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DNA-Based Storage: Models and
Fundamental Limits

Ilan Shomorony , Member, IEEE, and Reinhard Heckel , Member, IEEE

Abstract— Due to its longevity and enormous information
density, DNA is an attractive medium for archival storage.
In this work, we study the fundamental limits and trade-offs of
DNA-based storage systems by introducing a new channel model,
which we call the noisy shuffling-sampling channel. Motivated
by current technological constraints on DNA synthesis and
sequencing, this model captures three key distinctive aspects of
DNA storage systems: (1) the data is written onto many short
DNA molecules; (2) the molecules are corrupted by noise during
synthesis and sequencing and (3) the data is read by randomly
sampling from the DNA pool. We provide capacity results for this
channel under specific noise and sampling assumptions and show
that, in many scenarios, a simple index-based coding scheme is
optimal.

Index Terms— Data storage, DNA storage, channel capacity.

I. INTRODUCTION

DUE to its longevity and enormous information density,
and thanks to rapid advances in technologies for writ-

ing (synthesis) and reading (sequencing), DNA is on track to
become an attractive medium for archival data storage. DNA
is a long molecule made up of four nucleotides (Adenine,
Cytosine, Guanine, and Thymine) and, for storage purposes,
can be viewed as a string over a four-letter alphabet. While
in a living cell a DNA molecule can consist of millions of
nucleotides, due to technological constraints, it is difficult
and inefficient to synthesize long strands of DNA. Thus,
in practice, data is stored on short DNA molecules which are
preserved in a DNA pool and cannot be spatially ordered.

In recent years, several groups demonstrated working DNA
storage systems [1]–[7]. In these systems, information was
stored on molecules of no longer than one or two hundred
nucleotides. At the time of reading, the information is accessed
via state-of-the-art sequencing technologies. This corresponds
to (randomly) sampling and reading sequences from the pool
of DNA. Sequencing is preceded by several cycles of Poly-
merase Chain Reaction (PCR) amplification. In each cycle
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each molecule is replicated by a factor of 1.6-1.8. Thus,
the proportions of the sequences in the DNA mixture just
before sequencing and the probability that a given sequence
is read depends on the synthesis method, the PCR steps, and
the decay of DNA during storage. Finally, sequencing and in
particular synthesis of DNA may lead to insertions, deletions,
and substitutions of nucleotides in individual DNA molecules.
We refer to [8] for a detailed discussion of the error sources
and probabilities for different experimental setups.

Given these constraints, a mathematical model for a DNA
storage channel is as follows. Data is written on M DNA
molecules, each of length L. From this multi-set of sequences,
N sequences are drawn according to some distribution Q,
and are then perturbed by the introduction of individual base
errors. A critical element of this model is that by drawing N
sequences according to some distribution Q, the order of the
sequences is lost.

The decoder’s goal is to reconstruct the information from the
multi-set of N reads. Note that the decoder has no information
about which molecules were sampled, and in general a fraction
of the original DNA fragments may never be sampled. Our
goal is to study the capacity of this channel under different
modeling assumptions on the sampling distribution and the
base errors that are introduced.

A. Contributions

In this paper we study the fundamental limits of the DNA
storage model outlined above. Our analysis aims to reveal
the basic relationships and trade-offs between key design
parameters and performance goals such as storage density and
reading/writing costs. Throughout, we consider the asymptotic
regime where M → ∞. The main parameter of interest is the
storage capacity C, defined as the maximum number of bits
that can be reliably stored per nucleotide (the total number of
nucleotides is ML).

a) Capacity in the case of noise-free sequences: We start
with a channel without errors in the individual sequences.
Thus, randomness is only introduced through the distrib-
ution Q, which describes the number of copies we draw
from each input sequence. According to Q, some of the
individual sequences might never be drawn and others are
drawn many times. Our main result for this channel states
that if limM→∞ L

log M = β > 1, then

C = (1 − q0)(1 − 1/β), (1)

where q0 is the probability that a given sequences is
never sampled. Interestingly, our result only depends on the
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Fig. 1. Channel model for DNA storage systems. The input to the channel is a multi-set of M length-L DNA molecules and the output is a multi-set of N
draws from the pool of DNA molecules that are perturbed by insertions, substitutions, and deletions (marked as lowercase and boldface letters).

distribution Q through q0, which is the probability that a given
sequences is never sampled. Moreover, if limM→∞ L

log M < 1,
no positive rate is achievable. The factor 1−q0 is the loss due
to unseen molecules, and 1− 1/β corresponds to the loss due
to the unordered fashion of the reading process.

One important implication of our result is that a simple
index-based scheme (as commonly used by DNA data storage
systems) is optimal; i.e., prefixing each molecule with a unique
index incurs no rate loss. More specifically, our result shows
that indexing each DNA molecule and employing an erasure
code across the molecules is capacity-optimal. Furthermore,
the capacity in (1) is only non-trivial if the read length scales as
L = Θ(log M). For that reason, throughout the paper we focus
on the regime L = β log M , where β is a positive constant.

Suppose that each sequence is drawn according to a Poisson
distribution with mean λ, so that in expectation λM sequences
are drawn and λ can be thought of as the sequencing coverage
depth. Then, the probability that a sequence is never drawn is
e−λ and it decays exponentially in the coverage depth. For this
scenario, our expression for the capacity suggests that practical
systems should not operate at a high coverage depth N/M ,
as high coverage depth significantly increases the time and
cost of reading, but only provides little storage gains. Notice
that, in order to guarantee that all M sequences are observed
at least once, we need N = Ω(M log M) [9], [10]. When M
is large, it is wasteful to operate in this regime, as this only
gives a marginally larger storage capacity, but the sequencing
costs can be exorbitant.

b) Capacity in the case of noisy sequences: Our second
contribution is an expression for the capacity for the case
where the reading of the sequences is noisy. The goal of
this second statement is to capture the effect of errors within
sequences, in addition to the shuffling and sampling of the
sequences. We assume that the distribution Q with which
the sequences are drawn is a simple Bernoulli distribution;
i.e., a sequence is either drawn once with probability 1 − q0

or not drawn with probability q0. Furthermore we focus on
substitution errors within sequences. Thus, we study a noisy
shuffling-sampling model where the output sequences are
obtained as follows: (i) each original sequence is drawn with
probability 1 − q and not drawn with probability q, (ii) the

drawn sequences are shuffled, and (iii) passed through a binary
symmetric channel with crossover probability p.

In the low-error regime (where p is sufficiently small),
we show that the capacity of this noisy shuffling-sampling
channel is given by

C = (1 − q)(1 − H(p) − 1/β). (2)

Note that 1 − H(p) is the capacity of the binary symmetric
channel. As it turns out, (2) can be achieved by treating
each length-L sequence as the input to a separate BSC and
encoding a unique index into each sequence, and using an
erasure outer code to protect against the loss of a q-fraction
of the M sequences. For a large set of parameters β and
p (described in Section IV), this index-based approach is
capacity-optimal. This result provides a theoretical justification
for a number of works, starting with [3], which have used a
similar coding scheme in real implementations of DNA-based
storage systems [3]–[6].

B. Related Literature

Computer scientists and engineers have dreamed of harness-
ing DNA’s storage capabilities already in the 60s [11], [12],
and in recent years this idea has developed into an active field
of research. In 2012 and 2013 groups lead by Church [1] and
Goldman [2] independently stored about a megabyte of data
in DNA. In 2015, Grass et al. [3] demonstrated that millenia
long storage times are possible by protecting the data both
physically and information-theoretically, and designed a robust
DNA data storage scheme using modern error correcting
codes. Later, in the same year, Yazdi et al. [4] showed how
to selectively access parts of the stored data, and in 2017,
Erlich and Zielinski [5] demonstrated that practical DNA
storage can achieve very high information densities. In 2018,
Organick et al. [6] scaled up these techniques and stored about
200 megabytes of data.

The capacity of a DNA storage system under a related
model has been studied in an unpublished manuscript by
MacKay, Sayer, and Goldman [13]. In their model in the input
to the channel consists of a (potentially arbitrarily large) set
of DNA molecules of fixed length L, which is not allowed to
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contain duplicates. The output of the channel are M molecules
drawn with replacement from that set. They consider coding
over repeated independent storage experiments, and compute
the single-letter mutual information over one storage experi-
ment. This indicates that the price of not knowing the ordering
of the molecules is logarithmic in the number of synthesized
molecules, similar to our main result.

The capacity of a DNA storage system under a different
model was studied in [5]. Specifically [5] assumes that each
DNA segment is indexed which reduces the channel model to
an erasure channel. While this assumption removes the key
aspects that we focus on in this paper, namely that DNA
molecules are stored in an unordered way and read via random
sampling, [5] considers other important constraints, such as
homopolymer limitations.

