
ar
X

iv
:1

71
0.

11
29

8v
3

 [
st

at
.M

E
]

 1
6

N
ov

 2
01

7

Effective Tensor Sketching via Sparsification∗

Dong Xia and Ming Yuan†

Columbia University

(November 17, 2017)

Abstract

In this paper, we investigate effective sketching schemes via sparsification for high

dimensional multilinear arrays or tensors. More specifically, we propose a novel tensor

sparsification algorithm that retains a subset of the entries of a tensor in a judicious

way, and prove that it can attain a given level of approximation accuracy in terms

of tensor spectral norm with a much smaller sample complexity when compared with

existing approaches. In particular, we show that for a kth order d×· · ·×d cubic tensor

of stable rank rs, the sample size requirement for achieving a relative error ε is, up

to a logarithmic factor, of the order r
1/2
s dk/2/ε when ε is relatively large, and rsd/ε2

and essentially optimal when ε is sufficiently small. It is especially noteworthy that the

sample size requirement for achieving a high accuracy is of an order independent of k.

To further demonstrate the utility of our techniques, we also study how higher order

singular value decomposition (HOSVD) of large tensors can be efficiently approximated

via sparsification.

∗This research was supported by NSF Grant DMS-1721584, and NIH Grant 1U54AI117924-01.
†Address for Correspondence: Department of Statistics, Columbia University, 1255 Amsterdam Avenue,

New York, NY 10027.

1

http://arxiv.org/abs/1710.11298v3

1 Introduction

Massive datasets are being generated everyday across diverse fields and can often be for-

matted into matrices or higher order tensors. For example, in biomedical research, huge

data matrices and tensors arise in gene expression analysis (see, e.g., Kluger et al., 2003),

protein-to-protein interaction (see, e.g., Stelzl et al., 2005), and MRI image analysis (see,

e.g., Smith et al., 2004). They also occur frequently in statistical physics (see, e.g., Orús,

2014; Cichocki et al., 2015), video processing (see, e.g., Li and Li, 2010; Liu et al., 2013),

and analyzing large graphs and social networks (see, e.g., Clauset et al., 2004; Abadi et al.,

2016; Scott, 2017), to name a few. As the size of these data matrices or tensors grows, it

becomes costly and sometimes prohibitively expensive to store, communicate or manipulate

them. This naturally brings about the task of “sketching”: approximate the original data

matrices or tensors with a more manageable amount of sketches.

In the case of data matrices, numerous sketching approaches have been proposed in

recent years. See Woodruff et al. (2014) for a recent review. A popular idea behind many

of these approaches is sparsification – creating a sparse matrix by zeroing out some en-

tries of the original data matrix. Sparse sketching of a large data matrix not only re-

duces space complexity but also allows for efficient computations. See, e.g., Frieze et al.

(2004); Arora et al. (2006); Achlioptas and McSherry (2007); Drineas and Zouzias (2011);

Achlioptas et al. (2013); Krishnamurthy and Singh (2013), among others. The main pur-

pose of this article is to investigate to what extent sparsification can be used to effectively

sketch higher order tensors. There have been some recent attempts along this direction. In

particular, our work is inspired by Nguyen et al. (2015) who showed that for a kth order

cubic tensor A ∈ R
d×···×d, there is a randomized sparsification scheme that yields another

tensor Ã of same dimension but with

nnz(Ã) = Õp

(
dk/2sr(A)

ε2

)
, as d → ∞, (1)

such that

‖Ã − A‖ ≤ ε‖A‖.

Here, nnz(·) stands for the number of nonzero entries of a tensor, sr(A) = ‖A‖2
F/‖A‖2 is

2

the so-called stable rank (see, e.g., Achlioptas et al., 2013; Nguyen et al., 2015) of a tensor

A, ‖ · ‖ is the usual tensor spectral norm, and Õ(·) means O(·), up to a certain polynomial

of logarithmic factor. Similar results have also been obtained by Bhojanapalli and Sanghavi

(2015) in the case when k = 3. On the one hand, the sample size requirement given by (1)

is satisfying because it is essentially optimal in the matrix case, that is k = 2. See, e.g.,

Achlioptas et al. (2013). On the other hand, the exponential dependence on k suggests a

large amount of entries still need to be retained to yield a good approximation. Our goal is

to investigate if this aspect could be improved.

In particular, we propose a novel tensor sparsification algorithm that randomly retain

entries from A in a judicious way to yield a tensor ÂSPA such that

‖ÂSPA − A‖ ≤ ε‖A‖,

and

nnz(ÂSPA) = Õp

(
max

{
d · sr(A)

ε2
,
dk/2 · sr(A)1/2

ε

})
. (2)

Here, to fix ideas, we focus on the case of cubic tensors although our results deal with more

general rectangular tensors as well. This sample size requirement significantly improves those

earlier ones. Especially if a high accuracy approximation is sought, that is ε ≤ sr(A)·d−k/2+1,

then our sparsification algorithm can achieve relative approximation error ε in terms of tensor

spectral norm by retaining as few as Õp(d · sr(A) · ε−2) entries of A, regardless of the order

of the tensor. Furthermore, for larger ε, the number of nonzero entries we keep is smaller

than Ã by a factor of sr(A)1/2ε−1.

Similar to many other sparsification algorithms, we treat different entries according to

their magnitude: large entries are always kept, and moderate ones are sampled proportion

to their square values. The key difference between our approach and the existing ones is in

the treatment of small entries. Instead of zeroing them out as, for example, Nguyen et al.

(2015), we sample them in a uniform fashion, which proves to be essential for obtaining good

approximation with tighter number of nonzero entries. This modification is motivated by the

concentration behavior of randomly sampled tensors recently observed by Yuan and Zhang

(2016, 2017); Xia and Yuan (2017).

3

To demonstrate the effectiveness of our tensor sketching schemes, we show how they

can be used for efficient approximation of the leading singular spaces from higher order

singular value decomposition (HOSVD). Let Uj ∈ R
d×r be the top r left singular vectors

of the flattening of A along its jth mode. We show that it is possible to construct an

approximation Ûj obeying

‖ÛjÛ
⊤
j − UjU

⊤
j ‖ ≤ ε,

if we retain

Õp

(
max

{
rd

ε2
,
rdk/2

ε

})

carefully chosen entries As before, we note that for high accuracy approximations, the sample

complexity is essentially independent of the order of the tensor. Although our primary focus

is on higher order tensors, as a byproduct, our results indicate that our sparsification scheme

improves the sample complexity of earlier approaches for approximating the singular vectors

of highly rectangular matrix.

The rest of the paper is organized as follows. We first discuss the new tensor sparsification

algorithm in Section 2 . In Section 3 we consider the application to HOSVD. All proofs are

relegated to Section 4.

2 Tensor Sparsification

Sketches of a tensor A ∈ R
d1×...×dk are its approximations. We consider measuring the quality

in terms of relative error in terms of tensor spectral norm. Recall that the spectral norm of

a tensor B ∈ R
d1×...×dk is defined as

‖B‖ = sup
uj∈R

dj ,‖uj‖ℓ2
≤1

〈B, u1 ⊗ . . . ⊗ uk〉 .

We seek an approximation Â of A such that

‖Â − A‖ ≤ ε‖A‖,

for some ε ∈ (0, 1).

4

We first consider sketching a tensor by sparsification. The idea is to systematically zero

out entries of A and scale the remaining entries to yield a good approximation of A. We

focus here on sparsification strategies that are carried out in an entry-by-entry fashion. Our

approach can be characterized as keeping large entries, sampling proportionally moderate

entries, and sampling uniformly small entries. The key is determining how to classify entries

into these categories, and how to sample the moderate entries, so that the number of nonzero

entries retained are as small as possible. Details are presented in Algorithm 1.

Algorithm 1 Tensor Sparsification

Input: A ∈ R
d1×...×dk , sampling budget 1 ≤ n ≤ d1 · · · dk.

2: Output: ÂSPA ∈ R
d1×...×dk .

for i1 ∈ [d1], i2 ∈ [d2], . . . , ik ∈ [dk] do

4: if |A(i1, . . . , ik)| ≥ ‖A‖F/n1/2, then

Â(i1, . . . , ik) = A(i1, . . . , ik).

6: end if

if |A(i1, . . . , ik)|/‖A‖F ∈
(

1
(d1···dk)1/2 , 1

n1/2

)
, then

Â(i1, . . . , ik) =

A(i1,...,ik)
P (i1,...,ik)

, with probability P (i1, . . . , ik) := nA2(i1,...,ik)
‖A‖2

F

0, with probability 1 − P (i1, . . . , ik).

8: end if

if |A(i1, . . . , ik)| ≤ ‖A‖F/(d1 . . . dk)1/2, then

10:

Â(i1, . . . , ik) =

A(i1,...,ik)
P (i1,...,ik)

, with probability P (i1, . . . , ik) := n
d1d2···dk

0, with probability 1 − P (i1, . . . , ik)

end if

12: end for

Output: ÂSPA = Â.

