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Mutually Unbiased Equiangular Tight Frames
Matthew Fickus, Senior Member, IEEE, Benjamin R. Mayo

Abstract—An equiangular tight frame (ETF) yields a type of
optimal packing of lines in a Euclidean space. ETFs seem to be
rare, and all known infinite families of them arise from some type
of combinatorial design. In this paper, we introduce a new method
for constructing ETFs. We begin by showing that it is sometimes
possible to construct multiple ETFs for the same space that are
“mutually unbiased” in a way that is analogous to the quantum-
information-theoretic concept of mutually unbiased bases. We
then show that taking certain tensor products of these mutually
unbiased ETFs with other ETFs sometimes yields infinite families
of new complex ETFs.

Index Terms—Welch bound, equiangular tight frames, mutu-
ally unbiased bases, relative difference sets

I. INTRODUCTION

For any N ≥ D ≥ 1, N > 1, Welch [43] gives the following

bound on the coherence of N unit vectors {ϕn}Nn=1 in CD:

coh({ϕn}Nn=1) := max
n6=n′

|〈ϕn,ϕn′〉| ≥
[

N−D
D(N−1)

]
1
2 . (1)

It is well known [38] that {ϕn}Nn=1 achieves equality in (1) if

and only if {ϕn}Nn=1 is an equiangular tight frame (ETF) for

CD, that is, if and only if the value of |〈ϕn,ϕn′〉| is constant

over all n 6= n′ (equiangularity) and there exists C > 0 such

that C‖y‖2 =
∑N

n=1 |〈ϕn,y〉|2 for all y ∈ CD (tightness).

The coherence of any unit vectors is the cosine of the

smallest principal angle between any two of the lines (one-

dimensional subspaces) they individually span. By achieving

equality in (1), an ETF yields N lines in CD whose smallest

pairwise principal angle is as large as possible, namely an

optimal way to pack N points on the projective space that

consists of all lines in CD. Due to their optimality, ETFs arise

in various applications including waveform design for wireless

communication [38], compressed sensing [1], [2], quantum

information theory [46], [34] and algebraic coding theory [27].

Much of the ETF literature is devoted to the existence

problem: for what D and N does there exist an ETF(D,N),
that is, an N -vector ETF for CD? Here, one key subproblem

is to resolve Zauner’s conjecture that an ETF(D,D2) exists

for any D ≥ 1 [46], [34]. In quantum information theory,

such an ETF is called a symmetric, informationally complete,

positive operator-valued measure (SIC-POVM), and a finite,

but remarkable number of these have already been found [20].

Another key subproblem is to characterize the existence of real

ETF(D,N), that is, ETFs where 〈ϕn,ϕn′〉 ∈ R for all n, n′.

Real ETFs equate to a subclass of strongly regular graphs

(SRGs) [31], [36], [25], [42], which are a mature subject in and

of themselves [6], [7], [9]. In general, the existence problem

remains poorly understood, with lists of known ETFs [16]
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falling far short of known necessary conditions, namely that

an ETF(D,N) with 1 < D < N − 1 can only exist if

N ≤ min{D2, (N −D)2} [25] (a generalization of Gerzon’s

bound [30]) and that an ETF(3, 8) does not exist [40].

All known positive existence results for ETF(D,N) with

1 < D < N − 1 are due to explicit construction involving

some type of combinatorial design; see [16] for a survey.

ETFs whose redundancy N
D is either nearly or exactly 2 arise

from the related concepts of Hadamard matrices, conference

matrices, Gauss sums and Paley tournaments [38], [25], [33],

[37]. The equivalence between real ETFs and certain SRGs

has been partially generalized to the complex case using roots

of unity [4], [3], abelian distance-regular antipodal covers of

complete graphs [10], [15], and association schemes [26].

Harmonic ETFs equate to difference sets in finite abelian

groups [29], [45], [11]. Steiner ETFs arise from balanced

incomplete block designs (BIBDs) [22], [18]. Nontrivial gen-

eralizations of the Steiner ETF construction yield other ETFs

arising from projective planes containing hyperovals [17],

Steiner triple systems [14], and group divisible designs [12].

In this paper, we provide a new method for constructing

ETFs. It is inspired by an ETF-based perspective [13], [19] of

a classical factorization [23] of the complement of a Singer

difference set in terms of a relative difference set (RDS).

The main idea is to take tensor products of vectors in a

given ETF(D1, N1) with those belonging to a collection

of N1 distinct ETF(D2, N2) that are mutually unbiased in

the quantum-information-theoretic sense. We show that this

technique, for example, yields (complex) ETF(D,N) with

D = Q−1
Q+1 (

Q−1
2 Q2J−1 − 1), N = Q−1

Q+1 (Q
2J − 1), (2)

for any prime power Q ≥ 4 and J ≥ 2, as well as ones with

D = Q3+1
Q4−1 (

Q3+1
Q+1 Q

4J−3 − 1), N = Q3+1
Q4−1(Q

4J − 1), (3)

for any prime power Q ≥ 2 and J ≥ 2. Remarkably, all

such ETFs seem to be new. For example, taking J = 2 and

Q = 4, 5 in (2) yields ETF(57, 153) and ETF(166, 416),
neither of which were previously known [16].

In the next section we establish notation, and review known

concepts that we will need later on. In Section III, we explain

what it means for several ETF(D,N) to be mutually unbiased

(Definition 3), and give a necessary condition on their exis-

tence (Theorem 1). We moreover construct mutually unbiased

ETFs from RDSs, both in general (Theorem 2) and using a

classical family (Corollary 1). In Section IV, we discuss the

aforementioned tensor-product-based technique (Theorem 3).

Combining it with Corollary 1 yields our main result (The-

orem 4). In special cases where the initial ETF(D1, N1) is

positive or negative in the sense of [12], our main result yields

several infinite families of new (complex) ETFs (Corollary 2).

http://arxiv.org/abs/2001.02055v1
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II. BACKGROUND

A. Equiangular tight frames and Naimark complements

Let F be either R or C. For any N -element set of in-

dices N , equip FN := {x : N → F} with the complex

dot product 〈x1,x2〉 :=
∑

n∈N [x1(n)]
∗x2(n) which, like

all inner products in this paper, is conjugate-linear in its

first argument. For any finite sequence {ϕn}n∈N of vectors

in a Hilbert space H over F, the corresponding synthesis

operator is Φ : F
N → H, Φx :=

∑

n∈N x(n)ϕn. Its

adjoint Φ∗ : H → FN , (Φ∗y)(n) = 〈ϕn,y〉 is called the

analysis operator. We sometimes identify a vector ϕ ∈ H

with its synthesis operator ϕ : F → H, ϕ(x) := xϕ, an

operator whose adjoint is the linear functional ϕ∗ : H → F,

ϕ∗y = 〈ϕ,y〉. In the special case where H = FD for some

D-element set D, Φ is just the D × N matrix whose nth

column is ϕn, and Φ∗ is its N ×D conjugate-transpose.

In general, the frame operator of {ϕn}n∈N is the compo-

sition ΦΦ∗ : H → H of its synthesis and analysis operators,

namely ΦΦ∗ =
∑

n∈N ϕnϕ
∗
n, ΦΦ∗y =

∑

n∈N 〈ϕn,y〉ϕn.

The reverse composition is the N ×N Gram matrix that has

(Φ∗Φ)(n, n′) = 〈ϕn,ϕn′〉 as its (n, n′)th entry. This matrix

has rank(Φ∗Φ) = rank(Φ) = dim(span{ϕn}n∈N ) and

is positive-semidefinite. Conversely, any positive-semidefinite

N × N matrix G factors as G = Φ∗Φ where Φ is the

synthesis operator of a sequence {ϕn}n∈N that spans H where

dim(H) = rank(G). Here, {ϕn}n∈N and H are only unique

up to unitary transformations, meaning we can take H = FD

if so desired, where D = rank(G).
We say {ϕn}n∈N is a (C-)tight frame for H if ΦΦ∗ = CI

for some C > 0. By the polarization identity, this equates to

having
∑

n∈N |〈ϕn,y〉|2 = ‖Φ∗y‖2 = C‖y‖2 for all y ∈ H.