Several recent works have designed coding schemes for
DNA storage systems based on this general model, some of
which were implemented in proof-of-concept storage systems
[1]–[3], [5], [14]. Several papers have studied important addi-
tional aspects of the design of a practical DNA storage system.
Some of these aspects include DNA synthesis constraints such
as sequence composition [4], [5], [15], the asymmetric nature
of the DNA sequencing error channel [16], the need for codes
that correct insertion errors [17], and the need for techniques
to allow random access [4]. The use of fountain codes for
DNA storage was considered in [5].

Finally, the recent papers [18] and [19] consider an exten-
sion of the channels studied in this paper to the case where
each input string can be observed at the output multiple times,
with independent noise patterns. We discuss these results in
more detail in Section V-B.

II. PROBLEM SETTING AND CHANNEL MODELS

An (M, L) DNA storage code C is a set of codewords,
each of which is a list [xL

1 , . . . , xL
M ] of M strings of length L,

together with a decoding procedure. The alphabet Σ is typi-
cally {A, C, G, T}, corresponding to the four nucleotides that
compose DNA. However, to simplify the exposition we focus
on the binary case Σ = {0, 1}, and we note that the results
can be extended to a general alphabet in a straightforward
manner. Throughout the paper we use the word molecule or
sequence to refer to each of the stored strings of length L
over the alphabet Σ. We study the following general noisy
shuffling-sampling channel model:

1) Given that codeword [xL
1 , . . . , xL

M ] ∈ C is chosen, each
sequence xL

i is sampled a number Ni ∼ Q of times,
for some distribution Q = (q0, q1, . . .), where qn =
Pr (Ni = n) is the probability that xL

i is drawn n many
times. We let N =

∑M
i=1 Ni be the total number of

resulting strings, and we define λ := E [N ] /M = E [Ni].
The distribution Q models imperfections in synthesis,
sequencing, and a loss of whole sequences during storage
(see [8] for a detailed discussion on how this distribution
looks like for specific choices of sequencing and synthesis
technologies).

2) Each of the resulting N strings is passed through a
discrete memoryless channel.

3) The resulting N strings are shuffled uniformly at random
to yield the output [yL

1 , . . . , yL
N ]. Equivalently, the output

of the channel is the (unordered) multi-set of N output
sequences {yL

1 , . . . , yL
N}.

A decoding function then maps the received sequences
[yL

1 , . . . , yL
N ] to a message index in {1, . . . , |C|}. The main

parameter of interest of a DNA storage system is the storage
density, or the storage rate, defined as the number of bits
written per DNA base synthesized, i.e.,

R :=
log |C|
ML

. (3)

We consider an asymptotic regime where M → ∞ and we
let L := β log M for some fixed β. As our main results show,
L = Ω(log M) is the asymptotic regime of interest for this
problem. We say that the rate R is achievable if there exists
a sequence of DNA storage codes CM with rate R such that
the decoding error probability tends to 0 as M → ∞.

III. STORAGE CAPACITY FOR THE NOISE-FREE CHANNEL

An important property of DNA storage channels is the fact
that the order or the molecules are lost. We first focus on this
aspect of the channel model by studying the noise-free channel
(where all copies are noise-free, i.e., the discrete memoryless
channel is just the “identity channel”).

The main result of this section is the characterization of the
storage capacity, given by the following theorem.

Theorem 1: The storage capacity of the noise-free shuffling-
sampling channel is

C = (1 − q0) (1 − 1/β) . (4)

In particular, if β ≤ 1, no positive rate is achievable.
The capacity expression in (4) can be intuitively understood

through the achievability argument. A storage rate of R =
(1− q0) (1 − 1/β) can be easily achieved by prefixing all the
molecules with a distinct tag, which effectively converts the
channel to a block-erasure channel. More precisely, we use the
first log M bits of each molecule to encode a distinct index.
Then we have L − log M = L(1 − 1/β) symbols left per
molecule to encode data. The decoder can use the indices to
remove duplicates and sort the molecules that are sampled.
This effectively creates an erasure channel, where molecule i
is erased if it is not drawn (i.e., Ni = 0) which occurs with
probability q0. Since the expected number of erasures is

E

[
1
M

M∑
i=1

1 {Ni = 0}
]

= q0,

we achieve storage rate

(1 − q0)M(L − log M)
ML

= (1 − q0)(1 − 1/β).

The surprising aspect of Theorem 1 is that this simple
index-based scheme is optimal. It is also worth noting that the
capacity expression only depends on the sampling distribution
Q through the parameter q0, i.e., the fraction of sequences that
is not seen at the output of the channel.

In order to gain intuition on a practical implication of this
theorem, suppose that each sequence is drawn according to
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a Poisson distribution with mean λ, so that in expectation
λM sequences in total are drawn and λ can be thought of
as the sequencing coverage depth. Then, the probability that
a sequence is never drawn is e−λ and the capacity becomes

C = (1 − e−λ)(1 − 1/β). (5)

This suggests that practical systems should not operate at a
high coverage depth N/M , as high coverage depth signifi-
cantly increases the time and cost of reading, but only provides
little storage gains, according to our capacity expression.
Notice that, in order to guarantee that all M sequences are
observed at least once, we need N = Ω(M log M) [9], [10].
When M is large, it is wasteful to operate in this regime, as
this only gives a marginally larger storage capacity, but the
sequencing costs can be exorbitant.

The result in Theorem 1 is flexible to allow different
sampling models. In particular, one can consider separating the
PCR amplification performed on each synthesized molecule
from the sequencing step. Since one cannot control the PCR
amplification factor precisely, it is reasonable to assume that a
molecule xL is first randomly amplified and a total of A ≥ 0
copies are stored. If we consider a Poisson sampling model for
the sequencing step, the effective coverage depth is λ/E [A]
(since we are actually sampling from ME [A] molecules). In
this case, the probability that none of the copies of xL is
sampled at the output is E

[
(e−λ/E[A])A

]
= E

[
(e(−λ/E[A])A

]
.

This can be recognized as the moment-generating function
of A evaluated at −λ/E [A]. In particular, when PCR is also
modeled as a Poisson random variable with mean E [A] =
α, E

[
eθA

]
= eα(eθ−1), and the capacity of the resulting

noise-free shuffling-sampling channel is

C =
(
1 − e−α(1−e−λ/α)

)
(1 − 1/β). (6)

A. Motivation for Converse

A simple outer bound can be obtained by considering a
genie that provides the decoder with the “true” index of
each sampled molecule. In other words, [xL

1 , . . . , xL
M ] are the

stored molecules, and the decoder observes [yL
1 , . . . , yL

N ] and
the mapping σ : {1, . . . , N} → {1, . . . , M} so that yL

j =
xL

σ(j). This converts the channel into an erasure channel with
block-erasure probability q0, which yields

R ≤ 1 − q0. (7)

It is intuitive that the bound (7) should not be achievable, as the
decoder in general cannot sort the molecules and create an
effective erasure channel. However, it is not clear a priori either
whether prefixing every molecule with an index is optimal.

Notice that one can view the noise-free DNA storage
channel as a channel where the encoder chooses a distribution
(or a type) over the alphabet ΣL and the decoder observes a
noisy version of this type where the frequencies are perturbed
accoding to Q. From this angle, the question becomes “how
many types t ∈ Z2L

+ with �t�1 = M can be reliably
decoded?”, and restricting ourselves to index-based schemes
restricts the set of types to those with �t�∞ = 1; i.e., no
duplicate molecules are stored.

Fig. 2. Genie-aided channel for converse.

While this restriction may seem suboptimal, a counting
argument suggests that it is not. The number of types for a
sequence of length M over an alphabet of size |ΣL| = 2L is
at most M2L

and thus at most

1
ML

log M2L

=
2L log M

Mβ log M
=

Mβ

βM

bits can be encoded per symbol. We conclude that, if β < 1,
the capacity is C = 0. An actual bound on the rate can
be obtained by counting the number of types more carefully.
This is done in the following lemma, which we prove in the
appendix.

Lemma 1: The number of distinct vectors t ∈ Za
+ with

�t�1 = b is given by

T [a, b] :=
(

a + b − 1
b

)
<

(
e(a + b − 1)

b

)b

.

Since our types are vectors t ∈ Z2L

+ with �t�1 = M , and
2L = 2β log M = Mβ , it follows that at most

1
ML

log
(

e(Mβ + M − 1)
M

)M

≤ M log(αMβ−1)
Mβ log M

bits can be encoded per symbol, for some α > 1, and

R ≤ 1 − 1/β. (8)

Therefore, if we had a deterministic channel where the decoder
observed exactly the M stored molecules, an index-based
approach would be optimal from a rate standpoint. The con-
verse presented in the next section utilizes a more careful genie
to show that the bounds in (7) and (8) can in fact be combined,
implying the optimality of index-based coding approaches.