Small

Entries

Large

Entries

Moderate

Entries

In particular, we keep all entries whose absolute value is greater than n−1/2‖A‖F, sample

5

uniformly all entries whose absolute value is smaller than (d1 · · · dk)−1/2‖A‖F, and sample

proportional to their squared values entries whose absolute value is in-between. Here n is

a sampling parameter. Note that E[nnz(ÂSPA)] ≤ 2n. And it is not hard to see, by Cher-

noff bound, that nnz(ÂSPA) = Op(n). In other words, n represents essentially the targeted

sampling budget.

We note that our sparsification algorithm is similar to the one proposed earlier by

Nguyen et al. (2015). But the two schemes also have several key differences. The main dif-

ference between the two algorithms is their treatment of “small” entries. Nguyen et al. (2015)

suggests to zero them out, while ours sample them in a uniform fashion. This is largely moti-

vated by the concentration behavior of randomly sampled tensors observed earlier. In partic-

ular, it can be shown that a uniformly sampled tensor concentrates much sharply around its

mean if its entries are sufficiently small (see, e.g., Yuan and Zhang, 2016). Therefore, instead

of discarding small entries, we could derive a good estimate of them by sampling uniformly.

Another subtle difference between the two algorithm is in the criteria for “small” entries. Our

criterion for “small” entries is that their absolute values are smaller than (d1 · · · dk)−1/2‖A‖F,

whereas Nguyen et al. (2015) treats only cubic tenors, that is d1 = d2 = · · · = dk =: d, and

small entries of their scheme are those smaller than n−1/2d−k/4‖A‖F logk/2 d.

We now present the performance bounds for our sparsification algorithm.

Theorem 1. Let A ∈ R
d1×...×dk and ÂSPA be the output from Algorithm 1 with sampling

budget n. There exists a constant C > 0 depending on k only such that if for any α ≥
4 log(k log dmax) and ε ∈ (0, 1), if

n ≥ C max

{
α4 dmax · sr(A)

ε2
log2 dmax, α2 (d1 · · · dk · sr(A))1/2

ε
logk+4 dmax

}
,

then, with probability at least 1 − d−α
max,

‖ÂSPA − A‖ ≤ ε‖A‖,

where dmax = max{d1, . . . , dk}.

In the light of Theorem 1, we can achieve relative error ε in terms of tensor spectral

6

norm with a sparse tensor such that

nnz(ÂSPA) =

Õ

(
ε−2 · dmax · sr(A)

)
, if ε ≤ dmax · sr(A)1/2 · (d1 . . . dk)−1/2;

Õ

(
ε−1 · (d1 . . . dk · sr(A))1/2

)
, otherwise.

This significant improves earlier work by Bhojanapalli and Sanghavi (2015) and Nguyen et al.

(2015). It is worth noting that for small ε, or high accuracy approximation, the number of

nonzero entries of ÂSPA is of the order ε−2dmax · sr(A), regardless of k. This, in particular,

is known to be optimal in the matrix (k = 2) case (see, e.g., Achlioptas et al., 2013).

The main technical tool for proving Theorem 1 is the following concentration inequality

for random tensors which might be of independent interest.

Theorem 2. Let A ∈ R
d1×...×dk and P ∈ [0, 1]d1×...×dk be two fixed tensors, ∆ ∈ {0, 1}d1×...×dk

be a random tensor such that E∆(i1, . . . , ik) = P (i1, . . . , ik). Define a random tensor Â ∈
R

d1×...×dk by

Â(i1, . . . , ik) = A(i1, . . . , ik)∆(i1, . . . , ik)/P (i1, . . . , ik).

Then, there exist absolute constants C1, C2, C3 > 0 such that for any α > 0, with probability

at least 1 − 3d−α
max,

‖Â − A‖ ≤ C1

((k∑

j=1

dj

)1/2
+ αk log dmax

)
α2,∞(A, P) + C2αk3 logk+2(dmax)

√
να∞(A, P),

where

ν = C3α max
{
β(P), k log dmax

}
,

β(P) = max
j=1,...,k

max
i1,...,ij−1,ij+1,...,ik

dj∑

ij=1

P (i1, . . . , ik),

α∞(A, P) = max
ij∈[dj],j=1,...,k

|A(i1, . . . , ik)|
P (i1, . . . , ik)

,

and

α2,∞(A, P) = max
ij∈[dj],j=1,...,k

(
A2(i1, . . . , ik)

P (i1, . . . , ik)

)1/2

.

Here we follow the convention that 0/0 = 0.

7

3 HOSVD via Tensor Sketching

To further illustrate the merits of the sketching schemes introduced earlier, we now consider

a specific application to HOSVD, a popular technique for analyzing high dimensional tensor

data. See, e.g., Kolda and Bader (2009); Sidiropoulos et al. (2017) and references therein.

For a k-th order tensor A ∈ R
d1×...×dk , let Mj = Mj(A) ∈ R

dj×d−j be its j-th matri-

cization where 1 ≤ j ≤ k, that is,

Mj(A)
(

ij ,
k∑

s=1,s 6=j

(is − 1)
(k∏

s′=s+1,s′ 6=j

ds′

)
+ 1

)
= A(i1, . . . , ik), ∀ij ∈ [dj], 1 ≤ j ≤ k.

Here d−j = (d1 · · · dk)/dj. Denote by U
(rj)
j the collection of the top rj left singular vectors of

Mj . Clearly, U
(rj)
j is computable via the standard matrix singular value decomposition on Mj

whose computation complexity is O(djd1d2 . . . dk), see Golub and Van Loan (2012). Efficient

computation of singular value decomposition for large matrices is an actively researched

topic in numerical algebra and computational science. See Berry (1992); Kobayashi et al.

(2001); Achlioptas and McSherry (2007); Holmes et al. (2007); Drineas and Zouzias (2011);

Menon and Elkan (2011), among numerous others.

A general idea is to first obtain an approximation of Mj, say M̂j ∈ R
dj×d−j , that is

amenable for fast computation of singular value decomposition; and then approximate U
(rj)
j

by the top left singular vectors of M̂j . In particular, sparsification is commonly used to yield

M̂j . Denote by ∆j = M̂j − Mj and by Û
(rj)
j the leading rj left singular vectors of M̂j . By

Davis-Kahan Theorem (Davis and Kahan, 1970), we get

∥∥∥Û(rj)
j

(
Û

(rj)
j

)⊤ − U
(rj)
j

(
U

(rj)
j

)⊤∥∥∥ ≤ 2‖∆j‖
ḡrj

(Mj)
(3)

where σk(·) denotes the k-th singular value, and

ḡrj
(Mj) = σrj

(Mj) − σrj+1(Mj),

is the rj-th eigengap. In particular, we can consider applying this strategy by taking M̂j =

Mj(Â
SPA). The following result characterizes its performance.

8

Theorem 3. Let U
(rj)
j and Û

(rj)
j be the top rj left singular vectors of Mj(A) and Mj(Â

SPA)

respectively. Then there exists a constant C > 0 depending on k only such that for any t > 0,

∥∥∥Û(rj)
j

(
Û

(rj)
j

)⊤ − U
(rj)
j

(
U

(rj)
j

)⊤∥∥∥

≤ C
‖Mj‖F

ḡrj
(Mj)

(√√√√d1 . . . dk(t + log dmax)

ndj
+

(d1 . . . dk)1/2(t + log dmax)

n

)
,

with probability at least 1 − e−t.

By Theorem 3, in the case when ‖Mj‖F

ḡrj (Mj)
= O(

√
rj), we can ensure

∥∥∥Û(rj)
j

(
Û

(rj)
j

)⊤ − U
(rj)
j

(
U

(rj)
j

)⊤∥∥∥ ≤ ε

by taking

n ≥ C · max

{
rjd1 . . . dk

djε2
,
(rjd1 . . . dk)1/2

ε

}
log dmax. (4)

A critical fact that is neglected by this approach is that we are interested in approximating

the left singular vectors of a potentially very “fat” matrix because d−j is generally much

larger than dj. As such, this type of approach turns out to be suboptimal for our purpose.

Alternatively, we adopt a new spectral method similar in spirit to a recent proposal

from Xia and Yuan (2017). More specifically, we shall approximate U
(rj)
j by the leading

eigenvectors of an approximation of MjM
⊤
j instead. In particular, we can run Algorithm

1 twice to obtain two independent sparsifications of A, denoted by ÂSPA
1 and ÂSPA

2 , and

then proceed to approximate MjM
⊤
j by Mj(Â

SPA
1)Mj(Â

SPA
2)⊤. Details are presented in

Algorithm 2.

Algorithm 2 Computing HOSVD via Tensor Sparsification

Input: A ∈ R
d1×...×dk , sampling budget n ≥ 1.

2: Output: the rj leading left singular vectors Û
(rj)
j as an estimate of HOSVD of Mj(A).

Run Algorithm 1 on A with sampling budget n. Denote the output by ÂSPA
1 .

4: Run Algorithm 1 on A with sampling budget n. Denote the output by ÂSPA
2 .

Compute Û
(rj)
j as the rj leading left singular vectors of Mj(Â

SPA
1)Mj(Â

SPA
2)⊤.

6: Output Û
(rj)
j .

9

The following theorem provides the performance bound for approximate the singular

space U
(rj)
j s.

