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Abstract— This paper develops fundamental limits of deep
neural network learning by characterizing what is possible if
no constraints are imposed on the learning algorithm and on the
amount of training data. Concretely, we consider Kolmogorov-
optimal approximation through deep neural networks with the
guiding theme being a relation between the complexity of
the function (class) to be approximated and the complexity of
the approximating network in terms of connectivity and memory
requirements for storing the network topology and the associated
quantized weights. The theory we develop establishes that deep
networks are Kolmogorov-optimal approximants for markedly
different function classes, such as unit balls in Besov spaces
and modulation spaces. In addition, deep networks provide
exponential approximation accuracy—i.e., the approximation
error decays exponentially in the number of nonzero weights
in the network—of the multiplication operation, polynomials,
sinusoidal functions, and certain smooth functions. Moreover,
this holds true even for one-dimensional oscillatory textures and
the Weierstrass function—a fractal function, neither of which has
previously known methods achieving exponential approximation
accuracy. We also show that in the approximation of sufficiently
smooth functions finite-width deep networks require strictly
smaller connectivity than finite-depth wide networks.

Index Terms— Neural networks, machine learning, function
approximation, rate-distortion theory, nonlinear approximation,
metric entropy.

I. INTRODUCTION

TRIGGERED by the availability of vast amounts of train-
ing data and drastic improvements in computing power,

deep neural networks have become state-of-the-art technology
for a wide range of practical machine learning tasks such
as image classification [1], handwritten digit recognition [2],
speech recognition [3], or game intelligence [4]. For an in-
depth overview, we refer to the survey paper [5] and the recent
book [6].

A neural network effectively implements a mapping
approximating a function that is learned based on a
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given set of input-output value pairs, typically through
the backpropagation algorithm [7]. Characterizing the fun-
damental limits of approximation through neural networks
shows what is possible if no constraints are imposed on
the learning algorithm and on the amount of training
data [8].

The theory of function approximation through neural net-
works has a long history dating back to the work by McCul-
loch and Pitts [9] and the seminal paper by Kolmogorov [10],
who showed, when interpreted in neural network parlance,
that any continuous function of n variables can be repre-
sented exactly through a 2-layer neural network of width
2n + 1. However, the nonlinearities in Kolmogorov’s neural
network are highly nonsmooth and the outer nonlinearities,
i.e., those in the output layer, depend on the function to be
represented. In modern neural network theory, one is usually
interested in networks with nonlinearities that are independent
of the function to be realized and exhibit, in addition, certain
smoothness properties. Significant progress in understanding
the approximation capabilities of such networks has been made
in [11], [12], where it was shown that single-hidden-layer
neural networks can approximate continuous functions on
bounded domains arbitrarily well, provided that the activation
function satisfies certain (mild) conditions and the number
of nodes is allowed to grow arbitrarily large. In practice
one is, however, often interested in approximating functions
from a given function class C determined by the applica-
tion at hand. It is therefore natural to ask how the com-
plexity of a neural network approximating every function
in C to within a prescribed accuracy depends on the com-
plexity of C (and on the desired approximation accuracy).
The recently developed Kolmogorov-Donoho rate-distortion
theory for neural networks [13] formalizes this question by
relating the complexity of C—in terms of the number of bits
needed to describe any element in C to within prescribed
accuracy—to network complexity in terms of connectivity
and memory requirements for storing the network topology
and the associated quantized weights. The theory is based
on a framework for quantifying the fundamental limits of
nonlinear approximation through dictionaries as introduced by
Donoho [14], [15].

The purpose of this paper is to provide a comprehensive,
principled, and self-contained introduction to Kolmogorov-
Donoho rate-distortion optimal approximation through deep
neural networks. The idea is to equip the reader with a working
knowledge of the mathematical tools underlying the theory at
a level that is sufficiently deep to enable further research in the
field. Part of this paper is based on [13], but extends the theory
therein to the rectified linear unit (ReLU) activation function
and to networks with depth scaling in the approximation error.
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The theory we develop educes remarkable universality
properties of finite-width deep networks. Specifically, deep
networks are Kolmogorov-Donoho optimal approximants for
vastly different function classes such as unit balls in Besov
spaces [16] and modulation spaces [17]. This universality is
afforded by a concurrent invariance property of deep networks
to time-shifts, scalings, and frequency-shifts. In addition, deep
networks provide exponential approximation accuracy—i.e.,
the approximation error decays exponentially in the number of
parameters employed in the approximant, namely the number
of nonzero weights in the network—for vastly different func-
tions such as the squaring operation, multiplication, polynomi-
als, sinusoidal functions, general smooth functions, and even
one-dimensional oscillatory textures [18] and the Weierstrass
function—a fractal function, neither of which has known
methods achieving exponential approximation accuracy.

While we consider networks based on the ReLU1 activation
function throughout, certain parts of our theory carry over
to strongly sigmoidal activation functions of order k ≥ 2 as
defined in [13]. For the sake of conciseness, we refrain from
providing these extensions.

Outline of the paper. In Section II, we introduce notation,
formally define neural networks, and record basic elements
needed in the neural network constructions throughout the
paper. Section III presents an algebra of function approxi-
mation by neural networks. In Section IV, we develop the
Kolmogorov-Donoho rate-distortion framework that will allow
us to characterize the fundamental limits of deep neural
network learning of function classes. This theory is based
on the concept of metric entropy, which is introduced and
reviewed starting from first principles. Section V then puts
the Kolmogorov-Donoho framework to work in the context
of nonlinear function approximation with dictionaries. This
discussion serves as a basis for the development of the concept
of best M -weight approximation in neural networks presented
in Section VI. We proceed, in Section VII, with the devel-
opment of a method—termed the transference principle—
for transferring results on function approximation through
dictionaries to results on approximation by neural networks.
The purpose of Section VIII is to demonstrate that function
classes that are optimally approximated by affine dictionaries
(e.g., wavelets), are optimally approximated by neural net-
works as well. In Section IX, we show that this optimal-
ity transfer extends to function classes that are optimally
approximated by Weyl-Heisenberg dictionaries. Section X
demonstrates that neural networks can improve the best-known
approximation rates for two example functions, namely oscil-
latory textures and the Weierstrass function, from polynomial
to exponential. The final Section XI makes a formal case
for depth in neural network approximation by establishing
a provable benefit of deep networks over shallow networks
in the approximation of sufficiently smooth functions. The
Appendices collect ancillary technical results.

Notation. For a function f(x) : R
d → R and a set Ω ⊆

Rd, we define �f�L∞(Ω) := sup{|f(x)| : x ∈ Ω}. Lp(Rd)

1ReLU stands for the Rectified Linear Unit nonlinearity defined as x �→
max{0, x}.

and Lp(Rd,C) denote the space of real-valued, respectively
complex-valued, Lp-functions. When dealing with the approx-
imation error for simple functions such as, e.g., (x, y) �→ xy,
we will for brevity of exposition and with slight abuse of nota-
tion, make the arguments inside the norm explicit according
to �f(x, y)− xy�Lp(Ω). For a vector b ∈ Rd, we let �b�∞ :=
maxi=1,...,d |bi|, similarly we write �A�∞ := maxi,j |Ai,j | for
the matrix A ∈ R

m×n. We denote the identity matrix of size
n× n by In. log stands for the logarithm to base 2. For a set
X ∈ Rd, we write |X | for its Lebesgue measure. Constants
like C are understood to be allowed to take on different values
in different uses.

II. SETUP AND BASIC RELU CALCULUS

This section defines neural networks, introduces the basic
setup as well as further notation, and lists basic ele-
ments needed in the neural network constructions considered
throughout, namely compositions and linear combinations
of neural networks. There is a plethora of neural network
architectures and activation functions in the literature. Here,
we restrict ourselves to the ReLU activation function and
consider the following general network architecture.

Definition II.1: Let L ∈ N and N0, N1, . . . , NL ∈ N.
A ReLU neural network Φ is a map Φ : RN0 → RNL given by

Φ =

⎧⎨⎨⎨⎩
W1, L = 1
W2 ◦ ρ ◦W1, L = 2
WL ◦ ρ ◦WL−1 ◦ · · · ◦ ρ ◦W1, L ≥ 3

, (1)

where, for � ∈ {1, 2, . . . , L}, W� : R
N�−1 → R

N� , W�(x) :=
A�x+b� are the associated affine transformations with matrices
A� ∈ RN�×N�−1 and (bias) vectors b� ∈ RN� , and the ReLU
activation function ρ : R → R, ρ(x) := max(0, x) acts
component-wise, i.e., ρ(x1, . . . , xN ) := (ρ(x1), . . . , ρ(xN )).
We denote by Nd,d� the set of all ReLU networks with input
dimension N0 = d and output dimension NL = d�. Moreover,
we define the following quantities related to the notion of size
of the ReLU network Φ:

• the connectivity M(Φ) is the total number of nonzero
entries in the matricesA�, � ∈ {1, . . . , L}, and the vectors
b�, � ∈ {1, . . . , L},

• depth L(Φ) := L,
• width W(Φ) := max

�=0,...,L
N�,

• weight magnitude
B(Φ) := max

�=1,...,L
max{�A��∞, �b��∞}.

Remark II.2: Note that for a given function
f : R

N0 → R
NL , which can be expressed according to

(1), the underlying affine transformations W� are highly
nonunique in general [19], [20]. The question of uniqueness
in this context is of independent interest and was addressed
recently in [21], [22]. Whenever we talk about a given ReLU
network Φ, we will either explicitly or implicitly associate Φ
with a given set of affine transformations W�.
N0 is the dimension of the input layer indexed as the 0-th

layer, N1, . . . , NL−1 are the dimensions of the L − 1 hidden
layers, andNL is the dimension of the output layer. Our defini-
tion of depth L(Φ) counts the number of affine transformations
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Fig. 1. Assignment of the weights (A�)i,j and (b�)i of a two-layer network to the edges and nodes, respectively.

involved in the representation (1). Single-hidden-layer neural
networks hence have depth 2 in this terminology. Finally,
we consider standard affine transformations as neural networks
of depth 1 for technical purposes.

The matrix entry (A�)i,j represents the weight associated
with the edge between the j-th node in the (�− 1)-th layer and
the i-th node in the �-th layer, (b�)i is the weight associated
with the i-th node in the �-th layer. These assignments are
schematized in Figure 1. The real numbers (A�)i,j and (b�)i

are referred to as the network’s edge weights and node weights,
respectively.

Throughout the paper, we assume that every node in the
input layer and in layers 1, . . . , L−1 has at least one outgoing
edge and every node in the output layer L has at least one
incoming edge. These nondegeneracy assumptions are basic
as nodes that do not satisfy them can be removed without
changing the functional relationship realized by the network.

Finally, we note that the connectivity satisfies

M(Φ) ≤ L(Φ)W(Φ)(W(Φ) + 1).

The term “network” stems from the interpretation of the
mapping Φ as a weighted acyclic directed graph with nodes
arranged in hierarchical layers and edges only between adja-
cent layers.

We mostly consider the case Φ : Rd → R, i.e., NL = 1, but
emphasize that our results readily generalize to NL > 1.

The neural network constructions provided in the paper
frequently make use of basic elements introduced next, namely
compositions and linear combinations of networks [23].

Lemma II.3: Let d1, d2, d3 ∈ N, Φ1 ∈ Nd1,d2 , and
Φ2 ∈ Nd2,d3 . Then, there exists a network Ψ ∈ Nd1,d3 with

L(Ψ) = L(Φ1) + L(Φ2),
M(Ψ) ≤ 2M(Φ1) + 2M(Φ2),
W(Ψ) ≤ max{2d2,W(Φ1),W(Φ2)},
B(Ψ) = max{B(Φ1),B(Φ2)},

and satisfying

Ψ(x) = (Φ2 ◦ Φ1)(x) = Φ2(Φ1(x)), for all x ∈ R
d1 .

Proof: The proof is based on the identity
x = ρ(x) − ρ(−x). First, note that by Definition II.1,

we can write

Φ1 = W 1
L1

◦ ρ ◦W 1
L1−1 ◦ · · · ◦ ρ ◦W 1

1 ,

Φ2 = W 2
L2

◦ ρ ◦ · · · ◦W 2
2 ◦ ρ ◦W 2

1 .

Next, let N1
L1−1 denote the width of layer L1 − 1 in Φ1 and

let N2
1 denote the width of layer 1 in Φ2. We define the affine

transformations �W 1
L1

: R
N1

L1−1 �→ R2d2 and �W 2
1 : R2d2 �→

R
N2

1 according to

�W 1
L1

(x) :=
�

Id2

−Id2

�
W 1

L1
(x),

�W 2
1 (y) := W 2

1

		
Id2 −Id2



y


.

The proof is finalized by noting that the network

Ψ := W 2
L2

◦ ρ ◦ · · · ◦W 2
2 ◦ ρ ◦�W 2

1 ◦ ρ ◦�W 1
L1

◦ ρ ◦W 1
L1−1 ◦ · · · ◦ ρ ◦W 1

1

satisfies the claimed properties.
Unless explicitly stated otherwise, the composition of two

neural networks will be understood in the sense of Lemma II.3.
In order to formalize the concept of a linear combination of

networks with possibly different depths, we need the following
two technical lemmas which show how to augment network
depth while retaining the network’s input-output relation and
how to parallelize networks.

Lemma II.4: Let d1, d2,K ∈ N, and Φ ∈ Nd1,d2 with
L(Φ) < K . Then, there exists a network Ψ ∈ Nd1,d2 with

L(Ψ) = K,

M(Ψ) ≤ M(Φ) + d2W(Φ) + 2d2(K − L(Φ)),
W(Ψ) = max{2d2,W(Φ)},
B(Ψ) = max{1,B(Φ)},

and satisfying Ψ(x) = Φ(x) for all x ∈ Rd1 .
Proof: Let �Wj(x) := diag

	
Id2 , Id2



x,

for j ∈ {L(Φ) + 1, . . . ,K − 1},�WK(x) :=
	
Id2 −Id2



x,

and note that with

Φ = WL(Φ) ◦ ρ ◦WL(Φ)−1 ◦ ρ ◦ · · · ◦ ρ ◦W1,
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the network

Ψ := �WK ◦ ρ ◦�WK−1 ◦ ρ ◦ · · · ◦ ρ ◦�WL(Φ)+1

◦ ρ ◦
�
WL(Φ)

−WL(Φ)

�
◦ ρ ◦WL(Φ)−1 ◦ ρ ◦ · · · ◦ ρ ◦W1

satisfies the claimed properties.
For the sake of simplicity of exposition, we state the

following two lemmas only for networks of the same depth,
the extension to the general case follows by straightforward
application of Lemma II.4. The first of these two lemmas for-
malizes the notion of neural network parallelization, concretely
of combining neural networks implementing the functions f
and g into a neural network realizing the mapping x �→
(f(x), g(x)).

Lemma II.5: Let n,L ∈ N and, for i ∈ {1, 2, . . . , n}, let
di, d

�
i ∈ N and Φi ∈ Ndi,d�

i
with L(Φi) = L. Then, there

exists a network Ψ ∈ N�n
i=1 di,

�
n
i=1 d�

i
with

L(Ψ) = L,

M(Ψ) =
n�

i=1

M(Φi),

W(Ψ) =
n�

i=1

W(Φi),

B(Ψ) = max
i

B(Φi),

and satisfying

Ψ(x) = (Φ1(x1),Φ2(x2), . . . ,Φn(xn)) ∈ R

�n
i=1 d�

i ,

for x = (x1, x2, . . . , xn) ∈ R
�n

i=1 di with xi ∈ R
di , i ∈ N.