B. Converse

Let [xL
1 , . . . , xL

M ] be the M length-L molecules written
into the channel and [yL

1 , . . . , yL
N ] be the length-L molecules

observed by the decoder. Notice that, whenever the channel
output is such that yL

i = yL
j for i 	= j, the decoder cannot

determine whether both yL
i and yL

j were sampled from the
same molecule xL

� or from two different molecules that obey
xL

� = xL
k , � 	= k. In order to derive the converse, we consider a

genie-aided channel that removes this ambiguity. As illustrated
in Figure 2, before sampling the N molecules, the genie-
aided channel appends a unique index of length log M to
each molecule xL

i , which results in the set of tagged molecules
{(xL

i , zi)}M
i=1. We emphasize that the indices zi are all unique,

and are chosen randomly and independently of the input
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sequences {xL
i }M

i=1. Notice that, in contrast to the naive genie
discussed in Section III-A, this genie does not reveal the
index i of the molecule xL

i from which yL
� was sampled.

Therefore, the channel is not reduced to an erasure channel,
and intuitively the indices are only useful for the decoder to
determine whether two equal samples yL

� = yL
k came from the

same molecule or from distinct molecules.
The output of the genie-aided channel, denoted by

{(yL
i , zσ(i))}N

i=1, is then obtained by sampling from the set
of tagged molecules {(xL

i , zi)}M
i=1, in the same way as the

original channel samples the original molecules. The mapping
σ : [1 : N ] → [1 : M ] is such that yL

i was sampled from
xL

σ(i). Notice that the actual mapping σ is not revealed to the
decoder.

It is clear that any storage rate achievable in the original
channel can be achieved on the genie-aided channel, as the
decoder can simply discard the indices, or stated differently,
the output of the original channel can be obtained from the
output of the genie-aided channel.

Notice that {(yL
i , zσ(i))}N

i=1 is in general a multi-
set. We let set({(yL

i , zσ(i))}N
i=1) be the set obtained

from {(yL
i , zσ(i))}N

i=1 by removing any duplicates. Then
set({(yi, zσ(i))}N

i=1) is a sufficient statistic for {xL
i }M

i=1 since
all tagged molecules are distinct objects, and sampling the
same tagged molecule (xL

i , zi) does not yield additional
information on {xL

i }M
i=1. More formally, conditioned on

set({(yL
i , zσ(i))}N

i=1), {xL
i }M

i=1 is independent of the genie’s
channel output {(yL

i , zσ(i))}N
i=1.

Next, we define the frequency vector f ∈ ZMβ

+ (note
that |ΣL| = 2β log M = Mβ) that is obtained from
set({(yi, zĩ)}N

i=1) in the following way. The entry of f corre-
sponding to the molecule yL ∈ ΣL is given by

f [yL] :=
∣∣{(yL

j , zσ(j)) ∈ set({(yL
i , zσ(i))}N

i=1) : yL
j = yL

}∣∣ .

The frequency vector f is essentially a histogram that counts
the number of occurrences of yL in the set of tagged molecules
{(yL

i , zσ(i))}N
i=1. Notice that the entries of f can take values

greater than one, because at the input we can choose to use
the same molecule for multiple xL

i .
Since set({(yL

i , zσ(i))}N
i=1) is a sufficient statistic for

{xL
i }M

i=1 and the tags added by the genie were chosen at
random and independently of {xL

i }M
i=1, it follows that f is

also a sufficient statistic for {xL
i }M

i=1. Hence, we can view
the (random) frequency vector f as the output of the channel
without any loss. Notice that |set({(yL

i , zσ(i))}N
i=1)| = �f�1,

and we have �f�1 ≤ M and E [�f�1/M ] = 1 − q0. Further-
more, the following lemma asserts that �f�1 does not exceed
its expectation by much.

Lemma 2: For any δ > 0, the frequency vector f at the
output of the genie-aided channel satisfies

Pr
(
�f�1

M
> 1 − q0 + δ

)
→ 0, as M → ∞.

Proof: Note that the number of distinct fragments that
have been drawn is

�f�1

M
=

1
M

M∑
i=1

1 {Ni > 0} .

Since 1 {Ni > 0} are independent random variables with
expectation 1 − q0, Hoeffding’s inequality yields

Pr
(
�f�1

M
≥ (1 − q0) + δ

)
≤ e−2Mδ2

,

which concludes the proof1.
We now append the coordinate f0 = (1− q0 + δ)M −�f�1

to the beginning of f to construct f � = (f0, f). Notice that
when �f�1 ≤ (1 − q0 + δ)M (which by Lemma 2 happens
with high probability), we have �f ��1 = (1− q0 + δ)M . This
construction of f � will allow us to utilize Lemma 1 below. Fix
δ > 0, and define the event

E = {�f�1 > (1 − q0 + δ)M} (9)

with indicator function 1E . By Lemma 2, Pr (E) → 0 as
M → ∞. Consider a sequence of codes {CM} with rate R and
vanishing error probability. If we let W be the message to be
encoded, chosen uniformly at random from {1, . . . , 2MLR}.
From Fano’s inequality we have

MLRs = H(W ) = I(W ; f �) + H(W |f �)
≤ H(f �) + 1 + PeMLRs, (10)

where Pe is the probability of a decoding error, which by
assumption goes to zero as M → ∞. We can then upper
bound the achievable storage rate R as

MLR(1 − Pe) ≤ H(f �) + 1 ≤ H (f �,1E) + 1
≤ Pr (E)H ( f � | E) + Pr

(
Ē
)
H

(
f � | Ē

)
+ H(1E) + 1. (11)

Note that the vector f � above has dimension Mβ + 1 and,
given the event Ē occurs, �f ��1 = (1−q0+δ)M , and we have
H(f �|Ē) ≤ log T [Mβ +1, (1−q0+δ)M ], where T [a, b] is the
number of vectors x ∈ Za

+ with �x�1 = b. From Lemma 1,

log T [Mβ + 1, (1 − q0 + δ)M ]

≤ (1 − q0 + δ)M log
(

e +
eMβ−1

(1 − q0 + δ)

)
≤ (1 − q0 + δ)M log

(
αMβ−1

)
≤ (1 − q0 + δ)M [(β − 1) log M + log α],

where α is a positive constant. Moreover, we notice that f � is a
function of f , which is a vector in ZMβ

+ with �f�1 ≤ M . Next,
we define f �� = (f0, f), again so that we can apply Lemma 1,
where f0 = M − �f�1 so that �f ���1 = M , and note that

H(f �|E) = H(f ��|E) ≤ log T [Mβ + 1, M ]

≤ M log
(

e(M + Mβ

M

)
≤ M((β − 1) logM + log α�),

1An analogue of Lemma 2 can be proved for a different sampling model,
which we describe in Appendix B.
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where α� is another positive constant. Dividing (11) by ML
and applying the bounds above yields

R(1 − Pe) ≤ Pr(E)
M [(β − 1) logM + log α�]

ML

+
(1 − q0 + δ)M [(β − 1) log M + log α]

ML
+

2
ML

≤ Pr(E)
(

β − 1
β

+
log α�

β log M

)

+ (1 − q0 + δ)
(

1 − 1
β

+
log α

β log M

)
+

2
ML

.

Finally, letting M → ∞ yields

R ≤ (1 − q0 + δ) (1 − 1/β) ,

since Pr(E) → 0 by Lemma 2. Since δ > 0 can be chosen
arbitrarily small, this concludes the converse proof.

IV. THE NOISY SHUFFLING-SAMPLING CHANNEL

Next, we study the effect of errors within sequences,
in addition to the shuffling and sampling of the sequences.
Instead of the general sampling distribution Q considered in
Section III, we now focus on a simple choice of sampling
distribution and let Q be distributed as Bernoulli(1 − q).
Hence, a sequences is either drawn never or once, with
the corresponding probabilities given by Pr(Ni = 0) = q
and Pr(Ni = 1) = 1 − q, for i = 1, . . . , M . Moreover,
we assume that the molecules are all corrupted by a BSC
with error probability p. We refer to this channel as the noisy
shuffling-sampling channel.

A. The Capacity of the Noisy Shuffling-Sampling Channel

As in the error-free shuffling-sampling channel considered
in Section III, we again consider a simple index-based coding
scheme. As we will show, for a large set of parameters p and
β, this scheme turns out to be capacity-optimal.

We consider a scheme based on an outer and an inner code
and argue that it achieves a rate arbitrary close to

Rindex = (1 − q)(1 − H(p) − 1/β). (12)

As outer code, we take a erasure-correcting code with block
length M and rate (1 − q), where each symbol is itself a
binary string of length L(1−H(p)−1/β− �), for some small
� > 0. As inner code, we take a code designed for a BSC
with codewords of length L and rate RBSC = 1 − H(p) − �.
We first encode the information using the outer code, which
yields M symbols given as binary strings of length

L(1 − H(p) − 1/β − �) = LRBSC − log M.