An N × N self-adjoint matrix G is the Gram matrix Φ∗Φ

of a C-tight frame {ϕn}n∈N for some space H if and only

if G2 = CG, namely when 1
CG is an orthogonal projection

operator. In particular, Tr(G) = CD where D = rank(G).
We say {ϕn}n∈N is a unit norm tight frame (UNTF) for H

if it is a tight frame for H and ‖ϕn‖ = 1 for all n. Here, we

necessarily have N = Tr(Φ∗Φ) = CD where D = dim(H).
As such, a sequence {ϕn}n∈N of N unit vectors in H is a

UNTF for H if and only if

‖ΦΦ∗ − N
D I‖2Fro = Tr[(ΦΦ∗ − N

D I)2] = ‖Φ∗Φ‖2Fro − N2

D

is zero. That is, any N unit vectors {ϕn}n∈N in H satisfy

N2

D ≤ ‖Φ∗Φ‖2Fro =
∑

n∈N

∑

n′∈N

|〈ϕn,ϕn′〉|2, (4)

and achieve equality here if and only if they form a UNTF

for H. When {ϕn}n∈N is a UNTF for H, D
NΦ∗Φ is an

orthogonal projection operator with constant diagonal entries,

implying I−D
NΦ∗Φ is another such operator of rank N−D. In

particular, when this occurs with N > D, N
N−D I− D

N−DΦ∗Φ

is the Gram matrix Φ̃
∗
Φ̃ of a UNTF {ϕ̃n}n∈N for a space

H̃ of dimension N − D. Such a sequence {ϕ̃n}n∈N is

called a Naimark complement of {ϕn}n∈N . Up to unitary

transformations, it is uniquely defined according to

〈ϕ̃n, ϕ̃n′〉 =
{

1, n = n′,
− D

N−D 〈ϕn,ϕn′〉, n 6= n′.
(5)

Returning to (4), we now note that bounding the off-

diagonal terms of this sum by their maximum value gives

N2

D ≤
∑

n∈N

∑

n′∈N

|〈ϕn,ϕn′〉|2 (6)

≤ N +N(N − 1)max
n6=n′

|〈ϕn,ϕn′〉|2, (7)

which equates to the Welch bound (1). Moreover, equality

in (1) is equivalent to equality in both (6) and (7), namely

to when {ϕn}n∈N is a UNTF for H that also happens to

be equiangular, namely an ETF for H. In particular, equality

holds in (1) if and only if |〈ϕn,ϕn′〉|2 = N−D
D(N−1) for all

n 6= n′, and in this case, {ϕn}n∈N is necessarily a UNTF for

H. By (5), the Naimark complement of an ETF(D,N) is an

ETF(N −D,N), a fact we will use often.

B. Harmonic frames and relative difference sets

A character of a finite abelian group G is a homomorphism

γ : G → T := {z ∈ C : |z| = 1}. The set of all such characters

is known as the (Pontryagin) dual Ĝ of G, which is itself a

group under pointwise multiplication. In fact, since G is finite,

Ĝ is known to be isomorphic to G. The synthesis operator

Γ of the characters of G is a square G × Ĝ matrix having

Γ(g, γ) = γ(g) for all g and γ. Γ is often called the character

table of G, and its adjoint Γ∗ : CG → CĜ , (Γ∗y)(γ) = 〈γ,y〉
(the analysis operator of the characters) is the discrete Fourier

transform (DFT) over G. Since G is finite, it is known that its

characters form an equal-norm orthogonal basis for CG , and

so Γ−1 = 1
GΓ∗ where G = #(G). In particular ΓΓ∗ = GI.

For any D ⊆ G with D = #(D) > 0, let Ψ be the synthesis

operator of the corresponding harmonic frame {ψγ}γ∈Ĝ, that

is, the normalized restrictions of the characters of G to D:

Ψ ∈ C
D×Ĝ , Ψ(d, γ) = ψγ(d) := D− 1

2 γ(d). (8)

Any such frame is automatically a UNTF: for any d1, d2 ∈ D,

(ΨΨ∗)(d1, d2) =
1
D

∑

γ∈Ĝ

[γ(d1)]
∗γ(d2) =

1
D (ΓΓ∗)(d1, d2),

and so ΨΨ∗ = 1
DΓΓ∗ = G

D I. Meanwhile, for any γ1, γ2 ∈ Ĝ,

the corresponding entry of the Gram matrix is

〈ψγ1
,ψγ2

〉 = 1
D

∑

d∈D

[γ1(d)]
∗γ2(d)

= 1
D

∑

g∈G

[(γ1γ
−1
2 (g)]∗χD(g)

= 1
D (Γ∗χD)(γ1γ

−1
2 ),

where χD ∈ CG is the {0, 1}-valued characteristic (indicator)

function of D. In particular,

|〈ψγ1
,ψγ2

〉|2 = 1
D2 |(Γ∗χD)(γ1γ

−1
2 )|2, ∀ γ1, γ2 ∈ Ĝ. (9)

To continue, we exploit the fact that the DFT Γ∗ distributes

over convolution: for any y1,y2 ∈ CG , defining y1 ∗y2 ∈ CG

by (y1 ∗ y2)(g) :=
∑

g′∈G y1(g
′)y2(g − g′), we have

[Γ∗(y1 ∗ y2)](γ) = (Γ∗y1)(γ)(Γ
∗y2)(γ), ∀ γ ∈ Ĝ.

(When considering such G in general, we default to writ-

ing the group operation on G and its dual Ĝ as addition
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and multiplication, respectively.) Meanwhile, the DFT of the

involution ỹ ∈ C
G of y ∈ C

G , ỹ(g) := [y(−g)]∗ is

(Γ∗ỹ)(γ) = [(Γ∗y)(γ)]∗ for all γ ∈ Ĝ. Combined, we have

|(Γ∗χD)(γ)|2 = [Γ∗(χD ∗ χ̃D)](γ), ∀ γ ∈ Ĝ.
Here, χD ∗ χ̃D is the autocorrelation of χD , which counts the

number of distinct ways that any given g ∈ G can be written

as a difference of members of D:

(χD ∗ χ̃D)(g) =
∑

g′∈G

χD(g
′)χ̃D(g − g′)

=
∑

g′∈G

χD(g
′)χg+D(g

′)

= #{D ∩ (g +D)}
= #{(d, d′) ∈ D ×D : g = d− d′}.

Altogether, we see that there is a relationship between the

combinatorial properties of the differences d− d′ of members

of D and the magnitudes of the inner products of vectors that

belong to the corresponding harmonic frame. This relationship

has long been exploited [41] to characterize certain types of

D including, as we now explain, relative difference sets:

Definition 1. Let H be an H-element subgroup of an abelian

group G of order G. A D-element subset D of G is an H-RDS

for G if there exists a constant Λ such that

χD ∗ χ̃D = Λ(χG − χH) +Dδ0, (10)

namely if no nonzero member of H is a difference of two

members of D while every member of Hc can be written as

a difference of members of D in exactly Λ ways.

In the literature, an RDS with these parameters is usually

denoted as an “RDS(N,H,D,Λ)” where N = G
H . In the

special case where H = {0}, an H-RDS for G is simply

called a difference set for G. To proceed, we use the Poisson

summation formula, namely that Γ∗χH = HχH⊥ where

H⊥ := {γ ∈ Ĝ : γ(h) = 1, ∀h ∈ H} is the annihilator of H,

which is a subgroup of Ĝ that is isomorphic to G/H. (“The

DFT of a comb is a comb.”) In particular, taking the DFT

of (10) gives that D is an H-RDS for G if and only if

|(Γ∗χD)(γ)|2 = Λ[Gδ1(γ)−HχH⊥(γ)]+D, ∀ γ ∈ Ĝ. (11)

Here, evaluating (11) at γ = 1 gives D2 = Λ(G − H) +D,

namely that Λ = D(D−1)
G−H = D(D−1)

H(N−1) ; this also follows from

a simple counting argument. As such,

D − ΛH = D − D(D−1)
N−1 = D(N−D)

N−1

and so (11) equates to having

|(Γ∗χD)(γ)|2 =

{

D(N−D)
N−1 , γ ∈ H⊥, γ 6= 1,

D, γ /∈ H⊥.

In light of (9), we see that D is an H-RDS for G if and only

if the corresponding harmonic frame (8) satisfies

|〈ψγ1
,ψγ2

〉|2 =

{

N−D
D(N−1) , γ1γ

−1
2 ∈ H⊥, γ1 6= γ2,

1
D , γ1γ

−1
2 /∈ H⊥.

(12)

In the special case where H = {0}, the second condition above

becomes vacuous, and this result reduces to the equivalence

between difference sets and harmonic ETFs given in [45], [11].

C. Positive and negative ETFs

In Section IV, we show that, in certain circumstances, one

can construct an ETF(D1D2, N1N2) from an ETF(D1, N1)
and N1 mutually unbiased ETF(D2, N2). It turns out that this

technique applies to many distinct types of ETF(D1, N1),
including Naimark complements of Steiner ETFs [18] and

Tremain ETFs [14], as well as polyphase BIBD ETFs [15].