Theorem 4. Denote by U
(rj)
j the rj leading left singular vectors of Mj(A). Let Û

(rj)
j be

the output from Algorithm 2. There exists a constant C > 0 such that for any α ≥ 1 and

ε ∈ (0, 1), if

n ≥ Cα

(
dj log dmax

ε2

‖A‖2
Fσ2

max(Mj)

ḡ2
rj

(MjM
⊤
j)

+
(d1 . . . dk)1/2 log dmax

ε

‖A‖2
F

ḡrj
(MjM

⊤
j)

)
,

then
∥∥∥Û(rj)

j

(
Û

(rj)
j

)⊤ − U
(rj)
j

(
U

(rj)
j

)⊤∥∥∥ ≤ ε,

with probability at least 1 − d−α
max.

From Theorem 4, if
‖A‖2

F

ḡrj (MjM⊤
j)

= O(rj) and
‖A‖2

F
σ2

max(Mj)

ḡ2
rj

(MjM⊤
j)

= O(rj), then the required

sample complexity for sparsification is

Õp

(
rjdj log dmax

ε2
+

rj(d1 . . . dk)1/2 log dmax

ε

)
.

It is worth noting that, even though our main focus is on higher order tensors, in the case

of matrices (k = 2) this sample complexity compares favorable with other sparsification

techniques that have been developed for computing singular vectors. For example, consider

computing the top r left singular vectors of a d1 × d2 (d1 ≤ d2) matrix. The approach from

Achlioptas and McSherry (2007) needs to sample

Õp

(
rd1d

2
2

ε2
· maxi,j |A(i, j)|2

‖A‖2
F

)

entries; the technique of Drineas et al. (2006) requires

Õp

(
rd2

ε2

)

entries. These are to be compared with Algorithm 2 which needs

Õp

(
rd1

ε2
+

r(d1d2)
1/2

ε

)

sampled entries, which could be much smaller than the previous two when d1 ≪ d2.

10

4 Proofs

We now present the proofs to our main results.

4.1 Proof of Theorem 1

Theorem 1 follows immediately from the concentration bound for ‖ÂSPA − A‖ below.

Lemma 1. Let A ∈ R
d1×...×dk and ÂSPA be the output from Algorithm 1 with sampling budget

n. Then there exist absolute constants C1, C2 > 0 such that, for any α ≥ 4 log(k log dmax),

the following bound holds with probability at least 1 − d−α
max:

‖ÂSPA − A‖ ≤ C1α
2k4 log(dmax)

√
‖A‖2

Fdmax

n
+ C2α

2k5 logk+4(dmax)
(d1 . . . dk)1/2‖A‖F

n
.

Proof of Lemma 1. Given A, we define the disjoint subsets of [d1] × . . . × [dk]

Ω1 =
{

(i1, . . . , ik) : |A(i1, . . . , ik)| ≤ ‖A‖F/(d1 . . . dk)1/2
}
,

Ω2 =

{
(i1, . . . , ik) : |A(i1, . . . , ik)|/‖A‖F ∈

(
1

(d1 . . . dk)1/2
,

1

n1/2

)}
,

and

Ω3 =
{
(i1, . . . , ik) : |A(i1, . . . , ik)| ≥ ‖A‖F/n1/2

}
.

Note that Ω1, Ω2, Ω3 are non-random subsets for given A. Then,

‖ÂSPA − A‖ ≤ ‖ÂSPA
Ω1

− AΩ1
‖ + ‖ÂSPA

Ω2
− AΩ2

‖ + ‖ÂSPA
Ω3

− AΩ3
‖.

By definition of ÂSPA in Algorithm 1, we have ‖ÂSPA
Ω3

−AΩ3
‖ = 0 so that it suffices to bound

‖ÂSPA
Ω1

− AΩ1
‖ and ‖ÂSPA

Ω2
− AΩ2

‖.

Upper bound of ‖ÂSPA
Ω1

− AΩ1
‖. In order to apply Theorem 2, we introduce auxiliary

tensors B and B̃ such that BΩ1
= AΩ1

and BΩ†
1

= 0, where Ω†
1 denotes the complement of

Ω1. Define a tensor P ∈ [0, 1]d1×...×dk such that

P (i1, . . . , ik) =

n
d1...dk

, if (i1, . . . , ik) ∈ Ω1

0, otherwise.

11

Then, random tensor B̃ is defined as

B̃(i1, . . . , ik) =

B(i1,...,ik)
P (i1,...,ik)

, with probability P (i1, . . . , ik)

0, with probability 1 − P (i1, . . . , ik),

where we followed the convention 0/0 = 0. Clearly, B̃ − B has the same distribution as

ÂSPA
Ω1

− AΩ1
. To apply Theorem 2, we observe that

ν = C3t max

{
ndmax

d1 . . . dk

, k log dmax

}

and

α∞(B, P) = max
i1,...,ik

|B(i1, . . . , ik)|
P (i1, . . . , ik)

= max
i1,...,ik

d1 . . . dk

n
|B(i1, . . . , ik)| ≤ (d1 . . . dk)1/2

n
‖A‖F

and

α2,∞(B, P) = max
i1,...,ik

|B(i1, . . . , ik)|√
P (i1, . . . , ik)

= max
i1,...,ik

(d1 . . . dk)1/2|B(i1, . . . , ik)|
n1/2

≤ ‖A‖F

n1/2
.

By Theorem 2, with probability at least 1 − d−t
max,

‖ÂSPA
Ω1

− AΩ1
‖ = ‖B̃ − B‖ ≤ C1tk

3

√
dmax

n
‖A‖F + C2tk4 logk+3(dmax)

(d1 . . . dk)1/2‖A‖F

n
.

Upper bound of ‖ÂSPA
Ω2

− AΩ2
‖. Bounding ‖ÂSPA

Ω2
− AΩ2

‖ is more involved. For s =

1, 2, . . . , ⌈log(d1 . . . dk/n)⌉, define

Ω2,s =

{
(i1, . . . , ik) : |A(i1, . . . , ik)|2 ∈

[‖A‖2
F

n
2−s,

‖A‖2
F

n
2−s+1

)}
.

Clearly,

Ω2 =
⌈log(d1...dk/n)⌉⋃

s=1

Ω2,s,

so that

‖ÂSPA
Ω2

− AΩ2
‖ ≤

⌈log(d1...dk/n)⌉∑

s=1

∥∥∥ÂSPA
Ω2,s

− AΩ2,s

∥∥∥.

We now apply Theorem 2 to bound each term on the righthand side. We follow the same

strategy as before and define auxiliary tensors B̃s and Bs such that
(
Bs

)
Ω2,s

= AΩ2,s and

12

(
Bs

)
Ω†

2,s

= 0. The probability tensor Ps is defined as

Ps(i1, . . . , ik) =

nA2(i1,...,ik)
‖A‖2

F

, if (i1, . . . , ik) ∈ Ω2,s

0, otherwise.

The random tensor B̃s is defined as

B̃s(i1, . . . , ik) =

Bs(i1,...,ik)
Ps(i1,...,ik)

, with probability Ps(i1, . . . , ik)

0, with probability 1 − Ps(i1, . . . , ik).

Clearly, ÂSPA
Ω2,s

− AΩ2,s has the same distribution as B̃s − Bs. To apply Theorem 2, observe

that

α2,∞(Bs, Ps) = max
(i1,...,ik)∈Ω2,s

√√√√B2
s (i1, . . . , ik)

Ps(i1, . . . , ik)
= max

(i1,...,ik)∈Ω2,s

√√√√A2(i1, . . . , ik)

P (i1, . . . , ik)
=

√
‖A‖2

F

n
.

Since

ν = C1t max

{
max
j∈[k]

max
i1,...,ij−1,ij+1,...,ik

∑

ij :(i1,...,ij)∈Ω2,s

P (i1, . . . , ik), k log dmax

}
,

we obtain

√
να∞(Bs, Ps) ≤ C1t

1/2k1/2 log1/2(dmax) max
(i1,...,ik)∈Ω2,s

|A(i1, . . . , ik)|
P (i1, . . . , ik)

+C1t
1/2

(
max
j∈[k]

max
i1,...,ij−1,ij+1,...,ik

√ ∑

ij :(i1,...,ik)∈Ω2,s

P (i1, . . . , ik)

)
max

(i1,...,ik)∈Ω2,s

|A(i1, . . . , ik)|
P (i1, . . . , ik)

.

By definition of Ω2,s, we have

max(i1,...,ik)∈Ω2,s
P (i1, . . . , ik)

min(i1,...,ik)∈Ω2,s P (i1, . . . , ik)
≤ 2.

Therefore,
(

max
j∈[k]

max
i1,...,ij−1,ij+1,...,ik

√ ∑

ij :(i1,...,ik)∈Ω2,s

P (i1, . . . , ik)

)
max

(i1,...,ik)∈Ω2,s

|A(i1, . . . , ik)|
P (i1, . . . , ik)

≤
√

2dmax max
(i1,...,ik)∈Ω2,s

|A(i1, . . . , ik)|√
P (i1, . . . , ik)

.