We take each symbol, add a unique binary index of length
log M and encode the resulting sequence using the BSC
code, which yields M length-L sequences. With this scheme,
we encode a total of (1 − q)M(LRBSC − log M) data bits,
with a data rate of

(1 − q)M (LRBSC − log M)
ML

= (1 − q)(RBSC − 1/β). (13)

Fig. 3. Parameter regions for which the capacity is characterized. The
capacity in the blue region is given by C = (1 − q)(1 − H(p) − 1/β),
and the capacity in the red region (i.e., for β < 1) is 0. In the gray region,
it is still unknown.

Since � > 0 can be chosen arbitrarily small, this scheme
achieves a rate arbitrarily close to the rate given in (12),
as claimed. For simplicity, in this short argument we did not
take into account that the inner codeword is decoded with an
error with a vanishing probability; we refer to Appendix C for
a more formal achievability argument taking this into account.

On the other hand, the result from Section III, with
Q ∼ Ber(1 − q) implies that C ≤ (1 − q)(1 − 1/β), since
the error-free shuffling-sampling channel cannot be worse than
the noisy shuffling-sampling channel. Furthermore, a simple
genie-aided argument where the decoder observes the shuffling
map can be used to establish that C ≤ (1 − q)CBSC, where
CBSC = 1 − H(p) is the capacity of a BSC with crossover
probability p. Hence, a capacity upper bound is given by

C ≤ (1 − q)min [1 − H(p), 1 − 1/β] . (14)

Our main result improves on the upper bound in (14), and
establishes that for parameters (p, β) in a certain regime,
the lower bound in equation (12) is the capacity.

Theorem 2: For the noisy shuffling-sampling channel,

C = (1 − q)(1 − H(p) − 1/β), (15)

as long as p < 1/4 and 1 − H(2p) − 2/β > 0. Moreover,
if β ≤ 1, the capacity is C = 0.

The set of parameters (p, β) such that 1−H(2p)−2/β > 0
and p < 1/4 is the blue region in Figure 3. In particular, (15)
holds if p ≤ 0.1 and β ≥ 6.4, or if p < 0.01 and β ≥ 2.35.

B. Converse

To derive the converse, we view the input to the channel as
a binary string of length ML, denoted by

XML =
[
XL

1 , XL
2 , . . . , XL

M

]
∈ {0, 1}ML

or, equivalently, M strings of length L concatenated to form a
single string of length ML. Similarly, the output of the channel
is

Y NL =
[
Y L

1 , Y L
2 , . . . , Y L

N

]
∈ {0, 1}NL,
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where N =
∑

i Ni. It is useful to define a vector SN ∈
{1, . . . , M}N indicating the input string from which each
output string was sampled. Furthermore, we let ZNL =[
ZL

1 , . . . , ZL
N

]
be the random binary error pattern created by

the BSC on the N non-deleted strings. We can now define the
input-output relationship

Y L
k = XL

S(k) ⊕ ZL
k , for k = 1, . . . , N, (16)

where ⊕ indicates elementwise modulo 2 addition. Note that
the Ni’s are fully determined by the vector SN since Ni =
|{i : S(k) = i}|. Also note that, since Q ∼ Ber(1−q), N ≤ M
with probability 1.

Consider a sequence of codes for the noisy
shuffling-sampling channel with rate R and vanishing
error probability. Let XML =

[
XL

1 , XL
2 , . . . , XL

M

]
be the input to the channel when we choose one of
the 2MLR codewords from one such code uniformly
at random, and Y NL =

[
Y L

1 , Y L
2 , . . . , Y L

M

]
be the

corresponding output. From Fano’s inequality we have
that H(XML|Y ML) ≤ 1 + Pe,MML ≤ ML�M , where Pe,M

is the decoding error probability (of the code indexed by M )
and {�M} is a sequence such that �M → 0 as M → ∞. Thus,

MLR = H
(
XML

)
≤ I

(
XML; Y NL

)
+ ML�M ,

where �M → 0 as M → ∞ by Fano’s inequality. Then,

ML(R − �M ) = H
(
Y NL

)
− H

(
Y NL|XML

)
= H

(
Y NL

)
− H

(
SN , ZNL, Y NL|XML

)
+ H

(
SN , ZNL|XML, Y NL

)
= H

(
Y NL

)
− H

(
SN , ZNL, Y NL|XML

)
+ H

(
SN |XML, Y NL

)
(17)

The last equality follows by noticing that, given
(SN , XML, Y NL), one can compute ZL

k = Y L
k ⊕ XL

S(k) for
1 ≤ k ≤ N , and thus H

(
ZNL|XML, Y NL, SN

)
= 0. Since

N is a function of SN , and SN and ZNL are independent of
XML, the second term in (17) can be expanded as

H
(
SN , ZNL, Y NL|XML

)
= H

(
SN |XML

)
+ H

(
ZNL|SN , XML

)
+ H

(
Y NL|XML, SN , ZNL

)
(i)
= H

(
SN , N

)
+ H

(
ZNL|SN , N

)
+ H

(
Y NL|XML, SN , ZNL

)
(ii)
= H(N) + H

(
SN |N

)
+ H

(
ZNL|N

)
(iii)
= H(N) +

M∑
n=1

Pr(N = n)
[
log

M !
(M − n)!

+ nLH(p)
]

(iv)
=

M∑
n=1

Pr(N = n) (n log M + nLH(p)) + o(ML)

= E[N ]M (log M + LH(p)) + o(ML)
= (1 − q) [M log M + MLH(p)] + o(ML). (18)

In (i), we used the facts that SN is independent of XML,
N is a function of SN , and ZNL is independent of XML

given SN . Notice that XNL is only dependent on SN through

N (which is a random variable). For (ii) we used that
H

(
Y NL|XML, SN , ZNL

)
= 0 since Y NL is determined by

XML, SN , ZNL, and (iii) follows from the fact that, given
N = n, SN is chosen uniformly at random from all vectors
in {1, . . . , M}n with distinct elements. For (iv), we used the
fact that, from Stirling’s approximation,

log
M !

(M − n)!
= M log M − (M − n) log(M − n) + o(ML)

= M log M − (M − n) log M

+ (M − n) log
M

M − n
+ o(ML)

= n log M + (M − n) log
M

M − n
+ o(ML),

and, by Jensen’s inequality,

0 ≤
∑
n>0

Pr(N = n)(M − n) log
M

M − n

≤ (M − E[N ]) log
M

(M − E[N ])
= (1 − q)M log 1/q = o(ML).

In order to finish the converse, we need to jointly bound the
first and third terms in equation (17). This step is summarized
in the following lemma:

Lemma 3: If β and p < 1/4 satisfy

1 − H(2p) − 2/β > 0, (19)

then it holds that

H
(
Y NL

)
+ H

(
SN |XML, Y NL

)
≤ (1 − q)ML + o(ML).

The parameter regime (p, β) for which (19) holds is the
regime in which our capacity expression holds, illustrated
in Figure 3. Combining (17), (18) and Lemma 3, we have

ML(R − �M )
≤ (1 − q) (ML − MLH(p) − M log M) + o(ML).

Dividing by ML and letting M → ∞ yields the converse.

C. Intuition for Lemma 3

In order to discuss the intuition for Lemma 3 let us focus
on the case q = 0; i.e., none of the molecules are lost at the
output. In this case, N = M , and SM is chosen uniformly
at random from all permutations of [1, ..., M ]. If we naively
bound each entropy term separately, we obtain

H
(
Y ML

)
+ H

(
SN |XML, Y ML

)
≤ ML + M log M.

However, intuitively, the bound H
(
SM |XML, Y ML

)
≤

M log M is too loose because, as we argue below, if
the entropy term H

(
Y ML

)
is large then we expect

H
(
SM |XML, Y NL

)
to be small and vice versa.

To see this, first note that from XML = xML and
Y ML = yML, one can estimate the permutation S that maps
each output string to the corresponding input string, SM ,
by finding, for each yL

i , the xL
j that is closest to it and setting

S(i) = j. This is a good estimate if no other xL
k is close

to xL
j . There are two regimes, illustrated in Figure 4, one
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Fig. 4. Two opposite scenarios for estimating SN from
�
XML, Y NL

�
.

where SN can be estimated well and one where it cannot. In
the first regime, the strings xL

1 , . . . , xL
M are all sufficiently

distant from each other (in the Hamming sense). Hence,
the maximum likelihood estimate of SN given XML = xML

and Y NL = yML is “close” to the truth and we expect
H

(
SN |XML = xML, Y NL = yML

)
to be small. In the sec-

ond regime, illustrated in Fig. 4(b), many of the sequences
xL

1 , . . . , xL
M are close to each other. So we have less informa-

tion about SN , and H
(
SN |XML = xML, Y NL = yML

)
may

be large.
On the other hand, the term H

(
Y NL

)
is maximized if

the sequences
{
XL

i

}
are independent and if their values are

uniformly distributed in {0, 1}L. Hence, in order for H
(
Y NL

)
to be large, we expect to be in the regime in Fig. 4(a) instead
of the regime of Fig. 4(b). This leads to a tradeoff of the
terms H

(
Y NL

)
and H

(
SN |XML, Y NL

)
, which we exploit

to prove Lemma 3. The detailed proof, which considers the
general case where q 	= 0, is presented in the appendix.

