem in
the definition of φc:

Proposition 4: Let c � 0, and QXY be fully supported on
the finite set X � Y (that is, PXY �x, y� � 0 for each �x, y�).
Let P Æ

U �X be an infimizer for (1). Assume without loss of
generality that P Æ

U is fully supported on some finite set U .
Then

1) P Æ
U �X�x is also fully supported on U for each x.

2) As long as I�U ;X� � 0, �U,X� 
 P Æ
U �XQX , we have

∇PU�X
I�U ;X���

P Æ
U�X


 0. (107)

Proof: The proofs follow from the first-order optimality
condition. For the first claim, note that if PU is fully supported
and PU �X�u�x� � 0, we have �

�PU�X
u�x�I�U ;X�
���
P Æ

U�X

�

	�, whereas �
�PU�X
u�x�H�Y �U�

���
P Æ

U�X

is finite since QXY

(and hence QUY ) is fully supported. This contradicts the opti-
mality of P Æ

U �X . For the second claim, observe that I�U ;X� �
0 under P Æ

U �XQX implies the existence of some x such that
�ıU ;X�u;x��u�U , which equals to ∇PU�X�x

I�U ;X���
P Æ

U�X

up

to an additive constant, cannot be a vector with constant
coordinates.

We next define the encoders and the decoder for each type of
Xn, and perform the error analysis. A naive strategy, assuming
the existence of an oracle that reveals the joint type �PXnY n

to both the encoders and the decoder, is to design codes for
each joint type. More precisely, let �Û , X̂, Ŷ � 
 P Æ

U �X �PXnY n ,
where we fix P Æ

U �X to be an infimizer for (1), and suppose
that PX̂Ŷ is revealed to the encoders and the decoder. For any
given PÛX̂ , the codebook for the first encoder are generated
i.i.d. and with i.i.d. coordinates distributed according to PÛ .
By the type covering lemma, codebook of log-size l1�PX̂� �
nI�Û ; X̂� � o��n� is large enough so that a codeword with
the joint type PÛX̂ can be selected with high (faster than
any polynomial) probability. The second encoder may perform

random binning and send l2�PX̂Ŷ � � nH�Ŷ �Û��o��n� bits,
so that the decoder can perform minimum conditional entropy
decoding (see e.g. [9]) to recover Y n with high probability.
By performing the Taylor expansions on I�Û ; X̂� andH�Ŷ �Û�
and using the central limit style analysis, we can verify that
the probability of l1�PX̂� � c l2�PX̂Ŷ � � nφc�QXY � �D

�
n

indeed converges to Q
�

D

V

�
. However, the challenge with

this naive strategy is two-folded: first, of course, the joint type
PX̂Ŷ is not actually known to all parties; second, l1 and l2
individually vary with PX̂Ŷ , even though we may impose that
l1 � c l2 is fixed.

A remedy is to perturb the “codeword distribution” PU �X
according to �PXn , so that the compression lengths are at some
fixed budgets l̄1 and l̄2 which do not vary with the type.
We will see that (107) guarantees that we can find such a
perturbation to bring l1�PX̂� and l2�PX̂Ŷ � to l̄1 and l̄2. The
first-order optimality condition

∇PU�X
I�U ;X���

P Æ
U�X

� c � ∇PU�X
H�Y �U���

P Æ
U�X

� 0, (108)

where �U,X, Y � 
 PU �XQXY , ensures that we can
always keep the balance �l1�PX̂� 	 l̄1� � c�l2�PX̂Ŷ � 	 l̄2�.
We now describe the scheme in detail. Fix an arbitrary
κ � �0, 1�6�.

