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A Single-Letter Upper Bound

to the Mismatch Capacity
Ehsan Asadi Kangarshahi and Albert Guillén i Fàbregas

Abstract—We derive a single-letter upper bound to the
mismatched-decoding capacity for discrete memoryless channels.
The bound is expressed as the mutual information of a transfor-
mation of the channel, such that a maximum-likelihood decoding
error on the translated channel implies a mismatched-decoding
error in the original channel. In particular, it is shown that if
the rate exceeds the upper-bound, the probability of error tends
to one exponentially when the block-length tends to infinity.
We also show that the underlying optimization problem is a
convex-concave problem and that an efficient iterative algorithm
converges to the optimal solution. In addition, we show that,
unlike achievable rates in the literature, the multiletter version

of the bound cannot not improve. A number of examples are
discussed throughout the paper.

I. INTRODUCTION AND PRELIMINARIES

We consider reliable communication over a discrete mem-

oryless channel (DMC) W with a given decoding metric

[1]–[4] (see also [5] and references therein for an account

of recent progress). This problem arises when the decoder

uses a suboptimal decoding rule due to limited computational

resources, simpler implementation, lack of awareness of the

channel law or imperfect channel estimation. Moreover, it is

shown in [1] that some important problems in information

theory, like the zero-error capacity of a channel can be

cast as instances of the mismatch decoding problem. As a

result, deriving a single letter characterization of the mismatch

decoding capacity would yield a solution to zero-error capacity

problem, known to be a difficult problem.

Multiple achievability results have been reported in the liter-

ature [1]–[4], [6]–[8]. These results were derived by random

coding techniques, i.e. analyzing the average probability of

error of mismatch decoding over a certain ensemble of ran-

domly generated codebooks. In some cases, multiuser achiev-

able rates have been shown to improve over standard single-

user random coding [6]–[8]. As suggested by [1], multiletter

versions of achievable rates can yield strict improvements over

their single-letter counterparts.
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Unlike the achievable rate case, few converse results have

been reported in the literature. The only single-letter converse

was reported in [9], where it was claimed that for binary-

input DMCs, the mismatch capacity was precisely equal to the

achievability result derived in [3], [4] known as the LM rate.

Reference [10] provided a counterexample to this converse

invalidating its claim, showing that a multiletter multiuser rate

from [7], [8] was strictly higher than the LM rate. Multiletter

converse results were derived in [11]. In particular, for DMCs,

[11] shows that for rational decoding metrics, the probability

of error cannot decay faster than O(n−1) for rates above the

achievable rate in [3], [4].

In this paper, we propose a single-letter upper bound to the

mismatch capacity that is shown to characterize the mismatch

capacity in special cases where it is known, and yield strict

improvements over the matched capacity in cases where the

mismatch capacity is unknown. The bound is expressed as

the mutual information of an auxiliary channel, such that a

maximum-likelihood decoding error on the auxiliary channel

implies a mismatched-decoding error in the original channel.

The key is to connect the real and auxiliary channels by means

of a graph in the output space. This is a new technique to

derive upper bounds that could also be helpful in other settings.

The bound is shown to be convex-concave and an efficient

algorithm to compute the bound is provided. The convexity

analysis of the bound shows that the multiletter version cannot

improve over its single-letter version.

The paper is structured as follows. In Section II we intro-

duce notation and preliminaries. In Section III we introduce

our main result and discuss its application to some examples.

Sections IV, V, VI and VII provide the proof of our main re-

sult. In particular, in Section IV, we construct a graph between

different conditional type classes as a key first step of the proof

of our upper bound. In Section V, we relate the maximum-

likelihood decoding errors on a constructed auxiliary channel

V and mismatched decoding errors on channel W . In Section

VI we extend the validity of the results derived in the previous

sections, originally derived for types, to distributions. Section

VII gives the final steps of the proof. In Section VIII we

show that the optimization problem implied by our bound

is a convex-concave optimization problem and we derive

the corresponding KKT conditions. Section IX discusses the

computation of the bound and proves the convergence of an

efficient iterative algorithm based on the mirror prox algorithm

[12]. In Section X we use the KKT conditions derived for the

single-letter bound and show that the multiletter version of the

bound cannot improve over its single-letter counterpart.
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II. NOTATION AND PRELIMINARIES

We assume input and output alphabets are X =
{1, 2, . . . , J} and Y = {1, 2, . . . ,K}, respectively. We de-

note the channel transition probability by W (k|j) and de-

fine W ∈ R
J×K as the matrix defined by the channel

W (j, k) = W (k|j). A codebook Cn is defined as a set of

M sequences Cn =
{
x(1),x(2), . . . ,x(M)

}
, where x(m) =(

x1(m), x2(m), . . . , xn(m)
)
∈ Xn, for m ∈ {1, 2, . . . ,M}.

A message m ∈ {1, 2, . . . ,M} is chosen equiprobably and

x(m) is sent over the channel. The channel produces a

noisy observation y = (y1, y2, . . . , yn) ∈ Yn according to

Wn(y|x) =
∏n

i=1 W (yi|xi). Upon observing y ∈ Yn the

decoder produces an estimate of the transmitted message m̂ ∈
{1, 2, . . . ,M}. The average and maximal error probabilities

are respectively defined as

Pe(Cn) =
1

M

M∑

i=1

P[m̂ 6= m|m = i] (1)

and

Pe,max(Cn) = max
i∈{1,2,...,M}

P[m̂ 6= m|m = i]. (2)

Rate R > 0 is said to be achievable if for any ǫ > 0 there

exists a sequence of length-n codebooks {Cn}∞n=1 such that

|Cn| ≥ 2n(R−ǫ), and lim infn→∞ Pe(Cn) = 0. The capacity

of W , denoted by C(W ) or C(W ), is defined as the largest

achievable rate.

The decoder that minimizes the error probability is the

maximum-likelihood (ML) decoder, that produces the message

estimate m̂ according to

m̂ = argmax
i∈{1,2,...,M}

Wn
(
y|x(i)

)
. (3)

In certain situations, where the decoder is unaware of the

channel law, or is unable to compute it, it is not possible to use

ML decoding and instead, the decoder produces the message

estimate m̂ as

m̂ = argmax
i∈{1,2,...,M}

q
(
x(i),y

)
, (4)

where,

q
(
x(i),y

)
=

n∑

ℓ=1

q
(
xℓ(i), yℓ

)
(5)

and q : X × Y → R is the decoding metric1. We assume

that, without loss of generality, decoding ties are counted

as errors. We will refer to this decoder as q-decoder. When

q(x, y) = logW (y|x), the decoder is ML, otherwise, for a

general decoding metric q the decoder is said to be mis-

matched [1]–[4]. We define the metric matrix Q ∈ R
J×K

with entries Q(j, k) = q(j, k). The average and maximal

error probabilities of codebook Cn under q-decoding are re-

spectively denoted by P q
e (Cn) and P q

e,max(Cn). The mismatch

capacity Cq(W ) or Cq(W ) is defined as supremum of all

achievable rates with q-decoding.

1In the literature, q(x, y) has been used to denote either an additive or
multiplicative decoding metric. For convenience, we have chosen it to denote
an additive metric.

Lower bounds for the mismatch capacity have been studied

extensively using random coding techniques. Specifically, the

i.i.d. random coding ensemble is known to achieve the gen-

eralized mutual information (GMI) which can be written as

[13],

RGMI

q (W ) = max
PX

min
V :

EPX×V [q(X,Y )]≥EPX×W [q(X,Y )]

I(PX , V ),

(6)

where the notation PX × PY |X denotes the joint distribution

induced by the corresponding marginal and conditional dis-

tributions. An improved lower bound, known as the LM rate,

is derived by employing constant composition random coding

[3], [4],

RLM

q (W ) = max
PX

min
V :

PXV =PXW
EPX×V [q(X,Y )]≥EPX×W [q(X,Y )]

I(PX , V ),

(7)

where the notation PXPY |X denotes the output distribution

induced by the marginal distribution PX and conditional

distribution PY |X . The above rate has an intuitive explanation.

The maximization is over all input distributions, and the

minimizations is over all auxiliary channels V with two

properties. First, equal output marginal PXV = PXW , such

that for all k ∈ Y
∑

j∈X
PX(j)V (k|j) =

∑

j∈X
PX(j)W (k|j). (8)

This implies that the distribution of the received sequence

needs to be the same for both channel W and auxiliary channel

V whenever the input codeword is chosen from composition

PX . The second condition, also present in the expression of the

GMI, EPX×V [q(X,Y )] ≥ EPX×W [q(X,Y )] can be rewritten

as,

∑

j,k

PX(j)V (k|j)q(j, k) ≥
∑

j,k

PX(j)W (k|j)q(j, k), (9)

and implies that, the received sequence Y has a higher metric

under channel V than under channel W , and therefore, the

q-decoder makes an error. It is implied in (6) and (7) that

RGMI
q (W ) ≤ RLM

q (W ). The GMI and LM rates are ensemble

tight, i.e. the ensemble average error probability tends to one

exponentially for rates exceeding the GMI and LM rates,

respectively. Both of the bounds above are known not to attain

the mismatch capacity in general. It is known that the GMI

and LM rates can be improved by considering their multiletter

counterparts [1].

The method of types [14, Ch. 2] will be used extensively

in this paper. We recall some of the basic definitions and

introduce some notation. The type of a sequence x =
(x1, x2, . . . , xn) ∈ Xn is the empirical distribution of its

symbols, i.e., p̂x(j) = 1
n

∑n
i=1 1{xi = j}. The set of all

types of Xn is denoted by Pn(X ). For pX ∈ Pn(X ), the

type class T n(pX) is set of all sequences in Xn with type

pX , T n(pX) = {x ∈ Xn | p̂x = pX}.

The joint type of sequences x = (x1, x2, . . . , xn) ∈ Xn

and y = (y1, y2, . . . , yn) ∈ Yn is the empirical distribution
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p̂xy(j, k) =
1
n

∑n
i=1 1{xi = j, yi = k}. The conditional type

of y given x is the empirical conditional distribution

p̂y|x(k|j) =
{

p̂
xy

(j,k)

p̂
x
(j) p̂x(j) > 0

1
K

otherwise.
(10)

The set of all conditional types on Yn given Xn is denoted

by Pn(Y|X ). For pY |X ∈ Pn(Y|X ) and a sequence x ∈
T n(pX), the conditional type class T n

x (pY |X) is defined as

T n
x (pY |X) = {y ∈ Yn | p̂y|x = pY |X}.
Similarly, we can define the joint type of x,y, ŷ, as the

empirical distribution of the triplet. For j ∈ X and k1, k2 ∈ Y ,

p̂xyŷ(j, k1, k2) =
1

n

n∑

i=1

1{xi = j, yi = k1, ŷi = k2}. (11)

We define the joint conditional type of y, ŷ given x ∈ T n(pX)
as

p̂yŷ|x(k1, k2|j) =
{

p̂
xyŷ

(k1,k2|j)
p̂
x
(j) p̂x(j) > 0

1
K
1{k1 = k2} otherwise.

(12)

The set of all joint conditional types is denoted by Pn(Y ×
Ŷ|X ). Additionally, for pY Ŷ |X ∈ Pn(Y × Ŷ|X ) we define:

T n
yx(pY Ŷ |X) = {ŷ ∈ Yn | p̂yŷ|x = pY Ŷ |X}. (13)

The mutual information is defined as I(PX , PY |X)
∆
=

E

[
log

PY |X (Y |X)
∑

x′ PX (x′)PY |X(Y |x′)

]
. Throughout the paper, for con-

ditional types or conditional distributions M1,M2 we define

|M1 −M2|∞ = max
1≤j≤J
1≤k≤K

∣∣M 1(k|j)−M2(k|j)
∣∣. (14)

Definition 1: Let P
Y Ŷ |X be a joint conditional distribution

and define the set

Sq(k1, k2)
∆
=
{
i ∈ X|i = argmax

i′∈X
q(i′, k2)−q(i′, k1)

}
. (15)

We say that PY Ŷ |X is a maximal joint conditional distribution

if for all (j, k1, k2) ∈ X × Y × Y ,

P
Y Ŷ |X(k1, k2|j) = 0 if j /∈ Sq(k1, k2). (16)

Moreover, if p
Y Ŷ |X ∈ Pn(Y × Ŷ|X ) satisfies the same

condition, we call it a maximal joint conditional type.

For a given decoding metric q, we define the set of maximal

joint conditional distributions to be Mmax(q).
Appendix C discusses the above definition for cases where

the decoding metric q can take −∞ values.

The above definition will become helpful when relating

decoding errors in channel PY |X = W under q-decoding to

errors in channel P
Ŷ |X under ML decoding.

Definition 2: Let Cn = {x(1), . . . ,x(M)} and m be the

transmitted message. We say that the decoder makes a type

conflict error for a given y ∈ Yn if there is at least one

codeword x(i) 6= x(m) such that p̂y|x(i) = p̂y|x(m).

If there is a type conflict error, every decoder that makes a

decision based on the joint type between the channel output

and the candidate codewords (α-decoder) makes an error,

including ML and q-decoding; the converse is not true. With

the same method developed in the paper, it can be shown that

the type conflict error probability over the channel W goes to

1 exponentially for R > C(W ); even with a genie-aided ML

decoder knowing the exact conditional type p̂y|x(m), the error

probability would still tend to 1 exponentially above capacity.

III. MAIN RESULT

In this section, we introduce the main result and discuss

some of its properties. Our bound is derived for the maximal

probability of error. Recall that for the mismatched decoding

problem, a converse for the maximal probability of error

implies a converse for the average probability of error [1].

Theorem 1: Let W, q be channel and decoding metric,

respectively. We define R̄q(W ) as follows,

R̄q(W ) = max
PX

min
P

Y Ŷ |X∈Mmax(q)

PY |X=W

I(PX , P
Ŷ |X). (17)

If R > R̄q(W ), ∃n0 ∈ N and Ēq(R) > 0 such that for n >
n0, the error probability of any codebook Cn of length n and

M ≥ 2nR codewords satisfies P q
e,max(Cn) ≥ 1− 2−nĒq(R).

Proof Outline: The main idea behind the proof of Theorem

1 is that of lower-bounding the error probability of a codebook

Cn with q-decoding over the channel W by that of the same

codebook over a different channel V with ML decoding,

with V = P
Ŷ |X as per the theorem statement. The proof is

developed over the next sections of the paper. The following

is an overview of the structure of the proof and the sections

covering the proof.