V. DISCUSSION

In this paper we studied the fundamental limits of models
of DNA-based storage systems, characterized by random sam-
pling of the input sequences, shuffling, and perturbing them.
Specifically, we considered a large class of channel models
that capture a range of specific instances of DNA storage chan-
nels, specified by choices of synthesis, sequencing, and DNA
handling technologies. We focused our analysis on two cases:
(1) the error-free shuffling-sampling channel for an arbitrary
sampling distribution Q and (2) the noisy shuffling-sampling
channel where Q ∼ Ber(1 − q) and the noisy channel is
a BSC. In both cases we proved that a simple index-based
scheme is capacity optimal, with the caveat that, for the noisy
shuffling-sampling channel, the capacity expression in (15)
only holds for the parameter regime of (p, β) in the blue region
of Figure 3, and most importantly only holds in the low-error
regime.

While the parameter regime in Figure 3 is arguably the most
relevant one, an interesting question for future work is whether
expression (15) is still the capacity of the BSC-shuffling
channel if β and p do not satisfy (19) (i.e., the gray region
in Figure 3). Notice that this is a high-noise, short-block
regime, and it is reasonable to postulate that coding across
the different sequences can be helpful and an index-based
approach might not be optimal. Another natural question raised
by Theorem 2 is whether a similar capacity expression holds

for different noisy channels, including corruptions induced by
deletions and insertions.

A. Beyond the Binary Symmetric Channel

Given that the capacity expression for the noisy
shuffling-sampling channel given by (15) is (1 − q)
(CBSC − 1/β), it is natural to ask whether for a different
noisy channel with capacity Cnoisy, the corresponding noisy
shuffling-sampling channel has capacity (1 − q)(Cnoisy −
1/β). Notice that, when the sampling distribution Q is
Ber(1 − q), the index-based achievability scheme described
in Section IV-A (and expanded on in Appendix C) can be
extended in a straightforward way to achieve any rate below
(1−q)(Cnoisy−1/β). Hence, the challenging technical question
is whether the converse argument can be generalized.

One class of channels for which the converse proof
in Section IV-B can be extended are symmetric discrete
memoryless channels (those channels are described
in [20, Chapter 7.2]). For any channel in this class,
the capacity-achieving input distribution is i.i.d. uniform
of the input symbols and the resulting output distribution is
i.i.d. uniform over the output symbols. Hence, the arguments in
Section IV-B can be extended in a natural way. Specifically,
for a noisy shuffling-sampling channel with sampling
Q ∼ Ber(1 − q), and a symmetric discrete memoryless
channel (SDMC) with output alphabet Y , we have:

Theorem 3: If β is large enough, the capacity of the SDMC
shuffling-sampling channel is given by

C = (1 − q)(CSDMC − 1/β). (20)

Moreover, if β ≤ log |Y|, C = 0.
How large β needs to be for this statement to hold depends

on the specific channel transition matrix. In order to go
beyond symmetric channels, new converse techniques must
be developed in order to establish a similar converse result.

To elaborate on this point, consider the simpler case where
Ni = 1 with probability 1 for i = 1, ..., M , (i.e., all
strings are sampled exactly once). Suppose we have an arbi-
trary channel p(yL|xL) that maps length-L input strings to
length-L output strings (which may not be memoryless) and
capacity Cnoisy (which requires the channel to be defined for
L → ∞). Consider the corresponding noisy shuffling channel.
The index-based scheme achieves any rate R < Cnoisy − 1/β.
However, extending the proof in Section IV-B to establish
Cnoisy−1/β as the capacity is challenging. If we follow similar
steps to those in (17), we have

ML(R − �M ) = I
(
XML; Y ML

)
= H

(
Y NL

)
− H

(
SM , Y ML|XML

)
+ H

(
SM |XML, Y ML

)
= H

(
Y NL

)
− H

(
Y ML|XML, SM

)
− H

(
SM

)
+ H

(
SM |XML, Y ML

)
= I

(
XML, SM ; Y ML

)
− H

(
SM

)
+H

(
SM |XML, Y ML

)
.

Since H(SM ) = M log M + o(ML) = ML/β + o(ML),
an outer bound to the noisy shuffling channel capacity in this
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general case is

C ≤ lim
M→∞

sup
p(xML)

I
(
XML, SM ; Y ML

)
ML

+
H

(
SM |XML, Y ML

)
ML

− 1/β. (21)

The main challenge in establishing a general converse is the
optimization over distributions of the channel input XML. If
we consider distributions where p(xML) = p(xL)×...×p(xL)
(i.e., independently encoding each of the input strings with the
same p(xL)), then the first term in the optimization becomes

I
(
XML, SM ; Y ML

)
ML

=
H

(
Y ML

)
−

(
Y ML|XML, SM

)
ML

=

∑M
i=1 H

(
Y L

i

)
−

(
Y L

i |XL
S(i)

)
ML

=
I(XL; Y L)

L
,

and by choosing the distribution p(xL) that achieves the
capacity of the noisy channel p(yL|xL), this term becomes
Cnoisy. In Section IV-A, we took advantage of the fact that, for
a BSC, the input distribution is known, and the resulting output
distribution p(yL) is i.i.d Ber(1/2), in order to prove that
this distribution maximizes the expression in (21). However,
it is difficult to extend this for an arbitrary channel because of
the second term H

(
SM |XML, Y ML

)
, particularly when the

capacity-achieving distribution is unknown.

B. Independent Noisy Draws

Another interesting direction for extending the results in
Section IV is to consider a noisy shuffling channel where the
same input string can be observed multiple times at the output
with independent noise patterns. One way to obtain such a
channel is to consider the noisy shuffling-sampling channel
model in Section II with Q ∼ Poisson(c) and a BSC(p) as
the discrete memoryless channel. This channel can be seen
as a modification of the channel studied in Section IV where
instead of observing either one or zero copies for each of the
input strings, any positive number of copies can be observed.

For the special case of one input string (M = 1), this
channel reduces to a multi-draw BSC, whose capacity was
characterized by Mitzenmacher [21]. The input to a multi-draw
BSC is a binary string xn of length n and the output is the
result of passing xn D times through a BSC(p) channel, where
D can be modeled as a Poisson(c) random variable (although
other distributions can be used). The capacity of this channel
was shown in [21] to be E [CD,p], where Cd,p is the capacity
of the multi-draw BSC with a fixed number of observations
d, which can be written in closed-form [18], [21].

Lenz et al. [18] recently showed that the capacity of the
BSC shuffling channel with multi-draws is upper bounded as

C ≤ E [CD,p] −
1
β

(1 − e−c), (22)

as long as p ≤ 1
8 and 1/β < 1 − H(4p), and subsequently

showed that, if 1
β < 1−H(4p)

2 , then (22) is indeed the capacity
of the BSC shuffling channel [19] with multi-draws.

The achievability of this result is based on a random
codebook construction. The decoder performs a greedy-like
clustering of the output strings, and then uses typicality
decoding based on a new notion of typicality between a set of
d output strings and an input string. The proof of the upper
bound relies on the noise level being relatively small, as it
requires the output strings coming from the same input string
to be close together and well separated from other strings so
that those strings can be clustered with small error probability.

An important direction for future work is to study indepen-
dent noisy draws in the regime where the noise is relatively
large (i.e., p is large for the case of a BSC), as this is a relevant
case in practice [7]. In this case, the output strings are not
guaranteed to cluster at the output, and new techniques must
be developed to establish the capacity.

C. Storage-Recovery Tradeoff

Most studies on DNA-based storage emphasize the storage
rate (or storage density), while sequencing costs are disre-
garded. From a practical point of view, it is important to
understand, for a given storage rate, how much sequencing
is required for reliable decoding, as this determines the time
and cost required for retrieving the data. Thus, characterizing
the storage-recovery trade-off is of practical relevance.

One way to do this is to consider, in addition to the storage
rate, the recovery rate, defined as the number of bits recovered
per DNA base sequenced,

Rr :=
log |C|
NL

. (23)

In a practical setting, one can control the amount of sequencing
performed, typically specified in terms of the coverage depth
N/M . If we consider the error-free shuffling-sampling channel
from Section III, in the case where Q is a Poisson distribution
with mean λ, then λ = N/M is the coverage depth, and one
would like to choose a value of λ that achieves a good trade-off
between storage rate and recovery rate.