Encoder 1: Define M1 by

logM1 � nI�UÆ;XÆ� � n3κ (109)

where

�UÆ, XÆ, Y Æ� 
 P Æ
U �XQXY . (110)

Encoder 1 constructs a codebook consisting of M1 codewords
i.i.d. according to P Æ�n

U . Upon observing Xn, Encoder 1 will
send the index of �PXn (using O�log n� bits) and then send
the index of the codeword. The codeword is selected in the
following way: For each �PXn satisfying

� �PXn 	QX � � n�1�2�κ, (111)

we define below a PU �X which is a perturbation of P Æ
U �X

(the purpose being that I� �PXn , PU �X� � I�UÆ;XÆ� �
o�� �PXn 	 QX �� so that encoding is successful under the
fixed budget (109)). Then upon observing Xn, the encoder
selects the first codeword Un such that �Un, Xn� has type
PU �X �PXn (if any).

To define such a PU �X associated with each �PXn , we can
first pick a fixed P �

U �X such that

 
 tI�QX , tP

�
U �X � �1 	 t�P Æ

U �X�
����
t�0


 0. (112)

This is possible in view of Proposition 4. Then take

PU �X � tP �
U �X � �1 	 t�P Æ

U �X , (113)

rounded such that PU �X �PXn is n-type, where

t :� 	
〈
ıUÆ;XÆ , P Æ

U �X� �PXn 	QX�
〉

�
�tI�QX , tP �

U �X � �1 	 t�P Æ
U �X�

���
t�0

. (114)
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Encoder 2: Each yn sequence is mapped randomly to one
of M2 bins, where we defined M2 by

logM2 � nH�Y Æ�UÆ� � D

c

�
n� n3κ, (115)

and the bin index is sent.
Decoding rule: The decoder receives �PXn , and hence

knows the previously agreed PU �X as long as (111) holds. The
decoder selects the yn sequence in the m2-th bin that mini-
mizes the empirical conditional entropy H� �Pyn�un � �Pun� (see
[9] for general reference on the minimum entropy decoder).

Error analysis:

� Let E0 be the event that (111) fails. We note that Ec
0

implies that

�PU �X �PXn 	 P Æ
U �XQX � � n�1�2�κ. (116)

Indeed, by the definition (114) we see that5 t �
O�n�1�2�κ�, which in turn implies that �PU �X	P Æ

U �X� �
O�n�1�2�κ� (the choice of the norm is immaterial here
since finite alphabets are assumed), and hence (116)
holds. By the Chebyshev inequality, we have the bound

P�E0� � e�Ω
n2κ�. (117)

� Let E1 � Ec
0 be the event that no codeword is selected

by Encoder 1. For each �PXn � Ec
0 , we use the Taylor

expansion to show that

D�PU �X�P Æ
U � �PXn�

� D�PU �X �PXn�P Æ
U �QX� 	D� �PXn�QX� (118)

� D�PU �X �PXn�P Æ
U �QX� �O�n�1�2κ� (119)

� I�UÆ;XÆ� �
〈
ıUÆ;XÆ , PU �X �PXn 	 P Æ

U �XQX

〉
�O�n�1�2κ� (120)

� I�UÆ;XÆ� �
〈
ıUÆ;XÆ , �PU �X 	 P Æ

U �X�QX

〉

�
〈
ıUÆ;XÆ , P Æ

U �X� �PXn 	QX�
〉
�O�n�1�2κ�

(121)

� I�UÆ;XÆ� �O�n�1�2κ� (122)

where

– (119) uses (111).
– (121), which is essentially Leibniz’s rule for the first

derivative, uses the fact that � �PXn 	QX � � �PU �X 	
P Æ

U �X� � O�n�1�2κ�.
– (122) follows since the choice of PU �X in (113)

ensures that the second and the third terms in (121)
cancel.

Next, recall that each codeword is generated accord-
ing to P Æ�n

U . Conditioned on any �PXn , a codeword
and Xn has the joint type PU �X �PXn with probability

5In this section, the implicit constants in the O�	� and Ω�	� notations depend
on QXY , c and P Æ

U �X
. That is, the implicit constants can be uniformly

bounded in �PXn because we consider �PXn close to QX (111).

e�nD
PU�X�P Æ
U � �PXn ��O
log n�. Hence for any �PXn satis-

fying Ec
0 , using (122) and (109) we have

P�E1� �PXn� � �1 	 e�nD
PU�X�P Æ
U � �PXn ��O
log n��M1

(123)