• In Section IV we construct a graph G in the output space

such that if ML decoding over V makes a type conflict

error for some y ∈ Yn, then, the q-decoder makes an

error for some ŷ ∈ Yn connected to y in G.

• In Section V we prove a theorem that relates the

maximum-likelihood decoding errors on a constructed

auxiliary channel V and mismatched decoding errors on

channel W via the graph constructed in Section IV.

• In Sections VI and VII we generalize the results we have

derived using the method of types in the previous sections

to distributions. We do this by taking the limit when n
tends to infinity and complete the proof of the Theorem

1.

�
Theorem 1 implies that Cq(W ) ≤ R̄q(W ). It is implied in

Theorem 1 that for any PY Ŷ |X ∈ Mmax(q) such that PY |X =
W ,

R̄q(W ) ≤ C(P
Ŷ |X). (18)

This result is derived by using the max-min inequality:

R̄q(W ) = max
PX

min
P

Y Ŷ |X∈Mmax(q)

PY |X=W

I(PX , P
Ŷ |X) (19)

≤ min
P

Y Ŷ |X∈Mmax(q)

PY |X=W

max
PX

I(PX , P
Ŷ |X) (20)

= min
P

Y Ŷ |X∈Mmax(q)

PY |X=W

C(P
Ŷ |X). (21)
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As it will be shown in Section VIII, Eq. (20) actually holds

with equality. Moreover, Theorem 1 characterizes a family of

bounds to the mismatch capacity, not only the minimum in

(17). The above inequality is helpful to construct bounds with-

out necessarily performing the optimization. As an instance of

the above result, setting Y such that PY |X = W and Ŷ = Y
makes PY Y |X a maximal joint conditional distribution (Def.

1). Therefore, Cq(W ) ≤ C(PY |X) = C(W ). In the proof it

is evident that the bound remains valid for any fixed input

distribution, not only the maximizing one. This means that

any constant-composition codebook with type approaching a

fixed PX will have an error probability that tends to one

exponentially if its rate is such that

R > min
P

Y Ŷ |X∈Mmax(q)

PY |X=W

I(PX , P
Ŷ |X). (22)

Remark 1: The optimization (17) in Theorem 1, is a convex-

concave optimization problem. See Section VIII for further

details.

Remark 2: It was shown [1] that the achievability bounds

for DMCs could be improved by considering an equivalent

metric q̃(x, y) = sq(x, y) + a(x) + b(y). Here we show that

our bound in Theorem 1 does not change by replacing metric

q(x, y) by q̃(x, y) = sq(x, y)+ a(x)+ b(y). According to the

definition of Sq̃(k1, k2), we have

argmax
j∈X

q̃(j, k2)− q̃(j, k1)

= argmax
j∈X

(
sq(j, k2) + a(j) + b(k2))

− (sq(j, k1) + a(j) + b(k1)
)

(23)

= argmax
j∈X

s
(
q(j, k2)− q(j, k1)

)
+ b(k2)− b(k1) (24)

= argmax
j∈X

q(j, k2)− q(j, k1) (25)

which is precisely the condition in the definition of Sq(k1, k2).
The above property from [1] implies that for binary-input

channels, the mismatch capacity Cq(W ) is only a function of

the metric differences q(1, y) − q(2, y) for every y ∈ Y . In

the remainder of this section, we show a sufficient condition

for Cq(W ) < C(W ) for binary-input channels based on the

above observation.

Definition 3: We say that two sequences {αi}Ki=1 and

{βi}Ki=1 have the same order if for all 1 ≤ i1, i2 ≤ K

αi1 ≥ αi2 ⇒ βi1 ≥ βi2 . (26)

We have the following result for J = 2.

Theorem 2: Assume that W (k|j) > 0, for all j = 1, 2, k =

1, . . . ,K . If the sequences
{
logW (k|1) − logW (k|2)

}K
k=1

and
{
q(1, k)− q(2, k)

}K
k=1

do not have the same order, then

Cq(W ) < C(W ).
Proof: See Appendix A for the proof.

A. Examples

In the following, we discuss the applicability of our upper

bound to two relevant cases. First, we show that our bound

recovers known results on binary-input binary-output channels.

Next, we show that our bound makes a non-trivial improve-

ment over the channel-metric combination used in [10] to state

the counterexample to Balakirsky’s result [9].

Example 1 (Binary-input binary-output channels): Suppose

that the channel and decoding metric matrices of binary-input

binary-output channels are given by

W =

[
a b
c d

]
and Q =

[
â b̂

ĉ d̂

]
. (27)

Without loss of generality we assume a + d ≥ b + c. We

show the following known result [1]: if â + d̂ < b̂ + ĉ then

R̄q(W ) = 0. On the other hand, if â + d̂ ≥ b̂ + ĉ, then

R̄q(W ) = C(W ).

Case 1: â+ d̂ < b̂+ ĉ
We chose the joint conditional distribution in Table I.

TABLE I
JOINT CONDITIONAL DISTRIBUTION P

Y Ŷ |X FOR EXAMPLE 1

(k1, k2|j) P
Y Ŷ |X (k1, k2|j) P

Y Ŷ |X

(1, 1|1) a − r1 (2, 2|2) d− r2
(1, 2|1) r1 (2, 1|2) r2
(2, 2|1) b (1, 1|2) c

(2, 1|1) 0 (1, 2|2) 0

It can be checked that indeed it is a valid joint conditional

distribution for 0 ≤ r1 ≤ a and 0 ≤ r2 ≤ d, and that∑
k2

PY Ŷ |X(k1, k2|j) = PY |X(k1|j) = W (k1|j). In order

to check its maximality, we first notice that for k1 = k2
we always have that q(i, k2) − q(i, k1) = 0 for all i ∈ X ,

implying that Sq(k1, k2) = {1, 2}. Thus, since every j ∈ X is

such that j ∈ Sq(k1, k2), the corresponding four entries can

be nonzero. As for entry (1, 1, 2) (resp. (2, 2, 1)), using the

assumption â + d̂ < b̂ + ĉ we have that Sq(k1, k2) = {1}
(resp . Sq(k1, k2) = {2}), and thus they both can be nonzero.

Since by assumption â + d̂ < b̂ + ĉ, it can be checked

that for entry (2, 1, 2), Sq(k1, k2) = {1}, and thus we must

have P
Y Ŷ |X(k1, k2|j) = 0. Similarly for entry (1, 2, 1),

Sq(k1, k2) = {2}. Marginalizing the above over Y gives

P
Ŷ |X =

[
a− r1 b+ r1
c+ r2 d− r2

]
. (28)

Without loss of generality assume that a is the largest element

of W . By setting r1 = r2 = a−c
2 = d−b

2 we obtain

P
Ŷ |X =

[
a+c
2

b+d
2

a+c
2

b+d
2

]
. (29)

Since C(P
Ŷ |X) = 0, we have that Cq(W ) ≤ 0.

Case 2: â+ d̂ ≥ b̂+ ĉ
In [4] it is shown that the LM achievable rate is equal to

C(W ). Therefore, our upper-bound also matches the achiev-

able rate.

Example 2: We consider the channel and metric studied in

[10] to show a counterexample to [9]

W =

[
0.97 0.03 0
0.1 0.1 0.8

]
and Q =

[
1 1 1
1 0.5 1.36

]
. (30)
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In this case, the LM rate is RLM
q (W ) = 0.1975 while the

rate achieved by a multiletter extension of order ℓ = 2 of

superposition coding gives R
SC,(2)
q (W ) = 0.1991 [10] .

We choose the maximal PY Ŷ |X in Table II such that

PY |X = W , which happens to be the optimal one (see Section

IX for details). By marginalizing over Y we find that

P
Ŷ |X =

[
0.5 0.5 0
0.1 0.1 0.8

]
. (31)

We obtain that R̄q(W ) = 0.6182 bits/use, while the capacity

is C(W ) = 0.7133 bits/use.

TABLE II
NONZERO ENTRIES OF P

Y Ŷ |X FOR EXAMPLE 2

(k1, k2|j) P
Y Ŷ |X (k1, k2|j) P

Y Ŷ |X

(1, 1|1) 0.5 (1, 1|2) 0.1
(1, 2|1) 0.47 (2, 2|2) 0.1
(2, 2|1) 0.03 (3, 3|2) 0.8

In the above example, if we change q(2, 2) from 0.5 to 1,

the same PY Ŷ |X in Table II remains maximal (and optimal)

and gives R̄q(W ) = 0.6182 bits/use, matching the LM rate

[4].

Example 3: In this example we apply our bound to the

erasures-only or zero-undetected error capacity problem. In

this setting, the decoder chooses a codeword x in the codebook

if it is the only codeword with W (y|x) > 0. Otherwise

the decoder declares an erasure. The erasures-only capacity

Ceo(W ) is defined as the maximum achievable rate where

the probability of erasure could tend to zero by increasing

the block-length. It can be shown [1] that the erasures-only

capacity problem can be reduced to a mismatched decoding

problem with decoding metric

q(x, y) =

{
0 W (y|x) > 0

−1 W (y|x) = 0.
(32)

In order to explain the structure of the of the sets Sq(k1, k2)
, observe that for any two k1, k2 ∈ Y , there are two different

possibilities:

1) Firstly, if there exists j ∈ X such that, W (k1|j) = 0
and W (k2|j) > 0 then from the definition of the metric

in (32) we get j ∈ Sq(k1, k2). Moreover, for any

other j′ ∈ Sq(k1, k2) we should have W (k1|j′) = 0
and W (k2|j′) > 0. Thus, for any j′ ∈ Sq(k1, k2)
from the definition of maximality PY Ŷ |X(k1, k2|j) could

potentially be non-zero. Yet, since P
Y Ŷ |X(k1, k2|j′) ≤

W (k1|j′), we have that PY Ŷ |X(k1, k2|j′) = 0.

2) Instead, if there is no j ∈ X such that W (k1|j) = 0 and

W (k2|j) > 0, then

{j ∈ X|W (k2|j) > 0} ⊆ {j ∈ X|W (k1|j) > 0}. (33)

If {j ∈ X|W (k1|j) > 0} = {j ∈ X|W (k2|j) > 0},

then, outputs k1 and k2 can be merged without affecting

Ceo(W ) [15]. Otherwise, outputs k1 and k2 cannot be

merged.

Consider the following ternary-input quaternary-output

channel that cannot be simplified by merging,

W =



0.25 0 0.05 0.7
0.3 0.55 0 0.15
0.05 0.5 0.45 0


 . (34)

The Shannon capacity of W is C(W ) = 0.7854 bits/use and

our upper bound gives R̄q(W ) = 0.6232 bits/use. The LM rate

computed by an exhaustive search over the input distributions

is RLM
q (W ) = 0.4292 bits/use.

As observed from the above examples, our bound non-

trivially improves on the on the trivial upper bound stating

that the mismatch capacity is at most the Shannon capacity.

IV. GRAPH CONSTRUCTION

In this section, we outline how to construct a graph be-

tween two different conditional types obtained from a joint

conditional type.

Definition 4: Let G = {V1,V2, E} be a regular bipartite

graph with vertex sets V1 and V2, edge set E and degrees r1
on vertex set V1 and r2 on vertex set V2. For B ⊂ V2 we

define the set of vertices in V1 connected to B as

Ψ21(B) =
{
v ∈ V1 | ∃b ∈ B; (b, v) ∈ E

}
. (35)

Analogously for B ⊂ V1, the set Ψ12(B) is defined similar to

(35).

Lemma 1: Suppose G = {V1,V2, E} is a regular bipartite

graph with degrees r1 > 0, r2 > 0. Then, for any B ⊂ V2 we

have that

|Ψ21(B)|
|V1|

≥ |B|
|V2|

. (36)

Proof: Let B ⊂ V2 and consider Ψ21(B). There are

exactly r2|B| edges between B and Ψ21(B). Since each vertex

in Ψ21(B) is connected to at most r1 vertices of B we have

r2|B| ≤ r1|Ψ21(B)| (37)

which implies that

r2
r1

|B| ≤ |Ψ21(B)|. (38)

Since there are exactly r1|V1| = r2|V2| edges in the graph,

the result follows by substituting r2
r1

= |V1|
|V2| in (38).

Our aim is to construct a graph between different two

conditional type classes, in order to be able to relate type

conflict errors of codebook Cn over the channel V and

errors of Cn over the channel W under q-decoding. Suppose

pY Ŷ |X ∈ Pn(Y × Ŷ|X ) is an arbitrary joint conditional type.

We construct a graph between T n
x (pY |X) and T n

x (p
Ŷ |X), the

corresponding conditional type classes.

Definition 5: The graph

Gx(pY Ŷ |X) =
{
T n
x (pY |X), T n

x (p
Ŷ |X), E

}
(39)

has the following edge set:

E =
{
(y, ŷ) | p̂yŷ|x = pY Ŷ |X

}
. (40)
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Lemma 2: The graph Gx(pY Ŷ |X) is regular, i.e. all

sequences in each conditional type class T n
x (pY |X) and

T n
x (pŶ |X) have the same degree.

Proof: For a given x ∈ T n(pX), |T n
x (pY |X)| is in-

dependent of the chosen x ∈ T n(pX), but dependent on

pX . Similarly, for a given y ∈ T n
x (pY |X), |T n

yx(pY Ŷ |X)| is

independent of the chosen x,y, but dependent on the joint type

pXY . Therefore, the total number of edges that are connected

to any given y ∈ T n
x (pY |X) is equal to |T n

yx(pY Ŷ |X)|
(see (13)). This proves the left-regularity, i.e., for vertex set

T n
x (pY |X). The same argument holds for ŷ ∈ T n

x (p
Ŷ |X) and

therefore the graph is regular.

As we show next, the combination of Lemmas 1 and 2 will

prove to be helpful. Assume for a codeword x we find a set

B ⊂ T n
x (p

Ŷ |X) that yields a type conflict error (see Definition

2). Then, the probability of an element ŷ ∈ B being the output

of an arbitrary channel V given that the conditional type is

p
Ŷ |X , is given by

P
[
ŷ ∈ B | ŷ ∈ T n

x (p
Ŷ |X),x is sent

]
=

|B|
|T n

x (p
Ŷ |X)| (41)

where the probability is computed with respect to an auxiliary

memoryless channel V , i.e., P
[
ŷ|x is sent

]
=
∏

i=1 V (ŷi|xi)
and equality holds because all elements of T n

x (p
Ŷ |X) are

equally likely to appear at the output when x is sent. The

probability in (41) should be understood as the probability of

the set B given that ŷ ∈ T n
x (p

Ŷ |X) and x is sent. Therefore, if

the graph Gx(pY Ŷ |X) is connecting ŷ causing a type conflict

error to y causing a q-decoder error, by Lemma 1 we show

that the set Ψ21(B) ⊂ T n
x (pY |X) satisfies

|Ψ21(B)|
|T n

x (pY |X)| ≥
|B|

|T n
x (p

Ŷ |X)| . (42)

Using the same argument as in (41) we have

P
[
y ∈ Ψ21(B) |y ∈ T n

x (pY |X),x is sent
]
=

|Ψ21(B)|
|T n

x (pY |X)| .