Proof: We write the networks Φi as

Φi = W i
L ◦ ρ ◦W i

L−1 ◦ ρ ◦ · · · ◦ ρ ◦W i
1,

with W i
� (x) = Ai

�x + bi�. Furthermore, we denote the layer
dimensions of Φi by N i

0, . . . , N
i
L and set N� :=

�n
i=1N

i
� ,

for � ∈ {0, 1, . . . , L}. Next, define, for � ∈ {1, 2, . . . , L},
the block-diagonal matrices A� := diag(A1

� , A
2
� , . . . , A

n
� ), the

vectors b� = (b1� , b
2
� , . . . , b

n
� ), and the affine transformations

W�(x) := A�x+ b�. The proof is concluded by noting that

Ψ := WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1

satisfies the claimed properties.
We are now ready to formalize the concept of a linear

combination of neural networks.
Lemma II.6: Let n,L, d� ∈ N and, for i ∈ {1, 2, . . . , n},

let di ∈ N, ai ∈ R, and Φi ∈ Ndi,d� with L(Φi) = L. Then,
there exists a network Ψ ∈ N�n

i=1 di,d� with

L(Ψ) = L,

M(Ψ) ≤
n�

i=1

M(Φi),

W(Ψ) ≤
n�

i=1

W(Φi),

B(Ψ) = max
i

{|ai|B(Φi)},

and satisfying

Ψ(x) =
n�

i=1

aiΦi(xi) ∈ R
d�
,

for x = (x1, x2, . . . , xn) ∈ R
�n

i=1 di with xi ∈ Rdi , i ∈
{1, 2, . . . , n}.

Proof: The proof follows by taking the construction in
Lemma II.5, replacing AL by (a1A

1
L, a2A

2
L, . . . , anA

n
L), bL

by
�n

i=1 aib
i
L, and noting that the resulting network satisfies

the claimed properties.

III. APPROXIMATION OF MULTIPLICATION,
POLYNOMIALS, SMOOTH FUNCTIONS, AND SINUSOIDALS

This section constitutes the first part of the paper dealing
with the approximation of basic function “templates” through
neural networks. Specifically, we shall develop an algebra of
neural network approximation by starting with the squaring
function, building thereon to approximate the multiplication
function, proceeding to polynomials and general smooth func-
tions, and ending with sinusoidal functions.

The basic element of the neural network algebra we develop
is based on an approach by Yarotsky [24] and by Schmidt-
Hieber [25], both of whom, in turn, employed the “sawtooth”
construction from [26].

We start by reviewing the sawtooth construction underlying
our program. Consider the hat function g : R → [0, 1],

g(x) = 2ρ(x) − 4ρ(x− 1
2 ) + 2ρ(x− 1)

=

⎧⎨⎨⎨⎩
2x, if 0 ≤ x < 1

2

2(1 − x), if 1
2 ≤ x ≤ 1

0, else
,

let g0(x) = x, g1(x) = g(x), and define the s-th order
sawtooth function gs as the s-fold composition of g with itself,
i.e.,

gs := g ◦ g ◦ · · · ◦ g
 �� �
s

, s ≥ 2. (2)

We note that g can be realized by a 2-layer network Φg ∈ N1,1

according to Φg := W2 ◦ ρ ◦W1 = g with

W1(x) =

⎛⎝1
1
1

⎞⎠x −
⎛⎝ 0

1/2
1

⎞⎠ ,

W2(x) =
	
2 −4 2


⎛⎝x1

x2

x3

⎞⎠.
The s-th order sawtooth function gs can hence be realized by
a network Φs

g ∈ N1,1 according to

Φs
g := W2 ◦ ρ ◦Wg ◦ ρ ◦ · · · ◦Wg ◦ ρ
 �� �

s−1

◦W1 = gs (3)

with

Wg(x) =

⎛⎝2 −4 2
2 −4 2
2 −4 2

⎞⎠⎛⎝x1

x2

x3

⎞⎠−
⎛⎝ 0

1/2
1

⎞⎠ .
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Fig. 2. First three steps of approximating F (x) = x− x2 by an equispaced linear interpolation Im at 2m + 1 points.

The following restatement of [26, Lemma 2.4] summarizes
the self-similarity and symmetry properties of gs(x) we will
frequently make use of.

Lemma III.1: For s ∈ N, k ∈ {0, 1, . . . , 2s−1 − 1}, it holds
that g(2s−1 · −k) is supported in

�
k

2s−1 ,
k+1
2s−1

�
,

gs(x) =
2s−1−1�

k=0

g(2s−1x− k), for x ∈ [0, 1],

and

gs

	
k

2s−1 + x



= gs

	
k+1
2s−1 − x



, for x ∈ �0, 1

2s−1

�
.

We are now ready to proceed with the statement of the
basic building block of our neural network algebra, namely
the approximation of the squaring function through deep ReLU
networks.

Proposition III.2: There exists a constant C > 0 such that
for all ε ∈ (0, 1/2), there is a network Φε ∈ N1,1 with

L(Φε) ≤ C log(ε−1),
W(Φε) = 3,
B(Φε) = 1,
Φε(0) = 0,

satisfying
�Φε(x) − x2�L∞([0,1]) ≤ ε.

Proof: The proof builds on two rather elementary obser-
vations. The first one concerns the linear interpolation
Im : [0, 1] → R, m ∈ N, of the function F (x) := x − x2

at the points j
2m , j ∈ {0, 1, . . . , 2m}, and in particular

the self-similarity of the refinement step Im → Im+1. For
every m ∈ N, the residual F − Im is identical on each
interval between two points of interpolation (see Figure 2).

Concretely, let fm : [0, 2−m] → [0, 2−2m−2] be defined as
fm(x) = 2−mx − x2 and consider its linear interpolation
hm : [0, 2−m] → [0, 2−2m−2] at the midpoint and the end-
points of the interval [0, 2−m] given by

hm(x) :=

�
2−m−1x, x ∈ [0, 2−m−1]
−2−m−1x+ 2−2m−1, x ∈ [2−m−1, 2−m]

.

Direct calculation shows that

fm(x) − hm(x)

=

�
fm+1(x), x ∈ [0, 2−m−1]
fm+1(x − 2−m−1), x ∈ [2−m−1, 2−m]

.

As F = f0 and I1 = h0 this implies that, for all m ∈ N,
x ∈ [ j

2m ,
j+1
2m ], j ∈ {0, 1, . . . , 2m − 1}

F (x) − Im(x) = fm(x− j
2m ),

and Im =
�m−1

k=0 Hk, where Hk : [0, 1] → R is given by

Hk(x) = hk(x− j
2k )

for x ∈ [ j
2k ,

j+1
2k ], j ∈ {0, 1, . . . , 2k − 1}. Thus, we have

sup
x∈[0,1]

|x2 − (x− Im(x))| = sup
x∈[0,1]

|F (x) − Im(x)|

= sup
x∈[0,2−m]

|fm(x)| (4)

= 2−2m−2.

The second observation we build on is a manifestation of the
sawtooth construction described above and leads to economic
realizations of the Hk through k-layer networks with two
neurons in each layer; a third neuron is used to realize the
approximation x − Im(x) to x2. Concretely, let sk(x) :=
2−1ρ(x) − ρ(x − 2−2k−1), and note that, for x ∈ [0, 1],
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H0 = s0, we get Hk = sk ◦ Hk−1. We can thus construct
a network realizing x− Im(x), for x ∈ [0, 1], as follows. Let
A1 := (1, 1, 1)T ∈ R3×1, b1 := (0,−2−1, 0)T ∈ R3,

A� :=

⎛⎝ 2−1 −1 0
2−1 −1 0
−2−1 1 1

⎞⎠ ∈ R
3×3,

b� :=

⎛⎝ 0
−2−2�+1

0

⎞⎠ ∈ R
3,

for � ∈ {2, . . . ,m}, and Am+1 := (−2−1, 1, 1) ∈ R1×3,
bm+1 = 0. Setting W�(x) := A�x+b�, � ∈ {1, 2, . . . ,m+ 1},
and

Φ̃m := Wm+1 ◦ ρ ◦Wm ◦ ρ ◦ · · · ◦ ρ ◦W1,

a direct calculation yields Φ̃m(x) = x−�m−1
k=0 Hk(x), for x ∈

[0, 1]. The proof is completed upon noting that the networks
Φε := Φ̃�log(ε−1)/2� satisfy the claimed properties.

The symmetry properties of gs(x) according to Lemma III.1
lead to the interpolation error in the proof of Proposition III.2
being identical in each interval, with the maximum error taken
on at the centers of the respective intervals. More importantly,
however, the approximating neural networks realize linear
interpolation at a number of points that grows exponentially
in network depth. This is a manifestation of the fact that
the number of linear regions in the sawtooth construction (3)
grows exponentially with depth, which, owing to Lemma XI.1,
is optimal. We emphasize that the theory developed in this
paper hinges critically on this optimality property, which,
however, is brittle in the sense that networks with weights
obtained through training will, as observed in [27], in general,
not exhibit exponential growth of the number of linear regions
with network depth. An interesting approach to neural network
training which manages to partially circumvent this problem
was proposed recently in [28]. Understanding how the number
of linear regions grows in general trained networks and quan-
tifying the impact of this—possibly subexponential—growth
behavior on the approximation-theoretic fundamental limits of
neural networks constitutes a major open problem.

We proceed to the construction of networks that approx-
imate the multiplication function over the interval [−D,D].
This will be effected by using the result on the approximation
of x2 just established combined with the polarization identity
xy = 1

4 ((x+y)2−(x−y)2), the fact that ρ(x)+ρ(−x) = |x|,
and a scaling argument exploiting that the ReLU function is
positive homogeneous, i.e., ρ(λx) = λρ(x), for all λ ≥ 0,
x ∈ R.

Proposition III.3: There exists a constant C > 0 such
that, for all D ∈ R+ and ε ∈ (0, 1/2), there is a network
ΦD,ε ∈ N2,1 with

L(ΦD,ε) ≤ C(log(
D�) + log(ε−1)),
W(ΦD,ε) ≤ 5,
B(ΦD,ε) = 1,

satisfying ΦD,ε(0, x) = ΦD,ε(x, 0) = 0, for all x ∈ R, and

�ΦD,ε(x, y) − xy�L∞([−D,D]2) ≤ ε. (5)

Proof: We first note that, w.l.o.g., we can assume D ≥ 1
in the following, as for D < 1, we can simply employ the
network constructed for D = 1 to guarantee the claimed
properties. The proof builds on the polarization identity and
essentially constructs two squaring networks according to
Proposition III.2 which share the neuron responsible for
summing up the Hk, preceded by a layer mapping (x, y)
to (|x + y|/(2D), |x − y|/(2D)) and followed by layers
realizing the multiplication by D2 through weights bounded
by 1. Specifically, consider the network Ψ̃m with associated
matrices A� and vectors b� given by

A1 :=
1

2D

⎛⎜⎜⎝
1 1
−1 −1
1 −1
−1 1

⎞⎟⎟⎠ ∈ R
4×2, b1 := 0 ∈ R

4,

A2 :=

⎛⎜⎜⎜⎜⎝
1 1 0 0
1 1 0 0
1 1 −1 −1
0 0 1 1
0 0 1 1

⎞⎟⎟⎟⎟⎠ ∈ R
5×4, b2 :=

⎛⎜⎜⎜⎜⎝
0

−2−1

0
0

−2−1

⎞⎟⎟⎟⎟⎠

A� :=

⎛⎜⎜⎜⎜⎝
2−1 −1 0 0 0
2−1 −1 0 0 0
−2−1 1 1 2−1 −1

0 0 0 2−1 −1
0 0 0 2−1 −1

⎞⎟⎟⎟⎟⎠ ∈ R
5×5,

b� :=

⎛⎜⎜⎜⎜⎝
0

−2−2�+3

0
0

−2−2�+3

⎞⎟⎟⎟⎟⎠ , for � ∈ {3, . . . ,m+ 1},

and Am+2 := (−2−1, 1, 1, 2−1,−1) ∈ R1×5, bm+2 := 0. A
direct calculation yields

Ψ̃m(x, y) =

�
|x+y|
2D −

m−1�
k=0

Hk

	 |x+y|
2D


�

−
�

|x−y|
2D −

m−1�
k=0

Hk

	 |x−y|
2D


�
(6)

= Φ̃m

�
|x+y|
2D

�
− Φ̃m

�
|x−y|
2D

�
,

with Hk and Φ̃m as defined in the proof of Proposition III.2.
With (4) this implies

sup
(x,y)∈[−D,D]2

���Ψ̃m(x, y) − xy
D2

���
= sup

(x,y)∈[−D,D]2

���� �Φ̃m

�
|x+y|
2D

�
− Φ̃m

�
|x−y|
2D

��
(7)

−
��

|x+y|
2D

�2

−
�

|x−y|
2D

�2
� ����

≤ 2 sup
z∈[0,1]

|Φ̃m(z) − z2| ≤ 2−2m−1.

Next, let ΨD(x) = D2 x be the scalar multiplication network
according to Lemma A.1 and take ΦD,ε := ΨD ◦ Ψ̃m(D,ε),
where

m(D, ε) := 
2−1(1 + log(D2ε−1))�.
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Then, the error estimate (5) follows directly from (7) and
Lemma II.3 establishes the desired bounds on depth, width,
and weight magnitude. Finally, ΦD,ε(0, x) = ΦD,ε(x, 0) = 0,
for all x ∈ R, follows directly from (6).

Remark III.4: Note that the multiplication network just
constructed has weights bounded by 1 irrespectively of the
size D of the domain. This is accomplished by trading network
depth for weight magnitude according to Lemma A.1.

We proceed to the approximation of polynomials, effected
by networks that realize linear combinations of monomials,
which, in turn, are built by composing multiplication networks.
Before presenting the specifics of this construction, we hasten
to add that a similar approach was considered previously
in [24] and [25]. While there are slight differences in for-
mulation, the main distinction between our construction and
those in [24] and [25] resides in their purpose. Specifically,
the goal in [24] and [25] is to establish, by way of local
Taylor-series approximation, that d-variate, k-times (weakly)
differentiable functions can be approximated in L∞-norm to
within error ε with networks of connectivity scaling according
to ε−d/k log(ε−1). Here, on the other hand, we will be inter-
ested in functions that allow approximation with networks of
connectivity scaling polylogarithmically in ε−1 (i.e., as a poly-
nomial in log(ε−1)). Moreover, for ease of exposition, we will
employ finite-width networks. Polylogarithmic connectivity
scaling will turn out to be crucial (see Sections VI-IX) in
establishing Kolmogorov-Donoho rate-distortion optimality of
neural networks in the approximation of a variety of prominent
function classes. Finally, we would like to mention related
recent work [29], [30], [31] on the approximation of Sobolev-
class functions in certain Sobolev norms enabled by neural
network approximations of the multiplication operation and
of polynomials.

Proposition III.5: There exists a constant C > 0 such
that for all m ∈ N, a = (ai)m

i=0 ∈ Rm+1, D ∈ R+, and
ε ∈ (0, 1/2), there is a network Φa,D,ε ∈ N1,1 with

L(Φa,D,ε) ≤ Cm(log(ε−1) +m log(
D�)
+ log(m) + log(
�a�∞�)),

W(Φa,D,ε) ≤ 9,
B(Φa,D,ε) ≤ 1,

and satisfying

�Φa,D,ε(x) −
m�

i=0

aix
i�L∞([−D,D]) ≤ ε.

Proof: As in the proof of Proposition III.3 and for the
same reason, it suffices to consider the case D ≥ 1. For
m = 1, we simply have an affine transformation and the
statement follows directly from Corollary A.2. The proof for
m ≥ 2 will be effected by realizing the monomials xk, k ≥ 2,
through iterative composition of multiplication networks and
combining this with a construction that uses the network
realizing xk not only as a building block in the network
implementing xk+1 but also to approximate the partial sum

�k
i=0 aix

i in parallel. We start by setting

Bk = Bk(D, η) := 
D�k + η

k−2�
s=0


D�s,

for k ∈ N, η ∈ R+ and take ΦBk,η to be the multiplication
network from Proposition III.3. Next, we recursively define
the functions

fk,D,η(x) = ΦBk−1,η(x, fk−1,D,η(x)), k ≥ 2,

with f0,D,η(x) = 1 and f1,D,η(x) = x. For notational simplic-
ity, we use the abbreviation fk = fk,D,η in the following. First,
we verify that the fk,D,η approximate monomials sufficiently
well. Specifically, we prove by induction that

�fk(x) − xk�L∞([−D,D]) ≤ η
k−2�
s=0


D�s, (8)

for all k ≥ 2. The base case k = 2, i.e.,

�f2(x) − x2�L∞([−D,D])

= �ΦB1,η(x, x) − x2�L∞([−D,D]) ≤ η,

follows directly from Proposition III.3 upon noting that
D ≤ B1 = 
D� (we take the sum in the definition of Bk

to equal zero when the upper limit of summation is negative).
We proceed to establish the induction step (k − 1) → k with
the induction assumption given by

�fk−1(x) − xk−1�L∞([−D,D]) ≤ η

k−3�
s=0


D�s.