� �1 	 e�nI
UÆ;XÆ��O
n2κ��M1 (124)

� O�expe�	eκn��. (125)

The above steps are essentially the type covering argu-
ment; see e.g. [10, Section 2, Section 9]. Consequently,

P�E1� � O�expe�	eκn��. (126)

� Let E2 � �E0 ! E1�c be the event that there exists
some y�n 
 Y n such that the conditional entropy for
its empirical conditional distribution is smaller:

H� �Py�n�Un � �PUn� � H� �PY n�Un � �PUn�, (127)

where Un denotes the codeword selected by Encoder 1,
and y�n and Y n are assigned to the same bin by
Encoder 2. Since there are at most enH
 �PY n�Un � �PUn � such
y�n sequences, and since each sequence is mapped to the
same bin as Y n with probability 1�M2, by the union
bound we have

P�E2�Ec
0 � Ec

1� � E

�
1 " enH
 �PY n�Un � �PUn�

M2

�����Ec
0 � Ec

1

�
.

(128)

We now bound the conditional entropy in (128). Let TY n

be the equiprobable distribution on Yn. Note that

H� �PY n�Un � �PUn�
� 	D� �PY nUn�TY n � �PUn� � n log �Y� (129)

is concave in �PY nUn (since the relative entropy is jointly
convex), therefore,

nH� �PY n�Un � �PUn�
� nH�Y Æ�UÆ� � n

〈
ıY Æ�UÆ , �PUnY n 	 P Æ

UY

〉
. (130)

�
n�

i�1

ıY Æ�UÆ�Yi�Ui�. (131)

Continuing (128) and using (115) and (131), we have

P�E2�Ec
0 � Ec

1� � E

�
1 " eSn�D

c



n�n3κ

���Ec
0 � Ec

1

�
(132)

� e�n3κ � P

�
Sn 	 D

c

�
n � 0

����Ec
0 � Ec

1

 
(133)

where we defined the random variable Sn :��n
i�1 ıY Æ�UÆ�Yi�Ui�	nH�Y Æ�UÆ�. Conditioned on each�PXn � Ec

0 and under Ec
1 , notice that �Un, Xn� has

fixed empirical distribution PU �X �PXn (determined by�PXn ), and hence the Yi’s for which �i : Ui � u� are
i.i.d. according to the conditional law in PU �X �PXnQY �X
for each u, and therefore, conditioned on such a �PXn
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and Ec
1 , the distribution of 1


n

�
Sn 	 E�Sn� �PXn , Ec

1�
�

converges to that of a Gaussian distribution. We will
apply the central limit theorem carefully later; for now
let us compute the mean and variance of the conditional
distribution. For each �PXn � Ec

0 we have

E

�
Sn

��� �PXn , Ec
1

�
� n

〈
ıY Æ�UÆ , PU �X �PXnQY �X

〉
	 nH�Y Æ�UÆ� (134)

� n

〈
ıY Æ�UÆ � 1

c
ıUÆ;XÆ , PU �X �PXnQY �X

〉
	 nH�Y Æ�UÆ�

	 n

c
I�UÆ;XÆ� 	 n

c

〈
ıUÆ;XÆ , PU �X �PXn

〉
� n

c
I�UÆ;XÆ�

(135)

� n

〈
ıY Æ�UÆ � 1

c
ıUÆ;XÆ , PU �X �PXnQY �X 	 P Æ

U �XQXY

〉

�O�n2κ� (136)

� n

〈
ıY Æ�UÆ � 1

c
ıUÆ;XÆ , P Æ

U �X� �PXn 	QX�QY �X

〉

�O�n2κ� (137)

� n

〈
EP Æ

U�X
QY �X

�
ıY Æ�UÆ � 1

c
ıUÆ;XÆ

����X 
, �PXn 	QX

〉

�O�n2κ�. (138)

The steps above are explained as follows:
– (136) follows from bounding the last two terms in

(135):〈
ıUÆ;XÆ , PU �X �PXnQY �X

〉
	 I�UÆ;XÆ�

�
〈
ıUÆ;XÆ , �PU �X 	 P Æ

U �X�QX

〉

�
〈
ıUÆ;XÆ , P Æ

U �X� �PXn 	QX�
〉
�O�n�1�2κ�

(139)

� O�n�1�2κ�, (140)

where (139) used the fact that � �PXn 	QX � ��PU �X 	
P Æ

U �X� � O�n�1�2κ�, and (140) follows from the
fact that the definition of PU �X in (113) ensures that
the first two terms in (139) cancel.