If we let Rs be the storage rate (previously just R, see (3)),
from Theorem 1 and the fact that Rs = λRr, the (Rs, Rr)
feasibility region can be fully characterized.

Corollary 1: For the error-free shuffling-sampling channel
with Q ∼ Pois(λ), rates (Rs, Rr) are achievable if and only
if, for some c > 0,

Rs ≤ (1 − e−λ) (1 − 1/β) ,

Rr ≤ 1 − e−λ

λ
(1 − 1/β) .

This region is illustrated in Figure 5. This tradeoff suggests
that a good operating point would be achieved by not trying
to maximize the storage rate (which technically requires
λ → ∞). Instead, by using some modest coverage depth
λ = 1, 2, 3, most of the storage rate (63%, 86%, 95%, respec-
tively) can be achieved. This is in contrast to what has
been done in practical DNA storage systems that have been
developed thus far, where the decoding phase utilizes very
deep sequencing.

To be concrete, suppose we are interested in minimizing
the cost of storing data on DNA. Synthesis costs are currently
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Fig. 5. (Rs, Rr) feasibility region for β = 5.

larger than sequencing costs by about a factor q = 104-105.
Thus, if our goal is to minimize the cost for synthesizing and
sequencing a given number of bits, the cost is proportional
to q/Rs + 1/Rr = q+λ

1−e−λ . This quantity can be minimized
over λ, yielding the optimal cost per bit. For example, for
q = 10000, λ ≈ 9.2. Moreover, one may be interested in
optimizing other quantities such as reading time or considering
a scenario where the data is read more than once.

D. Storing Data on Short Molecules

Throughout this paper, we focused on the regime L =
β log M , with β ≥ 1. For β ≤ 1, no positive rate can be
achieved (as shown by Theorem 1). However, motivated by
the fact that it is in general much easier to synthesize very
short sequences of DNA than longer ones, it is interesting to
ask whether with very short sequences, it is still possible to
build useful DNA storage systems.

Towards this goal, in this section we briefly discuss how fast
the rate tends to zero in the regime when β ≤ 1. Notice that,
when β ≤ 1, the total number of distinct molecules of length
L = β log M is 2β log M = Mβ < M . Hence, it is impossible
to write M distinct molecules. In this case, it is reasonable
to study the amount of bits that can be stored relative to the
number of potentially distinct molecules. Towards this goal
we define the short-molecule rate R̃ as

R̃ :=
log |C|
MβL

. (24)

Proposition 1: Suppose that each molecule is drawn Ni ∼
Q times, with expectation E [Ni] > 0, and that β < 1. Then,
any achievable short-molecule rate satisfies R̃ ≤ 1/β − 1.

The proof, provided in the appendix, is based on the
genie-aided and counting-based argument used in Section III-
B. The proposition guarantees that the (true) rate R tends
to zero at least as 1/M1−β. While at first sight, it might
seem surprising that there is no dependency on 1− q0, this is
reasonable, since in the regime of β < 1, no more than Mβ

distinct molecules exist. Thus, we see each fragment about
E [N ] /Mβ = E [Ni] M/Mβ = E [Ni] M1−β many times,
which tends to infinity, regardless of Q.

We point out that index-based coding schemes cannot
achieve the scaling R = Θ(MβL) suggested by the propo-
sition. To see this, suppose we encode the sequences by using
L− 1 bits for the index and only one bit for the information,

and repeat each such segment M/(2L−1) = 2M1−β many
times. We see each segment at least once with probability
one as M → ∞. Thus we reliably store 2L−1 = Mβ/2 bits.
Simple variations of this scheme (where we change the number
of bits allocated to the index) can be similarly shown to only
encode Θ(Mβ) bits reliably. Hence, for the regime β ≤ 1, our
upper bound to the number of bits that can be reliably stored
is Θ(MβL), while our lower bound is Θ(Mβ), and it is an
open question what the correct scaling is.

E. Outlook

In this paper we took steps towards the understanding of
the fundamental limits of DNA-based storage systems. We
proposed a simple model capturing the fact that molecules are
stored in an unordered fashion, are short, and are corrupted
by individual base errors. Our results show that a simple
index-based coding scheme is asymptotically optimal for a
large set of parameter choices.

While the model captures (moderate) substitution errors
which are the prevalent error source on a nucleotide level
of current DNA storage systems, the current generation of
systems relies on low-error synthesis and sequencing tech-
nologies that are relatively expensive and limited in speed.
A key idea towards developing the next-generation of DNA
storage systems is to employ high-error, but cheaper and faster
synthesis and sequencing technologies such as light-directed
maskless synthesis of DNA and nanopore sequencing. Such
systems induce a significant amount of insertion and deletion
errors. Thus, and important area of further investigation is to
understand the capacity of channels which introduce deletions
and insertions as well.

APPENDIX A

Proof of Lemma 1: Notice that vectors x ∈ Za
+ with

�x�1 = b are in one-to-one correspondence with binary strings
containing (a − 1) 0s and b 1s. For x = (x1, . . . , xa), the
corresponding string is

1 . . . 1︸ ︷︷ ︸
x1

0 1 . . . 1︸ ︷︷ ︸
x2

0 . . . 0 1 . . . 1︸ ︷︷ ︸
xa

. (25)

It is clear that such a string has (a− 1) 0s and b 1s, and that
distinct strings with (a−1) 0s and b 1s correspond to distinct
vectors x. The number of distinct strings of this form is

(a − 1 + b)!
(a − 1)! b!

=
(

a + b − 1
b

)
.

The upper bound in the statement of the lemma is a standard
bound for binomial coefficients.

APPENDIX B
PROOF OF LEMMA 2 UNDER A

SAMPLING-WITH-REPLACEMENT MODEL

As it turns out, Lemma 2 can be proved under a sampling-
with-replacement model. Under this model, instead of sam-
pling each molecule according to a probability distribution Q,
N sequences are sampled out of the pool of M stored
sequences. Since there are multiple copies of each molecule in
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the pool due to PCR, we consider a sampling with replacement
model. By proving Lemma 2 in this setting, one can establish
a version of Theorem 1 for the sampling-with-replacement
shuffling channel, as previously described in [22].

Consider the same genie-based argument described in
Section III-B. In the sampling-with-replacement setting, the �1

norm of the frequency vector f at the output of the genie-aided
channel is distributed as the number of distinct coupons
obtained by drawing N = λM times with replacement from
a set of M distinct coupons. Thus, Lemma 2 is an immediate
consequence of the following stronger statement.

Lemma 4: Let Q be the number of distinct coupons obtained
by drawing N = λM times with replacement from a set of
M distinct coupons. We have that, for any δ > 0,

Pr
(
Q ≥ (1 − e−λ + δ)M

)
≤ 1

M

2e2λ

2
(
ln

(
e−λ

e−λ−δ

)
− eλ

M

)2 .

Proof: Since Pr
(
Q ≥ (1 − e−λ + δ)M

)
is a

non-increasing function of δ, we can assume that
δ ∈ (0, e−λ/2], as that simplifies the expressions. Let
ti be the number of draws to collect the i-th coupon after
(i − 1) coupons have been collected, i = 0, . . . , M − 1, and
consider the number of draws for obtaining αM distinct
coupons T :=

∑αM−1
i=0 ti where α := 1 − e−λ + δ. Due to

Pr
(
Q ≥ (1 − e−λ + δ)M

)
= Pr (Q ≥ αM) = Pr (T ≤ N) ,

the lemma will follow by upper-bounding Pr (T ≤ N) using
Chebyshev’s inequality. We first note that with E [ti] =
1/pi, pi := M−i

M and Var [ti] = 1−pi

p2
i

, we obtain

E [T ] =
αM−1∑

i=0

E [ti] = M
αM−1∑

i=0

1
M − i

= M(HM − HM(1−α))

≥ M(ln M − ln(M(1 − α))) − 1
2(1 − α)

≥ −M ln(1 − α) − eλ = −M ln(e−λ − δ) − eλ

= Mλ + M ln
(

e−λ

e−λ − δ

)
︸ ︷︷ ︸

ξ

−eλ = N + Mξ − eλ.

Here, HM =
∑M

i=1
1
i is the M -th harmonic number, and the

first inequality follows by the asymptotic expansion

0 ≤ Hn − ln n − γ =
1
2n

− 1
12 n2

+
1

120 n4
− . . . ≤ 1

2n
,

where γ is the Euler-Mascheroni constant. The second inequal-
ity follows from 1

1−α ≤ 1
e−λ−e−λ/2 = 2 eλ. Moreover,

the variance can be upper-bounded as

Var [T ] =
αM−1∑

i=0

Var [ti] =
αM−1∑

i=0

iM

(M − i)2

≤ M
α

2(1 − α)2
≤ M2e2λ. (26)

Using the bound on the expectation and Chebyshev’s inequal-
ity, we have for any β > 0, that

Pr
(
−T + N + Mξ − eλ > β

)
≤ Pr (−T + E [T ] > β) ≤ Var [T ]

β2
.