As

�fk−1�L∞([−D,D]) ≤ �xk−1�L∞([−D,D])

+ �fk−1(x) − xk−1�L∞([−D,D])

≤ Bk−1,

application of Proposition III.3 yields

�fk(x) − xk�L∞([−D,D])

≤ �fk(x) − xfk−1(x)�L∞([−D,D])

+ �xfk−1(x) − xk�L∞([−D,D])

≤ �ΦBk−1,η(x, fk−1(x)) − xfk−1(x)�L∞([−D,D])

+D�fk−1(x) − xk−1�L∞([−D,D])

≤ η + 
D�η
k−3�
s=0


D�s = η
k−2�
s=0


D�s,

which completes the induction.
We now construct the network Φa,D,ε approximating the

polynomial
�m

i=0 aix
i. To this end, note that there exists a

constant C� such that for all m ≥ 2, a = (ai)m
i=0 ∈ Rm+1,

and i ∈ {1, . . . ,m − 1}, there is a network Ψi
a,D,η ∈ N3,3

with

L(Ψi
a,D,η) ≤ C�(log(η−1) + log(
Bi�) + log(�a�∞)),

W(Ψi
a,D,η) ≤ 9,

B(Ψi
a,D,η) ≤ 1,
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and satisfying

Ψi
a,D,η(x, s, y) = (x, s+ aiy,ΦBi,η(x, y)).

To see that this is, indeed, the case, consider the following
chain of mappings

(x, s, y)
(I)−−→ (x, s, y, y)

(II)−−→ (x, s+ aiy, y)
(III)−−−→ (x, s+ aiy, x, y)
(IV )−−−→ (x, s+ aiy,ΦBi,η(x, y)).

Observe that the mapping (I) is an affine transformation with
coefficients in {0, 1}, which we can simply consider to be
a depth-1 network. The mapping (II) is obtained by using
Corollary A.2 in order to implement the affine transformation
(s, y) �→ s+ aiy with weights bounded by 1, followed by
application of Lemmas II.4 and II.5 to put this network in
parallel with two networks realizing the identity mapping
according to x = ρ(x) − ρ(−x). Mapping (III) is obtained
along the same lines by putting the result of mapping (II) in
parallel with another network realizing the identity mapping.
Finally, mapping (IV) is realized by putting the network
ΦBi,η in parallel with two identity networks. Composing
these four networks according to Lemma II.3 yields, for i ∈
{1, . . . ,m−1}, a network Ψi

a,D,η with the claimed properties.
Next, we employ Corollary A.2 to get networks Ψ0

a,D,η which
implement x �→ (x, a0, x) as well as networks Ψm

a,D,η realizing
(x, s, y) �→ s+ amy. Let now

η = η(a,D, ε) := (�a�∞(m− 1)2
D�m−2)−1ε

and define

Φa,D,ε := Ψm
a,D,η ◦ Ψm−1

a,D,η ◦ · · · ◦ Ψ1
a,D,η ◦ Ψ0

a,D,η.

A direct calculation yields

Φa,D,ε =
m�

i=0

aifi,D,η.

Hence (8) implies

���Φa,D,ε(x) −
m�

i=0

aix
i
���

L∞([−D,D])

≤
m�

i=0

|ai|�fi,D,η(x) − xi�L∞([−D,D])

≤
m�

i=2

|ai|
�
η

i−2�
s=0


D�s
�

≤ �a�∞η
m−2�
k=0

(m− 1 − k)
D�k

≤ �a�∞(m− 1)2
D�m−2η = ε.

Lemma II.3 now establishes that W(Φa,D,ε) ≤ 9,
B(Φa,D,ε) ≤ 1, and

L(Φa,D,ε) ≤
m�

i=0

L(Ψi
a,D,η)

≤ 2(log(
�a�∞�) + 5) +
m−1�
i=1

C�(log(η−1)

+ log(
Bi−1�) + log(
�a�∞�))
≤ Cm(log(ε−1) +m log(
D�)

+ log(m) + log(
�a�∞�))
for a suitably chosen absolute constant C. This completes the
proof.

Next, we recall that the Weierstrass approximation theorem
states that every continuous function on a closed interval can
be approximated to within arbitrary accuracy by a polynomial.

Theorem III.6 ([32]): Let [a, b] ⊆ R and f ∈ C([a, b]).
Then, for every ε > 0, there exists a polynomial π such that

�f − π�L∞([a,b]) ≤ ε.

Proposition III.5 hence allows us to conclude that every
continuous function on a closed interval can be approximated
to within arbitrary accuracy by a deep ReLU network of
width no more than 9. This amounts to a variant of the
universal approximation theorem [11], [12] for finite-width
deep ReLU networks. A quantitative statement in terms of
making the approximating network’s width, depth, and weight
bounds explicit can be obtained for (very) smooth functions
by applying Proposition III.5 to Lagrangian interpolation with
Chebyshev points.

Lemma III.7: Consider the set

S[−1,1] :=
 
f ∈ C∞([−1, 1],R) :

�f (n)(x)�L∞([−1,1]) ≤ n!, for all n ∈ N0

!
.

There exists a constant C > 0 such that for all f ∈ S[−1,1]

and ε ∈ (0, 1/2), there is a network Ψf,ε ∈ N1,1 with

L(Ψf,ε) ≤ C(log(ε−1))2,
W(Ψf,ε) ≤ 9,
B(Ψf,ε) ≤ 1,

and satisfying

�Ψf,ε − f�L∞([−1,1]) ≤ ε.

Proof: A fundamental result on Lagrangian interpolation
with Chebyshev points (see e.g. [33, Lemma 3]) guarantees,
for all f ∈ S[−1,1], m ∈ N, the existence of a polynomial
Pf,m of degree m such that

�f − Pf,m�L∞([−1,1]) ≤ 1
(m+1)!2m �f (m+1)�L∞([−1,1])

≤ 1
2m .

Note that Pf,m can be expressed in the Chebyshev
basis (see e.g. [34, Section 3.4.1]) according to
Pf,m =

�m
j=0 cf,m,jTj(x) with |cf,m,j | ≤ 2 and the

Chebyshev polynomials defined through the two-term
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recursion Tk(x) = 2xTk−1(x) − Tk−2(x), k ≥ 2, with
T0(x) = 1 and T1(x) = x. We can moreover use this
recursion to conclude that the coefficients of the Tk in the
monomial basis are upper-bounded by 3k. Consequently,
we can express Pf,m according to Pf,m =

�m
j=0 af,m,jx

j

with

Af,m := max
j=0,...,m

|af,m,j| ≤ 2(m+ 1)3m.

Application of Proposition III.5 to Pf,m in the monomial basis,
with m = 
log(2/ε)� and approximation error ε/2, completes
the proof upon noting that

C�m(log(2/ε)+log(m)+log(|Af,m|))≤C(log(ε−1))2

for some absolute constant C.
An extension of Lemma III.7 to approximation over general

intervals is provided in Lemma A.6. While Lemma III.7 shows
that a specific class of C∞-functions, namely those whose
derivatives are suitably bounded, can be approximated by
neural networks with connectivity growing polylogarithmically
in ε−1, it turns out that this is not possible for general
(Sobolev-class) k-times differentiable functions [24, Thm. 4].

We are now ready to proceed to the approximation of
sinusoidal functions. Before stating the corresponding result,
we comment on the basic idea enabling the approximation of
oscillatory functions through deep neural networks. In essence,
we exploit the optimality of the sawtooth construction (3) in
terms of achieving exponential—in network depth—growth
in the number of linear regions. As indicated in Figure 3,
the composition of the cosine function (realized according to
Lemma III.7) with the sawtooth function, combined with the
symmetry properties of the cosine function and the sawtooth
function, yields oscillatory behavior that increases exponen-
tially with network depth.

Theorem III.8: There exists a constant C > 0 such that
for every a,D ∈ R+, ε ∈ (0, 1/2), there is a network
Ψa,D,ε ∈ N1,1 with

L(Ψa,D,ε) ≤ C((log(ε−1))2 + log(
aD�)),
W(Ψa,D,ε) ≤ 9,
B(Ψa,D,ε) ≤ 1,

and satisfying

�Ψa,D,ε(x) − cos(ax)�L∞([−D,D]) ≤ ε.

Proof: Note that f(x) := (6/π3) cos(πx) is in S[−1,1].
Thus, by Lemma III.7, there exists a constant C > 0 such
that for every ε ∈ (0, 1/2), there is a network Φε ∈ N1,1

with L(Φε) ≤ C(log(ε−1))2, W(Φε) ≤ 9, B(Φε) ≤ 1, and
satisfying

�Φε − f�L∞([−1,1]) ≤ 6
π3 ε. (9)

We now extend this result to the approximation of x �→
cos(ax) on the interval [−1, 1] for arbitrary a ∈ R+. This
will be accomplished by exploiting that x �→ cos(πx) is
2-periodic and even. Let gs : [0, 1] → [0, 1], s ∈ N, be the s-th
order sawtooth functions as defined in (2) and note that, due

to the periodicity and the symmetry of the cosine function (see
Figure 3 for illustration), we have for all s ∈ N0, x ∈ [−1, 1],

cos(π2sx) = cos(πgs(|x|)).
For a > π, we define s = s(a) := 
log(a) − log(π)� and
α = α(a) := (π2s)−1a ∈ (1/2, 1], and note that

cos(ax) = cos(π2sαx) = cos(πgs(α|x|)), x ∈ [−1, 1].

As gs(α|x|) ∈ [0, 1], it follows from (9) that

�π3

6 Φε(gs(α|x|)) − cos(ax)�L∞([−1,1])

= π3

6 �Φε(gs(α|x|)) − f(gs(α|x|))�L∞([−1,1]) (10)

≤ ε.

In order to realize Φε(gs(α|x|)) as a neural network, we start
from the networks Φs

g defined in (3) and apply Proposition A.3
to convert them into networks Ψs

g(x) = gs(x), for x ∈ [0, 1],
with B(Ψs

g) ≤ 1, L(Ψs
g) = 7(s + 1), and W(Ψs

g) = 3.
Furthermore, let

Ψ(x) := αρ(x) − αρ(−x) = α|x|
and take Φmult

π3/6 to be the scalar multiplication network from
Lemma A.1. Noting that

Ψa,ε := Φmult
π3/6 ◦ Φε ◦ Ψs

g ◦ Ψ = Φε(gs(α|x|))
and concluding from Lemma II.3 that
L(Ψa,ε) ≤ C((log(ε−1))2 + log(
a�)), W(Ψa,ε) ≤ 9,
and B(Ψa,ε) ≤ 1, together with (10), establishes the desired
result for a > π and for approximation over the interval
[−1, 1]. For a ∈ (0, π), we can simply take Ψa,ε := Φmult

π3/6◦Φε

as x �→ (6/π3) cos(ax) is in S[−1,1] in this case.
Finally, we consider the approximation of x �→ cos(ax) on

intervals [−D,D], for arbitrary D ≥ 1. To this end, we define
the networks Ψa,D,ε(x) := ΨaD,ε( x

D ) and observe that

sup
x∈[−D,D]

|Ψa,D,ε(x) − cos(ax)|

= sup
y∈[−1,1]

|Ψa,D,ε(Dy) − cos(aDy)| (11)

= sup
y∈[−1,1]

|ΨaD,ε(y) − cos(aDy)| ≤ ε.

This concludes the proof.
The result just obtained extends to the approximation of

x �→ sin(ax), formalized next, simply by noting that sin(x) =
cos(x− π/2).

Corollary III.9: There exists a constant C > 0 such that
for every a,D ∈ R+, b ∈ R, ε ∈ (0, 1/2), there is a network
Ψa,b,D,ε ∈ N1,1 with

L(Ψa,b,D,ε) ≤ C((log(ε−1))2 + log(
aD + |b|�)),
W(Ψa,b,D,ε) ≤ 9,
B(Ψa,b,D,ε) ≤ 1,

and satisfying

�Ψa,b,D,ε(x) − cos(ax− b)�L∞([−D,D]) ≤ ε.

Proof: For given a,D ∈ R+, b ∈ R, ε ∈ (0, 1/2), consider
the network Ψa,b,D,ε(x) := Ψ

a,D+ |b|
a ,ε

	
x− b

a



with Ψa,D,ε
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Fig. 3. Approximation of the function cos(2πax) according to Theorem III.8 using “sawtooth” functions gs(x) as per (2), left a = 2, right a = 4.

as defined in the proof of Theorem III.8, and observe that,
owing to (11),

sup
x∈[−D,D]

|Ψa,b,D,ε(x) − cos(ax− b)|

≤ sup
y∈[−(D+ |b|

a ),D+ |b|
a ]

|Ψ
a,D+ |b|

a
,ε
(y) − cos(ay)|

≤ ε. �

Remark III.10: The results in this section all have approx-
imating networks of finite width and depth scaling polyloga-
rithmically in ε−1. Owing to

M(Φ) ≤ L(Φ)W(Φ)(W(Φ) + 1)

this implies that the connectivity scales no faster than poly-
logarithmic in ε−1. It therefore follows that the approxi-
mation error ε decays (at least) exponentially fast in the
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connectivity or equivalently in the number of parameters the
approximant (i.e., the neural network) employs. We say that
the network provides exponential approximation accuracy.

IV. APPROXIMATION OF FUNCTION CLASSES AND

METRIC ENTROPY

So far we considered the explicit construction of deep neural
networks for the approximation of a wide range of func-
tions, namely polynomials, smooth functions, and sinusoidal
functions, in all cases with exponential accuracy, i.e., with
an approximation error that decays exponentially in network
connectivity. We now proceed to lay the foundation for the
development of a framework that allows us to characterize
the fundamental limits of deep neural network approximation
of entire function classes. But first, we provide a review of
relevant literature.

The best-known results on approximation by neural
networks are the universal approximation theorems of
Hornik [12] and Cybenko [11], stating that continuous func-
tions on bounded domains can be approximated arbitrarily well
by a single-hidden-layer (L = 2 in our terminology) neural
network with sigmoidal activation function. The literature on
approximation-theoretic properties of networks with a single
hidden layer continuing this line of work is abundant. Without
any claim to completeness, we mention work on approxima-
tion error bounds in terms of the number of neurons for func-
tions with Fourier transforms of bounded first moments [35],
[36], the nonexistence of localized approximations [37], a fun-
damental lower bound on approximation rates [38], [39], and
the approximation of smooth or analytic functions [40], [41].

Approximation-theoretic results for networks with multiple
hidden layers were obtained in [42], [43] for general functions,
in [44] for continuous functions, and for functions together
with their derivatives in [45]. In [37] it was shown that for
certain approximation tasks deep networks can perform fun-
damentally better than single-hidden-layer networks. We also
highlight two recent papers, which investigate the benefit—
from an approximation-theoretic perspective—of multiple hid-
den layers. Specifically, in [46] it was shown that there exists
a function which, although expressible through a small three-
layer network, can only be represented through a very large
two-layer network; here size is measured in terms of the total
number of neurons in the network.

In the setting of deep convolutional neural networks first
results of a nature similar to those in [46] were reported
in [47]. Linking the expressivity properties of neural networks
to tensor decompositions, [48], [49] established the existence
of functions that can be realized by relatively small deep con-
volutional networks but require exponentially larger shallow
convolutional networks.

We conclude by mentioning recent results bearing wit-
ness to the approximation power of deep ReLU networks
in the context of PDEs. Specifically, it was shown in [29]
that deep ReLU networks can approximate very effectively
certain solution families of parametric PDEs depending on
a large (possibly infinite) number of parameters. The series
of papers [50]–[53] constructs and analyzes a deep-learning-
based numerical solver for Black-Scholes PDEs.