(43)

Combining (43) and (42) we get

P[y ∈ Ψ21(B) |y ∈T n
x (pY |X),x is sent] ≥

P[ŷ ∈ B | ŷ ∈ T n
x (p

Ŷ |X),x is sent].

(44)

As a result, we get a lower bound on the probability of error

of the q-decoder in channel W as a function of type conflict

errors in channel V . In the next section, we prove that a graph

constructed based on a maximal joint conditional type has the

property of connecting type conflict errors to q-decoder errors.

V. CONNECTING q-DECODING ERRORS AND TYPE

CONFLICT ERRORS

We next introduce a property of maximal joint conditional

types and use it to relate type conflict and q-decoding errors.

Lemma 3: Let pX ∈ Pn(X ), x, x̂ ∈ T n(pX), and p
Y Ŷ |X

be a maximal joint conditional type. If ŷ ∈ T n
x (p

Ŷ |X) ∩

T n
x̂ (p

Ŷ |X) is connected to y ∈ T n
x (pY |X) in Gx(pY Ŷ |X)

then,

q(x,y) ≤ q(x̂,y). (45)

Proof: From the definition of type, for any x̄ ∈ Xn,

p̂yŷ(k1, k2) =
∑

j

p̂x̄yŷ(j, k1, k2). (46)

We use the above equation once by setting x̄ = x and once

by setting x̄ = x̂. Therefore, we have
∑

j

p̂xyŷ(j, k1, k2) =
∑

j

p̂x̂yŷ(j, k1, k2). (47)

We continue by bounding q(x̂, ŷ)− q(x̂,y) as

q(x̂, ŷ)− q(x̂,y)

= n
∑

j,k1,k2

p̂x̂yŷ(j, k1, k2)
(
q(j, k2)− q(j, k1)

)
(48)

≤ n
∑

k1,k2

(∑

j

p̂x̂yŷ(j, k1, k2)
)
max
j′

(
q(j′, k2)− q(j′, k1)

)

(49)

= n
∑

k1,k2

(∑

j

p̂xyŷ(j, k1, k2)
)
max
j′

(
q(j′, k2)− q(j′, k1)

)

(50)

= n
∑

k1,k2

∑

j

p̂xyŷ(j, k1, k2)
(
q(j, k2)− q(j, k1)

)
(51)

= q(x, ŷ)− q(x,y) (52)

where (48) follows from the definition of metric and type,

since for a joint type p̂xy we have that q(x,y) =
n
∑

j,k p̂xy(j, k)q(j, k), (49) follows from upper-bounding

(q(j, k2) − q(j, k1)) by maxj(q(j, k2) − q(j, k1)), (50) fol-

lows from (47), (51) follows from the maximality of pY Ŷ |X
(see Definition (1)) and the graph construction Gx(pY Ŷ |X)
(see Definition (5)) and (52) follows again from the metric

definition.

Using the fact that ŷ ∈ T n
x (p

Ŷ |X)∩T n
x̂ (p

Ŷ |X) and since the

types of x and x̂ are the same, we get a type conflict error, i.e.,

p̂ŷ|x = p̂ŷ|x̂. Thus, q(x, ŷ) = q(x̂, ŷ). Finally, combining

with (52) we get the desired result q(x,y) ≤ q(x̂,y), i.e.,

a q-decoding error. See Appendix C for the case where the

decoding metric q takes −∞ values.

The above lemma states that if ŷ ∈ T n
x (p

Ŷ |X)∩T n
x̂ (p

Ŷ |X)
and if x, x̂ ∈ Cn, by observing ŷ when x is sent, there will

be a type conflict error. Moreover, if such a ŷ is connected to

y in Gx(pY Ŷ |X), then, based on (45), by observing y when

x is sent, the q-decoder makes an error.

Definition 6: Let W be a channel and pX ∈ Pn(X ) an

input type. We define the channel type neighborhood as the

set of conditional types that are close to W ,

Nǫ,pX
(W ) =

{
pY |X ∈ Pn(Y|X ) | ∀j, k if pX(j) > 0,

|W (k|j)− pY |X(k|j)| ≤ ǫ
}
. (53)

The previous result showed that if p
Y Ŷ |X is a maximal

joint conditional type, then type conflict errors in T n
x (p

Ŷ |X)
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can be related to q-decoding errors in T n
x (pY |X). Assume

PY Ŷ |X is a maximal joint conditional distribution such that

PY |X = W and P
Ŷ |X = V . The lemma below shows that for

every empirical conditional type W close to the channel W
there exists a maximal joint conditional type, that can be used

to relate type conflict errors of a type close to V to q-decoder

errors over W .

Lemma 4: Let pX ∈ Pn(X ) be an input type and pmin
∆
=

minj,pX (j)>0 pX(j). Assume P
Y Ŷ |X is a maximal joint con-

ditional distribution such that PY |X = W and P
Ŷ |X = V .

Moreover, let ǫ ≥ 2K
npmin

. Then, for each W ∈ N ǫ
2
,pX

(W ),
we can find a maximal joint conditional type p̄Y Ŷ |X such that

p̄Y |X = W and p̄
Ŷ |X ∈ N2Kǫ,pX

(V ).
Proof: If ǫ > 1 then there is nothing to prove. Therefore,

we consider ǫ < 1, For j ∈ X and k1, k2 ∈ Y , choose

pY Ŷ |X(k1, k2|j) to be either

pY Ŷ |X(k1, k2|j) =
⌊
npX(j)PY Ŷ |X(k1, k2|j)

⌋

npX(j)
(54)

or

p
Y Ŷ |X(k1, k2|j) =

⌈
npX(j)P

Y Ŷ |X(k1, k2|j)
⌉

npX(j)
(55)

such that for every j ∈ X we have
∑

k1,k2

p
Y Ŷ |X(k1, k2|j) = 1. (56)

Such a choice is possible since
∑

k1,k2

PY Ŷ |X(k1, k2|j) = 1. (57)

Moreover, when pX(j) = 0 define pY Ŷ |X(k1, k2|j) as in

(12). The above choice implies that for every j ∈ X such that

pX(j) > 0 and any k1, k2 ∈ Y ,

∣∣pY Ŷ |X(k1, k2|j)− PY Ŷ |X(k1, k2|j)
∣∣ ≤ 1

npX(j)
(58)

≤ 1

npmin

. (59)

Moreover, based on (54) and (55) pY Ŷ |X is maximal, since

pY Ŷ |X(k1, k2|j) is non-zero either when k1 = k2 or for the

same entries that P
Y Ŷ |X is non-zero. As a result of (59) for

every j ∈ X such that pX(j) > 0 we have that

∣∣∣
∑

k2

(
pY Ŷ |X(k1, k2|j)− PY Ŷ |X(k1, k2|j)

)∣∣∣

≤
∑

k2

∣∣p
Y Ŷ |X(k1, k2|j)− P

Y Ŷ |X(k1, k2|j)
∣∣ (60)

≤ K

npmin

(61)

and thus,

pY |X ∈ N K
npmin

,pX
(W ) (62)

p
Ŷ |X ∈ N K

npmin
,pX

(V ). (63)

For any W ∈ N ǫ
2 ,pX

(W ), for every j ∈ X such

that pX(j) > 0 and k ∈ Y by definition we know that

|W (k|j)− pY |X(k|j)| ≤ ǫ, since

∣∣W (k|j)− pY |X(k|j)
∣∣ ≤

∣∣W (k|j)−W (k|j)
∣∣

+
∣∣W (k|j)− pY |X(k|j)

∣∣ (64)

≤ ǫ

2
+

ǫ

2
(65)

= ǫ. (66)

where (65) follows from (62) and (63). Construct p̄
Y Ŷ |X

from pY Ŷ |X in the following way. For any j, k1 ∈ X × Y
such that pX(j) > 0, if W (k1|j) − pY |X(k1|j) > 0
add non-negative real numbers less than or equal ǫ to

pY Ŷ |X(k1, k2|j), k2 = 1, 2, . . . ,K to obtain p̄Y Ŷ |X with the

following property,
∑

k2

p̄
Y Ŷ |X(k1, k2|j) = W (k1|j). (67)

We can do this because |W (k1|j) − pY |X(k1|j)| ≤ ǫ. Note

that by construction of this step all entries of p̄Y Ŷ |X so far

are non-negative.

We can do the same if W (k1|j) − pY |X(k1|j) ≤ 0 with

non-positive real numbers not less than −ǫ such that
∑

k2

p̄
Y Ŷ |X(k1, k2|j) = W (k1|j). (68)

Observe that from W (k1|j) − pY |X(k1|j) ≤ 0 and

|W (k1|j)−pY |X(k1|j)| ≤ ǫ we obtain that −ǫ ≤ W (k1|j)−
pY |X(k1|j) ≤ 0. For the above step, we can perform the

addition of non-negative numbers in a way that makes all the

entries of p̄Y Ŷ |X non-negative. This is true since we know∑
k2

p
Y Ŷ |X(k1, k2|j) = pY |X(k1|j) and −ǫ ≤ W (k1|j) −

pY |X(k1|j) ≤ 0. Then marginalizing over Ŷ we get p̄
Ŷ |X

satisfying the following

|p̄
Ŷ |X(k2|j)− p

Ŷ |X(k2|j)|

=
∣∣∣
∑

k1

p̄
Y Ŷ |X(k1, k2|j)− p

Y Ŷ |X(k1, k2|j)
∣∣∣ (69)

≤
∑

k1

|p̄Y Ŷ |X(k1, k2|j)− pY Ŷ |X(k1, k2|j)| (70)

≤
∑

k1

ǫ (71)

= Kǫ. (72)

Therefore by the triangle inequality and (63) we get

|p̄
Ŷ |X(k2|j)− V (k2|j)| ≤ 2Kǫ.
In the next theorem, we show that if PY Ŷ |X is a maximal

joint conditional distribution and M is large enough, then we

will find many type conflict errors over conditional types close

to V = P
Ŷ |X . These are then linked to q-decoding errors over

the channel W = PY |X .

Theorem 3: Let Cn be a codebook with M codewords

and composition pX with pmin
∆
= minj,pX(j)>0 pX(j). Let

P
Y Ŷ |X be a maximal joint conditional distribution such that

PY |X = W,P
Ŷ |X = V . Let ǫ ≥ 2K

npmin
and suppose
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N2Kǫ,pX
(V ) = {V 1,V 2 . . . ,V t}. Let qi be the output type

corresponding to input type pX and conditional type V i. If

for some integer a ≥ 2, for every x ∈ T n(pX) and for all

i ∈ {1, . . . , t} we have that

M |T n
x (V i)| ≥ a2(n+ 1)2J(K−1) max

1≤i′≤t
|T n(qi′)|, (73)

then, there exists a codeword x(m) ∈ Cn such that

P

[
m̂ 6= m

∣∣ p̂y|x(m) ∈ N ǫ
2
,pX

(W ),x(m) is sent
]

> 1− 2

a+ 1
. (74)

The above theorem gives us a sphere-packing type of

bound. From the method of types we know that |T n
x (V i)| .

=
2nH(V i|pX ) ≈ 2nH(V |pX ) and that |T n(qi)| .

= 2nH(qi) ≈
2nH(q), where q denotes the output distribution induced by

input type pX and channel V . The approximation comes from

the definition and properties of the neighborhood introduced

in Definition 6 (see Section VII for more details). Therefore,

inequality (73) roughly implies that

2nR2nH(V |pX) & 2nH(q), (75)

or equivalently, R & I(pX , V ). The theorem states that if

R & I(pX , V ), the error probability of one of the messages

is high under q-decoding.

Proof: The proof is divided into the following four parts:

1) The existence of a codeword x(m) ∈ Cn that yields a

type conflict error with many other codewords for many

output sequences

2) An error probability lower bound for the above codeword

x(m) ∈ Cn based on Lemma 3

3) An overall error probability lower bound when the chan-

nel type is W ∈ N ǫ
2 ,pX

(W )
4) An overall error probability lower bound for all channel

types in the neighborhood N ǫ
2
,pX

(W )

Part 1

The first step is to show that there is a codeword x(m) ∈ Cn
such that for all 1 ≤ i ≤ t a large proportion of sequences in

T n
x(m)(V

i) have the same conditional type V i with at least a
other codewords in Cn, yielding a type conflict error with these

a codewords. More precisely, we wish to show that there is

a codeword x(m) ∈ Cn and a family of sets F =
{
Bi | Bi ⊂

T n
x(m)(V

i), i = 1, 2, . . . , t
}

such that

1) |Bi| ≥ a−1
a

|T n
x(m)(V

i)|
2) ∀ŷ ∈ Bi there are a other codewords

x′(1),x′(2), ...,x′(a) ∈ Cn for which p̂ŷ|x′(1) =

. . . = p̂ŷ|x′(a) = p̂ŷ|x(m) = V i.

This implies that we can find a family of sets F = {Bi}
where Bi ⊂ T n

x(m)(V
i), such that all members of Bi for 1 ≤

i ≤ t cause type conflict errors with other a codewords.

We prove this result by contradiction. Suppose there is no

such x(m) with such family F = {Bi}. Then, there is no

x ∈ Cn, such that a family F = {Bi} with the above properties

exists. Therefore, for any x ∈ Cn there is a set Ax with the

following properties:

1) Ax ⊂ T n
x (V i) for some 1 ≤ i ≤ t,

2) |Ax| > 1
a
|T n

x (V i)| for the same i in condition 1 above,

3) ∀ŷ ∈ Ax there are at most a − 1 other codewords

x′(1),x′(2), ...,x′(a−1) ∈ Cn such that p̂ŷ|x′(1) = . . . =
p̂ŷ|x′(a−1) = p̂ŷ|x.