Here, to prevent duplication of effort, it helps to have the

following concepts from [12], which unite the (D1, N1) pa-

rameters of these disparate ETFs into a common framework:

Definition 2. For any ETF(D,N) with N > D > 1, let

L ∈ {1,−1}, S :=
[D(N−1)

N−D

]
1
2 , K := NS

D(S+L) .

When S,K ∈ Z, we say this ETF is type (K,L, S). In this

case, depending on whether L is 1 or −1, we also refer to such

an ETF as being (K-)positive or (K-)negative, respectively.

We caution that some ETFs are both positive and negative:

for example, the well-known ETF(3, 9) is both 2-positive and

6-negative, being both of type (2, 1, 2) and (6,−1, 2). Re-

gardless, for any ETF(D,N) of type (K,L, S), Theorem 3.1

of [12] gives expressions for (D,N) in terms of (K,L, S):

D = S
K [S(K − 1) + L] (13)

N = (S + L)[S(K − 1) + L]. (14)

As summarized in [12], almost all currently known construc-

tions of ETF(D,N) with N > 2D > 2 are either positive or

negative, with the only exceptions being certain SIC-POVMs,

harmonic ETFs, and examples where N = 2D + 1. As

summarized in Theorems 1.2, 4.1 and 4.2 of [12], an ETF

of type (K,L, S) exists whenever either:

(a) (K,L, S) = (1, 1, S) where S ≥ 2 (regular simplices);

(b) (K,L, S) = (K, 1, S) and a BIBD(V,K, 1) exists

where V = (K−1)S+1 (Steiner ETFs [18]), including:

(i) when K = 2, 3, 4, 5, S ≥ K , S ≡ 0, 1 mod K ,

(ii) when K | S(S − 1) and S is sufficiently large;

(c) (K,L, S) = (Q, 1, Q) where Q is any prime power

(Naimark complements of polyphase BIBD ETFs [15]);

(d) (K,L, S) = (2,−1, S) where S ≥ 3 (ETF(D,N) with

D = 1
2 (N +

√
N));

(e) (K,L, S) = (3,−1, S) where S ≥ 2, S ≡ 0, 2 mod 3
(Tremain ETFs [14]);

(f) (K,L, S) = (Q + 1,−1, Q + 1) where Q is an even

prime power (hyperoval ETFs [17]);

(g) (K,L, S) = (4,−1, S) where S ≡ 3 mod 8 [12].

This is not a comprehensive list: for the sake of brevity

and clarity, we have omitted some infinite families of neg-

ative ETFs that are either also (postive) Steiner ETFs or

are overly technical (see, for example, Theorems 1.2, 1.3

and 4.4 of [12] for some additional K-negative ETFs with

K = 4, 5, 6, 7, 10, 12, 15), as well as a finite number of

positive and/or negative ETFs for which, it turns out, our

theory below does not apply.
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III. MUTUALLY UNBIASED ETFS

Let M, N and D be sets of cardinality M , N and D,

respectively, where M ≥ 1, N ≥ D ≥ 1. For each m ∈ M, let

{ψm,n}n∈N be an ETF for FD with synthesis operator Ψm.

When N = D, this equates to a collection of M orthonormal

bases for FD; in quantum information theory, one says that

such bases are mutually unbiased if |〈ψm,n,ψm′,n′〉|2 = 1
D

whenever m 6= m′. As we now explain, this same condition

in general ensures that the concatenation {ψm,n}m∈M,n∈N of

these ETFs has minimal coherence. This concatenation is an

MN -vector UNTF for FD , as its synthesis operator Ψ satisfies

ΨΨ∗ =
∑

m∈M

∑

n∈N

ψm,nψ
∗
m,n =

∑

m∈M

ΨmΨ∗
m = MN

D I.

Thus (4) gives ‖Ψ∗Ψ‖2Fro = M2N2

D . Here, Ψ∗Ψ is an M×M
block matrix whose (m,m′)th block is the N×N cross-Gram

matrix Ψ∗
mΨm′ whose (n, n′)th entry is (Ψ∗

mΨm′)(n, n′) =
〈ψm,n,ψm′,n′〉. Thus,

M2N2

D = ‖Ψ∗Ψ‖2Fro =
∑

m∈M

∑

m′∈M

‖Ψ∗
mΨm′‖2Fro.

Moreover, for any m ∈ M, {ψm,n}n∈N is a UNTF for FD

and so (4) gives ‖Ψ∗
mΨm‖2Fro = N2

D . Subtracting these M
diagonal-block terms from the previous equation gives

M(M−1)N2

D =
∑

m∈M

∑

m′ 6=m

‖Ψ∗
mΨm′‖2Fro

≤ M(M − 1)N2 max
m 6=m′

n,n′∈N

|〈ψm,n,ψm′,n′〉|2,

where equality holds if and only if |〈ψm,n,ψm′,n′〉|2 = 1
D

whenever m 6= m′. Since for every m ∈ M we further have

that |〈ψm,n,ψm,n′〉|2 = N−D
D(N−1) ≤ 1

D for all n 6= n′, this is

actually a lower bound on the coherence of the concatenation

of any M ETF(D,N) for FD. This motivates the following:

Definition 3. Let M, N and D be sets of cardinality M ≥ 1
and N ≥ D ≥ 1, respectively. A sequence {ψm,n}m∈M,n∈N

of unit vectors in FD is a mutually-unbiased-equiangular tight

frame (MUETF) for FD if

|〈ψm,n,ψm′,n′〉|2 =

{

N−D
D(N−1) , m = m′, n 6= n′,

1
D , m 6= m′.

(15)

We often denote an MUETF that consists of M mutually

unbiased ETF(D,N) as an “MUETF(D,N,M)”. In the

special case where N = D, such an MUETF equates to a

collection of M mutually unbiased bases (MUBs) for FD . If

instead N = D + 1, this equates to M mutually unbiased

simplices (MUSs) for FD [19], [35].

We now derive an upper bound on the number M of mutu-

ally unbiased ETF(D,N) that can exist. Any unit vector ϕ in

FD “lifts” to a rank-one orthogonal projection operator ϕϕ∗,

and the Frobenius inner product of any two such operators is

〈ϕ1ϕ
∗
1,ϕ2ϕ

∗
2〉Fro = Tr(ϕ1ϕ

∗
1ϕ2ϕ

∗
2) = |〈ϕ1,ϕ2〉|2.

In particular, if {ψm,n}m∈M,n∈N is an MUETF for FD, then

the Gram matrix of the lifted vectors {ψm,nψ
∗
m,n}m∈M,n∈N

is the entrywise-modulus-squared |Ψ∗Ψ|2 of the Gram matrix

Ψ∗Ψ of {ψm,n}m∈M,n∈N . Here, (15) implies that every off-

diagonal block of |Ψ∗Ψ|2 is 1
DJN (where JN denotes an all-

ones N ×N matrix) and that every diagonal block of |Ψ∗Ψ|2
is

(D−1)N
D(N−1)IN + N−D

D(N−1)JN . This equates to having

|Ψ∗Ψ|2 = (D−1)N
D(N−1)I− [ D−1

D(N−1)I− 1
DJM]⊗ JN .

Diagonalizing this matrix reveals that it has eigenvalues
(D−1)N
D(N−1) , 0 and MN

D with multiplicities M(N−1), M−1 and

1, respectively. In particular, |Ψ∗Ψ|2 has rank M(N −1)+1.

At the same time, the operators {ψm,nψ
∗
m,n}m∈M,n∈N lie in

the real inner product space of all self-adjoint D×D matrices,

meaning the rank of their Gram matrix |Ψ∗Ψ|2 is at most the

dimension of this space, namely D2 when the underlying field

F is C, and 1
2D(D + 1) when F = R. That is,

M(N − 1) + 1 ≤
{

D2, F = C,
1
2D(D + 1), F = R.

(16)

When M = 1, this reduces to a necessary condition on

ETF(D,N) known as Gerzon’s bound. More generally, solv-

ing for M in the above inequality gives the following result:

Theorem 1. If an MUETF(D,N,M) exists and N > 1 then

M ≤
{

⌊D2−1
N−1 ⌋, F = C,

⌊ (D−1)(D+2)
2(N−1) ⌋, F = R.

In the special case where N = D, this reduces to the

classical upper bound on the maximal number of MUBs,

namely that M ≤ N +1 when F = C and that M ≤ ⌊D
2 ⌋+1

when F = R. In the special case where N = D + 1, this

reduces to a recently derived upper bound on the maximal

number of MUSs [35]. As detailed below, in at least these

two special cases, there are an infinite number of values of D
for which these bounds can be achieved.