For survey articles on approximation-theoretic aspects of
neural networks, we refer the interested reader to [54] and [55]
as well as the very recent [56]. Most closely related to
the framework we develop here is the paper by Shaham,
Cloninger, and Coifman [57], which shows that for functions
that are sparse in specific wavelet frames, the best M -weight
approximation rate (see Definition VI.1 below) of three-layer
neural networks is at least as large as the best M -term
approximation rate in piecewise linear wavelet frames.

We begin the development of our framework with a review
of a widely used theoretical foundation for deterministic
lossy data compression [58], [59]. Our presentation essentially
follows [14], [60].

A. Kolmogorov-Donoho Rate Distortion Theory

Let d ∈ N, Ω ⊆ R
d, and consider a set of functions C ⊆

L2(Ω), which we will frequently refer to as function class.
Then, for each � ∈ N, we denote by

E� :=
"
E : C → {0, 1}�

#
the set of binary encoders of C of length �, and we let

D� :=
"
D : {0, 1}� → L2(Ω)

#
be the set of binary decoders of length �. An encoder-decoder
pair (E,D) ∈ E� ×D� is said to achieve uniform error ε over
the function class C, if

sup
f∈C

�D(E(f)) − f�L2(Ω) ≤ ε.

Note that here we quantified the approximation error in L2(Ω)-
norm, whereas in the previous section we used the L∞(Ω)-
norm. While results in terms of L∞(Ω)-norm are stronger,
we shall employ the L2(Ω)-norm in order to parallel the
Kolmogorov-Donoho framework for nonlinear approximation
through dictionaries [14], [15]. We furthermore note that
for sets Ω of finite Lebesgue measure |Ω|, the two norms
are related through �f�L2(Ω) ≤ |Ω|1/2�f�L∞(Ω). Finally,
whenever we talk about compactness and related topological
notions, we shall always mean w.r.t. the topology induced by
the L2(Ω)-norm.

A quantity of central interest is the minimal length � ∈ N for
which there exists an encoder-decoder pair (E,D) ∈ E� ×D�

that achieves uniform error ε over the function class C, along
with its asymptotic behavior as made precise in the following
definition.

Definition IV.1: Let d ∈ N, Ω ⊆ Rd, and let C ⊆ L2(Ω) be
compact. Then, for ε > 0, the minimax code length L(ε, C) is

L(ε, C) :=min
 
� ∈ N : ∃(E,D) ∈ E� × D� :

(12)
sup
f∈C

�D(E(f)) − f�L2(Ω) ≤ ε
!
.

Moreover, the optimal exponent γ∗(C) is defined as

γ∗(C) := sup
 
γ ∈ R : L(ε, C) ∈ O

�
ε−1/γ

�
, ε→ 0

!
.

The optimal exponent γ∗(C) determines the minimum
growth rate of L(ε, C) as the error ε tends to zero and can
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hence be seen as quantifying the “description complexity” of
the function class C. Larger γ∗(C) results in smaller growth
rate and hence smaller memory requirements for storing func-
tions f ∈ C such that reconstruction with uniformly bounded
error is possible.

Remark IV.2: The optimal exponent γ∗(C) can equivalently
be thought of as quantifying the asymptotic behavior of the
minimal achievable error for the function class C with a given
code length. Specifically, we have

γ∗(C)

= sup
"
γ ∈ R : L(ε, C) ∈ O	ε−1/γ



, ε→ 0

#
(13)

= sup
"
γ ∈ R : ε(L) ∈ O	L−γ



, L→ ∞#

,

where

ε(L) := inf
(E,D)∈EL×DL

sup
f∈C

�D(E(f)) − f�L2(Ω).

The quantity γ∗(C) is closely related to the concept
of Kolmogorov-Tikhomirov epsilon entropy a.k.a. metric
entropy [61]. We next make this connection explicit.

B. Metric Entropy

Most of the discussion in this subsection, which is almost
exclusively of review nature, follows very closely [62, Chap-
ter 5]. Consider the metric space (X , ρ) with X a nonempty set
and ρ : X×X → R a distance function. A natural measure for
the size of a compact subset C of X is given by the number of
balls of a fixed radius ε required to cover C, a quantity known
as the covering number (for covering radius ε).

Definition IV.3 ([62]): Let (X , ρ) be a metric space.
An ε-covering of a compact set C ⊆ X with respect to the
metric ρ is a set {x1, . . . , xN} ⊆ C such that for each x ∈ C,
there exists an i ∈ {1, . . . , N} so that ρ(x, xi) ≤ ε. The
ε-covering number N(ε; C, ρ) is the cardinality of the smallest
ε-covering.

An ε-covering is a collection of balls of radius ε that cover
the set C, i.e.,

C ⊆
N(ε;C,ρ)$

i=1

B(xi, ε),

where B(xi, ε) is a ball—in the metric ρ—of radius ε
centered at xi. The covering number is nonincreasing in ε,
i.e., N(ε; C, ρ) ≥ N(ε�; C, ρ), for all ε ≤ ε�. When the set C
is not finite, the covering number goes to infinity as ε goes
to zero. We shall be interested in the corresponding rate of
growth, more specifically in the quantity logN(ε; C, ρ) known
as the metric entropy of C with respect to ρ. Recall that log
is to the base 2, hence the unit of metric entropy is “bits”.
The operational significance of metric entropy follows from
the question: What is the minimum number of bits needed
to represent any element x ∈ C with error—quantified in
terms of the distance measure ρ—of at most ε? By what was
just developed, the answer to this question is 
logN(ε; C, ρ)�.
Specifically, for a given x ∈ X , the corresponding encoder
E(x) simply identifies the closest ball center xi and encodes
the index i using 
logN(ε; C, ρ)� bits. The corresponding

decoder D delivers the ball center xi, which guarantees that
the resulting error satisfies �D(E(x)) − x� ≤ ε.

We proceed with a simple example ( [62, Example 5.2])
computing an upper bound on the metric entropy of the
interval C = [−1, 1] in R with respect to the metric ρ(x, x�) =
|x−x�|. To this end, we divide C into intervals of length 2ε by
setting xi = −1+2(i−1)ε, for i ∈ [1, L], where L = � 1

ε�+1.
This guarantees that, for every point x ∈ [−1, 1], there is an
i ∈ [1, L] such that |x− xi| ≤ ε, which, in turn, establishes

N(ε; C, ρ) ≤
%1
ε

&
+ 1 ≤ 1

ε
+ 1

and hence yields an upper bound on metric entropy according
to2

logN(ε; C, ρ) ≤ log
�

1
ε

+ 1
�

� log(ε−1). (14)

This result can be generalized to the d-dimensional unit cube
to yield

log(N(ε; C, ρ)) ≤ d log(1/ε+ 1) � d log(ε−1).

In order to show that the upper bound (14) correctly reflects
metric entropy scaling for C = [−1, 1] with respect to
ρ(x, x�) = |x − x�|, we would need a lower bound on
N(ε; C, ρ) that exhibits the same scaling (in ε) behavior.
A systematic approach to establishing lower bounds on metric
entropy is through the concept of packing, which will be
introduced next.

We start with the definition of the packing number of a
compact set C in a metric space (X , ρ).

Definition IV.4 ([62, Definition 5.4]): Let (X , ρ) be a met-
ric space. An ε-packing of a compact set C ⊆ X with respect to
the metric ρ is a set {x1, . . . , xN} ⊆ C such that ρ(xi, xj) > ε,
for all distinct i, j. The ε-packing number M(ε;X , ρ) is the
cardinality of the largest ε-packing.

An ε-packing is a collection of nonintersecting balls of
radius ε/2 and centered at elements in X . Although different,
the covering number and the packing number provide essen-
tially the same measure of size of a set as formalized next.

Lemma IV.5 ([62, Lemma 5.5]): Let (X , ρ) be a metric
space and C a compact set in X . For all ε > 0, the packing
and the covering number are related according to

M(2ε; C, ρ) ≤ N(ε; C, ρ) ≤M(ε; C, ρ).
Proof [62], [63]: First, choose a minimal ε-covering and

a maximal 2ε-packing of C. Since no two centers of the
2ε-packing can lie in the same ball of the ε-covering, it follows
that M(2ε; C, ρ) ≤ N(ε; C, ρ). To establish N(ε; C, ρ) ≤
M(ε; C, ρ), we note that, given a maximal packing M(ε; C, ρ),
for any x ∈ C, we have the center of at least one of the balls
in the packing within distance less than ε. If this were not
the case, we could add another ball to the packing thereby
violating its maximality. This maximal packing hence also
provides an ε-covering and since N(ε; C, ρ) is a minimal
covering, we must have N(ε; C, ρ) ≤M(ε; C, ρ).

2The notation f(ε) � g(ε), as ε → 0, means that there are constants
c, C, ε0 > 0 such that cf(ε) ≤ g(ε) ≤ Cf(ε), for all ε ≤ ε0. For ease of
exposition, we shall usually omit the qualifier ε→ 0.
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We now return to the example in which we computed an
upper bound on the metric entropy of C = [−1, 1] with respect
to ρ(x, x�) = |x − x�| and show how Lemma IV.5 can be
employed to establish the scaling behavior of metric entropy.
To this end, we simply note that the points xi = −1 + 2(i−
1)ε, i ∈ [1, L], are separated according to |xi − xj | = 2ε >
ε, for all i �= j, which implies that M(ε; C, | · |) ≥ L =
�1/ε�+1 ≥ 1

ε . Combining this with the upper bound (14) and
Lemma IV.5, we obtain logN(ε; C, | · |) � log(ε−1). Likewise,
it can be established that logN(ε; C, � · �) � d log(ε−1) for
the d-dimensional unit cube. This illustrates how an explicit
construction of a packing set can be used to determine the
scaling behavior of metric entropy.

We next formalize the notion that metric entropy is deter-
mined by the volume of the corresponding covering balls.
Specifically, the following result establishes a relationship
between a certain volume ratio and metric entropy.

Lemma IV.6 ([62, Lemma 5.7]): Consider a pair of norms
� · � and � · �� on Rd, and let B and B� be their corresponding
unit balls, i.e., B = {x ∈ Rd|�x� ≤ 1} and B� = {x ∈
Rd|�x�� ≤ 1}. Then, the ε-covering number of B in the � · ��-
norm satisfies�

1
ε

�d
vol(B)
vol(B�)

≤ N(ε;B, � · ��) ≤ vol(2
εB + B�)
vol(B�)

. (15)

Proof: [62] Let {x1, . . . , xN(ε;B,�·��)} be an ε-covering
of B in � · ��-norm. Then, we have

B ⊆
N(ε;B,�·��)$

j=1

{xj + εB�},

which implies vol(B) ≤ N(ε;B, � · ��) εd vol(B�), thus estab-
lishing the lower bound in (15). The upper bound is obtained
by starting with a maximal ε-packing {x1, . . . , xM(ε;B,�·��)} of
B in the �·��-norm. The balls {xj+ ε

2B�, j = 1, . . . ,M(ε;B, �·
��)} are all disjoint and contained within B + ε

2B�. We can
therefore conclude that

M(ε;B,�·��)�
j=1

vol
�
xj +

ε

2
B�
�
≤ vol

�
B +

ε

2
B�
�
,

and hence

M(ε;B, � · ��) vol
�ε

2
B�
�
≤ vol

�
B +

ε

2
B�
�
.

Finally, we have vol( ε
2B�) = ( ε

2 )dvol(B�) and
vol(B + ε

2B�) = ( ε
2 )dvol(2

εB + B�), which, together with
M(ε;B, � · ��) ≥ N(ε;B, � · ��) due to Lemma IV.5, yields
the upper bound in (15).

This result now allows us to establish the scaling of the
metric entropy of unit balls in terms of their own norm,
thus yielding a measure of the massiveness of unit balls
in d-dimensional spaces. Specifically, we set B� = B in
Lemma IV.6 and get

vol

�
2
ε
B + B�

�
= vol

��
2
ε

+ 1
�
B
�

=
�

2
ε

+ 1
�d

vol(B),

which when used in (15) yields N(ε;B, �·�) � ε−d and hence
results in metric entropy scaling according to log(N(ε;B, � ·
�)) � d log(ε−1). Particularizing this result to the unit ball
Bd
∞ = [−1, 1]d and the metric � · �∞, we recover the result of

our direct analysis in the example above.
So far we have been concerned with the metric entropy

of subsets of Rd. We now proceed to analyzing the metric
entropy of function classes, which will eventually allow us to
establish the desired connection between the optimal exponent
γ∗(C) and metric entropy. We begin with the simple one-
parameter function class considered in [62, Example 5.9] and
follow closely the exposition in [62]. For a fixed θ, define the
real-valued function fθ(x) = 1− e−θx, and consider the class

P = {fθ : [0, 1] → R | θ ∈ [0, 1]}.
The set P constitutes a metric space under the sup-norm given
by �f − g�L∞([0,1]) = supx∈[0,1] |f(x)− g(x)|. We show that
the covering number of P satisfies

1 +
'

1 − 1/e
2ε

(
≤ N(ε;P , � · �L∞([0,1])) ≤ 1

2ε
+ 2,

which leads to the scaling behavior

N(ε;P , � · �L∞([0,1])) � ε−1

and hence to metric entropy scaling according to
log(N(ε;P , � · �L∞([0,1]))) � log(ε−1). We start by
establishing the upper bound. For given ε ∈ [0, 1], set
T = � 1

2ε�, and define the points θi = 2εi, for i = 0, 1, . . . , T .
By also adding the point θT+1 = 1, we obtain a collection of
T + 2 points {θ0, θ1, . . . , θT+1} in [0, 1]. We show that the
associated functions {fθ0, fθ1 , . . . , fθT+1} form an ε-covering
for P . Indeed, for any fθ ∈ P , we can find some θi in the
covering such that |θ − θi| ≤ ε. We then have

�fθ − fθi�L∞([0,1]) = max
x∈[0,1]

|e−θx − e−θix| ≤ |θ − θi|,

where we used, for θ < θi,

max
x∈[0,1]

|e−θx − e−θix| = max
x∈[0,1]

(e−θx − e−θix)

= max
x∈[0,1]

e−θx(1 − e−(θi−θ)x)

≤ max
x∈[0,1]

(1 − e−(θi−θ)x)

≤ max
x∈[0,1]

(θi − θ)x

≤ θi − θ = |θ − θi|,
as a consequence of 1 − e−x ≤ x, for x ∈ [0, 1], which is
easily verified by noting that the function g(x) = 1 − e−x − x
satisfies g(0) = 0 and g�(x) ≤ 0, for x ∈ [0, 1]. The case
θ > θi follows similarly. In summary, we have shown that

N(ε;P , � · �L∞([0,1])) ≤ T + 2 ≤ 1
2ε

+ 2.

In order to derive the lower bound, we first bound the packing
number from below and then use Lemma IV.5. We start by
constructing an explicit packing as follows. Set θ0 = 0 and
define θi = − log(1−εi), for all i such that θi ≤ 1. The largest
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index T such that this holds is given by T = � 1−1/e
ε �.

Moreover, note that for all i, j with i �= j, we have

�fθi − fθj�L∞([0,1]) ≥ |fθi(1) − fθj (1)| = |ε(i− j)| ≥ ε.

We can therefore conclude that

M(ε;P , � · �L∞([0,1])) ≥
'

1 − 1/e
ε

(
+ 1,

and hence, due to the lower bound in Lemma IV.5,

N(ε;P , � · �L∞([0,1])) ≥M(2ε;P , � · �L∞([0,1]))

≥
'

1 − 1/e
2ε

(
+ 1,

as claimed. We have thus established that the function class
P has metric entropy scaling according to

log(N(ε;P , � · �L∞([0,1]))) � log(1/ε), as ε→ 0.

This rate is typical for one-parameter function classes.
We now turn our attention to richer function classes and

start by considering Lipschitz functions on the d-dimensional
unit cube, meaning real-valued functions on [0, 1]d such that

|f(x) − f(y)| ≤ L�x− y�∞, for all x, y ∈ [0, 1]d.