– To see (137), we note that〈
ıY Æ�UÆ� 1

c
ıUÆ;XÆ , �PU �X	P Æ

U �X�� �PXn 	QX�QY �X

〉

� O
�
�PU �X 	 P Æ

U �X� � � �PXn 	QX �
�
� O�n�1�2κ�

(141)

and moreover, the first order optimality of P Æ
U �X

implies〈
ıY Æ�UÆ � 1

c
ıUÆ;XÆ , �PU �X 	 P Æ

U �X�QXY

〉

� O��PU �X 	 P Æ
U �X�2� � O�n�1�2κ�. (142)

These two inequalities show the step from (136) to
(137) upon rearrangements.

For each �PXn � Ec
0 , the conditional variance is bounded

as
1
n

Var
�
Sn

��� �PXn , Ec
1

�
� E �PXn PU�X

!
VarQY �X

�
ıY Æ�UÆ �UX�"

(143)

� E �PXn PU�X

�
VarQY �X

�
ıY Æ�UÆ � 1

c
ıUÆ;XÆ

����UX� 
(144)

� EQXP Æ
U�X

�
VarQY �X

�
ıY Æ�UÆ � 1

c
ıUÆ;XÆ

����UX� 
�O�n�1�2�κ�, (145)

where (143) follows since the distribution of S depends
only on the empirical distribution �Un, Xn�, which is
PU �X �PXn ; (145) used (116) and the boundedness of
ıY Æ�UÆ � 1

c ıUÆ;XÆ .
Finally, as alluded, for each type �PXn � Ec

0 and under
the event Ec

1 , we have that
�

i : Ui�u Si is a sum of
i.i.d. random variables for each u. We can therefore
invoke the Berry-Esseén central limit theorem (see e.g.
[12, Ch. XVI.5 Theorem 2]) to see that

P

�
1�
n
Sn 	 E

�
1�
n
Sn

���� �PXn , Ec
1

 
� λ

���� �PXn , Ec
1

 

� Q

�##� λ�
1
nVar

�
Sn

��� �PXn , Ec
1

�

ÆÆ�� ξn, �λ � R

(146)

where ξn is some o�1� sequence depending only on QXY ,
P Æ

U �X , and c (in particular, not depending on λ). Setting

λ � D
c 	E

�
1

n
Sn

��� �PXn , Ec
1

�
, we obtain from (146) and

(133) that

P �E2�Ec
0 � Ec

1� � e�n3κ�

E

$%%&Q

�##� D
c 	 E

�
1

n
Sn

��� �PXn , Ec
1

�
�

1
nVar

�
Sn

��� �PXn , Ec
1

�

ÆÆ�
��������E

c
0 � Ec

1

'(()� ξn,

�λ � R. (147)

Using limt�1 supλ�R
�Q�λ� 	 Q�λ�t�� �

limt�1 supλ�R
�λ 	 λ

t �e�λ2�3 � 0 which follows
from the Gaussian density bound, we see that the second
term on the right side of (147) is upper bounded by

E

$&Q

�� D
c 	 E

�
1

n
Sn

��� �PXn , Ec
1

�
�
V


�������Ec
0 � Ec

1

')� o�1�

(148)

where we defined

V :� EQXP Æ
U�X

�
VarQY �X

�
ıY Æ�UÆ � 1

c
ıUÆ;XÆ

����UX� 
(149)
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to be the first term on the right side of (145). Using the
uniform continuity of Q��� and the result of (138), we
can upper bound the first term in (148) by