A. Constructing MUETFs from relative difference sets

From Section II, recall that restricting and then normalizing

the characters of any abelian group G of order G to a

nonempty D-element subset D of G yields a harmonic UNTF

{ψγ}γ∈Ĝ, ψγ(d) := D− 1
2 γ(d) for CD. Further recall that for

any subgroup H of G of order H , such a subset D is an H-

RDS(N,H,D,Λ) (Definition 1) if and only if this harmonic

UNTF satisfies (12) where N = G
H . Comparing (12) to (15)

immediately gives that such a harmonic UNTF yields a (har-

monic) MUETF, where each individual ETF is indexed by a

coset of H⊥. To formalize this connection, we abuse notation,

letting the indexing “α ∈ Ĝ/H⊥” denote letting α vary over

any particular transversal (set of coset representatives) of H⊥

with respect to Ĝ. Doing so permits us to uniquely factor

any γ ∈ Ĝ as γ = αβ where β ∈ H⊥, at which point

comparing (12) to (15) gives:

Theorem 2. Letting H and D be a subgroup and nonempty

subset of a finite abelian group G, respectively, the sequence

{ψα,β}α∈Ĝ/H⊥, β∈H⊥ ⊆ C
D, ψα,β(d) := D− 1

2α(d)β(d),

is an MUETF(D,N,H) for CD (Definition 3) if and only if

D is an H-RDS(N,H,D,Λ) for G (Definition 1).
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In general, we refer to any MUETF created by Theorem 2

as a harmonic MUETF. In the special case where H = {0},

Theorem 2 reduces to the known equivalence between har-

monic ETFs and difference sets [45], [11]. Meanwhile, in

the special case where D = N , Theorem 2 converts any H-

RDS(D,H,D,Λ) into H MUBs for CD in a manner identical

to that of [21]. If instead N = D + 1, Theorem 2 yields H
MUSs for CD [19], [35]. As we shall see, Theorem 2 is a

true generalization of these previously known results, yielding

infinite numbers of MUETFs that do not belong to any one of

these three special categories.

Moving forward, it helps to note that if D is any H-RDS

for G, then by a simple counting argument, quotienting it by

any subgroup K of H produces an (H/K)-RDS for G/K,

namely D/K := {d+K ∈ G/K : d ∈ D} [32]. In particular,

if K has order K , doing so transforms an RDS(N,H,D,Λ)
into an RDS(N, H

K , D,KΛ). As an extreme case, quotienting

an H-RDS by K = H yields a difference set for G/H. From

the perspective of Theorem 2, these are special cases of more

general ideas, namely that any subcollection of M mutually

unbiased ETF(D,N) are still mutually unbiased, and that any

single one of them is an ETF.

Remark 1. On a related note, the particular ETF(D,N) that

arises from Theorem 2 by taking α = 1 is identical to the

harmonic ETF that arises from the difference set D/H for

G/H. To elaborate, for any β ∈ H⊥ and d ∈ D,

ψ1,β(d) = D− 1
2 1(d)β(d) = D− 1

2β(d). (17)

At the same time, H⊥ is naturally identified with the Pon-

tryagin dual of G/H via the isomorphism that maps any

given γ ∈ H⊥ to the character g + H 7→ γ(g). Under this

identification, evaluating the βth member of the harmonic ETF

arising from D/H at d+H gives (17). For this reason, for any

H-RDS D for G, we usually regard {ψβ}β∈H⊥ , ψβ := ψ1,β ,

as the “prototypical” ETF that arises from it. Indeed, for any

α ∈ Ĝ, letting Ψα be the synthesis operator for {ψα,β}β∈H⊥ ,

we have Ψα = ∆αΨ where Ψ := Ψ1 is the synthesis

operator of {ψβ}β∈H⊥ and where ∆α is the D × D unitary

diagonal matrix whose dth diagonal entry is α(d):

Ψα(d, β) = D− 1
2α(d)β(d) = (∆αψβ)(d) = (∆αΨ)(d, β).

B. Constructions of harmonic MUETFs

As noted in [21], in the special case where N = D, applying

Theorem 2 to an H-RDS(D,H,D,Λ) actually implies the

existence of H+1 MUBs for CD: since |ψα,β(d)| = D− 1
2 for

all α, β and d, every orthonormal basis {ψα,β}β∈H⊥ is also

unbiased to the standard basis. This is especially significant

since, for any prime power Q, there is a classical construction

of an RDS(Q,Q,Q, 1) [32] which in turn yields Q + 1 (the

maximal number of) MUBs in C
Q. When Q is odd, the

construction is shockingly simple: let

G = FQ × FQ, H = {0} × FQ, D = {(x, x2) : x ∈ FQ},
where here and throughout, FQ denotes the finite field of

order Q. Indeed, if (x, x2) − (y, y2) ∈ H = {0} × FQ then

x = y and so (x, x2) − (y, y2) = (0, 0). Meanwhile, for any

(a, b) ∈ Hc we have a 6= 0, and so there exists exactly one

pair (x, x2), (y, y2) such that

(a, b) = (x, x2)− (y, y2) = (x− y, (x− y)(x+ y)),

namely the pair arising from x = 1
2 (

b
a +a) and y = 1

2 (
b
a −a).

The construction is more complicated when Q is even [32].

This is not surprising since in that case the characters of FQ×
FQ are real-valued, and there are at most Q

2 +1 MUBs in RQ.

The proof of our main result (Theorem 4) relies on mutually

unbiased ETFs that are not MUBs, and which arise from

another classical RDS construction [32]. For any prime power

Q and J ≥ 2, regard FQJ as a J-dimensional vector space

over its subfield FQ. Let tr : FQJ → FQ, tr(x) :=
∑J−1

j=0 xQj

be the field trace, which is a nontrivial linear functional.

Let G = F
×
QJ be the (cyclic) multiplicative group of FQJ , let

H = F
×
Q, and consider the affine hyperplane

D = {x ∈ F
×
QJ : tr(x) = 1}, (18)

which has cardinality QJ−1. For any y ∈ F
×
QJ ,

D ∩ (yD) = {x ∈ F
×
QJ : tr(x) = 1 = tr(y−1x)}. (19)

For any y ∈ F
×
Q, y 6= 1, the linearity of the trace gives

tr(y−1x) = y−1 tr(x), implying D ∩ (yD) is empty. Mean-

while, for any y /∈ F
×
Q, we can take {1, y−1} as the first two

vectors in a basis {zj}Jj=1 for FQJ over FQ. Since the trace

is nontrivial, the “analysis operator” of this basis, namely

L : FQJ → F
J
Q, L(x) = (tr(z1x), . . . , tr(zJx)),

has a trivial null space and is thus invertible. Letting A be

the 2 × J matrix whose rows are the first two rows of I, we

thus have that the mapping x 7→ AL(x) = (tr(x), tr(y−1x))
has rank two. This implies (19) is an affine subspace of

codimension 2 and so has cardinality QJ−2. Altogether,

#[D ∩ (yD)] =











QJ−1, y = 1,

0, y ∈ F
×
Q, y 6= 1,

QJ−2, y /∈ F
×
Q,

and so D is an RDS(Q
J−1

Q−1 , Q− 1, QJ−1, QJ−2) for F×
QJ .

Quotienting this H-RDS by H gives a difference set D/F×
Q

for F×
QJ/F

×
Q; since the trace is linear over F×

Q, it is

D/F×
Q = {xF×

Q ∈ F
×
QJ/F

×
Q : tr(x) = 1}

= {xF×
Q ∈ F

×
QJ/F

×
Q : tr(x) 6= 0},

namely the complement of the well-known Singer difference

set for F×
QJ/F

×
Q, defined as {xF×

Q ∈ F
×
QJ/F

×
Q : tr(x) = 0}.

Applying Theorem 2 to this RDS yields Q − 1 mutually

unbiased ETF(QJ−1, QJ−1
Q−1 ). To make this construction more

explicit, let α be a generator of F
×
QJ , and consider the

isomorphism αt 7→ t from this group onto ZQJ−1. Under

this isomorphism, G, H and D become

G = ZQJ−1, H = 〈QJ−1
Q−1 〉, D = {d ∈ ZQJ−1 : tr(αd) = 1}.
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This allows us to also regard Ĝ as ZQJ−1, isomorphically

identifying s ∈ ZQJ−1 with the character t 7→ exp( 2πist
QJ−1 ).