This class, denoted as FL([0, 1]d), has metric entropy scaling
[62], [64]

logN(ε;FL, � · �L∞([0,1]d)) � (L/ε)d. (16)

Contrasting the exponential dependence of metric entropy in
(16) on the ambient dimension d to the linear dependence we
identified earlier for simpler sets such as unit balls in Rd,
where we had

logN(ε;B, � · �∞) � d log(ε−1),

shows that FL([0, 1]d) is significantly more massive.
We are now ready to relate the optimal exponent γ∗(C) in

Definition IV.1 to metric entropy scaling. All the examples
of metric entropy scaling we have seen exhibit a behavior
that fits the law log(N(ε; C, � · �)) � ε−1/γ or log(N(ε; C, � ·
�)) � ε−1/γ log(ε−1)β . The optimal exponent is hence a crude
measure of growth insensitive to log-factors or similar factors
that are dominated by the growth of ε−1/γ .

While we restrict ourselves to the approximation of func-
tions on Euclidean domains, the framework described in
this section can be extended to functions on manifolds (see
e.g. [65]). As such, an interesting direction for future research
would be the extension of the deep neural network approxima-
tion theory developed in this paper to functions on manifolds.
First results on the neural network approximation of functions
on manifolds have been reported in [13], [57], [66]. For further
reading on the general subject of function approximation on
manifolds, we recommend [67] and references therein.

V. APPROXIMATION WITH DICTIONARIES

We now show how Kolmogorov-Donoho rate-distortion the-
ory can be put to work in the context of optimal approximation
with dictionaries. Again, this subsection is of review nature.
We start with a brief discussion of basics on optimal approx-
imation in Hilbert spaces. Specifically, we shall consider two
types of approximation, namely linear and nonlinear.

Let H be a Hilbert space equipped with inner product �·, ·�
and induced norm � · �H and let ek, k = 1, 2, . . . , be an
orthonormal basis for H. For linear approximation, we use the
linear space HM := span{ek : 1 ≤ k ≤ M} to approximate
a given element f ∈ H. We measure the approximation error
by

EM (f) := inf
g∈HM

�f − g�H.

In nonlinear approximation, we consider best M -term approx-
imation, which replaces HM by the set ΣM consisting of all
elements g ∈ H that can be expressed as

g =
�
k∈Λ

ckek,

where Λ ⊆ N is a set of indices with |Λ| ≤ M . Note that,
in contrast to HM , the set ΣM is not a linear space as a linear
combination of two elements in ΣM will, in general, need
2M terms in its representation by the ek. Analogous to EM ,
we define the error of best M -term approximation

ΓM (f) := inf
g∈ΣM

�f − g�H.

The key difference between linear and nonlinear approxima-
tion resides in the fact that in nonlinear approximation, we can
choose the M elements ek participating in the approximation
of f freely from the entire orthonormal basis whereas in linear
approximation we are constrained to the first M elements.
A classical example for linear approximation is the approx-
imation of periodic functions by the Fourier series elements
corresponding to the M lowest frequencies (assuming natural
ordering of the dictionary). This approach clearly leads to
poor approximation if the function under consideration con-
sists of high-frequency components. In contrast, in nonlinear
approximation we would seek the M frequencies that yield
the smallest approximation error. In summary, it is clear that
(nonlinear) best M -term approximation can achieve smaller
approximation error than linear M -term approximation.

We shall consider nonlinear approximation in arbitrary,
possibly redundant, dictionaries, i.e., in frames [68], and will
exclusively be interested in the case H = L2(Ω), in particular
the approximation error will be measured in terms of L2(Ω)-
norm. Specifically, let C be a set of functions in L2(Ω) and
consider a countable family of functions D := (ϕi)i∈N ⊆
L2(Ω), termed dictionary.

We consider the best M -term approximation error of f ∈ C
in D defined as follows.

Definition V.1 ([58]): Given d ∈ N, Ω ⊆ Rd, a function
class C ⊆ L2(Ω), and a dictionary D = (ϕi)i∈N ⊆ L2(Ω),
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we define, for f ∈ C and M ∈ N,

ΓD
M (f) := inf

If,M ⊆ N,
|If,M |=M,(ci)i∈If,M

������f −
�

i∈If,M

ciϕi

������
L2(Ω)

. (17)

We call ΓD
M (f) the best M -term approximation error of f

in D. Every fM =
�

i∈If,M
ciϕi attaining the infimum in

(17) is referred to as a best M -term approximation of f in D.
The supremal γ > 0 such that

sup
f∈C

ΓD
M (f) ∈ O(M−γ), M → ∞,

will be denoted by γ∗(C,D). We say that the best M -term
approximation rate of C in the dictionary D is γ∗(C,D).

Function classes C widely studied in the approximation the-
ory literature include unit balls in Lebesgue, Sobolev, or Besov
spaces [59], as well as α-cartoon-like functions [69]. A wealth
of structured dictionaries D is provided by the area of applied
harmonic analysis, starting with wavelets [70], followed by
ridgelets [39], curvelets [71], shearlets [72], parabolic mole-
cules [73], and most generally α-molecules [69], which
include all previously named dictionaries as special cases.
Further examples are Gabor frames [17], Wilson bases [74],
and wave atoms [18].

The best M -term approximation rate γ∗(C,D) according
to Definition V.1 quantifies how difficult it is to approxi-
mate a given function class C in a fixed dictionary D. It is
sensible to ask whether for given C, there is a fundamental
limit on γ∗(C,D) when one is allowed to vary over D. To
answer this question, we first note that for every dense (and
countable) D, for any given f ∈ C, by density of D, there
exists a single dictionary element that approximates f to
within arbitrary accuracy thereby effectively realizing a 1-term
approximation for arbitrary approximation error ε. Formally,
this can be expressed through γ∗(C,D) = ∞. Identifying this
single dictionary element or, more generally, the M elements
participating in the best M -term approximation is in general,
however, practically infeasible as it entails searching through
the infinite set D and requires an infinite number of bits to
describe the indices of the participating elements. This insight
leads to the concept of “best M -term approximation subject
to polynomial-depth search” as introduced by Donoho in [15].
Here, the basic idea is to restrict the search for the elements
in D participating in the best M -term approximation to the
first π(M) elements of D, with π a polynomial. We formalize
this under the name of effective best M -term approximation
as follows.

Definition V.2: Let d ∈ N, Ω ⊆ R
d, C ⊆ L2(Ω) be compact,

and D = (ϕi)i∈N ⊆ L2(Ω). We define for M ∈ N and π a
polynomial

επ
C,D(M)

(18)

:= sup
f∈C

inf
If,M⊆{1,2,...,π(M)},
|If,M |=M, |ci|≤π(M)

������f−
�

i∈If,M

ciϕi

������
L2(Ω)

and

γ∗,eff (C,D) :=sup{γ ≥ 0: ∃ polynomial π s.t.
(19)

επ
C,D(M)∈O(M−γ), M → ∞}.

We refer to γ∗,eff (C,D) as the effective best M -term approx-
imation rate of C in the dictionary D.

Note that we required the coefficients ci in the approximant
in Definition V.2 to be polynomially bounded in M . This
condition, not present in [14], [60] and easily met for generic
C and D, is imposed for technical reasons underlying the
transference results in Section VII. Strictly speaking—relative
to [14], [60]—we hence get a subtly different notion of approx-
imation rate. Exploring the implications of this difference is
certainly worthwhile, but deemed beyond the scope of this
paper.

We next present a central result in best M -term approxima-
tion theory stating that for compact C ⊆ L2(Ω), the effective
best M -term approximation rate in any dictionary D is upper-
bounded by γ∗(C) and hence limited by the “description com-
plexity” of C. This endows γ∗(C) with operational meaning.

Theorem V.3 ([14], [60]): Let d ∈ N, Ω ⊆ Rd, and let C ⊆
L2(Ω) be compact. The effective best M -term approximation
rate of the function class C ⊆ L2(Ω) in the dictionary
D = (ϕi)i∈N ⊆ L2(Ω) satisfies

γ∗,eff(C,D) ≤ γ∗(C).

In light of this result the following definition is natural (see
also [60]).

Definition V.4 (Kolmogorov-Donoho Optimality): Let d ∈
N, Ω ⊆ Rd, and let C ⊆ L2(Ω) be compact. If the effective
best M -term approximation rate of the function class C ⊆
L2(Ω) in the dictionary D = (ϕi)i∈N ⊆ L2(Ω) satisfies

γ∗,eff(C,D) = γ∗(C),

we say that the function class C is optimally representable
by D.

As the ideas underlying the proof of Theorem V.3 are
essential ingredients in the development of a kindred theory
of best M -weight approximation rates for neural networks,
we present a detailed proof, which is similar to that in [60].
We perform, however, some minor technical modifications
with an eye towards rendering the proof a suitable genesis for
the new theory of best M -weight approximation with neural
networks, developed in the next section. The spirit of the
proof is to construct, for every given M ∈ N an encoder that,
for each f ∈ C, maps the indices of the dictionary elements
participating in the effective best M -term approximation3 of f ,
along with the corresponding coefficients ci, to a bitstring.
This bitstring needs to be of sufficient length for the decoder
to be able to reconstruct an approximation to f with an
error which is of the same order as that of the best M -term
approximation we started from. As elucidated in the proof,
this can be accomplished while ensuring that the length of the

3Note that as we have an infimum in (18) an effective best M -term
approximation need not exist, but we can pick an M -term approximation
that yields an error arbitrarily close to the infimum.
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bitstring is proportional to M log(M), which upon noting that
ε = M−γ implies M = ε−1/γ , establishes optimality.

Proof of Theorem V.3: The proof will be based on show-
ing that for every γ ∈ R+ the following Implication (I) holds:
Assume that there exist a constant C > 0 and a polynomial
π such that for every M ∈ N, the following holds: For every
f ∈ C, there are an index set If,M ⊆ {1, 2, . . . , π(M)} and
coefficients (ci)i∈If,M

⊆ R with |ci| ≤ π(M) so that��f −
�

i∈If,M

ciϕi

��
L2(Ω)

≤ CM−γ . (20)

This implies the existence of a constant C� > 0 such that for
every M ∈ N, there is an encoder-decoder pair (EM , DM ) ∈
E�(M) × D�(M) with �(M) ≤ C�M log(M) and

�f −DM (EM (f))�L2(Ω) ≤ C�M−γ . (21)

The implication will be proven by explicit construction. For
a given f ∈ C, we pick an M -term approximation according
to (20) and encode the associated index set If,M and weights
ci as follows. First, note that owing to |If,M | ≤ π(M), each
index in If,M can be represented by at most Cπ log(M) bits;
this results in a total of CπM log(M) bits needed to encode the
indices of all dictionary elements participating in the M -term
approximation. The encoder and the decoder are assumed to
know Cπ, which allows stacking of the binary representations
of the indices such that the decoder can read them off uniquely
from the sequence of their binary representations.

We proceed to the encoding of the coefficients ci. First, note
that even though the ci are bounded (namely, polynomially
in M ) by assumption, we did not impose bounds on the
norms of the dictionary elements {ϕi}i∈If,M

participating in
the M -term approximation under consideration. Hence, we can
not, in general, expect to be able to control the approximation
error incurred by reconstructing f from quantized ci. We can
get around this by performing a Gram-Schmidt orthogonaliza-
tion on the dictionary elements {ϕi}i∈If,M

and, as will be seen
later, using the fact that the function class C was assumed to
be compact. Specifically, this Gram-Schmidt orthogonalization
yields a set of functions {ϕ̃i}i∈Ĩ

f,�M
, with �M ≤ M , that has

the same span as {ϕi}i∈If,M
. Next, we define (implicitly) the

coefficients c̃i according to�
i∈Ĩ

f,�M

c̃iϕ̃i =
�

i∈If,M

ciϕi. (22)

Now, note that�������
�

i∈Ĩ
f,�M

c̃iϕ̃i

�������
2

L2(Ω)

=

�������f − (f −
�

i∈Ĩ
f,�M

c̃iϕ̃i)

�������
2

L2(Ω)

≤ �f�2
L2(Ω) +

������f −
�

i∈If,M

ciϕi

������
2

L2(Ω)

.

Making use of the orthonormality of the ϕ̃i, we can conclude
that �

i∈Ĩ
f,�M

|c̃i|2 ≤ sup
f∈C

�f�2
L2(Ω) + C2M−2γ .

As C is compact by assumption, we have supf∈C �f�2
L2(Ω) <

∞, which establishes that the coefficients c̃i are uniformly
bounded. This, in turn, allows us to quantize them, specifically,
we shall round the c̃i to integer multiples of M−(γ+1/2), and
denote the resulting rounded coefficients by ĉi. As the c̃i are
uniformly bounded, this results in a number of quantization
levels that is proportional to M (γ+1/2). The number of bits
needed to store the binary representations of the quantized
coefficients is therefore proportional to M log(M). Again,
the proportionality constant is assumed known to encoder and
decoder, which allows us to stack the binary representations of
the quantized coefficients in a uniquely decodable manner. The
resulting bitstring is then appended to the bitstring encoding
the indices of the participating dictionary elements. We finally
note that the specific choice of the exponent γ + 1/2 is
informed by the upper bound on the reconstruction error we
are allowed, this will be made explicit below in the description
of the decoder.

In summary, we have mapped the function f to a bitstring
of length O(M log(M)). The decoder is presented with this
bitstring and reconstructs an approximation to f as follows.
It first reads out the indices of the set If,M and the quantized
coefficients ĉi. Recall that this is uniquely possible. Next,
the decoder performs a Gram-Schmidt orthonormalization on
the set of dictionary elements indexed by If,M . The error
resulting from reconstructing the function f from the quan-
tized coefficients ĉi rather than the exact coefficients c̃i can
be bounded according to�������f −

�
i∈Ĩ

f,�M

ĉiϕ̃i

�������
L2(Ω)

=

�������f −
�

i∈Ĩ
f,�M

c̃iϕ̃i +
�

i∈Ĩ
f,�M

c̃iϕ̃i −
�

i∈Ĩ
f,�M

ĉiϕ̃i

�������
L2(Ω)

(23)

≤

�������f −
�

i∈Ĩ
f,�M

c̃iϕ̃i

�������
L2(Ω)

+

�������
�

i∈Ĩ
f,�M

(c̃i − ĉi)ϕ̃i

�������
L2(Ω)

=

�������f −
�

i∈Ĩ
f,�M

c̃iϕ̃i

�������
L2(Ω)

+

⎛⎜⎝ �
i∈Ĩ

f,�M

|c̃i − ĉi|2
⎞⎟⎠

1/2

,

where in the last step we again exploited the orthonormality
of the ϕ̃i. Next, note that due to the choice of the quantizer
resolution, we have |c̃i− ĉi|2 ≤ C��M−2γ−1 for some constant
C��. With �M ≤M this yields�

i∈Ĩ
f,�M

|c̃i − ĉi|2 ≤ C��M−2γ .

Combining (20), (22), and (23), we obtain�������f −
�

i∈Ĩ
f,�M

ĉiϕ̃i

�������
L2(Ω)

≤ C�M−γ ,
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TABLE I

OPTIMAL EXPONENTS AND CORRESPONDING OPTIMAL DICTIONARIES. U(X) = {f ∈ X : �f�X ≤ 1} DENOTES THE UNIT BALL IN THE SPACE X
AND Ω ⊆ Rd IS A LIPSCHITZ DOMAIN. RECALL THAT COMPACTNESS OF THESE UNIT BALLS IS W.R.T.L2-NORM

for some constant C�. As the length of the bitstring used in
this construction is proportional to M log(M), the claim (21)
is established.

Now, we note that the antecedent of Implication (I) holds
for all γ < γ∗,eff(C,D). Assume next, towards a contradiction,
that the antecedent holds for a γ > γ∗(C). This would imply
that for any γ� < γ,

inf
(E,D)∈EL×DL

sup
f∈C

�D(E(f)) − f�L2(Ω)

(24)
∈ O	L−γ�


, L→ ∞.