By the fact P (i1, . . . , ik) = nA2(i1,...,ik)
‖A‖2

F

and |A(i1, . . . , ik)| ≥ ‖A‖F/(d1 . . . dk)1/2, we get

√
να∞(Bs, Ps) ≤ C1k1/2t1/2 log1/2(dmax) max

(i1,...,ik)∈Ω2,s

‖A‖2
F

n|A(i1, . . . , ik)| + C2t
1/2d1/2

max

√
‖A‖2

F

n

≤ C1k1/2t1/2 log1/2(dmax)
(d1 . . . dk)1/2‖A‖F

n
+ C2t

1/2

√
‖A‖2

Fdmax

n
.

13

By Theorem 2, with probability at least 1 − d−t
max,

‖ÂSPA
Ω2,s

− AΩ2,s‖ ≤ C1t
2k3

√
‖A‖2

Fdmax

n
+ C2t2k4 logk+3(dmax)

(d1 . . . dk)1/2‖A‖F

n
.

By taking a uniform bound for all s = 1, 2, . . . , ⌈log(d1 . . . dk/n)⌉, we conclude that with

probability at least 1 − k log(dmax)d−t
max,

‖ÂSPA
Ω2

− AΩ2
‖ ≤ C1t

2k4 log(dmax)

√
‖A‖2

Fdmax

n
+ C2t

2k5 logk+4(dmax)
(d1 . . . dk)1/2‖A‖F

n
.

Finalize the proof of Lemma 1. Put the above bounds together, we end up with, for

any t > 1,

‖ÂSPA − A‖ ≤ C1t
2k4 log(dmax)

√
‖A‖2

Fdmax

n
+ C2t

2k5 logk+4(dmax)
(d1 . . . dk)1/2‖A‖F

n

which holds with probability at least 1 −
(
1 + k log dmax

)
d−t

max = 1 − d−t+log(k log dmax)
max .

4.2 Proof of Theorem 2

We begin with symmetrization (see, e.g., Yuan and Zhang, 2016) and obtain for any t > 0,

P

(
‖Â − A‖ ≥ t

)
≤ 4P

(
‖ε ⊙ Â‖ ≥ 2t

)
+ 4 exp

(−t2/2

α2
2,∞(A, P) + tα∞(A, P)/3

)

where ε ∈ R
d1×...×dk is a random tensor with i.i.d. Rademacher entries, and

α∞(A, P) = max
ij∈[dj],j=1,...,k

A(i1, . . . , ik)

P (i1, . . . , ik)

and

α2,∞(A, P) = max
ij∈[dj],j∈[k]

(
A2(i1, . . . , ik)

P (i1, . . . , ik)

)1/2

.

The ⊙ operator stands for entrywse multiplication, that is

(
ε ⊙ Â

)
(i1, . . . , ik) = ε(i1, . . . , ik)Â(i1, . . . , ik).

By definition, the operator norm ‖ε ⊙ Â‖ is given by

‖ε ⊙ Â‖ = sup
uj∈R

dj ,‖uj‖ℓ2
≤1,1≤j≤k

〈
ε ⊙ Â, u1 ⊗ . . . ⊗ uk

〉
.

14

We begin with the discretization of ℓ2-norm balls. For each j = 1, . . . , k, define

Bmj ,dj
=
{

0, ±1, ±2−1/2, . . . , ±2−mj/2
}dj ⋂{

u ∈ R
dj : ‖u‖ℓ2

≤ 1
}

where mj = 2
(
⌈log2 dj⌉ + 3

)
. Define the “digitalization” operator Ds which zeros out the

entries of A whose absolute value is not 2−s/2. Then,

Ds(A) =
∑

i1,...,ik

1
{∣∣∣〈A, ei1

⊗ . . . ⊗ eik
〉
∣∣∣ = 2−s/2

}
A(i1, . . . , ik)ei1

⊗ . . . ⊗ eik

where we denote by eij
the canonical basis vectors in R

dj . Clearly, for all uj ∈ Bmj ,dj
,

〈
u1 ⊗ . . . ⊗ uk, ε ⊙ Â

〉
=

m1+...+mk∑

s=1

〈
Ds

(
u1 ⊗ . . . ⊗ uk

)
, ε ⊙ Â

〉
.

For a subset T ⊂ [d1] × . . . × [dk], the aspect ratio µT is defined by

µT := max
ℓ=1,...,k

max
ij :j∈[k]\ℓ

Card
({

iℓ : (i1, . . . , ik) ∈ T
})

.

Define the sampling locations

Ω =
{

(i1, . . . , ik) : ∆(i1, . . . , ik) = 1
}

and the associated sampling operator

PΩ(A) =
∑

i1,...,ik

1
(
(i1, . . . , ik) ∈ Ω

)
A(i1, . . . , ik)ei1

⊗ . . . ⊗ eik
.

We shall now make use of the following version of the Chernoff bound:

Lemma 2. Let X1, . . . , Xn be independent binary random variables such that P(Xj = 1) =

pj ∈ [0, 1], j = 1, . . . , n. Then, for any t ≥ 0,

P

(
n∑

j=1

(
Xj − pj

)
≥ 2t

√√√√
n∑

j=1

pj(1 − pj)

)
≤ e−t2

.

Lemma 2 is fairly standard and we include its proof in the Appendix for completeness.

By Lemma 2, there exists an absolute constant C > 0 such that for all α ≥ 1,

P

(
µΩ ≥ Cα max

{
β(P), k log dmax

})
≤ d−α

max

15

where

β(P) = max
j=1,...,k

max
i1,...,ij−1,ij+1,...,ik

dj∑

ij=1

P (i1, . . . , ik)

and dmax := max1≤j≤k dj. Denote the above event by E1 with P(E1) ≥ 1 − d−α
max. The rest of

our analysis is conditioned on event E1. Observe that

〈
u1 ⊗ . . . ⊗ uk, ε ⊙ Â

〉
=

m1+...+mk∑

s=1

〈
PΩ

(
Ds(u1 ⊗ . . . ⊗ uk)

)
, ε ⊙ Â

〉
.

For uj ∈ Bmj ,dj
, let Abj

=
{
ij :

∣∣∣uj(ij)
∣∣∣ = 2−bj/2

}
for j = 1, . . . , k. Then, we write

Ds(u1 ⊗ . . . ⊗ uk) =
∑

(b1,...,bk):b1+...+bk=s

PAb1
×...×Abk

Ds

(
u1 ⊗ . . . ⊗ uk

)
.

By definition of µΩ, on event E1, there exist Ãb1
⊂ Ab1

, . . . , Ãbk
⊂ Abk

such that

(
Ab1

× . . . × Abk

)
∩ Ω =

(
Ãb1

⊗ . . . ⊗ Ãbk

)
∩ Ω

and

Card2(Ãbj
) ≤ µΩ

k∏

j=1

Card(Ãbj
), j = 1, 2, . . . , k.

We conclude with

〈
Ds(u1 ⊗ . . . ⊗ uk), ε ⊙ Â

〉
=

m1+...+mk∑

s=1

∑

b1+...+bs=s

〈
PÃb1

×...×Ãbk
Ds(u1 ⊗ . . . ⊗ uk), ε ⊙ Â

〉
.

Given Ω, we define the balanced version of digitalization operator

D̃s(u1 ⊗ . . . ⊗ uk) =
∑

(b1,...,bk):b1+...+bk=s

PÃb1
×...×Ãbk

Ds

(
u1 ⊗ . . . ⊗ uk

)

where Ãj are defined as above. Then, PΩDs(u1 ⊗ . . . uk) = PΩD̃s(u1 ⊗ . . . uk). Given Ω,

define

BΩ,m⋆ :=
{ ∑

0≤s≤m⋆

D̃s(u1 ⊗ . . . uk) +
∑

m⋆<s≤m⋆

Ds(u1 ⊗ . . . ⊗ uk) : uj ∈ Bmj ,dj
, j = 1, . . . , k

}

for any 0 < m⋆ ≤ m⋆ ≤ ∑k
j=1 mj . Conditioned on E1, we shall focus on {Ω : µΩ ≤ ν}

where ν = Cα max
{

β(P), k log dmax

}
. Denote B

⋆
ν,m⋆

=
⋃

µΩ≤ν B
⋆
Ω,m⋆

. Following an identical

argument as that in Yuan and Zhang (2016), we get

∥∥∥ε ⊙ Â
∥∥∥ ≤ 2k max

Y∈B⋆
ν,m⋆

〈Y, ε ⊙ Â〉.

16

The entropy number of B⋆
ν,m⋆

plays an essential role in bounding maxY∈B⋆
ν,m⋆

〈Y, X〉. Observe

that B
⋆
ν,m⋆

⊂ Bm1,d1
× . . . × Bdk ,mk

and

Card
(
Bmj ,dj

)
≤

mj∏

k=0

(
dj

2k ∧ dj

)
22k∧dj

≤
mj∏

k=0

exp
(

(2k ∧ dj)
(

log 2 + 1 + (log dj/2k)+

))

≤ exp
(

dj

∞∑

ℓ=1

2−ℓ
(

log 2 + 1 + log(2ℓ)
))

≤ exp
(
21dj/4

)
,

which implies that

log Card
(
B

⋆
ν,m⋆

)
≤ 21

4

(
d1 + . . . + dk

)
.