Under this identification, H⊥ becomes

H⊥ = {s ∈ ZQJ−1 : exp( 2πist
QJ−1 ) = 1, ∀ t ∈ 〈QJ−1

Q−1 〉}
= 〈Q− 1〉.

Any s ∈ ZQJ−1 can be uniquely written as s = m+(Q−1)n
where m lies in the transversal {0, 1, 2, . . . , Q− 2} of 〈Q−1〉
and n = 0, . . . , QJ−1

Q−1 − 1. Under these identifications, the nth

member of the mth mutually unbiased ETF(QJ−1, QJ−1
Q−1 ) for

CD produced by Theorem 2 becomes

ψm,n(d) = Q− J−1
2 exp(2πi[m+(Q−1)n]d

QJ−1 )

= exp(2πimd
QJ−1 )Q

− J−1
2 exp(2πi(Q−1)nd

QJ−1 ).

Here, by Definition 3, |〈ψm,n,ψm′,n′〉|2 has value 1
QJ−1

whenever m 6= m′, and otherwise has value

[Q
J−1

Q−1 −QJ−1][QJ−1(Q
J−1

Q−1 − 1)]−1 = 1
QJ .

Combining these facts with the perspective of Remark 1 gives:

Corollary 1. For any prime power Q and any integer J ≥ 2,

let α be a generator of F×
QJ and let

D =

{

d ∈ ZQJ−1 : tr(αd) =
J−1
∑

j=0

αdQj

= 1

}

⊆ ZQJ−1.

Letting ∆ be the D × D unitary diagonal matrix whose dth

diagonal entry is exp( 2πid
QJ−1 ),

{ψm,n}Q−2
m=0,

QJ
−1

Q−1 −1

n=0 ⊆ C
D, ψm,n := ∆mψn,

is an MUETF(QJ−1, QJ−1
Q−1 , Q− 1) for CD where

{ψn}
QJ

−1
Q−1 −1

n=0 ⊆ C
D, ψn(d) := Q− J−1

2 exp(2πi(Q−1)nd
QJ−1 ),

is the harmonic ETF(QJ−1, QJ−1
Q−1 ) for CD arising from the

complement of a Singer difference set. In particular,

|〈ψm,n,ψm′,n′〉|2 =

{

1
QJ , m = m′, n 6= n′,
1

QJ−1 , m 6= m′.

Example 1. When Q = 4 and J = 2, X4 + X + 1 is a

primitive polynomial in F2[X ], meaning α = X+〈X4+X+1〉
generates the multiplicative group of

F16 = F2[X ]/〈X4 +X + 1〉
= {a+ bα+ cα2 + dα3 : a, b, c, d ∈ F2, α4 = α+ 1}.

As such, elements of F16 can be represented as the powers of

the 2× 2 companion matrix A of α, whose entries lie in F2:

A =

[

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

]

.

This representation facilitates the computation of

D = {d ∈ Z15 : tr(αd) = 1}
= {d ∈ Z15 : Ad +A4d = I}
= {1, 2, 8, 4}.

This RDS(5, 3, 4, 1) yields three mutually unbiased ETF(4, 5)
with synthesis operators Ψ, ∆Ψ, ∆2Ψ where ω = e

2πi
15 ,

∆ =









ω 0 0 0
0 ω2 0 0
0 0 ω8 0
0 0 0 ω4









, Ψ =
1

2









1 ω3 ω6 ω9 ω12

1 ω6 ω12 ω3 ω9

1 ω9 ω3 ω12 ω6

1 ω12 ω9 ω6 ω3









.

Here, Ψ is also the synthesis operator of the harmonic ETF

that arises from the difference set {1, 2, 3, 4} in Z5 that itself

arises by quotienting the D = {1, 2, 8, 4} ⊆ Z15 by H = 〈5〉.
As seen in this example, in the special case where J = 2,

Corollary 1 yields Q− 1 mutually unbiased ETF(Q,Q+ 1),
namely Q − 1 mutually unbiased Q-simplices. Such MUSs

recently arose [19] in a study of harmonic ETFs that are a

disjoint union of regular simplices [13]. In the next section, we

reverse some of the analysis of [13], [19], using the MUETFs

constructed in Corollary 1 to produce new ETFs. Before doing

so, note that by Theorem 1, the maximal number of complex

mutually unbiased ETF(D,D + 1) is at most

⌊ D2−1
(D+1)−1⌋ = ⌊D − 1

D ⌋ = D − 1.

Altogether, we see that for any prime power Q, the maximal

number of mutually unbiased complex ETF(Q,Q + 1) is

exactly Q − 1. Meanwhile, when J ≥ 3, there is a gap

between the number Q − 1 of mutually unbiased complex

ETF(QJ−1, QJ−1
Q−1 ) produced by Corollary 1 and the upper

bound on this number provided by Theorem 1, namely

⌊D2−1
N−1 ⌋ = ⌊ (Q−1)(QJ−1+1)

Q ⌋ = QJ−2(Q− 1).

This gap persists even if, following [21], we refine the analysis

of (16) so as to account for the fact that the MUETF vectors

ψm,n constructed by Corollary 1 have entries of constant

modulus D− 1
2 . To elaborate, in this case each ψm,n lifts to an

orthogonal projection operator ψm,nψ
∗
m,n which lies in real

(D2−D+1)-dimensional space of complex Hermitian D×D
matrices with constant diagonal entries. As such, (16) refines

to M(N − 1) + 1 ≤ D2 −D + 1, namely

M ≤ ⌊D(D−1)
N−1 ⌋ =

⌊

QJ−1(QJ−1−1)

Q(QJ−1−1
Q−1 )

⌋

= QJ−2(Q − 1).

Though this might seem like an esoteric issue, in the next

section, we introduce a way of constructing new ETFs from

MUETFs, and this method very much depends on the number

of mutually unbiased ETFs available. And remarkably, the

RDS literature itself warns that Corollary 1 can be improved

upon: when Q = 4 and J = 3, Corollary 1 yields 3 mutually

unbiased ETF(16, 21) arising from an RDS(21, 3, 16, 4) when

in fact, an RDS(21, 6, 16, 2) for Z126 exists [32], and applying

Theorem 1 to it yields 6 mutually unbiased ETF(16, 21). We

leave a deeper investigation of this issue for future work.

IV. NEW ETFS FROM MUETFS

In this section, we show how to combine the MUETFs of

the previous section with certain other known ETFs to produce

yet more ETFs. Though MUETFs are an exotic ingredient, the

recipe itself is simple:



7

Theorem 3. If {ϕn1
}n1∈N1 is an ETF(D1, N1) for FD1 and

{ψn1,n2
}n1∈N1,n2∈N2 is an MUETF(D2, N2, N1) for F

D2 ,

and these parameters satisfy

N1−D1

D1(N1−1) =
N2−D2

N2−1 , (20)

then {ϕn1
⊗ψn1,n2

}(n1,n2)∈N1×N2
is an ETF(D3, N3) for

FD1×D2 , where D3 = D1D2, N3 = N1N2 and

N3 −D3 = D1N1(N2 −D2) + (N1 −D1), (21)

N3−D3

D3(N3−1) =
N2−D2

D2(N2−1) , (22)

D3(N3−D3)
N3−1 = D2

1
D2(N2−D2)

N2−1 . (23)

Moreover, if
D2(N2−D2)

N2−1 , (N3−D3)(N3−1)
D3

∈ Z then N1

D1
∈ Z.

Proof. Since {ϕn1
}n1∈N1 is an ETF(D1, N1),

|〈ϕn1
,ϕn′

1
〉|2 =

{

1, n1 = n′
1,

N1−D1

D1(N1−1) , n1 6= n′
1.

Also {ψn1,n2
}n1∈N1,n2∈N2 is an MUETF(D2, N2, N1), and

so Definition 3 gives

|〈ψn1,n2
,ψn′

1,n
′

2
〉|2 =











1, (n1, n2) = (n′
1, n

′
2),

N2−D2

D2(N2−1) , n1 = n′
1, n2 6= n′

2,

1
D2

, n1 6= n′
1.

For any (n1, n2), (n
′
1, n

′
2) ∈ N1 × N2, multiplying these

expressions gives

|〈ϕn1
⊗ ψn1,n2

,ϕn′

1
⊗ψn′

1,n
′

2
〉|2

=











1, (n1, n2) = (n′
1, n

′
2),

N2−D2

D2(N2−1) , n1 = n′
1, n2 6= n′

2,

N1−D1

D2D1(N1−1) , n1 6= n′
1.