In particular, (24) would hold for some γ� > γ∗(C) which,
owing to (13) stands in contradiction to the definition of γ∗(C).
This completes the proof.

The optimal exponent γ∗(C) is known for various function
classes such as unit balls in Besov spaces Bm

p,q(R
d) with p, q ∈

(0,∞] and m > d(1/p − 1/2)+, where γ∗(C) = m/d (see
[76]), and unit balls in (polynomially) weighted modulation
spaces M s

p,p(R
d) with p ∈ (1, 2) and s ∈ R+, where γ∗(C) =

( 1
p − 1

2 + 2s
d )−1 (see [77]). A further example is the set of

β-cartoon-like functions, which are β-smooth on some
bounded d-dimensional domain with sufficiently smooth
boundary and zero otherwise. Here, we have γ∗(C) =
β(d− 1)/2 (see [23], [78], [79]). These examples along with
additional ones are summarized in Table I. For an extensive
summary of metric entropy results and techniques for their
derivation, we also refer to [64].

We conclude this section with general remarks on cer-
tain formal aspects of the Kolmogorov-Donoho rate-distortion
framework. First, we note that for the set C ⊆ L2(Ω) to have a
well-defined optimal exponent it must be relatively compact9.
This follows from the fact that the set over which the minimum
in the definition (12) of L(ε, C) is taken must be nonempty for
every ε ∈ (0,∞). To see this, note that every length-L(ε, C)
encoder-decoder pair induces an ε-covering of C with at
most 2L(ε,C) balls (and ball centers {D(E(f))}f∈C). It hence
follows that C must be totally bounded and thus relatively
compact as a consequence of L2(Ω) being a complete metric
space [80, Thm. 45.1].

9For the sake of simplicity, we assume, however, compactness throughout
even though relative compactness (i.e. having a compact closure) would be
sufficient.

As shown in the proof of Theorem V.3, effective best
M -term approximations construct encoder-decoder pairs and
thereby induce ε-coverings. By the arguments just made, this
implies that also γ∗,eff(C,D) is well-defined only for compact
function classes C.

A consequence of the compactness requirement on C is that
the spaces in Table I either consist of functions on bounded
domains or, in the case of modulation spaces, are equipped
with a weighted norm. In order to provide intuition on why
this must be so, let us consider a function space (X, � · �X)
with X ⊆ L2(Rd) and � · �X translation invariant. Take ε > 0
and f ∈ X with �f�X = 1 and choose C > 0 such that
�f�L2([−C,C]d) >

4
5�f�L2(Rd). Now, consider the family of

translates of f given by fi(x) := f(x − 2Ci), i ∈ Zd, and
note that �fi�X = 1 for all i ∈ Zd by translation invariance
of � · �X . Furthermore, we have

�fi�L2([−C,C]d) =
�
�fi�2

L2(Rd) − �fi�2
L2(Rd\[−C,C]d)

� 1
2

≤
�
�f�2

L2(Rd) − �f�2
L2([−C,C]d)

� 1
2

< 3
5�f�L2(Rd)

for all i ∈ Zd\{0} by construction. This, in turn, implies

�fi − fj�L2(Rd) = �fi−j − f�L2(Rd)

≥ �fi−j − f�L2([−C,C]d) (25)

> 1
5�f�L2(Rd)

for all i, j ∈ Zd, with i �= j, by the reverse triangle inequality.
As such no ε-ball (w.r.t. L2(Rd)-norm) with ε ≤ 1

10�f�L2(Rd)

can contain more than one of the infinitely many (fi)i∈Zd

which are, however, all contained in the unit ball U(X) of the
space (X, � · �X). This implies that U(X) cannot be totally
bounded and thereby not relatively compact (w.r.t. L2(Rd)-
norm). Somewhat nonchalantly speaking, for spaces equipped
with translation-invariant norms this issue can be avoided by
considering functions that live on a bounded domain, which
ensures that (26) pertains only to a finite number of translates.
Alternatively, for spaces of functions living on unbounded
domains once can consider weighted norms that are not
translation invariant. Here, the weighting effectively constrains
the functions to a bounded domain.
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The less restrictive concept of best M -term approximation
rate γ∗(C,D) (see Definition V.1) is, in apparent contrast, often
studied for noncompact function classes C.

In [75, Sec. 15.2] a condition for γ∗,eff(C,D) and γ∗(C,D)
to coincide is presented. Specifically, this condition, referred
to as tail compactness, is expressed as follows. Let C ⊆ L2(Ω)
be bounded and let D = {ϕi}i∈N be an ordered orthonormal
basis for C. We say that tail compactness holds if there exist
C, β > 0 such that for all N ∈ N,

sup
f∈C

�����f −
N�

i=1

�f, ϕi�ϕi

�����
L2(Ω)

≤ CN−β . (26)

In order to see that (26) implies γ∗,eff(C,D) = γ∗(C,D),
we consider, for fixed f ∈ C, the (unconstrained) best
M -term approximation fM =

�
i∈I�f, ϕi�ϕi with I ⊆ N,

|I| = M . We now modify this M -term approximation by
letting α := 
γ∗(C,D)/β� ∈ N and removing, in the expan-
sion fM =

�
i∈I�f, ϕi�ϕi, all terms corresponding to indices

that are larger than Mα. Recalling that in Definition V.2
the same polynomial π bounds the search depth and the size
of the coefficients, it follows that the modified approxima-
tion we just constructed obeys a polynomial depth search
constraint with constraining polynomial πα(x) = xα + S,
where S := supf∈C �f�L2(Ω). Here, owing to orthonormality
of D, S accounts for the size of the expansion coefficients
�f, ϕi�. In order to complete the argument, we need to show
that the additional approximation error incurred by remov-
ing terms in fM =

�
i∈I�f, ϕi�ϕi is in O(M−γ∗(C,D)),

i.e., it is of the same order as the error corresponding to the
original (unconstrained) best M -term approximation. Due to
orthonormality of D this additional error is given by the
norm of

�
i∈I,i >πα(M)�f, ϕi�ϕi and can, by virtue of (26),

be bounded as������
�

i∈I,i>πα(M)

�f, ϕi�ϕi

������
L2(Ω)

≤
������

∞�
i=πα(M)+1

�f, ϕi�ϕi

������
L2(Ω)

=

������f −
πα(M)�

i=1

�f, ϕi�ϕi

������
L2(Ω)

≤ C(πα(M))−β ∈ O(M−γ∗(C,D)),

which establishes the claim. We have hence shown that
under tail compactness of arbitrary rate β > 0, γ∗(C,D) =
γ∗,eff (C,D), and hence there is no cost incurred by imposing
a polynomial depth search constraint combined with a poly-
nomial bound on the size of the expansion coefficients. We
hasten to add that the assumptions stated at the beginning
of this paragraph together with what was just established
imply that γ∗,eff (C,D) is, indeed, well-defined. For the more
general case of D a frame, we refer to [60, Sec. 5.4.3]
for analogous arguments. Finally, we remark that the tail
compactness inequality (26) can be interpreted as quantifying
the rate of linear approximation for C in D. Two examples of

pairs (C,D) satisfying tail compactness, namely Besov spaces
with wavelet bases and modulation spaces with Wilson bases,
are provided in Appendices B and C, respectively.

As already mentioned, a larger optimal exponent γ∗(C)
leads to faster error decay (specifically according to L−γ∗(C))
and hence corresponds to a function class of smaller
complexity. As such, techniques for deriving lower bounds
on the optimal exponent are often based on variations of the
approach employed in the proof of Theorem V.3, namely
on the explicit construction of encoder-decoder pairs (in the
case of the proof of Theorem V.3 by encoding the dictionary
elements participating in the M -term approximation). A
powerful method for deriving upper bounds on the optimal
exponent is the hypercube embedding approach proposed
by Donoho in [79]; the basic idea here is to show that the
function class C under consideration contains a sufficiently
complex embedded set of orthogonal hypercubes and to then
find the exponent corresponding to this set. An interesting
alternative technique for deriving optimal exponents was
proposed in the context of modulation spaces in [77]. The
essence of this approach is to exploit the isomorphism
between weighted modulation spaces and weighted mixed-
norm sequence spaces [17] and to then utilize results about
entropy numbers of operators between sequence spaces.

VI. APPROXIMATION WITH DEEP NEURAL NETWORKS

Inspired by the theory of best M -term approximation
with dictionaries, we now develop the new concept of best
M -weight approximation through neural networks. At the
heart of this theory lies the interpretation of the network
weights as the counterpart of the coefficients ci in best
M -term approximation. In other words, parsimony in terms
of the number of participating elements in a dictionary is
replaced by parsimony in terms of network connectivity. Our
development will parallel that for best M -term approximation
in the previous section.

Before proceeding to the specifics, we would like to issue
a general remark. While the neural network approximation
results in Section III were formulated in terms of L∞-norm,
we shall be concerned with L2-norm approximation here,
on the one hand paralleling the use of L2-norm in the context
of best M -term approximation, and on the other hand allowing
for the approximation of discontinuous functions by ReLU
neural networks, which, owing to the continuity of the ReLU
nonlinearity, necessarily realize continuous functions.

We start by introducing the concept of best M -weight
approximation rate.

Definition VI.1: Given d ∈ N, Ω ⊆ Rd, and a function class
C ⊆ L2(Ω), we define, for f ∈ C and M ∈ N,

ΓN
M (f) := inf

Φ∈Nd,1
M(Φ)≤M

�f − Φ�L2(Ω). (27)

We call ΓN
M (f) the best M -weight approximation error of f .

The supremal γ > 0 such that

sup
f∈C

ΓN
M (f) ∈ O(M−γ), M → ∞,
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will be denoted by γ∗N (C). We say that the best M -weight
approximation rate of C by neural networks is γ∗N (C).

We emphasize that the infimum in (27) is taken over all
networks with fixed input dimension d, no more than M
nonzero (edge and node) weights, and arbitrary depth L. In
particular, this means that the infimum is with respect to all
possible network topologies and weight choices. The best M -
weight approximation rate is fundamental as it benchmarks all
algorithms that map a function f and an ε > 0 to a neural
network approximating f with error no more than ε.

The two restrictions underlying the concept of effective best
M -term approximation through dictionaries, namely polyno-
mial depth search and polynomially bounded coefficients, are
next addressed in the context of approximation through deep
neural networks. We start by noting that the need for the for-
mer is obviated by the tree-like-structure of neural networks.
To see this, first note that W(Φ) ≤ M(Φ) and L(Φ) ≤ M(Φ).
As the total number of nonzero weights in the network can not
exceed L(Φ)W(Φ)(W(Φ)+1), this yields at most O(M(Φ)3)
possibilities for the “locations” (in terms of entries in the
A� and the b�) of the M(Φ) nonzero weights. Encoding the
locations of the M(Φ) nonzero weights hence requires

log
��

CM(Φ)3

M(Φ)

��
= O(M(Φ) log(M(Φ)))

bits. This assumes, however, that the architecture of the
network, i.e., the number of layers L(Φ) and the Nk are
known. Proposition VI.7 below shows that the architecture
can, indeed, also be encoded with O(M(Φ) log(M(Φ)))
bits. In summary, we can therefore conclude that the tree-
like-structure of neural networks automatically guarantees
what we had to enforce through the polynomial depth search
constraint in the case of best M -term approximation.

Inspection of the approximation results in Section III reveals
that a sublinear growth restriction on L(Φ) as a function of
M(Φ) is natural. Specifically, the approximation results in
Section III all have L(Φ) proportional to a polynomial in
log(ε−1). As we are interested in approximation error decay
according to M(Φ)−γ , see Definition VI.1, this suggests to
restrict L(Φ) to growth that is polynomial in log(M(Φ)).

The second restriction imposed in the definition of effective
best M -term approximation, namely polynomially bounded
coefficients, will be imposed in monomorphic manner on the
magnitude of the weights. This growth condition will turn out
natural in the context of the approximation results we are inter-
ested in and will, together with polylogarithmic depth growth,
be seen below to allow rate-distortion-optimal quantization of
the network weights. We remark, however, that networks with
weights growing polynomially in M(Φ) can be converted into
networks with uniformly bounded weights at the expense of
increased—albeit still of polylogarithmic scaling in M(Φ)—
depth (see Proposition A.3). In summary, we will develop
the concept of “best M -weight approximation subject to
polylogarithmic depth and polynomial weight growth”.

We start by introducing the following notation for neural
networks with depth and weight magnitude bounded polylog-
arithmically respectively polynomially w.r.t. their connectivity.

Definition VI.2: For M,d, d� ∈ N, and π a polynomial,
we define

N π
M,d,d� := {Φ ∈ Nd,d� : M(Φ) ≤M,

L(Φ) ≤ π(log(M)),B(Φ) ≤ π(M)}.
Next, we formalize the notion of effective best M -weight

approximation rate subject to polylogarithmic depth and poly-
nomial weight growth.

Definition VI.3: Let d ∈ N, Ω ⊆ Rd, and let C ⊆ L2(Ω) be
compact. We define for M ∈ N and π a polynomial

επ
N (M) := sup

f∈C
inf

Φ∈Nπ
M,d,1

�f − Φ�L2(Ω)

and

γ∗,eff
N (C) := sup{γ ≥ 0: ∃ polynomial π s.t.

επ
N (M) ∈ O(M−γ),M → ∞}.

We refer to γ∗,eff
N (C) as the effective best M -weight approxi-

mation rate of C.
We now state the equivalent of Theorem V.3 for approxima-

tion by deep neural networks. Specifically, we establish that
the optimal exponent γ∗(C) constitutes a fundamental bound
on the effective best M -weight approximation rate of C as
well.

Theorem VI.4: Let d ∈ N, Ω ⊆ Rd, and let C ⊆ L2(Ω) be
compact. Then, we have

γ∗,eff
N (C) ≤ γ∗(C).

The key ingredients of the proof of Theorem VI.4 are
developed throughout this section and the formal proof appears
at the end of the section. Before getting started, we note that,
in analogy to Definition V.4, what we just found suggests the
following.

Definition VI.5: Let d ∈ N, Ω ⊆ R
d, and let C ⊆ L2(Ω)

be compact. We say that the function class C ⊆ L2(Ω) is
optimally representable by neural networks if

γ∗,eff
N (C) = γ∗(C).

It is interesting to observe that the fundamental limits of
effective best M -term approximation (through dictionaries)
and effective best M -weight approximation in neural net-
works are determined by the same quantity, although the
approximants in the two cases are vastly different. We have
linear combinations of elements of a dictionary under poly-
nomial weight growth of the coefficients and with the par-
ticipating functions identified subject to a polynomial-depth
search constraint in the former, and concatenations of affine
functions followed by nonlinearities under polynomial growth
constraints on the coefficients of the affine functions and
with a polylogarithmic growth constraint on the number of
concatenations in the latter case.

We now commence the program developing the proof of
Theorem VI.4. As in the arguments in the proof sketch of
Theorem V.3, the main idea is to compare the length of
the bitstring needed to encode the approximating network
to the minimax code length of the function class C to be
approximated. To this end, we will need to represent the
approximating network’s nonzero weights, its architecture,
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i.e., L and the Nk, and the nonzero weights’ locations as
a bitstring. As the weights are real numbers and hence
require, in principle, an infinite number of bits for their
binary representations, we will have to suitably quantize them.
In particular, the resolution of the corresponding quantizer will
have to increase appropriately with decreasing ε. To formalize
this idea, we start by defining the quantization employed.

Definition VI.6: Let m ∈ N and ε ∈ (0, 1/2). The network
Φ is said to have (m, ε)-quantized weights if all its weights
are elements of 2−m�log(ε−1)�Z ∩ [−ε−m, ε−m].

A key ingredient of the proof of Theorem VI.4 is the fol-
lowing result, which establishes a fundamental lower bound on
the connectivity of networks with quantized weights achieving
uniform error ε over a given function class C.