See Yuan and Zhang (2016) for more details. More precise characterizations of Card(B⋆
ν,m⋆

)

can also be derived. For any 0 ≤ q ≤ s ≤ m⋆, define

Dν,s,q =
{
Ds(Y) : Y ∈ B

⋆
ν,m⋆

, ‖Ds(Y)‖2
ℓ2

≤ 2q−s
}
.

Lemma 3. Let ν ≥ 1. For all 0 ≤ q ≤ s ≤ m⋆, the following bound holds

log Card(Dν,s,q) ≤ qsk log 2 + 2k2sk
√

ν2qL
(√

ν2q, dmaxsk/2
)

where L(x, y) = max
{
1, log(ey/x)

}
.

We write

‖ε ⊙ Â‖ ≤ 2k max
Y∈B⋆

ν,m⋆

〈
Y, ε ⊙ Â

〉

= 2k max
Y∈B⋆

ν,m⋆

(∑

0≤s≤m⋆

〈
Ds

(
Y
)
, ε ⊙ Â

〉
+
〈
S⋆(Y), ε ⊙ Â

〉)

where S⋆(Y) =
∑

s>m⋆
Ds(Y). The actual value of m⋆ is to be determined later.

Upper bound of
∣∣∣
〈
Ds(Y), ε ⊙ Â

〉∣∣∣. Recall the definition of Dν,s,q and that

2−s ≤ ‖Ds(Y)‖2
ℓ2

≤ 1,

17

we can write

Ds(Y) ∈
s⋃

q=1

(
Dν,s,q \ Dν,s,q−1

)
.

Then

max
Y∈B⋆

ν,m⋆

〈
Ds(Y), ε ⊙ Â

〉
= max

1≤q≤s
max

Ys,q∈Dν,s,q\Dν,s,q−1

〈
Ys,q, ε ⊙ Â

〉
.

Observe that

〈
Ys,q, ε ⊙ Â

〉
=

∑

ij∈[dj],j=1,...,k

∆(i1, . . . , ik)

P (i1 . . . ik)
ε(i1, . . . , ik)A(i1, . . . , ik)Ys,q(i1, . . . , ik),

where ∆ is a binary random tensor and ε is a Rademacher random tensor. Both of them

have i.i.d. entries. By definition of Ys,q and Dν,s,q, we have maxi1,...,ik
|Ys,q(i1, . . . , ik)| ≤ 2−s/2.

Moreover,

Var
(〈

Ys,q, ε ⊙ Â
〉)

=
∑

ij∈[dj],j=1,...,k

A2(i1, . . . , ik)

P (i1, . . . , ik)
Y 2

s,q(i1, . . . , ik).

Since ‖Ys,q‖2
F ≤ 2q−s, we obtain

Var
(〈

Ys,q, ε ⊙ Â
〉)

≤ max
ij∈[dj],j∈[k]

A2(i1, . . . , ik)

P (i1, . . . , ik)
‖Ys,q‖2

F ≤ 2q−s max
ij∈[dj],j∈[k]

A2(i1, . . . , ik)

P (i1, . . . , ik)
.

Recall the definition of α∞(A, P) and α2,∞(A, P). By Bernstein inequality for sum of

bounded random variables, there exist absolute constants C0, C1, C2 > 0 such that

P

(∣∣∣
〈
Ys,q, ε ⊙ Â

〉∣∣∣ ≥ t
)

≤ exp

(
− C0t

2

C12q−sα2
2,∞(A, P) + C22−s/2tα∞(A, P)

)

for any t > 0. By the union bound and Lemma 3, we get

P

(
max

Ys,q∈Dν,s,q

∣∣∣
〈
Ys,q, ε ⊙ Â

〉∣∣∣ ≥ t
)

≤ Card
(
Dν,s,q

)
exp

(
− C0t

2

C12q−sα2
2,∞(A, P) + C22−s/2tα∞(A, P)

)

≤ exp

(
21
(k∑

j=1

dj

)
/4 − C0t

2

C12q−sα2
2,∞(A, P)

)

+ exp

(
qsk log 2 + 2k2sk

√
ν2qL

(√
ν2q, dmaxsk/2

)
− C02

s/2t2

C2tα∞(A, P)

)
.

Recall that

0 ≤ q ≤ s ≤ m⋆ . k log dmax

18

and

L
(√

ν2q, dmaxsk/2
)
.

k

2
log dmax.

For large enough constants C3, C4 > 0, by choosing t > 0 such that

t ≥ C32(q−s)/2
(k∑

j=1

dj

)1/2

α2,∞(A, P) + C4k
3 logk+1 dmax

√
ν2q−sα∞(A, P),

we get for any 0 ≤ q ≤ s ≤ m⋆,

P

(
max

Ys,q∈Dν,s,q

∣∣∣
〈
Ys,q, ε ⊙ Â

〉∣∣∣ ≥ t
)

≤ exp

(
− C0t

2

C12q−sα2
2,∞(A, P)

)
+ exp

(
− C02

s/2t

C2α∞(A, P)

)
.

By making the above bound uniform over all pairs 0 ≤ q ≤ s ≤ m⋆, we obtain

P

(
max

Y∈B⋆
ν,m⋆

∣∣∣∣
∑

0≤s≤m⋆

〈
Ds(Y), ε ⊙ Â

〉∣∣∣∣ ≥ (m⋆ + 1)t
)

≤
(

m⋆ + 1

2

)
exp

(
− C0t2

C1α2
2,∞(A, P)

)

+

(
m⋆ + 1

2

)
exp

(
− C0t

C2α∞(A, P)

)
.

Upper bound of maxY∈B⋆
ν,m⋆

∣∣∣
〈
S⋆(Y), ε ⊙ Â

〉∣∣∣. For notation simplicity, we write S⋆ in

short for S⋆(Y). We apply Bernstein inequality to

〈
S⋆, ε ⊙ Â

〉
=

∑

ij∈[dj],j=1,...,k

∆(i1, . . . , ik)

P (i1, . . . , ik)
ε(i1, . . . , ik)A(i1, . . . , ik)S⋆(i1, . . . , ik).

Clearly,
∣∣∣S⋆(i1, . . . , ik)

∣∣∣ ≤ 2−m⋆/2. Meanwhile,

Var
(〈

S⋆, ε ⊙ Â
〉)

=
∑

ij∈[dj],j=1,...,k

A2(i1, . . . , ik)

P (i1, . . . , ik)
S2

⋆(i1, . . . , ik).

Following an identical approach as previously, we show that

Var
(〈

S⋆, ε ⊙ Â
〉)

≤ α2
2,∞(A, P).

By Bernstein inequality and the union bound

P

(
max

Y∈B⋆
ν,m⋆

∣∣∣
〈
S⋆(Y), ε ⊙ Â

〉∣∣∣ ≥ t
)

≤ Card
(
B

⋆
ν,m⋆

)
exp

(
− C0t2

C1α2
2,∞(A, P) + C22−m⋆/2tα∞(A, P)

)

≤ exp

(
21

k∑

j=1

dj/4 − C0t2

C1α
2
2,∞(A, P)

)
+ exp

(
21

k∑

j=1

dj/4 − C02m⋆/2t

C2α∞(A, P)

)

19

for some absolute constants C0, C1, C2 > 0. For large enough constants C3, C4 > 0, by

choosing t such that

t ≥ C3

(k∑

j=1

dj

)1/2

α2,∞(A, P) + C4

(k∑

j=1

dj

)
2−m⋆/2α∞(A, P),

we obtain

P

(
max

Y∈B⋆
ν,m⋆

∣∣∣
〈
S⋆(Y), ε ⊙ Â

〉∣∣∣ ≥ t
)

≤ exp

(
− C0t

2

C1α2
2,∞(A, P)

)
+ exp

(
− C02

m⋆/2t

C2α∞(A, P)

)
.

Finalize the proof of Theorem 2. Combining above bounds, we conclude that if for

large enough constants C3, C4, C5 > 0 such that

t ≥ C3

(k∑

j=1

dj

)1/2

α2,∞(A, P) + C4k
3 logk+1(dmax)

√
να∞(A, P) + C5

(k∑

j=1

dj

)
2−m⋆/2α∞(A, P).

Thus

P

(
‖ε ⊙ Â‖ ≥ (m⋆ + 2)t

)
≤

((
m⋆ + 1

2

)
+ 1

)
exp

(
− C0t

2

C1α
2
2(A, P)

)

+

((
m⋆ + 1

2

)
+ 1

)
exp

(
− C0t

C2α∞(A, P)

)
.

Recall that ν = C1α max
{
β(P), k log dmax

}
and m⋆ ≤ ∑k

j=1 2
(

⌈log2 dj⌉ + 3
)

. By choosing

m⋆ large enough such that 2−m⋆/2

(∑k
j=1 dj

)
≤ √

ν, we conclude that for any γ > 0 such

that

t ≥ C3

((k∑

j=1

dj

)1/2

+ γk log dmax

)
α2,∞(A, P) + C4γk3 logk+2(dmax)

√
να∞(A, P).