Choosing β = Mξ − eλ and using the upper bound on
Var [T ] given in (26), yields Pr (T ≤ N) ≤ 1

M
2e2λ�

ξ− eλ

M

�2 ,

which concludes the proof.

APPENDIX C
ACHIEVABILITY OF THEOREM 2

In this section, we give a formal argument for achievabil-
ity of Theorem 2. Strictly speaking, the simple index-based
scheme described in Section IV-A, based on a BSC inner
code and an erasure outer code must be modified in order to
formally prove the achievability of Theorem 2. In particular,
we need to account for the fact that, if an inner codeword is
decoded in error–which occurs with a vanishing probability–its
unique index will also be decoded in error, likely causing an
“index collision” with another correctly decoded inner code-
word. Moreover, it is possible (although unlikely) that inner
codewords are decoded in error but the decoded codewords
have valid indices in a way that does not cause an erasure to
occur, but rather a substitution error. Hence, instead of using an
“off-the-shelf” outer code for an erasure channel, we consider
a random code construction for outer code. Next we describe
the argument in detail.

Our inner code is a code designed for a BSC with
codewords of length L and rate RBSC = 1 − H(p) −
�1 for some �1 > 0. Our outer code is a code with
2ML(1−q−
2)(RBSC−1/β) codewords of length M over the
alphabet A = {1, ..., 2LRBSC−log M}, for some �2 > 0. We
consider a random codebook construction for the outer code,
where each codeword has its symbols drawn independently
and uniformly at random from A.

We encode the ML(1−q−�2)(RBSC−1/β) information bits
first using the outer code, which yields M symbols from A,
each of which can be seen as a binary string of length LRBSC−
log M . To each of these symbols, we append a unique binary
index of length log M , yielding M binary strings of length
LRBSC. Each of these can then be encoded using the BSC
inner code into a binary string of length L. The resulting M
strings are the input to the noisy shuffling channel.

The decoder operates as follows. For each output string of
length L we apply the decoder from the BSC code. If the
decoder does not return a codeword, we discard that string.
If it returns a codeword, we recover its LRBSC information
bits. The first log M bits are treated as an index, and the
remaining LRBSC−log M bits are converted to a symbol in A.
The indices can then be used to sort the recovered symbols
from A. If two decoded symbols have the same index (which
must have been due to a decoding error in one or both of the
inner symbols) we discard both and treat them as erasures.
The symbol associated with a missing index is also declared
as an erasure. As a result, we obtain an output sequence of
length M over the alphabet A ∪ {ε}, where ε is the erasure
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symbol. Let YA ∈ (A ∪ {ε})M be this output sequence. If
there exists a unique codeword from the outer codebook that
matches YA in at least M(1 − q − �2/2) positions, we return
it. Otherwise, the decoder declares an error.

Next we analyze the error probability of this code, averaged
over all possible outer codes and conditioned on the fact that
codeword 1 is chosen (without loss of generality). We need to
consider two types of error events: the event E1 that YA does
not match codeword 1 in at least M(1 − q − �2/2) positions,
and the event E2 that a codeword other than 1 matches YA in
at least M(1− q− �2/2) positions. Let Z ∈ {1, ..., M} be the
total number of output sequences (out of the N observed at the
output) that are decoded in error. To bound Pr(E1) we notice
that, if at least M(1− q− �2/4) length-L strings are observed
at the output (i.e., N ≥ M(1 − q − �2/4)) and Z ≤ M�2/8,
then at least M(1 − q − �2/4) − 2(M�2/8) = M(1 − q −
�2/2) symbols of YA are correct symbols from codeword 1
(the factor of 2 before (M�2/8) is to account for possible
index collisions). Hence, if this occurs, the output sequence
(after inner decoding) will match the true codeword in at least
M(1 − q − �2/2) positions. We can thus bound Pr(E1) as

Pr(E1) ≤ Pr (N < M(1 − q − �2/4))
+ Pr (Z > M�2/8 |N ≥ M(1 − q − �2/4)) .

From the symmetry and independence of all output strings,
Hoeffding’s inequality implies that

Pr (Z > M�2/8 |N ≥ M(1 − q − �2/4))

≤ exp

[
−2M(1 − q − �2/4)

(
�2/8

1 − q − �2/4
− PBSC,e,M

)2
]

where PBSC,e,M is the error probability of the inner BSC code
(for blocklength L = β log M ). Since PBSC,e,M → 0 as M →
∞, we see that the above bound tends to 0 as M → ∞,
for �1 and �2 small enough. A straightforward application of
Hoeffding’s inequality to bound Pr (N < M(1 − q − �2/4))
then implies that Pr(E1) → 0 as M → ∞.

In order to bound Pr(E2), we need to bound the probability
that another codeword matches YA in at least M(1−q−�2/2)
positions. Notice that an incorrect inner decoding may lead to
an erasure or an incorrect symbol (although the latter occurs
with smaller probability). If Z ≤ M�2/8, then E2 can only
happen if another codeword shares at least

M(1 − q − �2/2) − M�2/8 = M(1 − q − 5�2/8)

symbols of codeword 1. From a union bound over all other
2ML(1−q−
2)(RBSC−1/β) − 1 codewords, this happens with
probability at most

2ML(1−q−
2)(RBSC−1/β)(1/|A|)M(1−q−5
2/8)

= 2ML(1−q−
2)(RBSC−1/β)2−(LRBSC−log M)M(1−q−5
2/8)

= 2ML(1−q−
2−(1−q−5
2/8))(RBSC−1/β)

= 2−ML(RBSC−1/β)(3
2/8),

which tends to 0 as M → ∞. The arguments used to bound
Pr(E1) can again be used to bound Pr(Z > M�2/8), and we

conclude that Pr(E2) → 0 as M → ∞. We conclude that rate

(1 − q − �2)(RBSC − 1/β)
= (1 − q − �2)(1 − H(p) − �1 − 1/β)

is achievable for any �1, �2 > 0, concluding the formal
achievability proof of Theorem 2.

APPENDIX D
PROOF OF LEMMA 3

Let Y L
1 , . . . , Y L

N be the N strings observed at the output
of the channel. First we notice that, since N is a function of
Y NL, we can write

H
(
Y NL

)
+ H

(
SN |XML, Y NL

)
= H

(
Y NL, N

)
+ H

(
SN |XML, Y NL, N

)
= H (N) + H

(
Y NL|N

)
+ H

(
SN |XML, Y NL, N

)
= H(N) +

∑
n>0

Pr(N = n)
[
H

(
Y NL|N = n

)
+ H

(
SN |XML, Y NL, N = n

)]
. (27)

We will show that

H
(
Y NL|N = n

)
+ H

(
SN |XML, Y NL, N = n

)
≤ nL + n log

M

n
+ o(ML), (28)

which, when plugged back into (27) implies that

H
(
Y NL

)
+ H

(
SN |XML, Y NL

)
≤ E[N ]L + E[N log M/N ] + o(ML)
≤ (1 − q)ML + o(ML), (29)

where we used the fact that H(N) = o(ML),
E[N ] = (1 − q)M , and Jensen’s inequality applied to the
concave function x log(M/x). This will establish the lemma.

In order to capture whether we are in the regime of
Figure 4(a) or (b), we let T be the largest subset of [1 : n]
so that, for any i, j ∈ T , dH

(
Y L

i , Y L
j

)
≥ αL, where dH is

the Hamming distance and α > 2p. We assume that in case
of ties, an arbitrary tie-breaking rule is used to define T (the
actual choice will not be relevant for the proof).

Let En be the expectation conditioned on N = n;
i.e., En[·] = E[·|N = n]. We prove that, given the conditions
in Lemma 3, the following two bounds involving En|T | hold:

(B1) H
(
Y NL|N = n

)
≤ LEn|T |

+ (n − En|T |) (log En|T | + LH(α)) + o(ML), (30a)

(B2) H
(
SN |XML, Y NL, N = n

)
≤ n log M

− En|T | log En|T | + o(ML). (30b)

For large En|T |, we are typically in the regime of Figure 4(a),
while Figure 4(b) corresponds to the case where En|T |
is small. The bounds above capture the tension between
the terms H

(
Y NL|N = n

)
and H

(
SN |XML, Y NL, N = n

)
because (B2) is decreasing in En|T |, while (B1) is increasing
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in En|T | (provided that β(1 − H(α)) ≥ 1). Combining (B1)
and (B2),

H
(
Y NL|N = n

)
+ H

(
SN |XML, Y NL, N = n

)
≤ LEn|T | + (n − En|T |) (log En|T | + LH(α))

+ n log M − En|T | log En|T | + o(ML)
= En|T |L(1 − H(α)) + n log En|T | − 2En|T | log En|T |

+ nLH(α) + n log M + o(ML). (31)

Replacing En|T | with x and ignoring the terms in this upper
bound that do not involve x, we have the expression

f(x) � γx log M + n log x − 2 x log x,

where we define γ = β(1 − H(α)). For x > 0, we have

f �(x) =
1

ln(2)

(
γ ln M +

n

x
− 2 ln x − 2

)
>

1
ln(2)

(γ ln M − 2 lnx − 2)

=
2

ln(2)

(
ln

Mγ/2

x
− 1

)
.