There are at most (n + 1)J(K−1) conditional types pY |X
such that pY = qi, and thus, t ≤ (n + 1)J(K−1). We claim

that every ŷ ∈ T n(qi), for any 1 ≤ i ≤ t is a member of at

most a(n+ 1)J(K−1) sets Ax. In order to show this, assume

that some ŷ violates this claim and is a member of more than

a(n + 1)J(K−1) sets Ax. Then, by the pigeonhole principle,

there are at least
⌈
a(n+1)J(K−1)+1

(n+1)J(K−1)

⌉
= a + 1 sets Ax̄(1) ⊂

T n
x̄(1)(V

i1), . . . ,Ax̄(a+1) ⊂ T n
x̄(a+1)(V

i1) corresponding to

codewords x̄(1), . . . , x̄(a+ 1) ∈ Cn for the same 1 ≤ i1 ≤ t.
In the above argument pigeons are the sets Ax that contain ŷ

and pigeonholes are the indices 1 ≤ i ≤ t of T n
x (V i) such that

that Ax ⊂ T n
x (V i). Therefore, since, ŷ ∈ Ax̄(1)∩Ax̄(2) · · ·∩

Ax̄(a+1), we have that

p̂ŷ|x̄(1) = p̂ŷ|x̄(2) = · · · = p̂ŷ|x̄(a+1) = V i1 (76)

which contradicts the third condition that the sets Ax must

satisfy. Therefore, the claim that every ŷ ∈ T n(qi), for any

1 ≤ i ≤ t is a member of at most a(n+ 1)J(K−1) sets Ax is

verified. Furthermore, considering the fact that Ax ⊂ T n
x (V i)

and each element of T n(qi) is in at most a(n+1)J(K−1) sets

Ax we get the following,

∑

x∈Cn

|Ax| =
∑

x∈Cn

∑

ŷ

1{ŷ ∈ Ax} (77)

=
∑

ŷ

∑

x∈Cn

1{ŷ ∈ Ax} (78)

≤
∑

ŷ

a(n+ 1)J(K−1) (79)

= a(n+ 1)J(K−1)
t∑

i′=1

|T n(qi′)| (80)

≤ a(n+ 1)J(K−1) · t · max
1≤i′≤t

|T n(qi′)| (81)

= a(n+ 1)2J(K−1) max
1≤i′≤t

|T n(qi′)|. (82)

where (79) follows since we have shown that each element of

any T n(qi′) is a member of at most a(n+1)J(K−1) sets Ax,

(80) follows from converting the sum over ŷ into sum over

types T n(qi′). We can do this because every ŷ is a member

of T n(qi′) for some 1 ≤ i′ ≤ t and sets T n(qi′) are dis-

joint. Moreover, (81) follows by upper bounding |T n(qi′)| by

max1≤i′≤t |T n(qi′)| and (82) follows from t ≤ (n+1)J(K−1).

On the other hand,

∑

x∈Cn

|Ax| > M
1

a
|T n

x (V i)| (83)

≥ a(n+ 1)2J(K−1) max
1≤i≤t

|T n(qi)|. (84)

where (83) follows from the second property of the sets Ax

and (84) from the second condition of Theorem 3. Inequalities

(82) and (84) lead to a contradiction because expressions are

the same but one is strictly smaller than
∑

x∈Cn
|Ax| and the

other one is larger than or equal to
∑

x∈Cn
|Ax|.
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Therefore, we can find a codeword x(m) ∈ Cn with a family

of sets F = {Bi} such that Bi ⊂ T n
x(m)(V

i) are large enough

and yield type conflict errors with at least a codewords.

Part 2

We proceed by using the assumption that PY Ŷ |X is a

maximal joint conditional distribution. Since P
Y Ŷ |X is max-

imal, based on the Lemma 4 for any W ∈ N ǫ
2 ,pX

(W ) we

can find a maximal joint conditional type pY Ŷ |X such that

pY |X = W and p
Ŷ |X = V i ∈ Nǫ,pX

(V ). Construct the

graph Gx(m)(pY Ŷ |X) for the codeword x(m) we found above,

connecting T n
x(m)(W ) and T n

x(m)(V
i). If y ∈ T n

x(m)(W ) is

connected to ŷ ∈ T n
x(m)(V

i), by the maximality of pY Ŷ |X
and Lemma 3 we have that

q(y,x(m)
)
≤ q(y,x′(r)

)
for r = 1, 2, . . . , a, (85)

where x′(r) for r = 1, 2, . . . , a are those that satisfy con-

dition 3 above. The above inequality implies that if x(m)
is transmitted and y ∈ T n

x(m)(W ) is the channel output, the

probability of correct q-decoding is at most 1
a+1 because there

are a other codewords x′(1),x′(2), . . . ,x′(a) ∈ Cn for which

the decoding metric is higher, i.e. q(y,x(m)
)
≤ q(y,x′(r)

)

for 1 ≤ r ≤ a.

Now we count the number of y ∈ T n
x(m)(W ) that cause a

q-decoding error. Recall that from Definition 4, the set of all

y ∈ T n
x(m)(W ) which are connected to a ŷ ∈ Bi in graph

Gx(m)(pY Ŷ |X) was denoted by Ψ21(Bi). In the following, we

give a lower bound on |Ψ21(Bi)| based on the Lemma 1. So

far we have proved the following facts:

1) There exists a codeword x(m) ∈ Cn and a family of

sets F = {Bi} such that Bi ⊂ T n
x(m)(V

i) and |Bi| ≥
a−1
a

|T n
x(m)(V

i)|.
2) ∀ŷ ∈ Bi connected to y ∈ T n

x(m)(W ) in graph

Gx(m)(pY Ŷ |X), the following holds,

P
[
m̂ 6= m |y is recieved,x(m) is sent

]
≥ a

a+ 1
.

(86)

We count the number of elements of Ψ21(Bi) in

Gx(m)(pY Ŷ |X) for 1 ≤ i ≤ t, since the q-decoder makes

errors on elements of Ψ21(Bi). Using the fact that |Bi| ≥
a−1
a

|T n
x(m)(V

i)| and Lemma 1 with V1 = T n
x(m)(W ) and

V2 = T n
x(m)(V

i) we get

|Ψ21(Bi)|
|T n

x(m)(W )|
≥ |Bi|

|T n
x(m)(V

i)|
(87)

≥
a−1
a

|T n
x(m)(V

i)|
|T n

x(m)(V
i)|

(88)

=
a− 1

a
. (89)

Part 3

In the remaining part of the proof we relate
|Ψ21(Bi)|

|T n
x(m)

(W )| to

the probability of error. Suppose x(m) is sent over the channel

and y is received. Note by the definition of conditional type,

all elements of T n
x(m)(W ) are equally likely to appear at the

output of the channel when x(m) is sent. Therefore, for every

y0 ∈ T n
x(m)(W ),

P
[
y ∈ T n

x(m)(W ) | x(m) is sent
]

=
∑

ȳ∈T n
x(m)

(W )

Wn
(
ȳ|x(m)

)
(90)

= |T n
x(m)(W )| ·Wn

(
y0|x(m)

)
(91)

where (91) follows since Wn
(
ȳ|x(m)

)
is the same for all

ȳ ∈ T n
x(m)(W ). Therefore,

P
[
m̂ 6= m | p̂y|x(m) = W ,x(m) is sent

]
(92)

= P
[
m̂ 6= m |y ∈ T n

x(m)(W ),x(m) is sent
]

(93)

=
P
[
m̂ 6= m,y ∈ T n

x(m)(W ) |x(m) is sent
]

P[y ∈ T n
x(m)(W ) |x(m) is sent]

(94)

=

∑
ȳ∈T n

x(m)
(W ) P

[
m̂ 6= m,y = ȳ |x(m) is sent

]

P
[
y ∈ T n

x(m)(W ) |x(m) is sent
] (95)

=
1

P
[
y ∈ T n

x(m)(W ) |x(m) is sent
] ·

·
∑

ȳ∈T n
x(m)

(W )

P
[
m̂ 6= m |y = ȳ,x(m) is sent

]
Wn

(
ȳ|x(m)

)

(96)

=
1

|T n
x(m)(W )|

∑

ȳ∈T n
x(m)

(W )

P
[
m̂ 6= m |y = ȳ,x(m) is sent

]

(97)

≥ 1

|T n
x(m)(W )|

∑

ȳ∈Ψ21(Bi)

P
[
m̂ 6= m |y = ȳ,x(m) is sent

]

(98)

≥ |Ψ21(Bi)|
|T n

x(m)(W )|
a

a+ 1
(99)

≥ a− 1

a+ 1
(100)

where (94) follows from definition of conditional probabil-

ity, (97) follows from (91), (98) follows since Ψ21(Bi) ⊆
T n
x(m)(W ), (99) follows from (86) and (100) from (89).

Part 4

In the final step, we have the following inequality,

P
[
m̂ 6= m | p̂y|x(m) ∈ N ǫ

2
,pX

(W ),x(m) is sent
]

=
P
[
m̂ 6= m, p̂y|x(m) ∈ N ǫ

2 ,pX
(W ) |x(m) is sent

]

P
[
p̂y|x(m) ∈ N ǫ

2
,pX

(W ) |x(m) is sent
] (101)

=
∑

W∈N ǫ
2
,pX

(W )

P
[
m̂ 6= m, p̂y|x(m) = W |x(m) is sent

]

P
[
p̂y|x(m) ∈ N ǫ

2
,pX

(W )|x(m) is sent
]

(102)

=
∑

W∈N ǫ
2
,pX

(W )

P
[
p̂y|x(m) = W |x(m) is sent

]

P
[
p̂y|x(m) ∈ N ǫ

2
,pX

(W )|x(m) is sent
] ·

· P
[
m̂ 6= m|p̂y|x(m) = W ,x(m) is sent

]

(103)
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≥ a− 1

a+ 1
·

·
∑

W∈N ǫ
2
,pX

(W )

P
[
p̂y|x(m) = W |x(m) is sent

]

P
[
p̂y|x(m) ∈ N ǫ

2 ,pX
(W )|x(m) is sent

]

(104)

=
a− 1

a+ 1
(105)

where (101) follows from the definition of conditional proba-

bility, (104) follows from inequality (100). This concludes the

proof.

VI. FROM TYPES TO DISTRIBUTIONS

It is known that if rate R > 0 is achievable then for any

ǫ > 0 there exist constant composition codes of rate R − ǫ
whose probability of error tends to 0. In the following lemma,

we prove that if rate R is achievable, then, for any ǫ > 0 there

exist constant composition codes of rate R− ǫ with vanishing

probability of error that have the additional property that their

composition pn ∈ Pn(X ) is such that if pn(j) > 0, then

pn(j) ≥ δ for δ > 0 independent of n, for all j = 1, . . . , J .

Definition 7: Let Cn be a codebook. We say that Ĉn̂, for

some n̂ ≤ n, is a δ-reduction of Cn if there exists a sub-

codebook C̃n ⊆ Cn of composition pX ∈ Pn(X ) such that Ĉn̂
is obtained by eliminating all symbols in the set I = {j ∈
X |pX(j) < δ} from C̃n.

Lemma 5: Let R > 0 be a rate, then for any ε > 0 there

exists a δ > 0 independent of n such that for any codebook

Cn of rate R there exists a δ-reduction constant composition

codebook Ĉn̂ with the following properties:

n̂ ≥
(
1− (J − 1)δ

)
n (106)

P q
e,max(Ĉn̂) ≤ P q

e,max(Cn) (107)

1

n̂
log(|Ĉn̂|) ≥

1

n
log(|Cn|)− ε+O

(
logn

n

)
. (108)

Proof: For any n > 0 we know that |Pn(X )| ≤
(n + 1)J−1. Therefore, by the pigeonhole principle, any

codebook Cn contains a constant composition sub-codebook

C̃n of type pn such that |C̃n| ≥ |Cn|
(n+1)J−1 codewords. Let

I = {i1, i2, ..., it} ⊂ X be the set of all symbols j ∈ X that

pn(j) < δ. Then, there are
(

n

npn(i1), npn(i2), . . . , npn(it)

)
= (109)

n!(
npn(i1)

)
!
(
npn(i2)

)
! · · ·

(
npn(it)

)
!
(
n−∑t

j=1 npn(ij)
)
!

(110)

possible places for symbols of set I in a string of length n.

For ease of notation we use the following notation,
(

n

npn(I)

)
=

(
n

npn(i1), npn(i2), . . . , npn(it)

)
. (111)

As a result, by again using the pigeonhole principle, there

exists a sub-codebook C̃n ⊆ Cn with |C̃n| ≥ |Cn|
(n+1)J−1( n

npn(I))
codewords where all symbols in set I are in the same position.

By being in the same position we mean that the codewords

of C̃n have all symbols i1, i2, . . . , it in the same position.

Let Z ⊂ {1, . . . , n} be set of positions where symbols in

I are placed. We then form the δ-reducted codebook Ĉn̂ by

shortening the codewords of C̃n such that symbols in positions

in Z are removed. The rate of this codebook is therefore

1

n̂
log(|Ĉn̂|) ≥

1

n
log(|Ĉn̂|) ≥

1

n
log

( |Cn|
(n+ 1)J−1

(
n

npn(I)
)
)
.

(112)

By using Stirling’s factorial formula we upper-bound the

contribution of the multinomial coefficient by the entropy as

follows,

1

n
log

(
n

npn(I)

)
(113)

=
1

n
log

n!(
npn(i1)

)
! · · ·

(
npn(it)

)
!
(
n−∑t

j=1 npn(ij)
)
!

(114)

(115)

≤ H

(
pn(i1), . . . ,pn(it), 1−

t∑

j=1

pn(ij)

)
+O

(
logn

n

)

(116)

≤ H
(
δ, . . . , δ︸ ︷︷ ︸

J−1

, 1− (J − 1)δ
)
+O

(
logn

n

)
(117)

where H(π1, . . . , πm) = −∑m
i=1 πi log πi denotes the en-

tropy function of probability mass function with m nonzero

mass points with probabilities π1, . . . , πm and (117) follows

from observing that pn(i1),pn(i2), ...,pn(it) ≤ δ, t ≤ J − 1
and the fact that δ can be chosen sufficiently small.

Summarizing, we get the following inequality,

1

n̂
log(|Ĉn̂|) ≥

1

n
log(|Ĉn̂|) (118)

≥ R−H
(
δ, . . . , δ︸ ︷︷ ︸

J−1

, 1− (J − 1)δ
)
− (J − 1)

log(n+ 1)

n

(119)

+O

(
logn

n

)
(120)

Now choosing δ in a way that H(δ, ..., δ, 1 − (J − 1)δ) < ε
we get the desired result.