Proposition VI.7: Let d, d� ∈ N, Ω ⊆ Rd, C ⊆ L2(Ω), and
let π be a polynomial. Further, let

Ψ :
	
0, 1

2


× C → Nd,d�

be a map such that for every ε ∈ (0, 1/2), f ∈ C, the network
Ψ(ε, f) has (
π(log(ε−1))�, ε)-quantized weights and satisfies

sup
f∈C

�f − Ψ(ε, f)�L2(Ω) ≤ ε.

Then,
sup
f∈C

M(Ψ(ε, f)) /∈ O
�
ε−1/γ

�
, ε→ 0,

for all γ > γ∗(C).
Proof: The proof is by contradiction. Let γ > γ∗(C) and

assume that

sup
f∈C

M(Ψ(ε, f)) ∈ O(ε−1/γ), ε→ 0.

The contradiction will be effected by constructing encoder-
decoder pairs (Eε, Dε) ∈ E�(ε) × D�(ε) achieving uniform
error ε over C with �(ε) obeying (28), shown at the bottom
of the page, where C0, C1, q > 0 are constants not depending
on f, ε and γ > ν > γ∗(C). The specific form of the upper
bound (28) will become apparent in the construction of the
bitstring representing Ψ detailed below.

We proceed to the construction of the encoder-decoder
pairs (Eε, Dε) ∈ E�(ε) × D�(ε), which will be accomplished
by encoding the network architecture, its topology, and the
quantized weights in bitstrings of length �(ε) satisfying (28)
while guaranteeing unique reconstruction (of the network). For
the sake of notational simplicity, we fix ε ∈ (0, 1/2) and f ∈ C
and set Ψ := Ψ(ε, f), M := M(Ψ), and L := L(Ψ). Recall
that the number of nodes in layers 0, . . . , L is denoted by
N0, . . . , NL and that N0 = d,NL = d� (see Definition II.1).
Moreover, note that due to our nondegeneracy assumption
(see Remark II.2) we have

�L
�=0N� ≤ 2M and L ≤ M .

The bitstring representing Ψ is constructed according to the
following steps.

Step 1: If M = 0, we encode the network by a single 0.
Using the convention 0 log(0) = 0, we then note that (28)
holds trivially and we terminate the encoding procedure. Else,
we encode the network connectivity,M , by starting the overall
bitstring with M 1’s followed by a single 0. The length of this
bitstring is therefore given by M + 1.

Step 2: We continue by encoding the number of layers
which, due to L ≤ M , requires no more than 
log(M)�
bits. We thus reserve the next 
log(M)� bits for the binary
representation of L.

Step 3: Next, we store the layer dimensions N0, . . . , NL.
As L ≤ M and N� ≤ M , for all � ∈ {0, . . . , L}, owing
to nondegeneracy, we can encode the layer dimensions using
(M+1)
log(M)� bits. In combination with Steps 1 and 2 this
yields an overall bitstring of length at most

M
log(M)� +M + 2
log(M)� + 1. (29)

Step 4: We encode the topology of the graph associated
with the network Ψ. To this end, we enumerate all nodes by
assigning a unique index i to each one of them, starting from
the 0-th layer and increasing from left to right within a given
layer. The indices range from 1 to N :=

�L
�=0N� ≤ 2M .

Each of these indices can be encoded by a bitstring of length

log(N)�. We denote the bitstring corresponding to index i by
b(i) ∈ {0, 1}�log(N)� and let for all nodes, except for those in
the last layer, n(i) be the number of children of the node with
index i, i.e., the number of nodes in the next layer connected
to the node with index i via an edge. For each of these nodes i,
we form a bitstring of length n(i)
log(N)� by concatenating
the bitstrings indexing its children. We follow this string with
an all-zeros bitstring of length 
log(N)� to signal that all
children of the current node have been encoded. Overall, this
yields a bitstring of length

N−d��
i=1

(n(i) + 1)
log(N)� ≤ 3M
log(2M)�, (30)

where we used
�N−d�

i=1 n(i) ≤M .
Step 5: We encode the weights of Ψ. By assumption,

Ψ has (
π(log(ε−1))�, ε)-quantized weights, which means
that each weight of Ψ can be represented by no more than
Bε := 2(
π(log(ε−1))�
log(ε−1)� + 1) bits. For each node
i = 1, . . . , N , we reserve the first Bε bits to encode its
associated node weight and, for each of its children a bitstring
of length Bε to encode the weight corresponding to the edge
between the current node and that child. Concatenating the
results in ascending order of child node indices, we get a

�(ε) ≤ C0 · sup
f∈C

(M(Ψ(ε, f)) log(M(Ψ(ε, f))) + 1) (log(ε−1))q (28)

≤ C0

�
ε−1/γ log(ε−1/γ) + 1

�
(log(ε−1))q

≤ C1

�
ε−1/γ(log(ε−1))q+1 + (log(ε−1))q

�
∈ O

�
ε−1/ν

�
, for ε→ 0
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bitstring of length (n(i) + 1)Bε for node i, and an overall
bitstring of length

N−d��
i=1

(n(i) + 1)Bε + d�Bε ≤ 3MBε

representing the weights. Combining this with (29) and (30),
we find that the overall number of bits needed to encode the
network architecture, topology, and weights is no more than

3MBε + 3M
log(2M)� + (M + 2)
log(M)�
(31)

+M + 1.

The network can be recovered by sequentially reading out
M,L, the N�, the topology, and the quantized weights from the
overall bitstring. It is not difficult to verify that the individual
steps in the encoding procedure were crafted such that this
yields unique recovery. As (31) can be upper-bounded by

C0(M log(M) + 1)(log
	
ε−1



)q

for constants C0, q > 0 depending on π only, we have
constructed an encoder-decoder pair (Eε, Dε) ∈ E�(ε) × D�(ε)

with �(ε) satisfying (28). This concludes the proof.
Proposition VI.7 states that the connectivity growth rate of

networks with quantized weights achieving uniform approx-
imation error ε over a function class C must exceed
O	ε−1/γ∗(C)



, ε → 0. As Proposition VI.7 applies to net-

works that have each weight represented by a finite number of
bits scaling polynomially in log(ε−1), while guaranteeing that
the underlying encoder-decoder pair achieves uniform error ε
over C, it remains to establish that such a compatibility is,
indeed, possible. Specifically, this requires a careful interplay
between the network’s depth and connectivity scaling, and its
weight growth, all as a function of ε. Establishing that this
delicate balancing is implied by our technical assumptions is
the subject of the remainder of this section. We start with
a perturbation result quantifying how the error induced by
weight quantization in the network translates to the output
function realized by the network.

Lemma VI.8: Let d, d�, k ∈ N, D ∈ R+, Ω ⊆ [−D,D]d,
ε ∈ (0, 1/2), let Φ ∈ Nd,d� with M(Φ) ≤ ε−k, B(Φ) ≤ ε−k,
and let m ∈ N satisfy

m ≥ 3kL(Φ) + log(
D�). (32)

Then, there exists a network Φ̃ ∈ Nd,d� with (m, ε)-quantized
weights satisfying

sup
x∈Ω

�Φ(x) − Φ̃(x)�∞ ≤ ε.

More specifically, the network Φ̃ can be obtained simply
by replacing every weight in Φ by a closest element in
2−m�log(ε−1)�Z ∩ [−ε−m, ε−m].

Proof of Theorem VI.8: We first consider the case
L(Φ) = 1. Here, it follows from Definition II.1 that the
network simply realizes an affine transformation and hence

sup
x∈Ω

�Φ(x) − Φ̃(x)�∞ ≤ M(Φ)
D�2−m�log(ε−1)�−1 ≤ ε.

In the remainder of the proof, we can therefore assume
that L(Φ) ≥ 2. For simplicity of notation, we set L :=
L(Φ),M := M(Φ), and, as usual, write

Φ = WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1

with W�(x) = A�x + b�, A� ∈ RN�×N�−1 , and b� ∈ RN� .
We now consider the partial networks Φ� : Ω → RN� , � ∈
{1, 2, . . . , L− 1}, given by

Φ� :=

⎧⎨⎨⎨⎩
ρ ◦W1, � = 1
ρ ◦W2 ◦ ρ ◦W1, � = 2
ρ ◦W� ◦ ρ ◦W�−1 ◦ · · · ◦ ρ ◦W1, � ≥ 3

and set ΦL := Φ. We hasten to add that we decided—for
ease of exposition—to deviate from the convention used in
Definition II.1 and to have the partial networks include the
application of ρ at the end. Now, for � ∈ {1, 2, . . . , L},
let Φ̃� be the (partial) network obtained by replacing all
the entries of the A� and b� by a closest element in
2−m�log(ε−1)� Z ∩ [−ε−m, ε−m]. We denote these replace-
ments by Ã� and b̃�, respectively, and note that

max
i,j

|A�,i,j − Ã�,i,j | ≤ 1
2 2−m�log(ε−1)� ≤ 1

2 ε
m,

(33)
max

i,j
|b�,i,j − b̃�,i,j| ≤ 1

2 2−m�log(ε−1)� ≤ 1
2 ε

m.

The proof will be effected by upper-bounding the error build-
ing up across layers as a result of this quantization. To this
end, we define, for � ∈ {1, 2, . . . , L}, the error in the �-th
layer as

e� := sup
x∈Ω

�Φ�(x) − Φ̃�(x)�∞.

We further set C0 := 
D� and

C� := max{1, sup
x∈Ω

�Φ�(x)�∞}.

As each entry of the vector Φ�(x) ∈ RN� is obtained by
applying10 the 1-Lipschitz function ρ to the sum of a weighted
sum of at most N�−1 components of the vector Φ�−1(x) ∈
RN�−1 and a bias component b�,i, and B(Φ) ≤ ε−k by
assumption, we have for all � ∈ {1, 2, . . . , L},

C� ≤ N�−1ε
−kC�−1 + ε−k ≤ (N�−1 + 1) ε−kC�−1,

which implies, for all � ∈ {1, 2, . . . , L}, that

C� ≤ C0 ε
−k�

�−1)
i=0

(Ni + 1). (34)

Next, note that the components (Φ̃1(x))i, i ∈ {1, 2, . . . , N1},
of the vector Φ̃1(x) ∈ R

N1 can be written as

(Φ̃1(x))i = ρ

⎛⎝⎛⎝ N0�
j=1

Ã1,i,jxj

⎞⎠+ b̃1,i

⎞⎠ ,

10Note that going from ΦL−1 to ΦL the activation function is not applied
anymore, which nevertheless leads to the same estimate as the identity
mapping is 1-Lipschitz.
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which, combined with (33) and the fact that ρ is 1-Lipschitz
implies

e1 ≤ C0N0
εm

2 + εm

2 ≤ C0(N0 + 1) εm

2 . (35)

Due to ρ and the identity mapping being 1-Lipschitz, we have,
for � = 1, . . . , L, that (36), shown at the bottom of the page,
holds. As

|(Φ�−1(x))j − (Φ̃�−1(x))j | ≤ e�−1

and |(Φ�−1(x))j | ≤ C�−1 for all x ∈ Ω, j ∈ {1, . . . , N�−1} by
definition, and |A�,i,j | ≤ ε−k by assumption, upon invoking
(33), we get

|A�,i,j(Φ�−1(x))j − Ã�,i,j(Φ̃�−1(x))j |
≤ e�−1ε

−k + C�−1
εm

2 + e�−1
εm

2 .

Since ε ∈ (0, 1/2), it therefore follows from (36), that for all
� ∈ {2, . . . , L},

e� ≤ N�−1(e�−1ε
−k + C�−1

εm

2 + e�−1
εm

2 ) + εm

2 (37)
≤ (N�−1 + 1)(2e�−1ε

−k + C�−1
εm

2 ).

We now claim that, for all � ∈ {2, . . . , L},

e� ≤ 1
2 (2� − 1)C0ε

m−(�−1)k
�−1)
i=0

(Ni + 1), (38)

which we prove by induction. The base case � = 1 was already
established in (35). For the induction step we assume that (38)
holds for a given � which, in combination with (34) and (37),
implies

e�+1 ≤ 	
N� + 1)(2e�ε

−k + C�
εm

2



≤(N� + 1)

�
(2� − 1)C0ε

m−(�−1)kε−k
�−1)
i=0

(Ni + 1)

+ C0ε
−k� εm

2

�−1)
i=0

(Ni + 1)

�

=
1
2
(2�+1 − 1)C0ε

m−�k
�)

i=0

(Ni + 1).

This completes the induction argument and establishes (38).
Using 2L−1 ≤ ε−(L−1),

L−1)
i=0

(Ni + 1) ≤ML ≤ ε−kL,

and m ≥ 3kL+ log(
D�) by assumption, we get

eL ≤ 1
2 (2L − 1)C0ε

m−(L−1)k
L−1)
i=0

(Ni + 1)

≤ εm−(L−1+kL−k+log(�D�)+kL)

≤ εm−(3kL+log(�D�)−1) ≤ ε.

Recalling that supx∈Ω �Φ(x)− Φ̃(x)�∞ = eL, this completes
the proof.

We are now ready to finalize the proof of Theorem VI.4.
Proof of Theorem VI.4: Suppose towards a contradiction

that γ∗,eff
N (C) > γ∗(C) and let γ ∈ 	

γ∗(C), γ∗,eff
N (C)



. Then,

by Definition VI.3, there exist a polynomial π and a constant
C > 0 such that

sup
f∈C

inf
Φ∈Nπ

M,d,1

�f − Φ�L2(Ω) ≤ CM−γ , for all M ∈ N.

Setting Mε :=
*
(ε/(4C))−1/γ

+
, it follows that, for every f ∈

C and every ε ∈ (0, 1/2), there exists a neural network Φε,f ∈
N π

Mε,d,1 such that

�f − Φε,f�L2(Ω) ≤ 2 sup
f∈C

inf
Φ∈Nπ

Mε,d,1

�f − Φ�L2(Ω)

(39)
≤ 2CM−γ

ε ≤ ε

2
.

By Lemma VI.8 there exists a polynomial π∗ such that for
every f ∈ C, ε ∈ (0, 1/2), there is a network ,Φε,f with
(
π∗(log(ε−1))�, ε)-quantized weights satisfying���Φε,f − ,Φε,f

���
L2(Ω)

≤ ε

2
. (40)

The conditions of Lemma VI.8 are satisfied as Mε can be
upper-bounded by ε−k with a suitably chosen k, the weights in
Φε,f are polynomially bounded in Mε, and (32) follows from
the depth of networks in Φ ∈ N π

Mε,d,1 being polylogarithmi-
cally bounded in Mε due to Definition VI.2. Now, defining

Ψ:
	
0, 1

2


× C → Nd,1, (ε, f) �→ ,Φε,f ,

it follows from (39) and (40), by application of the triangle
inequality, that

sup
f∈C

�f − Ψ(ε, f)�L2(Ω) ≤ ε

with
sup
f∈C

M(Ψ(ε, f)) ≤Mε ∈ O	ε−1/γ


, ε→ 0.

The proof is concluded by noting that Ψ(ε, f) violates
Proposition VI.7.

e� = sup
x∈Ω

�Φ�(x) − Φ̃�(x)�∞ = sup
x∈Ω,i∈{1,...,N�}

|(Φ�(x))i − (Φ̃�(x))i|

≤ sup
x∈Ω,i∈{1,...,N�}

������
⎡⎣⎛⎝N�−1�

j=1

A�,i,j(Φ�−1(x))j

⎞⎠+ b�,i

⎤⎦−
⎡⎣⎛⎝N�−1�

j=1

Ã�,i,j(Φ̃�−1(x))j

⎞⎠+ b̃�,i

⎤⎦������ (36)

≤ sup
x∈Ω,i∈{1,...,N�}

⎡⎣⎛⎝N�−1�
j=1

���A�,i,j(Φ�−1(x))j − Ã�,i,j(Φ̃�−1(x))j

���
⎞⎠+

���b�,i − b̃�,i

���
⎤⎦
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We conclude this section with a discussion of the conceptual
implications of the results established above. Proposition VI.7
combined with Lemma VI.8 establishes that neural networks
achieving uniform approximation error ε while having weights
that are polynomially bounded in ε−1 and depth growing
polylogarithmically in ε−1 cannot exhibit connectivity growth
rate smaller than O(ε−1/γ∗(C)), ε→ 0; in other words, a decay
of the uniform approximation error, as a function of M , faster
than O(M−γ∗(C)),M → ∞, is not possible.