(24)

In particular, (20) equates to {ϕn1
⊗ψn1,n2

}(n1,n2)∈N1×N2

being equiangular. To prove that this sequence of vectors is a

tight frame for FD1×D2 note that for any n1 ∈ N1, the fact that

{ψn1,n2
}n2∈N2 achieves the Welch bound for N2 vectors in

FD2 implies it is necessarily a UNTF for FD2 , i.e., that its syn-

thesis operator Ψn1 satisfies Ψn1
Ψ∗

n1
= N2

D2
ID2 . Similarly, the

synthesis operator Φ of {ϕn1
}n1∈N1 satisfies ΦΦ∗ = N1

D1
ID1 .

Thus, the frame operator of {ϕn1
⊗ψn1,n2

}(n1,n2)∈N1×N2
is

∑

n1∈N1

ϕn1
ϕ∗

n1
⊗
(

∑

n2∈N2

ψn1,n2
ψ∗

n1,n2

)

=
∑

n1∈N1

ϕn1
ϕ∗

n1
⊗ (N2

D2
ID2) =

N1N2

D1D2
ID1×D2 .

Thus, {ϕn1
⊗ψn1,n2

}(n1,n2)∈N1×N2
is an ETF(D3, N3) for

FD1×D2 where D3 = D1D2 and N3 = N1N2. By (24),

the Welch bound of this ETF(D3, N3) equals that of our

mutually unbiased ETF(D2, N2), giving (22). (Alternatively,

(22) follows directly from (20).) Next, multiplying (22) by

D3(N3 − 1) = D1D2(N1N2 − 1) and using (20) gives (21):

N3 −D3 = D1(N1N2−1)(N2−D2)
N2−1

= D1N1(N2 −D2) +
D1(N1−1)(N2−D2)

N2−1

= D1N1(N2 −D2) + (N1 −D1).

Meanwhile, multiplying (22) by D2
3 = D2

1D
2
2 immediately

gives (23). For the final conclusion, note that if

D2(N2−D2)
N2−1 , (N3−D3)(N3−1)

D3

are integers then their product is as well; by (22) and (21),

this product is

D2(N2−D2)
N2−1

(N3−D3)(N3−1)
D3

=
D2

2(N3−D3)
D3(N3−1)

(N3−D3)(N3−1)
D3

= (N3−D3

D1
)2

= [N1(N2 −D2) +
N1

D1
− 1]2,

and so D1 necessarily divides N1.

Example 2. Since (D1, N1) = (2, 3) and (D2, N2) = (4, 5)
satisfy (20), i.e., 3−2

2(3−1) =
1
4 = 5−4

5−1 , we can apply Theorem 3

to an ETF(2, 3) and the MUETF(4, 5, 3) of Example 1 to

produce an ETF(8, 15). In particular, we take ω = exp(2πi15 )
as before, and let {ϕn}2n=0 be the ETF(2, 3) with

Φ =
[

ϕ0 ϕ1 ϕ2

]

=
1√
2

[

1 ω5 ω10

1 ω10 ω5

]

.

Taking ∆ and Ψ as in Example 1, Theorem 3 gives that
[

(ϕ0 ⊗Ψ) (ϕ1 ⊗∆Ψ) (ϕ2 ⊗∆2Ψ)
]

is the synthesis operator of an ETF(8, 15).
In fact, it turns out that perfectly shuffling the columns

of this matrix—converting three collections of five vectors

into five collections of three vectors—yields a harmonic ETF

arising from a difference set for Z15 that is itself the sum of a

difference set {5, 10} for the subgroup H = {0, 5, 10} of Z15

and the H-RDS {1, 2, 8, 4} for Z15 from Example 1, namely

{6, 11, 7, 12, 13, 3, 9, 14} = {5, 10}+ {1, 2, 8, 4}. (25)

A little later on, we explain that while not every ETF

produced by Theorem 3 is harmonic, this does occur infinitely

often. In such special cases, it turns out that the construction of

Theorem 3 is a reversal of some of the ideas from [13], [19].

To elaborate, [13] considers ETFs that contain subsequences

which are regular simplices for their span. There, it was shown

that certain Singer-complement-harmonic ETFs partition into

such subsequences, and moreover that their spans form a

type of optimal packing of subspaces known as an equi-

chordal tight fusion frame (ECTFF). (The techniques of [13]

show, for example, that the harmonic ETF(8, 15) arising

from (25) partitions into three ETF(4, 5), yielding an ECTFF

that consists of three 4-dimensional subspaces of C8.) This

analysis was refined in [19], showing that these subspaces

are actually equi-isoclinic when the underlying difference set

factors in a manner similar to (25).

Theorem 3 reverses this idea, concatenating N1 subse-

quences, each of which is an ETF(D2, N2) for its span,

to form an ETF(D1D2, N1N2). Indeed, for any n1 ∈ N1,

ϕn1
⊗ Ψn1 = (ϕn1

⊗ I)Ψn1 is the synthesis operator

of {ϕn1
⊗ψn1,n2

}n2∈N2 , meaning this subsequence is the

embedding of the ETF {ψn1,n2
}n2∈N2 into a D2-dimensional

subspace of FD1×D2 via the isometry ϕn1
⊗ I. In the special

case where N2 = D2+1, the ETFs constructed by Theorem 3

partition into a union of N1 regular D2-simplices.
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We now apply Theorem 3 with the only MUETFs we know

of that are not MUBs, namely those described in Corollary 1:

Theorem 4. If an ETF(D,N) exists where D < N < 2D

and Q = D(N−1)
N−D is a power of a prime, then for every positive

integer J , there exists an ETF(D(J), N (J)) where

D(J) = DQJ−1, (26)

N (J) = N(Q
J−1

Q−1 ), (27)

N (J) −D(J) = DN(Q
J−1−1
Q−1 ) + (N −D). (28)

Here, for any J ≥ 2,

D(J)(N(J)−1)
N(J)−D(J) = QJ , (29)

(N(J)−D(J))(N(J)−1)

D(J) = D2QJ−2, (30)

(N(J)−D(J))(N(J)−1)

D(J) /∈ Z, (31)

D(J) + 1 < N (J) < 2D(J), (32)

and so no ETF(D(J), N (J)) can be real-valued.

Proof. When J = 1, (26), (27) and (28) become D(1) =
D, N (1) = N and N (1) − D(1) = N − D, respec-

tively, and the given ETF(D,N) is an ETF(D(1), N (1)).
As such, assume J ≥ 2. Here, Corollary 1 provides an

MUETF(QJ−1, QJ−1
Q−1 , Q− 1). Moreover, since N and D are

integers, having N < 2D implies N −D ≤ D − 1 and so

Q − 1 = D(N−1)
N−D − 1 = N(D−1)

N−D ≥ N.

Thus, we can take just N of these mutually unbiased ETFs to

form an MUETF(QJ−1, QJ−1
Q−1 , N). To apply Theorem 3 with

this MUETF, note that (N2, D2) = (QJ−1, Q
J−1

Q−1 ) satisfies

N2 −D2 = QJ−1
Q−1 −QJ−1 = QJ−1−1

Q−1 , (33)

N2 − 1 = QJ−1
Q−1 − 1 = Q(Q

J−1−1
Q−1 ). (34)

When combined with our assumption that Q = D(N−1)
N−D , this

implies that (20) is satisfied when (N1, D1) = (D,N):

N2−D2

N2−1 = 1
Q = N−D

D(N−1) =
N1−D1

D1(N1−1) .

As such, Theorem 3 yields an ETF(D(J), N (J)) where

D(J) = D3 = D1D2 = DQJ−1,

N (J) = N3 = N1N2 = N(Q
J−1

Q−1 ),

as claimed in (26) and (27), respectively. Moreover, combin-

ing (33) with (21) immediately yields (28). Next, (29) and (30)

follow from combining (22) and (23) with (33), (34) and the

fact that D2 = QJ−1. Continuing, since J ≥ 2, (28) gives

N (J) −D(J) > N −D ≥ 1, namely one half of (32). For the

remaining half, note that since Q = D(N−1)
N−D and N < 2D,

N(J)

D(J) = N
D

QJ−1
QJ−1(Q−1) <

N
D

Q
Q−1 = N−1

D−1 ≤ (2D−1)−1
D−1 = 2.

Moreover, since J ≥ 2,

D2(N2−D2)
N2−1 = QJ−1

Q = QJ−2 ∈ Z,

while 1 < N
D < 2 and so N1

D1
= N

D /∈ Z. As such, the final

statement of Theorem 3 gives (31). In particular, when J ≥ 2,

(31) and (32) imply that (D(J), N (J)) violates a well-known

necessary condition on the existence of real ETFs [39]. (We

caution that (31) and (32) are not necessary when J = 1.