E

�
Q

	
D
c 	 Tn�

V


�����Ec
0 � Ec

1

�
� o�1�

� 1
P�Ec

0 � Ec
1�

E

�
Q

	
D
c 	 Tn�

V


�
� o�1�

� E

�
Q

	
D
c 	 Tn�

V


�
� o�1� (150)

where we defined the zero mean random variable

Tn :�
�
n

〈
EP Æ

U�X
QY �X

�
ıY Æ�UÆ � 1

c
ıUÆ;XÆ

����X 
, �PXn 	QX

〉

(151)

which is the first term in (138) normalized by 1��n.
Clearly Tn is a sum of i.i.d. random variables, and
the central limit theorem applies. Since convergence in
distribution implies the convergence of the expectation
of a bounded continuous function, we see that

E

�
Q

	
D
c 	 Tn�

V


�
� E

�
Q

	
D
c 	�

V �G�
V


�
(152)

where G is a Gaussian random variable with zero mean
and unit variance and

V � :� VarQX

�
EP Æ

U�X
QY �X

�
ıY Æ�UÆ � 1

c
ıUÆ;XÆ

����X �
(153)

� VarQXP Æ
U�X

�
EQY �X

�
ıY Æ�UÆ � 1

c
ıUÆ;XÆ

����UX �
,

(154)

which is the variance of Tn. The equality in (154) follows
from Proposition 2. Now

E

�
Q

	
D
c 	�

V �G�
V


�
� P

�
G� �

D
c 	�

V �G�
V

�
(155)

� Q
�

D�c�
V � V �

�
. (156)

Returning to (147), we now have

P �E2�Ec
0 � Ec

1� � Q
�

D�c�
V � V �

�
� o�1� (157)

and moreover, we have that

V � V � �
EQXP Æ

U�X

�
VarQY �X

�
ıY Æ�UÆ � 1

c
ıUÆ;XÆ

����UX� 
� VarQXP Æ

U�X

�
EQY �X

�
ıY Æ�UÆ � 1

c
ıUÆ;XÆ

����UX �
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� Var
�
ıY Æ�UÆ � 1

c
ıUÆ;XÆ

�
(159)

by the law of total variance. We thus have shown
that P�E0�,P�E1� � 0, and lim supn�� P�E2� �
Q

	
D�

Var�ıY Æ�UÆ� 1
c ıUÆ;XÆ�



, as desired.

Remark 5: Asymptotic analysis of expressions similar to
(147) has appeared in the literature of second-order analysis
in information theory; see [43, Lemma 18] and [40, Lemma 2].

VII. APPENDIX: REVERSE HYPERCONTRACTIVITY FOR

THE TRANSPOSITION MODEL

In this section we construct the “dominating operator” Λn,t

used in Section V through several stages. As alluded in
Section V-B, the idea is, roughly speaking, to find an operator
Λn,t with the crucial property that the 0-norm of Λn,tf is
bounded below in terms of the 1-norm of f , where f is
an arbitrary function (usually taken as the indicator of the
decoding set). This is essentially a statement of the reverse
hypercontractivity property of the operator Λn,t, and we can
thus make use of the available results on the reverse hypercon-
tractivity estimates of Markov semigroup operators, originally
studied by probabilists with the goal of understanding the
mixing properties of the Markov chains.

Generally speaking, suppose that �Xt�t�0 is a time-
homogenous Markov chain. Note that t here is a continuous
time index, which is unrelated to the index i of the source
coordinate in the previous sections. The Markov semigroup
operator �Tt�t�0 is defined in terms of

�Ttf��x� � PXt�X0�x�f�, �x, f. (160)

Intuitively, we see that if the chain mixes fast, then Ttf
converges to a constant function fast. This implies that the
0-norm of Ttf increases fast, since the expectation of Ttf is
time-invariant whereas the 0-norm is mostly sensitive to the
small values of the function.