It follows immediately, by adjusting the constant C3, that

P

(
‖Â − A‖ ≥ t

)
≤ 2d−γ

max.

4.3 Proof of Theorem 3

It suffices to prove the upper bound of ‖M̂j−Mj‖ where Mj = Mj(A) and M̂j = Mj(Â
SPA).

Without loss of generality, let j = 1. Recall the notation d−1 = d2 . . . dk. By denoting

20

Ei1(i2...ik) ∈ R
d1×d−1 the canonical basis matrices of R

d1×d−1 that is Ei1(i2...ik) has exactly

value 1 on the (i1, i2 . . . ik) position and all 0’s elsewhere. Then,

M̂j − Mj =
∑

ij∈[dj],1≤j≤k

(
A(i1, . . . , ik)∆(i1, . . . , ik)

P (i1, . . . , ik)
− A(i1, . . . , ik)

)
Ei1(i2...ik)

where P

(
∆(i1, . . . , ik) = 1

)
= P (i1, . . . , ik). We shall apply the matrix Bernstein inequality

to bound the sum of random matrices for M̂j − Mj . Denote the locations of small entries by

Ω1 :=
{

(i1, . . . , ik) : ‖A(i1, . . . , ik)‖ ≤ ‖A‖F/(d1 . . . dk)1/2
}

⊂ [d1] × . . . × [dk]

moderate entries by

Ω2 :=
{
(i1, . . . , ik) : ‖A(i1, . . . , ik)‖/‖A‖F ∈

(
1/(d1 . . . dk)1/2, 1/n1/2

)}
⊂ [d1] × . . . × [dk]

and large entries by

Ω3 :=
{

(i1, . . . , ik) : ‖A(i1, . . . , ik)‖ ≥ ‖A‖F/n1/2
}

⊂ [d1] × . . . × [dk].

Recall that P (i1, . . . , ik) = 1 for (i1, . . . , ik) ∈ Ω3. Then, for any (i1, . . . , ik) ∈ Ω1 ∪ Ω2, we

have
∥∥∥∥
(

A(i1, . . . , ik)∆(i1, . . . , ik)

P (i1, . . . , ik)
− A(i1, . . . , ik)

)
Ei1(i2...ik)

∥∥∥∥ ≤ max
ij∈[dj],1≤j≤k

∣∣∣∣∣
A(i1, . . . , ik)

P (i1, . . . , ik)

∣∣∣∣∣.

Moreover,
∥∥∥∥

∑

ij∈[dj],1≤j≤k

E

(
A(i1, . . . , ik)∆(i1, . . . , ik)

P (i1, . . . , ik)
− A(i1, . . . , ik)

)2

Ei1(i2...ik)E
⊤
i1(i2...ik)

∥∥∥∥

≤ max
1≤i1≤d1

∑

ij∈[dj],2≤j≤k

A2(i1, . . . , ik)
(
1 − P (i1, . . . , ik)

)

P (i1, . . . , ik)

≤ max
1≤i1≤d1

∑

ij∈[dj],j≥2,(i1,...,ik)∈Ω1∪Ω2

A2(i1, . . . , ik)

P (i1, . . . , ik)
.

Similarly,
∥∥∥∥

∑

ij∈[dj],1≤j≤k

E

(
A(i1, . . . , ik)∆(i1, . . . , ik)

P (i1, . . . , ik)
− A(i1, . . . , ik)

)2

E⊤
i1(i2...ik)Ei1(i2...ik)

∥∥∥∥

≤ max
ij∈[dj],2≤j≤k

d1∑

i1=1

A2(i1, . . . , ik)
(
1 − P (i1, . . . , ik)

)

P (i1, . . . , ik)

≤ max
ij∈[dj],2≤j≤k

∑

i1∈[d1],(i1,...,ik)∈Ω1∪Ω2

A2(i1, . . . , ik)

P (i1, . . . , ik)
.

21

Observe that if (i1, . . . , ik) ∈ Ω1, then

∣∣∣∣
A(i1, . . . , ik)

P (i1, . . . , ik)

∣∣∣∣ =
(d1 . . . dk)

n
|A(i1, . . . , ik)| ≤ (d1 . . . dk)1/2

n
‖A‖F

and
A2(i1, . . . , ik)

P (i1, . . . , ik)
=

(d1 . . . dk)A2(i1, . . . , ik)

n
≤ ‖A‖2

F

n
.

Similarly, if (i1, . . . , ik) ∈ Ω2, then

∣∣∣∣
A(i1, . . . , ik)

P (i1, . . . , ik)

∣∣∣∣ =
‖A‖2

F

n|A(i1, . . . , ik)| ≤ (d1 . . . dk)1/2

n
‖A‖F

and
A2(i1, . . . , ik)

P (i1, . . . , ik)
=

‖A‖2
F

n
.

By matrix Bernstein inequality (Tropp, 2012), for any t ≥ 0, with probability at least 1−e−t

that

∥∥∥M̂j − Mj

∥∥∥ ≤ 2‖A‖F

(√
d2d3 . . . dk(t + k log dmax)

n
+

(d1 . . . dk)1/2(t + k log dmax)

n

)
.

Since M̂j = Mj +
(
M̂j − Mj

)
, the claim follows directly from Davis-Kahan Thoerem as in

(3).

4.4 Proof of Theorem 4

Theorem 4 is an immediate consequence of the following concentration bound.

Lemma 4. Let U
(rj)
j be the rj leading left singular vectors of Mj(A), and Û

(rj)
j be the output

from Algorithm 2. There exist constants C1, C2 > 0 depending on k only such that if

n ≥ C1(d1 . . . dk)1/2(t + log dmax),

then for any t ≥ 0, the following bound holds with probability at least 1 − e−t:

∥∥∥Û(rj)
j

(
Û

(rj)
j

)⊤ − U
(rj)
j

(
U

(rj)
j

)⊤∥∥∥

≤ C2
‖A‖F

ḡrj
(MjM

⊤
j)

(
σmax(Mj)

√
dj(t + log dmax)

n
+ ‖A‖F

(d1 . . . dk)1/2(t + log dmax)

n

)
.

22

Proof of Lemma 4. With out loss of generality, we assume j = 1 without loss of generality.

In this case, M̂
(1)
j = Mj(Â

SPA
1), M̂

(2)
j = Mj(Â

SPA
2) ∈ R

d1×(d2...dk). Observe that

M̂
(1)
j

(
M̂

(2)
j

)⊤
= MjM

⊤
j +

(
M̂

(1)
j − Mj

)
M⊤

j + Mj

(
M̂

(2)
j − Mj

)⊤

+
(
M̂

(1)
j − Mj

)(
M̂

(2)
j − Mj

)⊤
.

Upper bound of
∥∥∥
(
M̂

(1)
j −Mj

)(
M̂

(2)
j −Mj

)⊤∥∥∥. Denote by Z1 = M̂
(1)
j −Mj . By Theorem 3,

there exists an event E1 with P(E1) ≥ 1 − e−t such that on event E1,

‖Z1‖ ≤ C‖A‖F

(√
d2d3 . . . dk(t + log dmax)

n
+

(d1 . . . dk)1/2(t + log dmax)

n

)
.

Denote by ‖Z1‖2,∞ the maximal column ℓ2 norm., i.e., ‖Z1‖2,∞ = maxj∈[d2...dk]

∥∥∥Z1ej

∥∥∥
ℓ2

.

Clearly, there exists a constant C1 depending on k only such that

‖Z1‖2,∞ ≤ C1

(
max

ij∈[dj],2≤j≤k

√√√√
∑

i1∈[d1]:(i1,...,ik)∈Ω1∪Ω2

A2(i1, . . . , ik)

P (i1, . . . , ik)
(t + log dmax)

+ max
(i1,...,ik)∈Ω1∪Ω2

∣∣∣∣∣
A(i1, . . . , ik)

P (i1, . . . , ik)

∣∣∣∣∣(t + log dmax)

)

≤ C1‖A‖F

(√
d1(t + log dmax)

n
+

(d1 . . . dk)1/2(t + log dmax)

n

)
,

which holds with probability at least 1−e−t. Denote the above event by E3. We shall proceed

conditional on E1 ∩ E2 ∩ E3. Write

Z1

(
M̂

(2)
j − Mj

)⊤
=

∑

ij∈[dj],1≤j≤k

(
A(i1, . . . , ik)∆(i1, . . . , ik)

P (i1, . . . , ik)
− A(i1, . . . , ik)

)
Z1E⊤

i1(i2...ik)

which is again a sum of random matrices. Clear, for any (i1, . . . , ik) ∈ Ω1 ∪ Ω2,

∥∥∥∥
(

A(i1, . . . , ik)∆(i1, . . . , ik)

P (i1, . . . , ik)
− A(i1, . . . , ik)

)
Z1E

⊤
i1(i2...ik)

∥∥∥∥

≤ max
(i1,...,ik)∈Ω1∪Ω2

∣∣∣∣
A(i1, . . . , ik)

P (i1, . . . , ik)

∣∣∣∣‖Z1‖2,∞

≤ (d1 . . . dk)1/2

n
‖A‖F‖Z1‖2,∞.