In fact, some of the most fruitful applications of these ideas

are scenarios where (D(1), N (1)) = (D,N) either satisfies
(N−D)(N−1)

D ∈ Z or N = D + 1.)

By our earlier remarks, any ETF produced by Theorem 4

partitions into N subsequences, each consisting of QJ−1
Q−1

vectors that form an ETF for their QJ−1-dimensional span. In

particular, taking J = 2 yields ETFs that are disjoint unions of

regular Q-simplices. We also note that in light of (29) and (32),

Theorem 4 can be applied to any ETF(D(J), N (J)) that it

itself produces; the interested reader can verify that doing so

only yields a proper subset of those that arise by applying it

to the original ETF(D,N).
By (30), any ETF produced by Theorem 4 with J ≥ 2

satisfies the most basic necessary condition on the existence

of harmonic ETFs, namely that the index

D − Λ = D − D(D−1)
N−1 = D(N−D)

N−1

of its underlying difference set is an integer. At the same time,

the fact that such an ETF satisfies (31) makes it unusual.

In fact, most known ETF(D,N) have the property that

both
D(N−1)
N−D and

(N−D)(N−1)
D are integers, including all

real ETFs, SIC-POVMs, positive and negative ETFs, ETFs

of redundancy two, and all harmonic ETFs that arise from

either Hadamard, McFarland, Spence, Davis-Jedwab and Chen

difference sets [39], [12]. Prior to Theorem 4, the only known

exceptions seemed to be certain harmonic ETFs (arising for

example from Singer, Paley, cyclotomic, Hall and twin-prime-

power difference sets) and ETF(D,N) with N = 2D±1 [33],

[37]. To be clear, Theorem 4 recovers some of these previously

known unusual ETFs: the next subsection is devoted to the

special relationship between Theorem 4 and Singer difference

sets; moreover, applying Theorem 4 to any ETF(D,N) where

N = 2D − 1 and D is an even prime power yields another

ETF of this same type. However, in other cases, Theorem 4

yields ETFs with new parameters:

Example 3. The Naimark complement of a SIC-POVM for

C3 is an ETF(6, 9). Since Q = 6(9−1)
9−6 = 16 is a prime power,

Theorem 4 can be applied to it. We walk through its proof in

the special case where J = 2. Here, Corollary 1 provides

15 mutually unbiased ETF(16, 17) (regular 16-simplices).

Since 9−6
6(9−1) = 1

16 = 17−16
17−1 , condition (20) of Theorem 3

is met, and so taking tensor products of the members of

this ETF(6, 9) with the members of any 9 of these 15
mutually unbiased ETF(16, 17) yields an ETF(D,N) with

(D,N) = (6(16), 9(17)) = (96, 153). This ETF is new [16].

ETFs with these parameters cannot be real, SIC-POVMs,

positive or negative since
(N−D)(N−1)

D = 361
4 = (192 )

2 is not

an integer. Moreover, no difference set of cardinality 96 (or

equivalently, 57) exists in either Z3×Z3×Z17 or Z9×Z17 [24],

despite the fact that
D(N−D)

N−1 = 36 is an integer.

Example 4. For another “small” example, an ETF(10, 16)

exists [16] and Q = 10(16−1)
16−10 = 25 is a prime power. As such,

when J = 2 for example, Theorem 4 yields an ETF(D,N)
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with (D,N) = (10(25), 16(26)) = (250, 416). This ETF is

also new [16], and
(N−D)(N−1)

D = (835 )
2 is not an integer. The

existence of a difference set of cardinality 250 (or equivalently,

166) in a group of order 416 is an open problem [24].

In the next two subsections, we evaluate the novelty of the

ETFs produced by Theorem 4 in general. It turns out that

an infinite number of them are new, and that another infinite

number of them are not new.

A. Recovering known ETFs with Theorem 4

Theorem 4 applies to any harmonic ETF that arises from the

complement of a Singer difference set, but doing so just yields

another ETF of this same type. To elaborate, when K ≥ 2 and

(D,N) = (QK−1, QK−1
Q−1 ) for some prime power Q, we have

1 < N
D = QK−1

QK−QK−1 < 2, D(N−1)
N−D = QK .

Theorem 4 thus provides an ETF(D(J), N (J)) with

D(J) = D(QK)J−1 = QK−1QK(J−1) = QJK−1,

N (J) = N (QK)J−1
QK−1

= QK−1
Q−1

QJK−1
QK−1

= QJK−1
Q−1 .

As we now explain, this relates to the fact that Theorem 4

can be regarded as a generalization of a classical factorization

of the complement of a Singer difference set due to Gordon,

Mills and Welch [23]. Denoting the field trace from FQJK to

FQK as “trJK:K ,” the freshman’s dream gives

trJK:1(x) = trK:1(trJK:K(x)), ∀x ∈ FQJK .

We claim that E1 = E2E3 where

E1 = {x1 ∈ F
×
QJK : trJK:1(x1) = 1},

E2 = {x2 ∈ F
×
QK : trK:1(x2) = 1},

E3 = {x3 ∈ F
×
QJK : trJK:K(x3) = 1}.

Indeed, for any x2 ∈ E2 and x3 ∈ E3,

trJK:1(x2x3) = trK:1(x2 trJK:K(x3)) = trK:1(x2) = 1,

and conversely, any x1 ∈ E1 factors as x1 = x2x3 where

x2 := trJK:K(x1) ∈ E2 and x3 := x1x
−1
2 ∈ E3. Since the

hyperplanes E1, E2 and E3 have cardinality QJK−1, QK−1

and (QK)J−1 = QJK−K , respectively, this “x1 = x2x3”

factorization is unique. Applying the quotient homomorphism

x 7→ x := xF×
Q to E1 = E2E3 gives D1 = D2D3 where

D1 = E1 = {x1 ∈ F
×
QJK/F×

Q : trJK:1(x1) 6= 0},
D2 = E2 = {x2 ∈ F

×
QK/F×

Q : trK:1(x2) 6= 0}, (35)

D3 = E3 = {x3 ∈ F
×
QJK/F×

Q : trJK:K(x3) ∈ F
×
Q}.

Here, D1 and D2 are the complements of Singer difference

sets in F
×
QJK/F×

Q and F
×
QK/F×

Q, respectively, while D3 is an

RDS(Q
JK−1

QK−1 , QK−1
Q−1 , Q(J−1)K , (Q− 1)Q(J−2)K)

obtained by quotienting the RDS E3 (of type (18) where “Q” is

QK) by F
×
Q. When written additively, we have D1 = D2+D3

where D1, D2 and D3 are subsets of ZN1 where N1 = QJK−1
Q−1 .

In fact, (35) gives that D2 is a subset of the subgroup of ZN1 of

order N2 = QK−1
Q−1 , namely 〈N3〉 where N3 = N1

N2
= QJK−1

QK−1 .

As such, any d1 ∈ D1 can be written as d1 = N3d2+d3 where

N3d2 ∈ D2, d3 ∈ D3. This in turn implies that the value of

any given character of ZN1 at d1 ∈ D1 is

exp(2πind1

N1
) = exp(2πin(N3d2+d3)

N1
)

= exp(2πind2

N2
) exp(2πind3

N3
).

From this, we see that each vector in the harmonic ETF arising

from D1 is a tensor product of a vector in the harmonic ETF

arising from D2 with a vector in the harmonic tight frame

arising from the RDS D3.

Overall, we see that the classical factorization of the com-

plements of certain Singer difference sets [23] indeed leads

to a special case of the “ETF-tensor-MUETF” construction

of Theorem 3 where, as in the proof of Theorem 4, the

MUETF in question arises from an RDS. In particular, the

harmonic ETF that arises from the complement of the Singer

difference set in F
×
QJK/F×

Q partitions into QK−1
Q−1 copies of the

harmonic ETF that arises from the complement of the Singer

difference set in F
×
QJK/F×

QK , each isometrically embedded

into a Q(J−1)K-dimensional subspace of a common space

of dimension QJK−1. In the special case where J = 2,

this partitions a harmonic ETF(Q2K−1, Q2K−1
Q−1 ) into QK−1

Q−1

embedded regular QK-simplices, recovering a result of [13].

B. Constructing new ETFs with Theorem 4

Theorem 4 requires an ETF(D,N) where

D(N−1)
N−D is a prime power and D < N < 2D. (36)

Some examples of such ETFs are regular simplices, that is,

have N = D + 1. All other examples have D + 1 < N <
2D, meaning the parameters (N − D,N) of its Naimark

complement satisfy N > 2(N − D) > 2. As discussed

in Section II, this means such an ETF(D,N) is either the

Naimark complement of a SIC-POVM, satisfies N = 2D− 1
where D is even, is a harmonic ETF, or is the Naimark

complement of a positive and/or negative ETF (Definition 2).