If Xt is a vector, then a natural Markov chain is the Glauber
dynamics, i.e. whenever a Poisson clock clicks, the value of
a randomly selected coordinate is resampled according to the
conditional distribution given the values of other coordinates.
This approach works well, for example, when the coordinates
of the vector are i.i.d., as we previously solved [30]. In the
present setting, however, we consider the case where the vector
is equiprobable on a type class, and it is clear that the Glauber
dynamics does not mix (Xt will always take the same value).
An intuitively similar chain is the transposition model, where
each time we randomly pick two coordinates instead and
make a switch. Clearly this chain mixes (i.e., converges to the
equiprobable distribution on the type class). We now explain
the construction in detail.

A. The Transposition Model

Let S � �1, . . . , n�. As a preliminary step, consider a
reversible Markov chain where the state space Ω consists of
the n! permutations of the sequence �1, 2, . . . , n�, and the
generator is given by

Lnf :� 1
n

�
1�i,j�n

�fσij 	 f� (161)
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for any real-valued function f on Ω, where fσij denotes the
composition of two mappings, and σij denotes the transpo-
sition operator. That is, σij switches the i-th and the j-th
coordinates of a sequence for any sn � Ω,

�σijs
n�k :�

*+, si k � j;
sj k � i;
sk otherwise.

(162)

As an alternative interpretation of this Markov chain, whenever
a Poisson clock of rate 1

n clicks, an index pair �i, j� �
�1, . . . , n�2 is randomly selected and the corresponding coor-
dinates are switched. Remark that the rate at which each
coordinate changes its value roughly equals 1, which is the
same as the semi-simple Markov Chain we used in [30].
Functional inequalities such as Poincaré, log-Sobolev, and
modified log-Sobolev for such a Markov chain have been
studied to bound its mixing time under various metrics. In
particular, we recall the following upper bound on the modified
log-Sobolev constant in [13], which was proved using a chain-
rule and induction argument:

Theorem 4 ( [13]): Let P be the equiprobable distribution
on Ω. For any n � 2,

D�S�P � � 	E

��
Ln log

dS
dP

�
�X�

 
, �S # P, (163)

where X 
 S.
It is known (e.g. [33, Theorem 1.10]) that for general time-

reversible Markov chains, a modified log-Sobolev inequality is
equivalent to a reverse hypercontractivity of the corresponding
Markov semigroup operator eLnt :� ��

k�0
tk

k!L
k
n. We thus

have
Corollary 1: In the transposition model, For any q � p � 1,

t � ln 1�q
1�p , and f � H��Ω�,

�eLntf�Lq
Ω� � �f�Lp
Ω�. (164)

We remark that the norms in (164) are with respect to the
equiprobable measure P . By taking the limits, we have

�f�L0
Ω� � exp �P �ln f�� . (165)

B. Reverse Hypercontractivity on Types

Now consider any finite Y and a Markov chain with state
space Yn. With a slight abuse of notation, let Ln also denote
the generator of this new Markov chain. Let PY be an n-
type. Note that Tn�PY � is invariant under transposition and
hence also invariant for the chain. We now prove a reverse
hypercontractivity for the Markov semigroup operator for this
new chain. Pick any map φ : S � Y such that �φ�1�y�� �
nPY �y� for each y. Then the extension φn defines a function
Ω � Tn�PY �. Now for any f � H��Yn�, from (164) we have

�eLnt�fφn��Lq
Ω� � �fφn�Lp
Ω�. (166)

Theorem 5: (166) is equivalent to

�eLntf�Lq
Tn
PY �� � �f�Lp
Tn
PY �� (167)

where the norms are understood as the norms of f � H��Yn�
with the underlying measure the equiprobable distribution on
Tn�PY �.

Proof: �fφn�Lp
Ω� � E
1
p ��fφn�Sn��p� �

E
1
p �fp�Y n�� � �f�Lp
Tn
PY ��. Here, Lp�Tn�PY �� is

with respect to the equiprobable measure on Tn�PY �, and
so the value of f on Yn$Tn�PY � is immaterial. Moreover,
from the definitions we can see that φn commutes with
transposition, so

�
eLnt�fφ�� �sn� � �eLntf��φn�sn�� for any

sn � Ω, and the left sides of (166) and (167) are therefore
also equal by the same argument.