23

Moreover,

∥∥∥∥∥
∑

ij∈[dj],1≤j≤k

E

(
A(i1, . . . , ik)∆(i1, . . . , ik)

P (i1, . . . , ik)
− A(i1, . . . , ik)

)2

Z1E⊤
i1(i2...ik)Ei1(i2...ik)Z

⊤
1

∥∥∥∥∥

≤ max
ij∈[dj],2≤j≤k

‖Z1‖2
∑

i1∈[d1]:(i1,...,ik)∈Ω1∪Ω2

A2(i1, . . . , ik)

P (i1, . . . , ik)

≤ d1‖A‖2
F

n
‖Z1‖2.

Similarly,

∥∥∥∥∥
∑

ij∈[dj],1≤j≤k

E

(
A(i1, . . . , ik)∆(i1, . . . , ik)

P (i1, . . . , ik)
− A(i1, . . . , ik)

)2

Ei1(i2...ik)Z
⊤
1 Z1E⊤

i1(i2...ik)

∥∥∥∥∥

≤ max
(i1,...,ik)∈Ω1∪Ω2

A2(i1, . . . , ik)

P (i1, . . . , ik)
‖Z1‖2

F

≤ d1‖A‖2
F

n
‖Z1‖2.

By matrix Bernstein inequality, the following bound holds with probability at least 1 − e−t,

∥∥∥
(
M̂

(1)
j − Mj

)(
M̂

(2)
j − Mj

)⊤∥∥∥

≤ C‖A‖F

(√
d1(t + log dmax)

n
‖Z1‖ +

(d1 . . . dk)1/2(t + log dmax)

n
‖Z1‖2,∞

)
.

Denote the above event by E4. On event E1 ∩ E2 ∩ E3 ∩ E4, if

n ≥ C1(d1d2 . . . dk)1/2(t + log dmax),

then

∥∥∥
(
M̂

(1)
j − Mj

)(
M̂

(2)
j − Mj

)⊤∥∥∥

≤ C2‖A‖2
F

(
(d1 . . . dk)1/2(t + log dmax)

n
+

d
1/2
1 (d1 . . . dk)1/2(t + log dmax)3/2

n3/2

)

≤ C2‖A‖2
F

(d1 . . . dk)1/2(t + log dmax)

n
.

Upper bound of
∥∥∥Mj

(
M̂

(2)
j − Mj

)⊤∥∥∥. We write

Mj

(
M̂

(2)
j − Mj

)⊤
=

∑

ij∈[dj],1≤j≤k

(
A(i1, . . . , ik)∆(i1, . . . , ik)

P (i1, . . . , ik)
− A(i1, . . . , ik)

)
MjE

⊤
i1(i2...ik).

24

The proof follows identically as above. Indeed, for any (i1, . . . , ik) ∈ Ω1 ∪ Ω2,

∥∥∥∥∥

(
A(i1, . . . , ik)∆(i1, . . . , ik)

P (i1, . . . , ik)
− A(i1, . . . , ik)

)
MjE

⊤
i1(i2...ik)

∥∥∥∥∥

≤ max
(i1,...,ik)∈Ω1∪Ω2

∣∣∣∣
A(i1, . . . , ik)

P (i1, . . . , ik)

∣∣∣∣ max
ij∈[dj],2≤j≤k

√ ∑

i1:(i1,...,ik)∈Ω1∪Ω2

A2(i1, . . . , ik)

≤ (d1 . . . dk)1/2

n

(
d1

n

)1/2

‖A‖2
F.

Moreover,

∥∥∥∥∥
∑

ij∈[dj],1≤j≤k

E

(
A(i1, . . . , ik)∆(i1, . . . , ik)

P (i1, . . . , ik)
− A(i1, . . . , ik)

)2

MjE
⊤
i1(i2...ik)Ei1(i2...ik)M

⊤
j

∥∥∥∥∥

≤ max
ij∈[dj],2≤j≤k

∑

i1:(i1,...,ik)∈Ω1∪Ω2

A2(i1, . . . , ik)

P (i1, . . . , ik)
‖Mj‖2

≤ d1

n
‖A‖2

Fσ2
max(Mj).

Similarly,

∥∥∥∥∥
∑

ij∈[dj],1≤j≤k

E

(
A(i1, . . . , ik)∆(i1, . . . , ik)

P (i1, . . . , ik)
− A(i1, . . . , ik)

)2

Ei1(i2...ik)M
⊤
j MjE

⊤
i1(i2...ik)

∥∥∥∥∥

≤
(

max
ij∈[dj],2≤j≤k

∑

i1:(i1,...,ik)∈Ω1∪Ω2

A2(i1, . . . , ik)

)(
max
i1∈[d1]

∑

ij∈[dj],2≤j≤k:(i1,...,ik)∈Ω1∪Ω2

A2(i1, . . . , ik)

P (i1, . . . , ik)

)

≤ d1d2 . . . dk

n2
‖A‖4

F.

By matrix Bernstein inequality (Tropp, 2012), if n ≥ C1(d1 . . . dk)1/2(t+ log dmax), then with

probability at least 1 − e−t such that

∥∥∥Mj

(
M̂

(2)
j − Mj

)⊤∥∥∥

≤ C2‖A‖F

(
σmax(Mj)

√
d1(t + log dmax)

n
+ ‖A‖F

(d1 . . . dk)1/2(t + log dmax)

n

)
.

Denote this event by E5. Clearly, an identical bound holds for
∥∥∥
(
M̂

(1)
j − Mj

)
M⊤

j

∥∥∥ with the

same probability. Denote this event by E6.

25

Finalize the proof of Theorem 4. On event E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5 ∩ E6, if n ≥
C1(d1 . . . dk)1/2(t + log dmax), there exists a constant C2 depending on k only such that

∥∥∥M̂(1)
j

(
M̂

(2)
j

)⊤ − MjM
⊤
j

∥∥∥

≤ C2‖A‖F

(
σmax(Mj)

√
d1(t + log dmax)

n
+ ‖A‖F

(d1 . . . dk)1/2(t + log dmax)

n

)
,

which concludes the proof by adjusting the constant C2 and applying Davis-Kahan Theorem.

References

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S Corrado, Andy Davis, Jeffrey Dean, and Matthieu Devin. Tensorflow: Large-scale

machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,

2016.

Dimitris Achlioptas and Frank McSherry. Fast computation of low-rank matrix approxima-

tions. Journal of the ACM (JACM), 54(2):9, 2007.

Dimitris Achlioptas, Zohar S Karnin, and Edo Liberty. Near-optimal entrywise sampling for

data matrices. In Advances in Neural Information Processing Systems, pages 1565–1573,

2013.

Sanjeev Arora, Elad Hazan, and Satyen Kale. A fast random sampling algorithm for spar-

sifying matrices. In APPROX-RANDOM, volume 6, pages 272–279. Springer, 2006.

Michael W Berry. Large-scale sparse singular value computations. The International Journal

of Supercomputing Applications, 6(1):13–49, 1992.

Srinadh Bhojanapalli and Sujay Sanghavi. A new sampling technique for tensors. arXiv

preprint arXiv:1502.05023, 2015.

Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou, Qibin Zhao, Cesar

Caiafa, and Huy Anh Phan. Tensor decompositions for signal processing applications:

26

From two-way to multiway component analysis. IEEE Signal Processing Magazine, 32(2):

145–163, 2015.

Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community structure in

very large networks. Physical review E, 70(6):066111, 2004.

Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation.

iii. SIAM Journal on Numerical Analysis, 7(1):1–46, 1970.

Petros Drineas and Anastasios Zouzias. A note on element-wise matrix sparsification via a

matrix-valued bernstein inequality. Information Processing Letters, 111(8):385–389, 2011.

Petros Drineas, Michael W Mahoney, and S Muthukrishnan. Subspace sampling and relative-

error matrix approximation: Column-based methods. In Approximation, Randomization,

and Combinatorial Optimization. Algorithms and Techniques, pages 316–326. Springer,

2006.

Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for finding

low-rank approximations. Journal of the ACM (JACM), 51(6):1025–1041, 2004.

Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.

Michael Holmes, Alexander Gray, and Charles Isbell. Fast SVD for large-scale matrices. In

Workshop on Efficient Machine Learning at NIPS, volume 58, pages 249–252, 2007.

Yuval Kluger, Ronen Basri, Joseph T Chang, and Mark Gerstein. Spectral biclustering

of microarray data: coclustering genes and conditions. Genome research, 13(4):703–716,

2003.

Mei Kobayashi, Georges Dupret, Oliver King, and Hikaru Samukawa. Estimation of singular

values of very large matrices using random sampling. Computers & Mathematics with

Applications, 42(10-11):1331–1352, 2001.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,

51(3):455–500, 2009.

27

Akshay Krishnamurthy and Aarti Singh. Low-rank matrix and tensor completion via adap-

tive sampling. In Advances in Neural Information Processing Systems, pages 836–844,

2013.

Nan Li and Baoxin Li. Tensor completion for on-board compression of hyperspectral images.