It remains to show that

P q
e,max(Ĉn̂) ≤ P q

e,max(Cn). (121)

This directly follows from the fact that all symbols in I are

in the same position in the codebook C̃n. Let us define α :
Yn → Y n̂ as the function that takes a string y ∈ Yn and

gives α(y) ∈ Y n̂ by eliminating the symbols in positions in

the set Z . Moreover, let µ : C̃n → Ĉn̂ be the function that

performs the same operations on the codewords of C̃n. Then,

for any y ∈ Yn and x ∈ C̃n we have q(x,y)−q
(
µ(x), α(y)

)

is a function of y, because all the codewords in C̃n have the

same symbols at the eliminated entries. As a result, if y is

decoded to x(m̂) ∈ C̃n under q-decoding, then α(y) would

be decoded to µ(x(m̂)) under q-decoding.
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Observe that this argument still holds for the case where

the metric takes −∞ values. This holds since, whenever y is

decoded into x(m̂) ∈ C̃n under q-decoding, this necessarily

implies that q(y,x(m̂)) is finite, which also implies that

q(yi, xi(m̂)) are finite for all 1 ≤ i ≤ n including indices

i ∈ Z . In the case where q(y,x(m̂)) = −∞, then this implies

that q(y,x(m)) = −∞,m = 1, . . . ,M and thus, we have a

tie, that is decoded as an error. Moreover, since the set Z in

the lemma has been chosen in such a way that all codewords

of C̃n have the same symbols at positions of Z we have that

the metric between y and codewords of C̃n has been finite in

the eliminated positions. Let xZ and yZ be the symbols of x

and y in positions in set Z , respectively. Now notice that for

all y′ ∈ Y n̂ and all x ∈ C̃n
∑

y∈α−1(y′)

Wn(y|x) =
∑

yZ

W n̂
(
y′|µ(x)

)
Wn−n̂(yZ |xZ)

(122)

= W n̂
(
y′|µ(x)

)∑

yZ

Wn−n̂(yZ |xZ)

(123)

= W n̂
(
y′|µ(x)

)
(124)

where (122) follows from the fact that W is a memoryless

channel. Moreover, xZ and yZ are strings consisting of

symbols of the index set Z of x and y respectively. As a

result, the probability of error of any codeword x ∈ C̃n is

equal to probability of error of µ(x) ∈ Ĉn̂. Thus,

P q
e,max(Ĉn̂) = P q

e,max(C̃n) (125)

Since C̃n is a sub-codebook of Cn,

P q
e,max(C̃n) ≤ P q

e,max(Cn). (126)

Combining (125) and (126) completes the proof.

The above result is helpful because in order to use the

following theorem, we need the frequency of each symbol

in any codeword to be proportional to n.

Theorem 4 (Hoeffding’s inequality): Assume Xi, i =
1, 2, . . . , n are independent random variables taking values on

[0, 1]. Let X̄ = 1
n
(X1 +X2 + · · ·+Xn). Then ∀γ > 0

P
[
|X̄ − E[X̄] | ≥ γ

]
≤ e−2nγ2

. (127)

The following lemma shows that the empirical conditional type

of the received sequence given the sent message would be

close to W .

Lemma 6: Let x ∈ T n(pX) be a codeword, and denote by

y the output of channel W when x is sent. Then, ∀γ > 0 we

have

P
[
p̂y|x(j, k) ∈ Nγ,pX

(W ) |x is sent
]
> 1− JK · e−2npminγ

2

(128)

where Nγ,pX
(W ) is the channel type neighborhood defined

in (53).

Proof: Let (j, k) ∈ X × Y and assume px(j) > 0. We

know from the definition of types there are npX(j) symbols

equal to j ∈ X in x. Without loss of generality assume, x1 =

x2 = · · · = xnpX(j) = j. Define the random variable Xi, i =
1, 2, . . . , npX(j) in the following way,

Xi =

{
1 (yi, xi) = (k, j)

0 otherwise.
(129)

As a result, the conditions of Hoeffding’s inequality hold for

Xi, i = 1, 2, . . . , npX(j) and E[Xi] = P[Xi = 1] = W (k|j).
Therefore, we get the following,

P
[
|W (k|j)− p̂y|x(k|j)| ≥ γ |x is sent

]
≤ e−2npX (j)γ2

.

(130)

As a result, from lower bounding pX(j) by pmin we get

P
[
|W (k|j)− p̂y|x(k|j)| ≥ γ |x is sent

]
≤ e−2npminγ

2

.

(131)

As a result we have

P
[
p̂y|x(k|j) ∈ Nγ,p

x
(W ) |x is sent

]

= 1− P
[
∪j,p

x
(j)>0,k {|W (k|j)− p̂y|x(k|j)| > γ} |x is sent

]

(132)

≥ 1−
∑

j,p
x
(j)>0,k

P
[
|W (k|j)− p̂y|x(k|j)| > γ |x is sent

]

(133)

≥ 1−
∑

j,p
x
(j)>0,k

e−2npX (j)γ2

(134)

≥ 1− JKe−2npminγ
2

, (135)

where (133) follows from the union bound, and (134) follows

from (130).

The above result shows that when the frequency of every

symbol in the codebook grows proportional to n, then condi-

tional type of the output string given the sent message will be

close to W with high probability.

VII. PROOF OF THE MAIN THEOREM

In this section, we prove the final part of Theorem 1 using

the material developed in the previous sections. Assume R =
R̄q(W )+σ for some σ > 0. Now, choose ǫ > 0 small enough

such that if |V −V |∞ ≤ 2Kǫ for conditional distribution V, V ,

then for any distribution PX on X we have that

|H(V |PX)−H(V |PX)| < σ

4
(136)

|H(QY )−H(QY )| <
σ

4
. (137)

where QY , QY correspond to output distributions correspond-

ing to input distribution PX and channel V, V , respectively.

The reader is referred to the Appendix B for a discussion on

the choice of ǫ.
From Lemma 5 with ε = σ

4 , for any codebook Cn with

M ≥ 2nR codewords, there exists a δ-reduction constant

composition codebook Ĉn̂ of length n̂ and type p̂n̂ such that

(106)–(108) are satisfied. Since the required δ to satisfy the

above inequalities is independent of n, then choose N0 large
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enough such that ǫ ≥ 2K
N0(1−(J−1)δ)δ . Set n > N0. Choose

a maximal joint conditional distribution PY Ŷ |X such that

I(p̂n̂, PŶ |X) ≤ R̄q(W ) and let V = P
Ŷ |X . Such a PY Ŷ |X

exists because the set Mmax(q)∩{PY Ŷ |X |PY |X = W} which

is the domain of the minimization in (17) is a compact set and

the minimizer always exists. Moreover, for any conditional

distributions V̂ such that |V̂ − V |∞ ≤ 2Kǫ and q being the

output distribution corresponding to input type p̂n and channel

V

∣∣∣ max
V ∈N2Kǫ,p̂n

(V )
H(q)−H(V̂ |p̂n̂)

∣∣∣

≤ |H(q)−H(V |p̂n̂)|+
σ

2
(138)

= I(p̂n̂, V ) +
σ

2
(139)

where (138) follows from (136) and (137).

Suppose Nǫ,p̂n̂
(V ) = {V 1,V 2, . . . ,V t} and qi be the

output type corresponding to input type p̂n̂ and conditional

type V i. For any 1 ≤ i ≤ t we have

1

n̂
log

max1≤s≤t |T n̂(qs)|
|T n̂

x (V i)|
=

1

n̂
log

2
n̂
(

H(qi′)+O( log n̂
n̂ )

)

2n̂(H(V i|p̂n̂)+O( log n̂
n̂ ))

(140)

≤ I(p̂n̂, V ) +
σ

2
+O

(
log n̂

n̂

)

(141)

where i′ = argmax1≤s≤t |T n̂(qs)| and (141) follows form

(139) (see [14, Ch. 2] for details about the log n̂
n̂

terms.) Now,

for n > N0 we have from (108) with ε = σ
4 , (141) and the

condition I(p̂n̂, PŶ |X) ≤ R̄q(W ) that

|Ĉn̂|
|T n̂

x (V i)|
max1≤s≤t |T n̂(qs)| ≥ 2n̂(R− σ

4 −I(p̂n̂,V )− σ
2 +O( log n̂

n̂ )).

(142)

As a result,

|Ĉn̂||T n̂
x (V i)| ≥ 2n̂(

σ
4 +O( log n̂

n̂ )) max
1≤s≤t

|T n̂(qs)|. (143)

Setting a =
⌊
2

1
2
n̂(σ

4
+O( log n̂

n̂ ))
(n̂+1)J(K−1)

⌋
validates the conditions of

Theorem 3. As a result, there exists x(m) ∈ Ĉn̂ such that

P

[
m̂ 6= m

∣∣ p̂y|x(m) ∈ N ǫ
2 ,p̂n̂

(W ),x(m) is sent
]
> 1− 2

a+ 1
.

(144)

According to the definition of limit, choosing N1 such that if

n > N1 is large enough, we can bound

a >
1

2
· 2

1
2 n̂(

σ
4 +O( log n̂

n̂ ))

(n̂+ 1)J(K−1)
(145)

≥ 2
1
2 n̂(

σ
4 +O( log n̂

n̂ )−2J(K−1) log(n̂+1)
n̂

− log(2)
n̂ ). (146)

Finally, we write

P q
e,max(Cn) ≥ P q

e,max(Ĉn̂)
= max

m∈{1,...,M}
P
[
m̂ 6= m |x(m) is sent

]
(147)

≥ max
m∈{1,...,M}

P
[
m̂ 6= m | p̂y|x(m) ∈ N ǫ

2 ,p̂n̂
(W ),x(m) is sent

]

· P
[
p̂y|x(m) ∈ N ǫ

2 ,p̂n̂
(W )|x(m) is sent

]
(148)

≥
(
1− 2

a+ 1

)(
1− JK2−2n̂δ ǫ2

4

)
(149)

≥ 1− 2−n̂Ēq(R) (150)

where x(m) is the codeword sent from codebook Ĉn̂, (149)

follows from applying Theorem 3 to the first probability in

(148) and Lemma 6 to the second probability in (148), where

Ēq(R)
∆
= min

{
δǫ2

2 − log JK
n̂
, 1
2

(
σ
4 +O

(
log n̂
n̂

))}
. Setting

n larger than max{N0, N1} yields the desired result.

VIII. CONVEXITY ANALYSIS

In this section, we show that the optimization (17) is a

convex-concave saddlepoint problem. First we argue that the

constraints induce a convex set.

Lemma 7: For any channel W and metric q, the set of

joint conditional distributions P
Y Ŷ |X satisfying both P

Y Ŷ |X ∈
Mmax(q) and PY |X = W , is a convex set.

Proof: Let PY Ŷ |X and P ′
Y Ŷ |X both satisfy the above

constraints. Therefore, for any 0 < λ < 1 we have

λPY |X + (1− λ)P ′
Y |X = W. (151)

In addition, if for some k1, k2 we have j /∈ Sq(k1, k2), both

P
Y Ŷ |X(k1, k2|j) and P ′

Y Ŷ |X(k1, k2|j) are equal to zero, and

so is any linear combination of them. Therefore,

λP
Y Ŷ |X + (1− λ)P ′

Y Ŷ |X ∈ Mmax(q). (152)

Moreover, I(PX , P
Ŷ |X) is convex in terms of P

Ŷ |X , and

concave in terms of PX . Since P
Ŷ |X is a linear function of

PY Ŷ |X , we get that I(PX , P
Ŷ |X) is also convex in terms of

P
Y Ŷ |X . Therefore from the minimax theorem [15],

R̄q(W ) = max
PX

min
P

Y Ŷ |X∈Mmax(q)

PY |X=W

I(PX , P
Ŷ |X) (153)

= min
P

Y Ŷ |X∈Mmax(q)

PY |X=W

max
PX

I(PX , P
Ŷ |X) (154)

= min
P

Y Ŷ |X∈Mmax(q)

PY |X=W

C(P
Ŷ |X). (155)

The rest of this section is devoted to deriving the KKT

conditions for the optimization problem in (17). Given that

I(PX , P
Ŷ |X) is convex in PY Ŷ |X and concave in PX , then

the KKT conditions are sufficient for global optimality [16].

For convenience, we define f(PX , PY Ŷ |X) , I(PX , P
Ŷ |X)

and rewrite the optimization problem in (17) as,

R̄q(W ) = max
PX

min
P

Y Ŷ |X∈Mmax(q)

PY |X=W

f(PX , PY Ŷ |X). (156)
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Let P ∗
X , P ∗

Y Ŷ |X be the optimal input and joint conditional

distributions in (156) and Q∗
Ŷ

be the output distribution

induced by P ∗
X and P ∗

Ŷ |X . Then for P ∗
X we have the following

constraints:

P ∗
X(j) ≥ 0, ∀j ∈ X (157)
∑

j∈X
P ∗
X(j) = 1. (158)

Let µj , j = 1, 2, . . . , J be the Lagrange multipliers corre-

sponding the inequalities in (157) and ρ be the Lagrange

multiplier corresponding to (158). Therefore, from stationarity

we have

∂

∂PX(j)
f(PX , P ∗

Y Ŷ |X)

∣∣∣∣
PX=P∗

X

= ρ+ µj . (159)

Then from the complementary slackness we have µj P
∗
X(j) =

0 and from the dual feasibility we have µj ≥ 0 which leads

to the separation of the equations (159) into two cases [16].

If P ∗
X(j) > 0

∂

∂PX(j)
f(PX , P ∗

Y Ŷ |X)

∣∣∣∣
PX=P∗

X

= ρ. (160)

And when P ∗
X(j) = 0 we have

∂

∂PX(j)
f(PX , P ∗

Y Ŷ |X)

∣∣∣∣
PX=P∗

X

≤ ρ. (161)

Note that, because there is no other constraint on µj , all of the

KKT conditions are summarized in (160) and (161). Moreover,

computing the derivatives in (160) and (161) gives

∂

∂PX(j)
f(PX ,P ∗

Y Ŷ |X)

∣∣∣∣
PX=P∗

X

=
∑

k∈Y
P ∗
Ŷ |X(k|j) log

P ∗
Ŷ |X(k|j)
Q∗

Ŷ
(k)

− 1. (162)

Similarly, for P ∗
Y Ŷ |X we have the following constraints. For

all j, k1, k2 ∈ X × Y × Y ,

P ∗
Y Ŷ |X(k1, k2|j) ≥ 0, (163)

P ∗
Y Ŷ |X(k1, k2|j) = 0, if j /∈ Sq(k1, k2) (164)

where (163) corresponds to P ∗
Y Ŷ |X(k1, k2|j) being a distribu-

tion and (164) corresponds to P ∗
Y Ŷ |X(k1, k2|j) ∈ Mmax(q).