We remark that for PY not concentrated on a y � Y and as
n� �, we don’t lose too much tightness in the composition
step argument, and the estimate in (167) is sharp. That is,
the modified log-Sobolev constant is indeed of the constant
order; the lower bound can be seen by taking linear functions
in the corresponding Poincaré inequality, which is weaker than
the modified log-Sobolev inequality.

C. Conditional Types: The Tensorization Argument

Let X and Y both be finite sets. For any xn � Xn, define
a linear operator Lxn : H��Yn� � H��Yn� by

Lxnf :�
�
x�X

1

n �Pxn�x�
�

i,j : xi�xj�x

�fσij 	 f�. (168)

where we recall that �Pxn denotes the empirical distribution of
xn. Note that Lxn is the generator of the Markov chain where
independently for each x � X , the length nPX�x� subsequence
of Yn with indices �i : xi � x� is the transposition model in
Section VII-B. Since Lxn is the sum of �X � generators for
transposition models, the Markov semigroup operator eLxnt is
a tensor product, which satisfies the reverse hypercontractivity
with the same constant, by the tensorization property (see
e.g. [33]). Therefore for any n-type PXY , xn � Tn�PX�, and
f : H��Yn� � H��Yn�,

�eLxntf�Lq
Txn
PY �X �� � �f�Lp
Txn
PY �X��. (169)

D. A Dominating Operator

The operator in (169) depends on xn and hence cannot be
used directly in the proof of Lemma 1. We now find an upper
bound which is independent of xn. Define the following self-
adjoint linear operator L̃n : H��Yn� � H��Yn� by

L̃nf�yn� � 1
nminx PX�x�

�
1�i,j�n

f�σijy
n�. (170)

Note that the summation includes the i � j case, where σij

becomes the identity. From the general formula d
dt �eLtf� �

LeLtf we can see a comparison property: since L̃nf � Lxnf
for any f � H��Yn�, we have eL̃ntf � eLxntf pointwise for
any t � 0 and f � H��Yn�. Now consider

Λn,t :� eL̃nt, �t � 0 (171)

which forms an operator semigroup (although not associated
with a conditional expectation). Now Λn,t is the operator we
used in the proof of Lemma 1, and we need to lower/upper
bound the norms of Λn,tf in terms of the norms of f :
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Lower bound: for any f : Yn � �0, 1�,

exp�PY n�Xn�xn�ln Λn,tf��
� �Λn,tf�L0
Txn
PY �X ��
� �eLxntf�L0
Txn
PY �X�� (172)

� �f�L1�e�t
Txn 
PY �X��

� P
1

1�e�t

Y n�Xn�xn�f�
� P

1� 1
t

Y n�Xn�xn�f� (173)

where (173) follows from et � 1 � t.
Upper bound (in fact, equality): For any f : Yn � �0,��,
d
dt
PY n�Λn,tf�

� PY n�L̃nΛn,tf� (174)

� 1
n minx PX
x�

�
yn�Tn
PY �

PY n�yn�
�
i,j

�Λn,tf��σijy
n� (175)

� n
minx PX
x�

�
zn�Tn
PY �

PY n�zn��Λn,tf��zn� (176)

� n
minx PX
x� PY n�Λn,tf� (177)

where (176) used the change of variable zn � σijy
n and the

fact that PY n is the equiprobable distribution on Tn�PY �, to
get the factor n2 out front. Thus

PY n�Λn,tf� � expe

�
nt

minx PX�x�
�
PY n�f�. (178)

VIII. DISCUSSION

Though we have focused on the example of the Wyner-
Ahlswede-Körner (WAK) network, the techniques of the
present paper have other potential applications. There are
several distributed source type problems which are very
similar to the WAK problem. For example using a tensor
product semigroup for the stationary memoryless settings,
[22, Section 4.4.4] proved an O��n� second-order converse
for common random generation with one-way rate limited
communications. It appears straightforward to upgrade to
dispersion bounds and obtain similar results as WAK, by
following the same steps therein but using the techniques of
the present paper.
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