Hence f �(x) > 0 if

x < e−1Mγ/2. (32)

We see that, as long as γ > 2, the right-hand side of (32) is
greater than M for M large enough. This means that f(x)
is increasing for 1 ≤ x ≤ M . Since En|T | ≤ n ≤ M ,
f must attain its maximum at f(n). Therefore, (31) can be
upper-bounded by setting x = En|T | = n, which yields

H
(
Y NL|N = n

)
+ H

(
SN |XML, Y NL, N = n

)
≤ nL + n log

M

n
+ o(ML).

Notice that this holds if, for some α > 2p,

γ = β(1 − H(α)) > 2 ⇔ 1 − H(α) − 2/β > 0.

From the continuity of H(·), such α can be found if (19)
holds, proving the lemma. It remains to prove (B1) and (B2).

Proof of (B1): Since T is a deterministic function of
Y NL and can take at most 2n values,

H
(
Y NL|N = n

)
= H

(
Y NL, T |N = n

)
= H (T |N = n) + H

(
Y NL|T, N = n

)
≤ n +

∑
t⊆[1:n]

Pr (T = t|N = n)H
(
Y NL|T = t, N = n

)
.

(33)

Next we notice that, for a given t, we can write

H
(
Y NL|T = t, N = n

)
= H

(
[Y L

i : i ∈ t]|T = t, N = n
)

+ H
(
[Y L

i : i 	∈ t]|T = t, N = n, [Y L
i : i ∈ t]

)
. (34)

The first term in (34) is trivially bounded as

H
(
[Y L

i : i ∈ t]|T = t, N = n
)
≤ |t|L.

Each of the remaining length-L strings Y L
i with i /∈ t must be

within a distance αL from one of the strings in [Y L
i : i ∈ t],

from the definition of T . Hence, conditioned on [Y L
i : i ∈ t],

each of them can only take at most |t||B(αL)| values, where
B(αL) is a Hamming ball of radius αL. Since |B(αL)| ≤
2LH(α) for α < 1/2, we bound the second term in (34) as

H
(
[Y L

i : i 	∈ t]|T = t, N = n, [Y L
i : i ∈ t]

)
≤ (n − |t|) (log |t| + LH(α)) . (35)

We point out that, for large α, we may have |t||B(αL)| > 2L,
making (35) a loose bound, but good enough for our purposes.
Using these bounds back in (33), we obtain

H
(
Y NL|N = n

)
≤ n + En [L|T |+ (n − |T |) (log |T | + LH(α)) |N = n]

+ o(ML)
≤ LEn|T | + (n − En|T |) (log En|T | + LH(α)) + o(ML),

(36)

where we used the fact that (n−x) log x is a concave function
of x and Jensen’s inequality.

Proof of (B2): Since T is a deterministic function of
Y NL,

H
(
SN |XML, Y NL, N = n

)
= H

(
SN |XML, Y NL, T, N = n

)
=

∑
t⊆[1:n]

Pr (T = t|N = n)

× H
(
SN |XML, Y NL, T = t, N = n

)
≤

∑
t⊆[1:n]

Pr (T = t|N = n)

×
n∑

i=1

H
(
S(i)|XML, Y NL, T = t, N = n

)
. (37)

Next we notice that the probability that δL or more errors
occur in a single length-L string, for δ > p, is at most
2−LD(δ�p) by the Chernoff bound (where D(·�·) is the
binary KL divergence). If we let Ei be the event that
dH

(
XL

S(i), Y
L
i

)
≥ δL, then we have

Pr(Ei) ≤ 2−LD(δ�p) = M−βD(δ�p).

The conditional entropy term in (37) is upper bounded as

H
(
S(i)|XML, Y NL, T = t, N = n

)
≤ H

(
S(i),1Ei |XML, Y NL, T = t, N = n

)
≤ H(1Ei |T = t, N = n) + Pr(Ei|T = t, N = n)

× H
(
S(i)|XML, Y NL, T = t, N = n, Ei

)
+ Pr(Ēi|T = t, N = n)

× H
(
S(i)|XML, Y NL, T = t, N = n, Ēi

)
≤ 1 + Pr(Ei|T = t, N = n) log M

+ H
(
S(i)|XML, Y NL, T = t, N = n, Ēi

)
. (38)

The final step is to bound the conditional entropy term in (38),
for the case where i ∈ t. Set δ = α/2. Conditioned on Ēi,

dH

(
XL

S(i), Y
L
i

)
< αL/2. Moreover, conditioned on T = t,

for any j ∈ t−{i}, dH

(
Y L

i , Y L
j

)
≥ αL. For i ∈ t, we define

Ai = {j : Y L
i is the closest output string in t to XL

j }.
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Notice that Ai, i ∈ t, forms a partition of [1 : M ]. We claim
that, if i ∈ t, S(i) must be in Ai. To see this notice that, for
any k ∈ t, k 	= i, we have

αL ≤ dH

(
Y L

i , Y L
k

)
≤ dH

(
XL

S(i), Y
L
i

)
+ dH

(
XL

S(i), Y
L
k

)
< αL/2 + dH

(
XL

S(i), Y
L
k

)
,

implying that dH

(
XL

S(i), Y
L
k

)
> αL/2 ≥ dH

(
XL

S(i), Y
L
i

)
,

and thus S(i) ∈ Ai. Therefore, S(i) for each output string Y L
i

with i ∈ t, can take at most |Ai| values. Hence we have

n∑
i=1

H
(
S(i)|XML, Y NL, T = t, N = n, Ēi

)
≤

∑
i�∈t

log M +
∑
i∈t

log |Ai|

= (n − |t|) log M +
∑
i∈t

log |Ai|

≤ (n − |t|) log M + |t| log(M/|t|)
= n log M − |t| log |t|, (39)

where the last inequality follows because
∑

i∈t |Ai| = M , and
the sum is maximized by |Ai| = M/|t|. Combining (37), (38),
and (39), we obtain

H
(
SN |XML, Y NL, N = n

)
≤

n∑
i=1

∑
t⊆[1:n]

Pr (T = t|N = n)

× [1 + Pr(Ei|T = t, N = n) log M ]

+
∑

t⊆[1:n]

Pr (T = t|N = n)

×
n∑

i=1

H
(
S(i)|XML, Y NL, T = t, N = n, Ēi

)
= n + log M

n∑
i=1

Pr(Ei|N = n) + n log M − En [|T | log |T |]

(i)

≤ n + M log M Pr(Ei) + n logM − En [|T | log |T |]
(ii)

≤ n + M−βD(δ�p)M log M + n log M − En|T | log En|T |

where, in (i) we used the fact that Ei is independent of
N = n and n ≤ M , and in (ii) we used Jensen’s inequality.
Since M−βD(δ||p) → 0 as M → ∞, M−βD(δ||p)M log M =
o(ML), concluding the proof.

APPENDIX E

Proof of Proposition 1: We use a similar genie-aided and
counting-based proof as in Section III-B. The only difference
is on how the number of frequency vectors is bounded. As
before, the frequency vector on the output of the genie-aided
channel satisfies, for any δ > 0, �f�1 ≤ M(1 − q0 + δ). We
next upper bound the number of different frequency vectors
f ∈ Z

Mβ

+ with �f�1 = M(1−q0+δ). By Lemma 1, the number

of different frequency vectors we see at the output is upper
bounded by

T [Mβ, M(1 − q0 + δ)] =
(

Mβ + M(1 − q0 + δ) − 1
M(1 − q0 + δ)

)

=
(

Mβ + M(1 − q0 + δ) − 1
Mβ − 1

)

<

(
e(Mβ + M(1 − q0 + δ))

Mβ

)Mβ

,

where the second equality follows from
(
n
k

)
=

(
n

n−k

)
. Taking

the logarithm we get

log T [Mβ, M(1 − q0 + δ)]

≤ Mβ((1 − β) log M + log(1 − q0 + δ) + 1).

Dividing by MβL = Mββ log(M) and letting M → ∞ gives

R̃ ≤ (1 − β)/β,

as desired.
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