In Image Processing (ICIP), 2010 17th IEEE International Conference on, pages 517–520.

IEEE, 2010.

Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor completion for estimat-

ing missing values in visual data. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(1):208–220, 2013.

Aditya Krishna Menon and Charles Elkan. Fast algorithms for approximating the singular

value decomposition. ACM Transactions on Knowledge Discovery from Data (TKDD), 5

(2):13, 2011.

Nam H Nguyen, Petros Drineas, and Trac D Tran. Tensor sparsification via a bound on the

spectral norm of random tensors. Information and Inference: A Journal of the IMA, 4(3):

195–229, 2015.

Román Orús. A practical introduction to tensor networks: Matrix product states and pro-

jected entangled pair states. Annals of Physics, 349:117–158, 2014.

John Scott. Social network analysis. Sage, 2017.

Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E Pa-

palexakis, and Christos Faloutsos. Tensor decomposition for signal processing and machine

learning. IEEE Transactions on Signal Processing, 65(13):3551–3582, 2017.

Stephen M Smith, Mark Jenkinson, Mark W Woolrich, Christian F Beckmann, Timothy EJ

Behrens, Heidi Johansen-Berg, Peter R Bannister, Marilena De Luca, Ivana Drobnjak,

and David E Flitney. Advances in functional and structural mr image analysis and imple-

mentation as FSL. Neuroimage, 23:S208–S219, 2004.

28

Ulrich Stelzl, Uwe Worm, Maciej Lalowski, Christian Haenig, Felix H Brembeck, Heike

Goehler, Martin Stroedicke, Martina Zenkner, Anke Schoenherr, and Susanne Koeppen. A

human protein-protein interaction network: a resource for annotating the proteome. Cell,

122(6):957–968, 2005.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of

computational mathematics, 12(4):389–434, 2012.

David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and

Trends R© in Theoretical Computer Science, 10(1–2):1–157, 2014.

Dong Xia and Ming Yuan. On polynomial time methods for exact low rank tensor completion.

arXiv preprint arXiv:1702.06980, 2017.

Ming Yuan and Cun-Hui Zhang. On tensor completion via nuclear norm minimization.

Foundations of Computational Mathematics, 16(4):1031–1068, 2016.

Ming Yuan and Cun-Hui Zhang. Incoherent tensor norms and their applications in higher

order tensor completion. IEEE Transactions on Information Theory, 63(10):6753–6766,

2017.

A Technical Lemmas

A.1 Proof of Lemma 2

Clearly, for any t and λ > 0,

P

(n∑

j=1

(Xj − pj) ≥ t
)

= P

(
exp

{
λ

n∑

j=1

(Xj − pj)
}

≥ exp
{
λt
})

≤ e−λt
E exp

{
λ

n∑

j=1

(Xj − pj)
}

≤ e−λt
n∏

j=1

Eeλ(Xj −pj)

≤ e−λt
n∏

j=1

(
pje

λ(1−pj) + (1 − pj)e
−λpj

)
.

29

Note that ex ≤ 1 + x + x2 for any x ∈ [−1, 1]. Then,

pje
λ(1−pj) + (1 − pj)e

−λpj ≤ 1 + λ2pj(1 − pj) ≤ eλ2pj(1−pj).

Therefore, we obtain

P

(n∑

j=1

(Xj − pj) ≥ t
)

≤ e−λt
n∏

j=1

eλ2pj(1−pj) = exp
{

− λt + λ2
n∑

j=1

pj(1 − pj)
}

.

By choosing λ = t/2
∑n

j=1 pj(1 − pj), we end up with

P

(n∑

j=1

(Xj − pj) ≥ t
)

≤ exp
{

− t2/4
n∑

j=1

pj(1 − pj)
}

.

The proof is closed after choosing t = 2s
√∑n

j=1 pj(1 − pj) for s ≥ 0.

A.2 Proof of Lemma 3

The proof follows from the same argument as that for Lemma 12 of Yuan and Zhang (2016).

More specifically, denote the aspect ratio for a block A1 × . . . Ak ⊂ [d1] × . . . × [dk],

h(A1 × . . . × Ak) = min
{

ν : |Aj|2 ≤ ν
k∏

j=1

|Aj |, j = 1, 2, . . . , k
}

.

We bound the entropy of a single block. Let

D
(block)
ν,ℓ =

{
sgn(u1(a1)) . . . sgn(uk(ak))1

{
(a1, . . . , ak) ∈ A1 × . . . × Ak

}
:

h(A1 × . . . Ak) ≤ ν,
k∏

j=1

|Aj | = ℓ
}

.

By definition, we obtain

max
(
|A1|2, . . . , |Ak|2

)
≤ ν|A1||A2| . . . |Ak| ≤ νℓ.

By dividing D
(block)
ν,ℓ into subsets according to (ℓ1, . . . , ℓk) = (|A1|, . . . , |Ak|), we find

∣∣∣D(block)
ν,ℓ

∣∣∣ ≤
∑

ℓ1...ℓk=ℓ,maxj ℓj≤
√

νℓ

2ℓ1+...+ℓk

(
d1

ℓ1

)
. . .

(
dk

ℓk

)
.

By the Stirling formula, for j = 1, 2, . . . , k,

(
dj

ℓj

)
≤ d

ℓj

j

(ℓj!)
≤
(

dj

ℓj

)ℓj

eℓj
1√
2πℓj

,

30

then

log
[√

2πℓj2
ℓj

(
dj

ℓj

)]
≤ ℓjL(ℓj , 2dmax) ≤

√
νℓL(

√
νℓ, 2dmax)

where L(x, y) := max{1, log(ey/x)}. Let ℓ =
∏m

j=1 p
vj

j with distinct prime factors pj. Since

(vj + 1)vj/(2p
vj/2
j) is upper bounded by 2.66 for pj = 2, by 1.16 for pj = 3 and by 1 for

pj ≥ 5, we get

∣∣∣
{
(ℓ1, . . . , ℓk) : ℓ1 . . . ℓk = ℓ

}∣∣∣ =
m∏

j=1

(
vj + 1

k − 1

)

≤
m∏

j=1

(
vj + 1

2

)k/2

≤ (2.66 × 1.16)k/2(
√

ℓ)k/2

≤
k∏

j=1

(
2
√

2πℓj

)k/2
, ∀

k∏

j=1

ℓj = ℓ.

Therefore,

∣∣∣D(block)
ν,ℓ

∣∣∣ ≤
exp

(
k
√

νℓL(
√

νℓ, 2dmax)
)

∏k
j=1

√
2πℓj

k∏

j=1

(
2
√

2πℓj

)k/2
, ∀(ℓ1 . . . ℓk) = ℓ

≤ 2k2/2(2π)k(k−2)/4ℓ(k−2)/4 exp
(

k
√

νℓL(
√

νℓ, 2dmax)
)

≤ 2k2/2(2π)k(k−2)/4 exp
(

2k
√

νℓL(
√

νℓ, 2dmax)
)

.

Due to the constraint b1 + b2 + . . . + bk = s in defining B
⋆
ν,m⋆

, for any Y ∈ B
⋆
ν,m⋆

,

Ds(Y) is composed of at most i⋆ :=
(

s+k−1
k−1

)
blocks. Since the sum of the sizes of the blocks

is bounded by 2q, we obtain

∣∣∣Dν,s,q

∣∣∣ ≤
∑

ℓ1+...+ℓi⋆ ≤2q

i⋆∏

i=1

∣∣∣D(block)
ν,ℓi

∣∣∣

≤
∑

ℓ1+...+ℓi⋆ ≤2q

(2π)i⋆k(k−2)/42i⋆k2/2 exp
(

2k
i⋆∑

i=1

√
νℓiL(

√
νℓi, 2dmax)

)

≤ 2i⋆k2/2(2q)i⋆

(2π)i⋆k(k−2)/4 max
ℓ1+...+ℓi⋆ ≤2q

exp
(

2k
i⋆∑

i=1

√
νℓiL(

√
νℓi, 2dmax)

)
.

As shown in Yuan and Zhang (2016),
∑i⋆

i=1

√
ℓiL(

√
νℓi, 2dmax) ≤

√
i⋆2q

(
L(

√
ν2q, 2dmax) +

log(
√

i⋆)
)
, we obtain

log
∣∣∣Dν,s,q

∣∣∣ ≤ i⋆ log(2q) + i⋆k(k − 2)/2 + i⋆k2/2 + 2k
√

i⋆ν2qL
(√

ν2q, 2dmax

√
i⋆
)
.

31

Since i⋆ =
(

s+k−1
k−1

)
≤ sk, it follows that

log
∣∣∣Dν,s,q

∣∣∣ ≤ qsk log 2 + 2k2sk
√

ν2qL
(√

ν2q, dmaxsk/2
)
.

32

	1 Introduction
	2 Tensor Sparsification
	3 HOSVD via Tensor Sketching
	4 Proofs
	4.1 Proof of Theorem 1
	4.2 Proof of Theorem 2
	4.3 Proof of Theorem 3
	4.4 Proof of Theorem 4

	A Technical Lemmas
	A.1 Proof of Lemma 2
	A.2 Proof of Lemma 3