Moreover from the constraint PY |X = W we get for all

j, k1 ∈ X × Y
∑

k2

P ∗
Y Ŷ |X(k1, k2|j) = W (k1|j). (165)

For the ease of notation, we skip the step of explicitly consid-

ering a Lagrange multiplier for (163). Details follow similarly

to the above derivation. If we use a Lagrange multiplier

λj,k1 for each of the conditions in (165), we have when

P ∗
Y Ŷ |X(k1, k2|j) > 0

∂

∂PY Ŷ |X(k1, k2|j)
f(P ∗

X , P
Y Ŷ |X)

∣∣∣∣
P

Y Ŷ |X=P∗
Y Ŷ |X

= λj,k1

(166)

and when P ∗
Y Ŷ |X(k1, k2|j) = 0 and j ∈ Sq(k1, k2) we should

have

∂

∂PY Ŷ |X(k1, k2|j)
f(P ∗

X , PY Ŷ |X)

∣∣∣∣
P

Y Ŷ |X=P∗
Y Ŷ |X

≥ λj,k1 .

(167)

Explicitly computing the derivative gives

∂

∂P
Y Ŷ |X(k1, k2|j)

f(P ∗
X , PY Ŷ |X)

∣∣∣∣
P

Y Ŷ |X=P∗
Y Ŷ |X

= P ∗
X(j) log

P ∗
Ŷ |X(k2|j)
Q∗

Ŷ
(k2)

. (168)

Summarizing, for the KKT optimality conditions of (156)

we get the following inequalities,

1) If P ∗
X(j) > 0,

∑

k∈Y
P ∗
Ŷ |X(k|j) log

P ∗
Ŷ |X(k|j)
Q∗

Ŷ
(k)

= 1 + ρ. (169)

2) If P ∗
X(j) = 0,

∑

k∈Y
P ∗
Ŷ |X(k|j) log

P ∗
Ŷ |X(k|j)
Q∗

Ŷ
(k)

≤ 1 + ρ. (170)

3) If P ∗
Y Ŷ |X(k1, k2|j) > 0,

P ∗
X(j) log

P ∗
Ŷ |X(k2|j)
Q∗

Ŷ
(k2)

= λj,k1 . (171)

4) If P ∗
Y Ŷ |X(k1, k2|j) = 0 and j ∈ Sq(k1, k2),

P ∗
X(j) log

P ∗
Ŷ |X(k2|j)
Q∗

Ŷ
(k2)

≥ λj,k1 . (172)

In the next sections, we employ the above KKT conditions

to efficiently compute R̄q(W ) and to analyze the multiletter

version of the bound.

IX. COMPUTATION OF R̄q(W )

In this section, we turn to the computation of the proposed

upper bound R̄q(W ). Before describing the algorithm in

detail, we introduce a number of concepts related to convex-

concave optimization. Let D ⊂ R
n be an open convex set. The

standard inner product on R
n is denoted by 〈·, ·〉. A mirror map

is a function Ψ : D → R with the following properties:

1) Ψ is strictly convex and continuously differentiable on D,

where strict convexity means that for all v1,v2 ∈ D

Ψ(v1)−Ψ(v2)−
〈
∇Ψ(v2),v1 − v2

〉
> 0, (173)

2) The range of ∇Ψ is all of Rn i.e. ∇Ψ(D) = R
n,

3) The gradient of Ψ diverges on the boundary of D, denoted

by ∂D, that is

lim
v→∂D

‖∇Ψ(v)‖ = ∞, (174)

where ‖·‖ denotes the Euclidean norm.
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The Bregman divergence BΨ(·, ·) : D×D → R with respect

to a mirror map Ψ is defined as

BΨ(v1,v2) = Ψ(v1)−Ψ(v2)−
〈
∇Ψ(v2),v1 − v2

〉
.

(175)

Let D ⊂ R
n be a convex set. Function h : D → R is said to be

α-strongly convex with respect to norm |·| if it is differentiable

on D and for all v1,v2 ∈ D we have

h(v1)− h(v2)−
〈
∇h(v2),v1 − v2

〉
≥ α

2
|v1 − v2|2,

(176)

where the norm | · | is not necessarily induced by the standard

inner product, i.e. it is not necessarily the Euclidean norm. If

the mirror map Ψ : D → R is 1-strongly convex with respect

to the norm |·| then from the definition (176) for all v1,v2 ∈ D
we have

BΨ(v1,v2) ≥
1

2
|v1 − v2|2. (177)

We aim to compute the value of the following saddlepoint

problem,

R̄q(W ) = max
PX

min
P

Y Ŷ |X∈Mmax(q)

PY |X=W

f(PX , PY Ŷ |X). (178)

For ease of notation and consistency we define E1 and E2
be the constraint sets corresponding to the maximization and

minimization, respectively,

E1 =
{
v ∈ R

J | v(j) ≥ 0,

J∑

j=1

v(j) = 1
}

(179)

E2 =
{
u ∈ R

J×K×K
∣∣

K∑

k2=1

u(j, k1, k2) = W (k1|j),

u(j, k1, k2) ≥ 0, u(j, k1, k2) = 0 if j /∈ Sq(k1, k2)
}

(180)

where E1 corresponds to the set of distributions over X
and E2 corresponds to the set of maximal joint conditional

distributions PY Ŷ |X such that PY |X = W i.e. Mmax(q) ∩
{P

Y Ŷ |X |PY |X = W}. There is a natural bijection between

the two sets by mapping u to PY Ŷ |X such that for ev-

ery (j, k1, k2) ∈ X × Y × Y we have u(j, k1, k2) =
PY Ŷ |X(k1, k2|j). With a slight abuse of notation let f be

defined for vectors v ∈ E1,u ∈ E2 as it is defined for

their corresponding distributions PX , PY Ŷ |X in the previous

section, i.e., f(v,u) , f(PX , PY Ŷ |X). Therefore, with a

slight abuse of notation, we rewrite the saddlepoint problem

(178) as

R̄q(W ) = max
v∈E1

min
u∈E2

f(v,u). (181)

In the rest of this section, whenever u is used, it is considered

that u(j, k1, k2) = 0 if j /∈ Sq(k1, k2), i.e., that the corre-

sponding PY Ŷ |X ∈ Mmax(q). Additionally, we choose

D1 = {v ∈ R
J |0 ≤ v(j), 0 ≤ j ≤ J} (182)

and

D2 = {u ∈ R
J×K×K |0 ≤ y(j, k1, k2), 0 ≤ j ≤ J,

0 ≤ k1, k2 ≤ K,u(j, k1, k2) = 0 if j /∈ Sq(k1, k2)}.
(183)

It is known that the function Ψ1(v) =
∑

i v(i) log v(i)
is a 1-strongly convex mirror map on D1 with respect to

norm | · |1 [17]. Additionally, let Ψ2(u) =
∑

j,k1,k2
1{j ∈

Sq(k1, k2)}u(j, k1, k2) log u(j, k1, k2). Note that ∇Ψ2 is sur-

jective on
{
u ∈ R

J×K×K
∣∣u(j, k1, k2) = 0 if j /∈

Sq(k1, k2)
}

. Moreover, in all of the computations regarding u

we only use the entries u(j, k1, k2) such that j ∈ Sq(k1, k2)
and ignore all other entries, i.e., they are set to 0 from the

beginning of the algorithm and never change. Therefore, with

a slight abuse of notation we say Ψ2 is a 1-strongly convex

mirror map on D2 with respect to norm | · |1. Note that for

Ψ2 being a mirror map, from the definition we need it to be

surjective on R
J×K×K , but since in the whole algorithm only

the coordinates (j, k1, k2) are used such that j ∈ Sq(k1, k2)
and ∇Ψ2 is surjective on

{
u ∈ R

J×K×K
∣∣u(j, k1, k2) =

0 if j /∈ Sq(k1, k2)
}

all the properties of a mirror map are

preserved. Moreover, the corresponding Bregman divergences

BΨ1 and BΨ2 are given by

BΨ1(v1,v2) =
∑

i

v1(i) log
v1(i)

v2(i)
− v1(i) + v2(i) (184)

BΨ2(u1,u2)

=
∑

j,k1,k2

1{j ∈ Sq(k1, k2)}
[
u1(j, k1, k2) log

u1(j, k1, k2)

u2(j, k1, k2)

− u1(j, k1, k2) + u2(j, k1, k2)

]
. (185)

Note that when v1,v2 ∈ E1 the Bregman divergence

BΨ1(v1,v2) reduces to relative entropy between v1 and v2.

It is known that the Bregman divergence (184) is jointly

convex in its arguments [17]. Similarly, (185) is jointly convex

in its arguments as well.

We will use the algorithm mirror prox [12], known to be

able to iteratively find the saddlepoint for convex-concave

optimization problems where the gradients ∇vf(v,u) and

∇uf(v,u) are Lipshitz functions. Unfortunately, this condi-

tion does not hold in our problem, because the gradient is not

necessarily finite on the boundries of both E1, E2. Therefore,

we need the following result to control the growth of the

gradient. Then using this fact, we add an additional step to

the standard mirror prox algorithm and show that it converges

to the saddlepoint. Note that the notation ∇v=v0f(v,u0) rep-

resents the gradient of f(v,u0) at point v0; ∇u=u0f(v0,u)
is defined accordingly.

Lemma 8: Let v0,u0 be defined as

v0(j) =
1

J
, ∀j ∈ X (186)

for all (j, k1, k2) ∈ X × Y × Y.

u0(j, k1, k2) =
W (k1|j)1{j ∈ Sq(k1, k2)})
|∑k2

1{j ∈ Sq(k1, k2)}|
. (187)
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Let κ = 1
T

, then for any (v′,u′) ∈ E1 × E2
|∇v=(1−κ)v′+κv0

f(v, (1− κ)u′ + κu0)|∞
≤ log(K) + log

TJ

Wmin
+ 1 (188)

|∇u=(1−κ)u′+κu0
f((1 − κ)v′ + κv0,u)|∞

≤ log
TK

Wmin
+ log

TJ

Wmin
, (189)

where Wmin = minj∈X ,k∈Y:
W (k|j)>0

W (k|j).
Proof: In the following expressions PX , PY Ŷ |X corre-

spond to (1 − κ)v′ + κv0, (1 − κ)u′ + κu0, respectively.

Note that every entry of (1 − κ)v′ + κv0 is greater than

or equal to 1
TJ

. As a result, every entry of Q
Ŷ

, which is

output distribution corresponding to PX , P
Y Ŷ |X , is either 0

or greater than or equal to Wmin

TJ
. Recall that the j-th entry

of |∇v=(1−κ)v′+κv0
f(v, (1 − κ)u′ + κu0)|∞ is equal to

∂
∂PX (j)f(PX , P

Y Ŷ |X). Therefore, (188) follows by,

∣∣∣∣
∂

∂PX(j)
f(PX , PY Ŷ |X)

∣∣∣∣

=

∣∣∣∣∣
∑

k∈Y
P
Ŷ |X(k|j) log

P
Ŷ |X(k|j)
Q

Ŷ
(k)

− 1

∣∣∣∣∣ (190)

=

∣∣∣∣∣−H(Ŷ |X = j)−
∑

k∈Y
P
Ŷ |X(k|j) log(Q

Ŷ
(k))− 1

∣∣∣∣∣
(191)

≤ log(K) + log
TJ

Wmin
+ 1. (192)

Recall that the entries of |∇v=(1−κ)v′+κv0
f(v, (1 − κ)u′ +

κu0)|∞ are equal to ∂
∂P

Y Ŷ |X (k1,k2|j)f(PX , P
Y Ŷ |X) for 1 ≤

k1, k2 ≤ K . Moreover, when j ∈ Sq(k1, k2) then,

P
Ŷ |X(k2|j) ≥ PY Ŷ |X(k1, k2|j) ≥ Wmin

TK
. As a result (189)

follows from,
∣∣∣∣∣

∂

∂PY Ŷ |X(k1, k2|j)
f(PX , PY Ŷ |X)

∣∣∣∣∣

=

∣∣∣∣∣PX(j) log
P
Ŷ |X(k2|j)
Q

Ŷ
(k2)

∣∣∣∣∣ (193)

≤
∣∣∣logPŶ |X(k2|j)

∣∣∣+
∣∣logQ

Ŷ
(k2)

∣∣ (194)

≤ log
TK

Wmin
+ log

TJ

Wmin
(195)

For ease of notation, let

G = max

{
log(K) + log

TJ

Wmin
+ 1, log

TK

Wmin
+ log

TJ

Wmin

}

(196)

in the rest of the section. From the choices of v0,u0 in (186)

and (187), and (184) and (185) we get

max
v∈E1

BΨ1(v,v0) ≤ log(J) (197)

max
u∈E2

BΨ2(u,u0) ≤ J log
K

Wmin
. (198)

Initialize: choose v0,u0 from (186) and (187),

respectively

for t = 1, 2, . . . , T do
Gradient step: Find ṽt from

∇Ψ1(ṽt) = ∇Ψ1(vt−1)− ηt∇v=vt−1f(v,ut−1)
Projection step: Compute v′

t from

v′
t = argminv∈E1

BΨ1(v, ṽt)
Mixture step: Compute vt from

vt = (1− κ)v′
t + κv0

end
Algorithm 1: Computation of vt.

Initialize: choose v0,u0 from (186) and (187),

respectively

for t = 1, 2, . . . , T do
Gradient step: Find ũt from

∇Ψ2(ũt) = ∇Ψ2(ut−1)− ηt∇u=ut−1f(vt−1,u)
Projection step: Compute u′

t from

u′
t = argminu∈E2

BΨ2(u, ũt)
Mixture step: Compute ut from

ut = (1− κ)u′
t + κu0

end
Algorithm 2: Computation of ut.

Here (197) holds since the relative entropy between a distribu-

tion and the uniform distribution is bounded by the logarithm

of the alphabet cardinality. Furthermore, from definition (187)

all of the entries of u0 are either 0 or not less than Wmin

K
.

Additionally, by definition of set E2, u is equal to zero at

entries that u0 equals to zero. Using these two facts (198)

follows. Let vt and ut, t = 1, 2, . . . , T be defined by the fol-

lowing iterative algorithm, where T is the maximum number

of iterations. The computation vt is described in Algorithm

1, where ηt is the stepsize at iteration t. From the definition

of mirror map, the range of ∇Ψ1 is RJ , guaranteeing the

existence of ṽt in the gradient step of the above algorithm.