In light of the previous subsection, we ignore ETF(D,N)
whose parameters match those of one that arises from the

complement of a Singer difference set, as applying Theorem 4

to them only recovers ETFs with known parameters. With

a little work, one finds that this includes all ETF(D,N)
that satisfy (36) and are either regular simplices, have N =
2D − 1 where D is even, or are harmonic ETFs arising

from the complements of difference sets of the following

types: Singer, Paley, cyclotomic, Hall and twin-prime-power.

Moreover, every ETF(D,N) that satisfies (36) and whose

Naimark complement is a SIC-POVM is an ETF(6, 9), and

every ETF(3, 9) is both 2-positive and 6-negative. Some

harmonic ETFs are also positive or negative, including those

that arise from Hadamard, McFarland, Spence, and Davis-

Jedwab difference sets [12].

Our search thus reduces to the following: find ETF(D,N)
that satisfy (36) and are either Naimark complements of

positive or negative ETFs or are harmonic ETFs that arise

from (complements of) difference sets which are not one of
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the aforementioned types. In the latter case, after searching

the literature [28], the only potential candidates that we found

are difference sets due to Chen [8], whose complements yield

ETF(D,N) where

D = Q2J−1[2(Q
2J−1
Q−1 )− 1], N = 4Q2J(Q

2J−1
Q−1 ),

where J ≥ 2 and Q is either a power of 3 or an even power

of an odd prime. Here, D < N < 2D and

D(N−1)
N−D = [2(Q

2J−1
Q−1 )− 1]2,

is sometimes a prime power and sometimes is not. In

cases where it is, applying Theorem 4 to the corresponding

ETF(D,N) seems to yield new ETFs with enormous param-

eters; we leave a deeper investigation of them for future work.

The only known ETFs that remain to be considered are

ETF(D,N) whose Naimark complements are either positive

or negative. Taking the complementary parameters of those

in (13) and (14), this means there exists L ∈ {1,−1} and

integers K ≥ 1 and S ≥ 2 such that

D = [S(K−1
K ) + L][S(K − 1) + L],

N = (S + L)[S(K − 1) + L].

As noted in [12], such ETFs satisfy D < N < 2D provided

we exclude 1-positive ETFs, 2-negative ETFs, and ETFs of

type (3,−1, 2) or (3,−1, 3). That is, in terms of the partial

list (a)–(g) of known families of positive and negative ETFs

given in Subsection II-C, we exclude all ETFs from (a) and

(d), the first two members of (e), and the first member of (f).

The remaining ETFs on this list satisfy (36) if and only if

D(N−1)
N−D = K

S [S(K−1
K ) + L][S2(K − 1) +KLS]

= [S(K − 1) +KL]2

is a prime power, namely if and only if

Q = S(K − 1) +KL is a prime power. (37)

Here, Q ≡ L mod (K − 1), and substituting S = Q−KL
K−1 into

the above expressions for D, N and
D(N−1)
N−D gives

D = Q
K [Q− (K − 1)L],

N = Q−L
K−1 [Q− (K − 1)L],

D(N−1)
N−D = Q2.

Many ETFs from (b) satisfy (37). When K = 2, 3, 4, 5 for

example, we only need prime powers Q ≡ 1 mod (K − 1)
such that S = Q−K

K−1 satisfies S ≥ K and S ≡ 0, 1 mod K ,

that is, such that Q ≥ K2 and Q ≡ K, 2K−1 mod K(K−1).
An infinite number of such Q exist, including all powers of

K . More generally, for any K ≥ 2, we need prime powers

Q ≡ 1 mod (K − 1) such that S = Q−K
K−1 is sufficiently large

and has the property that K | S(S − 1). An infinite number

of such Q exist: in fact, since K and K − 1 are relatively

prime, their product is relatively prime to their sum, at which

point Dirichlet’s theorem implies there are an infinite number

of primes Q such that Q ≡ 2K− 1 mod K(K− 1), implying

S = Q−K
K−1 ≡ 1 mod K .

All ETFs from (c) satisfy (37): when (K,L, S) = (P, 1, P )
for some prime power P , Q = S(K−1)+KL = P 2 is also a

prime power. (In contrast, Steiner ETFs arising from projective

planes of order P are of type (P + 1, 1, P + 1) [12], and in

this case Q = (P + 1)2 is only sometimes a prime power,

such as when P is a Mersenne prime.)

An infinite number of the (nonexcluded) ETFs from (e)

satisfy (37): having (K,L, S) = (3,−1, S) where S ≥ 5,

S ≡ 0, 2 mod 3 implies Q = S(K − 1) + KL = 2S − 3
can be any prime power such that Q ≥ 7, Q ≡ 1, 3 mod 6,

including all powers of 3 apart from 3 itself.

None of the (nonexcluded) ETFs from (f) satisfy (37): when

(K,L, S) = (2J + 1,−1, 2J + 1) for some J ≥ 2, Q =
S(K − 1) +KL = (2J + 1)(2J − 1) is not a prime power.

An infinite number of the ETFs from (f) satisfy (37): when

(K,L, S) = (4,−1, S) where S ≡ 3 mod 8, we have that

Q = S(K − 1) +KL = 3S − 4 can be any prime power Q
such that Q ≡ 5 mod 24.

Applying Theorem 4 to the Naimark complements of these

positive and negative ETFs yields the following result:

Corollary 2. Let K ≥ 2, L ∈ {1,−1}, and let Q be any

prime power such that either:

(i) Q ≥ K2 and Q ≡ K, 2K − 1 mod K(K − 1) where

K = 2, 3, 4, 5 and L = 1,

(ii) Q = K where L = 1,

(iii) Q ≥ 7 and Q ≡ 1, 3 mod 6 where K = 3 and L = −1,

(iv) Q ≡ 5 mod 24 where K = 4 and L = −1.

Then for any J ≥ 1, an ETF(D(J), N (J)) exists where

D(J) = 1
K [Q− (K − 1)L]Q2J−1,

N (J) = Q−(K−1)L
K−1 (Q

2J−1
Q+L ),

N (J) −D(J) = Q2J−1[Q−(K−1)L]2−K[Q−(K−1)L]
K(K−1)(Q+L) .

In the special case of (i) where K = 2, Corollary 2 yields

ETF(D(J), N (J)) whose Naimark complements have param-

eters (2) for any prime power Q ≥ 4 and J ≥ 1. These ETFs

arise by applying Theorem 4 to the Naimark complements of

Steiner ETFs that themselves arise from BIBDs consisting of

all 2-element subsets of a (Q−1)-element vertex set [18], [12].

Meanwhile, case (ii) yields ETF(D(J), N (J)) whose Naimark

complements have parameters (3) for any prime power Q.

Remarkably, all of the ETF(D(J), N (J)) produced by

Corollary 2 with J ≥ 2 seem to be new: though (30) implies

that they satisfy one necessary condition of harmonic ETFs,

some of them are not harmonic (Example 3), and none of them

seem to arise from known difference sets [28]; since these

ETFs satisfy (31), we know that neither they nor their Naimark

complements are real, SIC-POVMs, positive or negative, or

have redundancy two.

V. CONCLUSIONS AND FUTURE WORK

Theorem 3 produces an ETF by taking certain tensor

products of the vectors in a given ETF and MUETF with

compatible parameters. Theorem 4 is the special case of this

idea in which the MUETF arises from a certain classical RDS.

It is a generalization of the classical Gordon-Mills-Welch

factorization of the complement of a Singer difference set [23],

and a reversal of some of the analysis of [13], [19]. When
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applied to various families of known positive and negative

ETFs [12], Theorem 4 yields many infinite families of new

ETFs, some of which are summarized in Corollary 2.

Of course, it would be nice to be able to apply Theorem 3

more broadly. Doing so requires a better fundamental un-

derstanding of MUETFs. Since harmonic MUETFs equate to

RDSs (Theorem 2), one approach is to devote more time and

energy to their study; see [32] for some interesting, important

open problems concerning RDSs. More generally, for what

(D,N,M) does an MUETF(D,N,M) exist? In the special

case where D = N , MUETFs reduce to MUBs, and though

some MUBs arise from RDSs [21], not all seemingly do: some

arise from tensor products of other MUBs, and yet others arise

from mutually orthogonal Latin squares [44]. Moreover, some

MUBs are real [5]. To what extent do these facts generalize to

the non-MUB case? We leave these questions for future work.
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