Similarly, the computation of ut is described in Algorithm 2.

Similarly, the range of ∇Ψ2 is
{
u ∈

R
J×K×K

∣∣ u(j, k1, k2) = 0 if j /∈ Sq(k1, k2)
}

, guaranteeing

the existence of ũt+1 in the gradient step.

The following result guarantees the convergence of pro-

posed iterative algorithm to the saddlepoint.

Proposition 1: Let κ = 1
T

and the stepsize ηt = η̄ =
√

1
T

.

Then, we have

∣∣∣∣f
(
1

T

T−1∑

t=0

vt,
1

T

T−1∑

t=0

ut

)
− min

v∈E1

max
u∈E2

f(v,u)

∣∣∣∣

≤ 1√
T

(
4J log

K

Wmin
+G2

)
. (199)

Proof: We assume several properties of Bregman diver-

gences without proof. For further details see [17]. The first-

order optimality of Bregman divergence projections states that

for any v∗ ∈ E1 [17]

〈gt,v
′
t+1 − v∗〉

≤ 1

η̄

(
BΨ(v∗,vt)−BΨ(v∗,v

′
t+1)−BΨ(v

′
t+1,vt)

)
, (200)
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where for ease of notation we have defined gt
∆
=

∇v=vt
f(v,ut). As a result, for any arbitrary v∗ ∈ E1 we

have

T−1∑

t=0

[
f(vt,ut)− f(v∗,ut)

]

≤
T−1∑

t=0

〈gt,vt − v∗〉 (201)

=

T−1∑

t=0

[
〈gt,v

′
t+1 − v∗〉+ 〈gt,vt − v′

t+1〉
]

(202)

≤
T−1∑

t=0

[
1

η̄

(
BΨ1(v∗,vt)−BΨ1(v∗,v

′
t+1)−BΨ1(v

′
t+1,vt)

)

+ 〈gt,vt − v′
t+1〉

]
(203)

≤
T−1∑

t=0

[
1

η̄

(
BΨ1(v∗,vt)−BΨ1(v∗,v

′
t+1)−BΨ1(v

′
t+1,vt)

)

+
1

2η̄
|vt − v′

t+1|21 +
η̄

2
G2

]
(204)

≤
T−1∑

t=0

[
1

η̄

(
BΨ1(v∗,vt)−BΨ1(v∗,v

′
t+1)

)

− 1

2η̄
|v′

t+1 − vt|21 +
1

2η̄
|vt − v′

t+1|21 +
η̄

2
G2

]
(205)

=
T−1∑

t=0

[
1

η̄

(
BΨ1(v∗,vt)−BΨ1(v∗,v

′
t+1)

)
+

η̄

2
G2

]
, (206)

where (201) follows from the definition of convexity of f ,

(204) follows from Hölder’s inequality [18] 〈gt,vt−vt+1〉 ≤
|vt − vt+1|1|gt|∞ ≤ 1

2η̄ |vt − vt+1|21 + η̄
2 |gt|2∞ and |gt|∞ ≤

G from Lemma 8. Moreover, inequality (206) follows from

(177). Furthermore, from convexity of BΨ1(·, ·) in the second

argument we have that

BΨ1(v∗,vt) ≤ (1− κ)BΨ1(v∗,v
′
t) + κBΨ1(v∗,v0). (207)

Therefore plugging (207) in (206) we get

T−1∑

t=0

(
f(vt,ut)− f(v∗,ut)

)

≤
T−1∑

t=0

[
1

η̄

(
(1− κ)BΨ1(v∗,v

′
t) + κBΨ1(v∗,v0)

−BΨ1(v∗,v
′
t+1)

)
+

η̄

2
G2

]
(208)

=

T−1∑

t=0

1

η̄

(
(1− κ)BΨ1(v∗,v

′
t) + κBΨ1(v∗,v0)

−BΨ1(v∗,v
′
t+1)

)
+

T η̄

2
G2 (209)

=
T−1∑

t=0

1

η̄

(
(1− κ)BΨ1(v∗,v

′
t)−BΨ1(v∗,v

′
t+1)

)

+
Tκ

η̄
BΨ1(v∗,v0) +

T η̄

2
G2 (210)

=

T−2∑

t=0

1

η̄

(
− κBΨ1(v∗,v

′
t+1)

)
+ (1− κ)BΨ1(v∗,v

′
0)

−BΨ1(v∗,v
′
T ) +

Tκ

η̄
BΨ1(v∗,v0) +

T η̄

2
G2 (211)

≤ 1

η̄
BΨ1(v∗,v0) +

Tκ

η̄
BΨ1(v∗,v0) +

T η̄

2
G2 (212)

where v′
0 = v0 (note that this is consistent with inequality

(207)) and (212) follows from BΨ1(·, ·) being non-negative.

Therefore, by setting κ = 1
T
, η̄ =

√
1
T

and noticing

BΨ1(v,v0) ≤ log(J) ≤ J log K
Wmin

for J,K > 1 we get

1

T

T−1∑

t=0

(
f(vt,ut)− f(v∗,ut)

)

≤ 1√
T

(
2J log

K

Wmin
+

1

2
G2
)
. (213)

The same procedure gives

1

T

T−1∑

t=0

(
f(vt,ut)− f(vt,u∗)

)

≥ −1√
T

(
2J log

K

Wmin
+

1

2
G2
)
. (214)

As a result, we have

f
( 1
T

T−1∑

t=0

vt,u∗
)
− f

(
v∗,

1

T

T−1∑

t=0

ut

)

≤ 1

T

T−1∑

t=0

(
f(vt,u∗)− f(v∗,ut)

)
(215)

≤ 1√
T

(
4J log

K

Wmin
+G2

)
(216)

where (215) follows from the convex-concave nature of f and

(216) follows from summing (213) and (214).

Since v∗ and u∗ were arbitrary, let v∗ =

argminv∈E1
f
(
v, 1

T

∑T−1
t=0 ut

)
and u∗ =

argmaxu∈E2
f
(

1
T

∑T−1
t=0 vt,u

)
then we have

f
(
v∗,

1

T

T−1∑

t=0

ut

)
= min

v∈E1

f
(
v,

1

T

T−1∑

t=0

ut

)
(217)

≤ min
v∈E1

max
u∈E2

f(v,u) (218)

≤ max
u∈E2

f
( 1
T

T−1∑

t=0

vt,u
)

(219)

= f
( 1

T

T−1∑

t=0

vt,u∗
)
. (220)

In addition, observe that

f
(
v∗,

1

T

T−1∑

t=0

ut

)
≤ f

( 1

T

T−1∑

t=0

vt,
1

T

T−1∑

t=0

ut

)
(221)

≤ f
( 1

T

T−1∑

t=0

vt,u∗
)
, (222)
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and therefore by combining (217) and (221) we have

∣∣∣∣f
( 1
T

T−1∑

t=0

vt,
1

T

T−1∑

t=0

ut

)
− min

v∈E1

max
u∈E2

f(v,u)

∣∣∣∣

≤ f
( 1
T

T−1∑

t=0

vt,u∗
)
− f

(
v∗,

1

T

T−1∑

t=0

ut

)
. (223)

This combined with (216) finishes the proof.

It is well known that the divergence projection step in

Algorithm 1 can be computed efficiently as [17], [19]

v′
t+1(j) =

ṽt+1(j)∑
j′ ṽt+1(j′)

. (224)

Similarly, the divergence projection on Mmax(q) ∩
{PY Ŷ |X |PY |X = W} in Algorithm 2 can be computed

efficiently as

u′
t+1(j, k1, k

′
2) =

W (k1|j)ỹt+1(j, k1, k2)1{j ∈ S(k1, k2)}∑
k′
2
ỹt+1(j, k1, k′2)1{j ∈ S(k1, k′2)}

.

(225)

Then the iterative algorithm at iteration t + 1 is summarized

by the following:

ṽt+1 = vt ⊙ exp
( 1√

T
∇v=vt

f(v,ut)
)

(226)

v′
t+1(j) =

ṽt+1(j)∑
j′ ṽt+1(j′)

(227)

vt+1 =
T − 1

T
v′
t+1 +

1

T
v0 (228)

and

ũt+1 = ut ⊙ exp
( 1√

T
∇u=ut

f(vt,u)
)

(229)

u′
t+1(j, k1, k

′
2) =

W (k1|j)ũt+1(j, k1, k2)1{j ∈ S(k1, k2)}∑
k′
2
ũt+1(j, k1, k′2)1{j ∈ S(k1, k′2)}

(230)

ut+1 =
T − 1

T
u′
t+1 +

1

T
u0, (231)

where a ⊙ b denotes componentwise product of the entries

of vectors a, b. Moreover, (226) and (229) correspond to the

gradient steps. Therefore, we can use the gradients computed

in the previous section to run the algorithm. Figure 1 illustrates

the convergence of R̄t
q(W ) over the iterations t to the upper

bound R̄q(W ), using the suggested iterative algorithm for the

channel and metric of Example 2. For reference, we also plot

the C(W ) and the LM rate RLM
q (W ). We have chosen an

equiprobable maximal joint conditional distribution as initial

condition and the step size η̄ = 1√
100

.

X. MULTILETTER BOUND

In this section, we study the multiletter extension of the

bound (17). In particular, we show that the multiletter version

cannot improve on the single-letter bound. We define the ℓ-
letter decoding metric q(ℓ) : X ℓ × Yℓ → R as follows,

q(ℓ)
(
(x1, x2, . . . , xℓ), (y1, y2, . . . , yℓ)

)
=

ℓ∑

i=1

q(xi, yi).

(232)
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Fig. 1. Convergence of the proposed iterative algorithm to compute R̄q(W )
for the channel and metric from Example 2.

This decoding metric definition is consistent with the additive

decoder we have defined in (5). We denote j ∈ X ℓ and k ∈ Yℓ

as the ℓ-letter inputs and outputs, respectively. Let W (ℓ) denote

a DMC over input alphabet X ℓ and output alphabet Yℓ with

the channel rule W (ℓ)
(
(y1, y2, . . . , yℓ)|(x1, x2, . . . , xℓ)

)
=∏ℓ

i=1 W (yi|xi). Additionally, we define P
(ℓ)
X and P

(ℓ)

Y Ŷ |X
accordingly

P
(ℓ)
X (x1, . . . xℓ) =

ℓ∏

i=1

PX(xi) (233)

P
(ℓ)

Y Ŷ |X
(
(y1, y2, . . . , yℓ), (ŷ1, ŷ2, . . . , ŷℓ)|(x1, x2, . . . , xℓ)

)

=

ℓ∏

i=1

PY Ŷ |X(yi, ŷi|xi) (234)

Xℓ and Y ℓ, Ŷ ℓ denote random variables defined on alphabets

X ℓ, Yℓ and Yℓ, respectively. Moreover, S(ℓ)
q (k1,k2) is defined

as

S(ℓ)
q (k1,k2)

∆
=
{
i ∈ X ℓ | i = argmax

i′∈X ℓ

q(ℓ)(i′,k2)− q(ℓ)(i′,k1)
}
. (235)

In the following lemma we characterize the sets

S(ℓ)
q (k1,k2) and relate them to Sq(k1,i, k2,i), i = 1, 2, . . . , ℓ.
Lemma 9: For j ∈ X ℓ,k1 ∈ Yℓ,k2 ∈ Yℓ we have that

j ∈ S(ℓ)
q (k1,k2) if and only if for all 1 ≤ i ≤ ℓ we have

ji ∈ Sq(k1,i, k2,i). (236)

Proof: We have

argmax
j∈X ℓ

q(ℓ)(j,k2)− q(ℓ)(j,k1)

= argmax
j∈X ℓ

ℓ∑

i=1

q(ji, k2,i)− q(ji, k2,i) (237)

= argmax
(j1,j2,...,jℓ)∈X ℓ

ℓ∑

i=1

q(ji, k2,i)− q(ji, k2,i). (238)
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From (238) we get that if (j1, j2, . . . , jℓ) ∈ Sq(k1,k2) then

for all 1 ≤ i ≤ ℓ we should have ji ∈ Sq(k1,i, k2,i). Therefore,

S(ℓ)
q (k1,k2)

= Sq(k1,1, k2,1)× Sq(k1,2, k2,2)× · · · × Sq(k1,ℓ, k2,ℓ).
(239)

For the above ℓ-letter alphabets and distributions, the con-

struction and analysis of the bound remains unchanged. There-

fore, (17) remains valid for its ℓ-letter extension, which can

be written as

R̄(ℓ)
q (W ) ,

1

ℓ
R̄q(ℓ)(W (ℓ)) (240)

=
1

ℓ
max
P

Xℓ

min
P

Y ℓŶ ℓ|Xℓ∈Mmax(q
(ℓ))

P
Y ℓ|Xℓ=W (ℓ)

I(pXℓ , P
Ŷ ℓ|Xℓ)

(241)

=
1

ℓ
min

P
Y ℓŶ ℓ|Xℓ∈Mmax(q

(ℓ))

P
Y ℓ|Xℓ=W (ℓ)

C(P
Ŷ ℓ|Xℓ). (242)

We have the following result.

Proposition 2:

R̄(ℓ)
q (W ) = R̄q(W ). (243)

Proof: Recall that if we find a feasible pair

P
Y ℓŶ ℓ|Xℓ , PXℓ such that when fixing P

Y ℓŶ ℓ|Xℓ , the

input distribution PXℓ is a maximizer of f(·, P
Y ℓŶ ℓ|Xℓ), and

when fixing PXℓ , the joint conditional distribution PY ℓŶ ℓ|Xℓ

is a minimizer of f(pXℓ , ·), then the pair (PXℓ , P
Y ℓŶ ℓ|Xℓ) is

a saddlepoint. Therefore, we can use the mentioned property

to show P
∗(ℓ)
X , P

∗(ℓ)
Y Ŷ |X is a saddlepoint for the multiletter

bound. As a result, it is sufficient to show that P
∗(ℓ)
Y Ŷ |X is a

minimizer of (241) by fixing P
∗(ℓ)
X and additionally, P

∗(ℓ)
X is

the maximizer of (241) by fixing P
∗(ℓ)
Y Ŷ |X .

Firstly, we verify the claim that P
∗(ℓ)
X is the maximizer of

(241) by fixing P
∗(ℓ)
Y Ŷ |X . The validity of this claim follows

from (242) and the fact that 1
ℓ
C(P

∗(ℓ)
Ŷ |X) = C(P ∗

Ŷ |X) with

the product distribution P
∗(ℓ)
X being the capacity-achieving

distribution of C(P
∗(ℓ)
Ŷ |X).

Secondly, we verify the claim that P
∗(ℓ)
Y Ŷ |X is a minimizer of

(241) by fixing P
∗(ℓ)
X . This is shown in the following lemma.

We prove that by fixing P
∗(ℓ)
X , then P

∗(ℓ)
Y Ŷ |X satisfies the KKT

conditions and hence, it is a minimizer of (241). Before stating

the result, we recall that the multiletter counterparts of the

single-letter KKT conditions given in (171) and (172) hold.

Moreover, as in the single-letter case, the multiletter KKT

conditions are sufficient for global optimality, because the

function f(P ∗ℓ
X , ·) is concave and optimization constraints are

affine [16]. Using Lemma 10 below completes the proof.

Lemma 10: Let P ∗
X , P ∗

Y Ŷ |X be a saddlepoint for opti-

mization problem (17). Set PXℓ = P
∗(ℓ)
X . Then, the joint

conditional distribution P
∗(ℓ)
Y Ŷ |X is a minimizer of

min
P

Y ℓŶ ℓ|Xℓ∈Mmax(q
(ℓ))

P
Y ℓ|Xℓ=W (ℓ)

I
(
P

∗(ℓ)
X , PY ℓŶ ℓ|Xℓ

)
. (244)

Proof: We should show that by setting PXℓ = P
∗(ℓ)
X , the

multiletter versions of the KKT conditions (171) and (172)

hold for P
∗(ℓ)
Y Ŷ |X . Generalizing the conditions of (171) and

(172) to the multiletter case, and setting P
Y ℓŶ ℓ|Xℓ = P

∗(ℓ)
Y Ŷ |X ,

we should show that for all j,k1 ∈ X ℓ × Yℓ there exist

multipliers λj,k1 such that the conditions below are fulfilled.

If we show this, then the lemma is proved because these are

precisely the conditions for the minimizer of (244).

1) When P
∗(ℓ)
Y Ŷ |X(k1,k2|j) > 0 we must have,

∂

∂PY ℓŶ ℓ|Xℓ(k1,k2|j)
f(P

∗(ℓ)
X , PY ℓŶ ℓ|Xℓ)

∣∣∣∣
P

Y ℓŶ ℓ|Xℓ=P
∗(ℓ)

Y Ŷ |X

= λj,k1 . (245)

2) When P
∗(ℓ)
Y Ŷ |X(k1,k2|j) = 0 and j ∈ S(ℓ)

q (k1,k2) we

must have that,

∂

∂PY ℓŶ ℓ|Xℓ(k1,k2|j)
f(P

∗(ℓ)
X , PY ℓŶ ℓ|Xℓ)

∣∣∣∣
P

Y ℓŶ ℓ|Xℓ=P
∗(ℓ)

Y Ŷ |X

≥ λj,k1 . (246)

Similarly to (168), the derivative in (245) and (246) is given

by,

∂

∂P
Y ℓŶ ℓ|Xℓ(k1,k2|j)

f(P
∗(ℓ)
X , P

Y ℓŶ ℓ|Xℓ)

∣∣∣∣
P

Y ℓŶ ℓ|Xℓ=P
∗(ℓ)

Y Ŷ |X

= P
∗(ℓ)
X (j) log

P
∗(ℓ)
Ŷ |X(k1|j)

Q
∗(ℓ)
Ŷ

(k1)
(247)

which, by using that in PY ℓŶ ℓ|Xℓ = P
∗(ℓ)
Y Ŷ |X and Q

∗(ℓ)
Ŷ

are

product distributions, gives,

P
∗(ℓ)
X (j) log

P
∗(ℓ)
Ŷ |X(k1|j)

Q
∗(ℓ)
Ŷ

(k1)

= P ∗
X(j1)P

∗
X(j2) · · ·P ∗

X(jℓ) ·
(

ℓ∑

i=1

log
P ∗
Ŷ |X(k2,i|ji)
Q∗

Ŷ
(k2,i)

)
.

(248)

In order to show that there exist some coefficients λj,k1

satisfying both (245) and (246), we make a specific choice

and show that this choice satisfies both (245) and (246). To

this end, define

λj,k1 =

{
0

∏ℓ
i=1 P

∗
X(ji) = 0

∏ℓ
i=1 P

∗
X(ji)

(∑ℓ
i=1

λji,k1,i

P∗
X
(ji)

) ∏ℓ
i=1 P

∗
X(ji) 6= 0

(249)
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where λji,k1,i is the single-letter Lagrange multiplier corre-

sponding to ji and k1,i.
Excluding the cases where P ∗

X(j1)P
∗
X(j2) · · ·P ∗

X(jℓ) = 0
that from (248), (245) and (246) the KKT conditions clearly

hold, we have two cases

1) When P
∗(ℓ)
Y Ŷ |X(j,k1,k2) > 0, then for all 1 ≤ i ≤ ℓ we

must have P ∗
Y Ŷ |X(k1,i, k2,i|ji) > 0 and therefore, (171)

is valid. We have to verify that this implies that (245) is

also valid. As a result,

∂

∂PY ℓŶ ℓ|Xℓ(k1,k2|j)
f(P

∗(ℓ)
X , PY ℓŶ ℓ|Xℓ)

∣∣∣∣
P

Y ℓŶ ℓ|Xℓ=P
∗(ℓ)

Y Ŷ |X

=
ℓ∏

i=1

P ∗
X(ji)

(
ℓ∑

i=1

log
P ∗
Ŷ |X(k2,i|ji)
Q∗

Ŷ
(k2,i)

)
(250)

=

ℓ∏

i=1

P ∗
X(ji)

(
ℓ∑

i=1

λji,k1,i

P ∗
X(ji)

)
(251)

= λj,k1 (252)

where (251) holds from the single-letter optimality in

(171).

2) When P
∗(ℓ)
Y Ŷ |X(k1,k2|j) = 0 and j ∈ S(ℓ)

q (k1,k2), as a

result of the Lemma 9, we have that S(ℓ)
q (k1,k2) is a

product set, i.e. for all 1 ≤ i ≤ ℓ,

ji ∈ Sq(k1,i, k2,i). (253)

Moreover, either P ∗
Y Ŷ |X(k1,i, k2,i|ji) > 0 where (171)

is satisfied or P ∗
Y Ŷ |X(k1,i, k2,i|ji) = 0 where (172) is

satisfied. As a result, with these assumptions in mind, we

should verify that (246) is valid. We have

∂

∂PY ℓŶ ℓ|Xℓ(k1,k2|j)
f(P

∗(ℓ)
X , PY ℓŶ ℓ|Xℓ)

∣∣∣∣
P

Y ℓŶ ℓ|Xℓ=P
∗(ℓ)

Y Ŷ |X

=

ℓ∏

i=1

P ∗
X(ji)

(
ℓ∑

i=1

log
P ∗
Ŷ |X(k2,i|ji)
Q∗

Ŷ
(k2,i)

)
(254)

≥
ℓ∏

i=1

P ∗
X(ji)

(
ℓ∑

i=1

λji,k1,i

P ∗
X(ji)

)
(255)

= λj,k1 (256)

where (255) is true because of the single-letter optimality

in (171) and (172).

APPENDIX A

In this appendix we provide the proof of Theorem 2.

Without loss of generality, we assume that the sequence{
q(1, k)− q(2, k)

}K
k=1

is non-decreasing, i.e. for k1 ≤ k2,

q(1, k1)− q(2, k1) ≤ q(1, k2)− q(2, k2). (257)

We can assume this, since it is always possible to relabel

the output alphabet such that this property is fulfilled. This

assumption simplifies the evaluation of the sets S(·, ·). For

k1 = k2 we have S(k1, k2) = {1, 2}. Moreover, when k1 < k2

from (257) and Definition 1, we have that 1 ∈ S(k1, k2) and

2 ∈ S(k2, k1).
We prove a slightly stronger result. In particular, we prove

that the condition Cq(W ) = C(W ) implies that sequences

{
P ⋆
X(1) log

W (k|1)
Q̂

Ŷ
(k)

}K

k=1
,
{
− P ⋆

X(2) log
W (k|2)
Q⋆

Ŷ
(k)

}K

k=1

(258)

both should have the same order as the decoding metric

difference sequence {q(1, k)−q(2, k)}Kk=1, where the notation

P ⋆
X refers to the capacity-achieving distribution of W ; Q⋆

denotes the corresponding output distribution.

Assume that Cq(W ) = C(W ). Therefore, P ⋆
X , P

Y Ŷ |X =
PY Y |X must be a saddlepoint of (154). As a result, the KKT

conditions in (171) and (172) must hold. Observe that

PY Y |X(k1, k2|j) =
{
W (k1|j) k1 = k2

0 k1 6= k2.
(259)

Therefore, combining the KKT conditions in (171) and (172)

we obtain,

1) If k1 = k2, for both j = 1, 2 we have

P ⋆
X(j) log

W (k1|j)
Q̂Y (k1)

= λj,k1 (260)

2) If k1 < k2 we know 1 ∈ S(k1, k2) and 2 ∈ S(k2, k1),
therefore,

P ⋆
X(1) log

W (k2|1)
Q⋆

Y (k2)
≥ λ1,k1 (261)

P ⋆
X(2) log

W (k1|2)
Q⋆

Y (k1)
≥ λ2,k2 . (262)

As a result, if k1 < k2

P ⋆
X(1) log

W (k2|1)
Q⋆

Y (k2)
≥ λ1,k1 = P ⋆

X(1) log
W (k1|1)
Q⋆

Y (k1)
(263)

P ⋆
X(2) log

W (k1|2)
Q⋆

Y (k1)
≥ λ2,k2 = P ⋆

X(2) log
W (k2|2)
Q⋆

Y (k2)
. (264)

Therefore, we get that
{
P ⋆
X(1) log W (k|1)

Q⋆
Y
(k)

}K

k=1
and

−
{
P ⋆
X(2) log W (k|2)

Q⋆
Y
(k)

}K

k=1
are both non-decreasing sequences

and so is any linear combination of them with positive

coefficients. Therefore, since

logW (k|1)− logW (k|2) = 1

P ⋆
X(1)

(
P ⋆
X(1) log

W (k|1)
Q⋆

Y (k)

)

− 1

P ⋆
X(2)

(
P ⋆
X(2) log

W (k|2)
Q⋆

Y (k)

)

(265)

we conclude that the sequence {logW (k|1)−logW (k|2)}Kk=1

is a non-decreasing sequence.
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APPENDIX B

This section is addresses the choice of ǫ in proof of the

main theorem in Section VII. Let f : A → R be a continuous

function and A be a compact set. Then this function is

uniformly continuous. We apply this fact to entropy function

H : ∆J → R where ∆J = {x ∈ R
J |xi ≥ 0, i = 1, 2, . . . , J}

is the J-dimensional simplex. Therefore, for any δ > 0 there

exists an ǫ > 0 such that for any p1,p2 ∈ ∆J that are ǫ-close

i.e. |p1 − p2|∞ ≤ ǫ we have
∣∣H(p1)−H(p2)

∣∣ ≤ δ. (266)

Let V be matrix of a conditional distribution and

V 1,V 2, . . . ,V J be rows of V . Consider any type p, any

conditional distribution matrix V̂ with rows V̂ 1, V̂ 2, . . . , V̂ J

and let q, q̂ be output distributions corresponding to input type

p and channels V , V̂ , respectively. Then, we have
∣∣q − q̂

∣∣
∞ ≤

∣∣V − V̂
∣∣
∞ (267)

∣∣V i − V̂ i

∣∣
∞ ≤ |V − V̂

∣∣
∞. (268)

As a result, if
∣∣V − V̂

∣∣
∞ ≤ ǫ we get

∣∣H(q)−H(q̂)
∣∣
∞ ≤ δ (269)

∣∣H(V i)−H(V̂ i)
∣∣ ≤ δ. (270)

As for H(V |p) we have

H(V |p) =
J∑

j=1

p(j)H(V j), (271)

and thus,

∣∣H(V |p)−H(V̂ |p)
∣∣
∞ ≤

J∑

j=1

p(i)
∣∣H(V j)−H(V̂ j)

∣∣
∞

(272)

≤ δ. (273)

Setting δ = σ
4 gives the result.

APPENDIX C

In this appendix we discuss the case where some entries

of the decoding metric matrix are −∞. When computing the

set Sq(k1, k2) we compare expressions that contain −∞ using

the following rules:

1) −∞− (−∞) = −∞− (−∞) is a tie

2) a− (−∞) > −∞− (−∞)
3) −∞− (−∞) > −∞− a
4) a− (−∞) > b and −∞− a < b
5) −∞− a < −∞− b if a > b, and −∞− a = −∞− b if

a = b
6) a − (−∞) < b − (−∞) if a < b, and a − (−∞) =

b− (−∞) if a = b
7) 0 · (−∞) = 0

where a, b ∈ R.

As we show next, Lemma 3 remains true for this case.

Observe that in the decomposition

q(x,y) =
∑

j,k

p̂x,y(j, k)q(j, k) (274)

0·(−∞) = 0 according to rule 7). With assumptions of Lemma

3 we have that,

q(x̂, ŷ)− q(x̂,y)

= n
∑

j,k1,k2

p̂x̂yŷ(j, k1, k2)
(
q(j, k2)− q(j, k1)

)
(275)

≤ n
∑

k1,k2

(∑

j

p̂x̂yŷ(j, k1, k2)
)
max
j′

(
q(j′, k2)− q(j′, k1)

)

(276)

= n
∑

k1,k2

(∑

j

p̂xyŷ(j, k1, k2)
)
max
j′

(
q(j′, k2)− q(j′, k1)

)

(277)

= n
∑

k1,k2

∑

j

p̂xyŷ(j, k1, k2)
(
q(j, k2)− q(j, k1)

)
(278)

= q(x, ŷ)− q(x,y) (279)

where in (275) when upperbounding q(j, k2) − q(j, k1) with

maxj′
(
q(j′, k2) − q(j′, k1)

)
if neither of q(j, k2), q(j, k1) is

equal to −∞ the argument remains valid. Moreover, rules

1), 5) and 6) imply that if q(j, k1) = −∞ in (275) then

q(j′, k1) = −∞ for maximizing j′. Therefore, if q(x̂,y) =
−∞ then q(x,y) = −∞. Finally, in (275) if q(j, k2) = −∞
and q(j, k1) is finite, then q(j′, k1) in (276) for maximiz-

ing j′ is also finite and q(j′, k1) ≤ q(j, k1). As a result,

q(x,y) ≤ q(x̂,y).
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