VII. THE TRANSFERENCE PRINCIPLE

We have seen that a wide array of function classes can be
approximated in Kolmogorov-Donoho optimal fashion through
dictionaries, provided that the dictionary D is chosen to
consort with the function class C according to γ∗,eff(C,D) =
γ∗(C). Examples of such pairs are unit balls in Besov spaces
with wavelet bases and unit balls in weighted modulation
spaces with Wilson bases. A more extensive list of optimal
pairs is provided in Table I. On the other hand, as shown
in [14], Fourier bases are strictly suboptimal—in terms of
approximation rate—for balls C of finite radius in the spaces
BV (R) and Wm

p (R).
In light of what was just said, it is hence natural to let neural

networks play the role of the dictionary D and to ask which
function classes C are approximated in Kolmogorov-Donoho-
optimal fashion by neural networks. Towards answering this
question, we next develop a general framework for transfer-
ring results on function approximation through dictionaries
to results on approximation by neural networks. This will
eventually lead us to a characterization of function classes C
that are optimally representable by neural networks in the
sense of Definition VI.5.

We start by introducing the notion of effective representabil-
ity of dictionaries through neural networks.

Definition VII.1: Let d ∈ N, Ω ⊆ R
d, and

D = (ϕi)i∈N ⊆ L2(Ω) be a dictionary. We call D effectively
representable by neural networks, if there exists a bivariate
polynomial π such that for all i ∈ N, ε ∈ (0, 1/2), there
is a neural network Φi,ε ∈ Nd,1 satisfying M(Φi,ε) ≤
π(log(ε−1), log(i)), B(Φi,ε) ≤ π(ε−1, i), and

�ϕi − Φi,ε�L2(Ω) ≤ ε.

The next result will allow us to conclude that optimality—in
the sense of Definition V.4—of a dictionary D for a function
class C combined with effective representability of D by
neural networks implies optimal representability of C by neural
networks. The proof is, in essence, effected by noting that
every element of the effectively representable D participating
in a best M -term-rate achieving approximation fM of f ∈ C
can itself be approximated by neural networks well enough
for an overall network to approximate fM with connectivity
Mπ(log(M)). As this connectivity is only polylogarithmically
larger than the number of terms M participating in the best
M -term approximation fM , we will be able to conclude
that the optimal approximation rate, indeed, transfers from
approximation in D to approximation in neural networks.
The conditions on M(Φi,ε) and B(Φi,ε) in Definition VII.1

guarantee precisely that the connectivity increase is at most
by a polylogarithmic factor. To see this, we first recall that
effective best M -term approximation has a polynomial depth
search constraint, which implies that the indices i under
consideration are upper-bounded by a polynomial in M .
In addition, the approximation error behavior we are interested
in is ε = M−γ . Combining these two insights, it follows
that M(Φi,ε) ≤ π(log(ε−1), log(i)) implies polylogarithmic
(in M ) connectivity for each network Φi,ε and hence con-
nectivity Mπ(log(M)) for the overall network realizing fM ,
as desired. By the same token, B(Φi,ε) ≤ π(ε−1, i) guarantees
that the weights of Φi,ε are polynomial in M .

There is another aspect to effective representability by
neural networks that we would like to illustrate by way of
example, namely that of ordering the dictionary elements.
Specifically, we consider, for d = 1 and Ω = [−π, π), the class
C of real-valued even functions in C = L2(Ω), and take
the dictionary as D = {cos(ix), i ∈ N0}. As the index i
enumerating the dictionary elements corresponds to frequen-
cies, the basis functions in D are hence ordered according
to increasing frequencies. Next, note that the parameter a in
Theorem III.8 corresponds to the frequency index i in our
example. As the network Ψa,D,ε in Theorem III.8 is of finite
width, it hence follows, upon replacing a in the expression
for L(Ψa,D,ε) by i, that M(Ψi,D,ε) ≤ π(log(ε−1), log(i)).
The condition on the weights for effective representability is
satisfied trivially, simply as B(Ψi,D,ε) ≤ 1 ≤ π(ε−1, i).

We are now ready to state the rate optimality transfer result.
Theorem VII.2: Let d ∈ N, Ω ⊆ Rd be bounded, and con-

sider the compact function class C ⊆ L2(Ω). Suppose that the
dictionary D = (ϕi)i∈N ⊆ L2(Ω) is effectively representable
by neural networks. Then, for every γ ∈ (0, γ∗,eff(C,D)), there
exist a polynomial π and a map

Ψ :
	
0, 1

2


× C → Nd,1,

such that for all f ∈ C, ε ∈ (0, 1/2), the network Ψ(ε, f) has
(
π(log(ε−1))�, ε)-quantized weights while satisfying �f −
Ψ(ε, f)�L2(Ω) ≤ ε, L(Ψ(ε, f)) ≤ π(log(ε−1)), B(Ψ(ε, f)) ≤
π(ε−1), and we have

M(Ψ(ε, f)) ∈ O(ε−1/γ), ε→ 0, (41)

with the implicit constant in (41) being independent of f .
In particular, it holds that

γ∗,eff
N (C) ≥ γ∗,eff(C,D).

Remark VII.3: Theorem VII.2 allows us to draw the follow-
ing conclusion. If D optimally represents the function class C
in the sense of Definition V.4, i.e., γ∗,eff(C,D) = γ∗(C), and if
it is, in addition, effectively representable by neural networks
in the sense of Definition VII.1, then, due to Theorem VI.4,
which states that γ∗,eff

N (C) ≤ γ∗(C), we have γ∗,eff
N (C) = γ∗(C)

and hence C is optimally representable by neural networks in
the sense of Definition VI.5.

Proof of Theorem VII.2: Let γ� ∈ (γ, γ∗,eff(C,D)).
According to Definition V.2, there exist a constant C ≥ 1
and a polynomial π1, such that for every f ∈ C, M ∈ N,
there is an index set If,M ⊆ {1, . . . , π1(M)} of cardinality
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M and coefficients (ci)i∈If,M
with |ci| ≤ π1(M), such that������f −

�
i∈If,M

ciϕi

������
L2(Ω)

≤ CM−γ�

2
. (42)

Let A := max{1, |Ω|1/2}. Effective representability of D
according to Definition VII.1 ensures the existence of a
bivariate polynomial π2 such that for all M ∈ N, i ∈ If,M ,
there is a neural network Φi,M ∈ Nd,1 satisfying

�ϕi − Φi,M�L2(Ω) ≤ C
4Aπ1(M)M

−(γ�+1) (43)

with

M(Φi,M )

≤π2

�
log

��
C

4Aπ1(M)M
−(γ�+1)

�−1
�
, log(i)

�
(44)

=π2

�
(γ� + 1) log(M) + log

�
4Aπ1(M)

C

�
, log(i)

�
and

B(Φi,M ) ≤ π2

��
C

4Aπ1(M)M
−(γ�+1)

�−1

, i

�
(45)

= π2

�
4Aπ1(M)

C Mγ�+1, i
�
.

Consider now for f ∈ C, M ∈ N the networks given by

Ψf,M (x) :=
�

i∈If,M

ciΦi,M (x).

Due to max(If,M ) ≤ π1(M), (45) and Lemma A.8 imply
the existence of a polynomial π3 such that L(Ψf,M ) ≤
π3(log(M)), M(Ψf,M ) ≤ Mπ3(log(M)), and B(Ψf,M ) ≤
π3(M), for all f ∈ C, M ∈ N, and, owing to (43), we get������Ψf,M −

�
i∈If,M

ciϕi

������
L2(Ω)

≤
�

i∈If,M

|ci| C
4Aπ1(M)M

−(γ�+1) (46)

≤ CM−γ�

4A

|If,M |�
i=1

maxi∈If,M
|ci|

Mπ1(M) ≤ CM−γ�

4A .

Lemma VI.8 therefore ensures the existence of a polynomial
π4 such that for all f ∈ C, M ∈ N, there is a network,Ψf,M ∈ Nd,1 with (
π4(log(4A

C Mγ�
))�, CM−γ�

4A )-quantized
weights satisfying L(,Ψf,M ) = L(Ψf,M ), M(,Ψf,M ) =
M(Ψf,M ), B(,Ψf,M ) ≤ B(Ψf,M ) + CM−γ�

4A , and���Ψf,M − ,Ψf,M

���
L∞(Ω)

≤ CM−γ�

4A . (47)

As Ω is bounded by assumption, we have���Ψf,M− ,Ψf,M

���
L2(Ω)

≤ |Ω| 12
���Ψf,M− ,Ψf,M

���
L∞(Ω) (48)

≤ CM−γ�

4 ,

for all f ∈ C, M ∈ N.

Combining (48) with (42) and (46), we get, for all f ∈ C,
M ∈ N,���f − ,Ψf,M

���
L2(Ω)

≤
������f −

�
i∈If,M

ciϕi

������
L2(Ω)

+

������
�

i∈If,M

ciϕi − Ψf,M

������
L2(Ω)

(49)

+
���Ψf,M − ,Ψf,M

���
L2(Ω)

≤ CM−γ�
.

For ε ∈ (0, 1/2) and f ∈ C, we now set

Mε :=
1
(C/ε)1/γ�2

and
Ψ(ε, f) := ,Ψf,Mε .

Thus, (49) yields

�f − Ψ(ε, f)�L2(Ω) ≤ CM−γ�
ε ≤ ε.

Next, we note that, for all polynomials π and 0 ≤ m < n,

O(ε−mπ(log(ε−1))) ⊆ O(ε−n), ε→ 0.

As 1/γ� < 1/γ, this establishes

M(Ψ(ε, f)) ∈ O(Mεπ3(log(Mε))) ⊆ O(ε−1/γ), (50)

ε → 0. Since Mε and π3 are independent of f , the implicit
constant in (50) does not depend on f .

Next, note that, in general, an (n, η)-quantized network is
also (m, δ)-quantized for n ≥ m and η ≤ δ, simply as

2−m�log(δ−1)�
Z ∩ [−δ−m, δ−m]

⊆ 2−n�log(η−1)�
Z ∩ [−η−n, η−n].

Since CM−γ�
ε

4A ≤ ε this ensures the existence of a polynomial π
such that, for every f ∈ C, ε ∈ (0, 1/2), the network Ψ(ε, f) is
(
π(log(ε−1))�, ε)-quantized, L(Ψ(ε, f)) ≤ π(log(ε−1)), and
B(Ψ(ε, f)) ≤ π(ε−1). With (50) this establishes the first claim
of the theorem. In order to verify the second claim, note that
Ψ(ε, f) ∈ N π

M(Ψ(ε,f)),d,1, for all f ∈ C, ε ∈ (0, 1/2), which
implies

sup
f∈C

inf
Φ∈Nπ

M,d,1

�f − Φ�L2(Ω) ∈ O(M−γ), M → ∞.

Therefore, owing to Definition VI.3, we get

γ∗,eff
N (C) ≥ γ∗,eff(C,D),

which concludes the proof.
Remark VII.4: We note that Theorem VII.2 continues to

hold for Ω = Rn if the elements of D = (ϕi)i∈N are com-
pactly supported with the size of their support sets growing no
more than polynomially in i. The technical elements required
to show this can be found in the context of the approximation
of Gabor dictionaries in the proof of Theorem IX.3, but are
omitted here for ease of exposition.
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The last piece needed to complete our program is to
establish that the conditions in Definition VII.1 guaranteeing
effective representability in neural networks are, indeed, sat-
isfied by a wide variety of dictionaries.

Inspecting Table I, we can see that all example func-
tion classes provided therein are optimally represented either
by affine dictionaries, i.e., wavelets, the Haar basis, and
curvelets or Weyl-Heisenberg dictionaries, namely Fourier
bases and Wilson bases. The next two sections will be devoted
to proving effective representability of affine dictionaries
and Weyl-Heisenberg dictionaries by neural networks, thus
allowing us to draw the conclusion that neural networks are
universally Kolmogorov-Donoho optimal approximators for all
function classes listed in Table I.

VIII. AFFINE DICTIONARIES ARE EFFECTIVELY

REPRESENTABLE BY NEURAL NETWORKS

The purpose of this section is to establish that affine dictio-
naries, including wavelets [70], ridgelets [39], curvelets [71],
shearlets [72], α-shearlets and more generally α-molecules
[69], which contain all aforementioned dictionaries as special
cases, are effectively representable by neural networks. Due
to Theorem VII.2 and Theorem VI.4, this will then allow
us to conclude that any function class that is optimally
representable—in the sense of Definition V.4—by an affine
dictionary with a suitable generator function is optimally rep-
resentable by neural networks in the sense of Definition VI.5.
By “suitable” we mean that the generator function can be
approximated well by ReLU networks in a sense to be made
precise below.

In order to elucidate the main ideas underlying the general
definition of affine dictionaries that are effectively repre-
sentable by neural networks, we start with a basic example,
namely the Haar wavelet dictionary on the unit interval,
i.e., the set of functions

ψn,k : [0, 1] �→ R, x �→ 2
n
2 ψ(2nx− k),

n ∈ N0, k = 0, . . . , 2n − 1, with

ψ : R → R, x �→

⎧⎨⎨⎨⎩
1, x ∈ [0, 1/2)
−1, x ∈ [1/2, 1)
0, else.

We approximate the piecewise constant mother wavelet ψ
through a continuous piecewise linear function realized by a
neural network as follows

Ψδ(x) := 1
2δρ(x+ δ) − 1

2δρ(x − δ) − 1
δρ(x − (1

2 − δ))
+ 1

δρ(x− (1
2 + δ)) + 1

2δρ(x− (1 − δ))
− 1

2δρ(x− (1 + δ))

and, setting δ(ε) := ε2 for ε ∈ (0, 1/2), let

Φn,k,ε(x) := 2
n
2 Ψδ(ε)(2nx− k),

n ∈ N0, k = 0, . . . , 2n − 1. The basic idea in the approxima-
tion of ψ through Ψδ is to let the transition regions around
0, 1/2, and 1 shrink, as a function of ε, sufficiently fast
for the construction to realize an approximation error of no

more than ε. Now, a direct calculation yields that, indeed, for
ε ∈ (0, 1/2),

�ψn,k − Φn,k,ε�L2([0,1]) ≤ ε.

Moreover, we have M(Φn,k,ε) = 18 and
B(Φn,k,ε) ≤ max{2 n

2 ε−2, 2n}. In order to establish
effective representability by neural networks, we need to
order the Haar wavelet dictionary suitably. Specifically,
we proceed from coarse to fine scales, i.e., we let
(ϕi)i∈N = D = {D0,D1, . . . }, with Dn := {ψn,k �→
R : k = 0, . . . , 2n − 1}, where the ordering within the Dn

may be chosen arbitrarily. Next, note that for every pair
n ∈ N0, k ∈ {0, . . . , 2n−1}, there exists a unique index i ∈ N

such that ϕi = ψn,k = ψn(i),k(i) and, owing to |Dn| = 2n,
we have 2n(i) ≤ i. Finally, taking Φi,ε := Φn(i),k(i),ε and
π(a, b) := a2 b + b + 18, the conditions in Definition VII.1
for effective representability by neural networks are readily
verified. A more elaborate example, namely spline wavelets,
is considered at the end of this section.

We are now ready to proceed to the general definition of
affine dictionaries with canonical ordering.

A. Affine Dictionaries With Canonical Ordering

Definition VIII.1: Let d, S ∈ N, δ > 0, Ω ⊆ Rd be
bounded, and let gs ∈ L∞(Rd), s ∈ {1, . . . , S}, be compactly
supported. Furthermore, for s ∈ {1, . . . , S}, let Js ⊆ N and
As,j ∈ Rd×d, j ∈ Js, be full-rank and with eigenvalues
bounded below by 1 in absolute value. We define the affine
dictionary D ⊆ L2(Ω) with generator functions (gs)S

s=1 as

D :=
3
gj,e

s :=
�
|det(As,j)| 12 gs(As,j · − δe)

� ��
Ω

:

s∈{1, . . . , S}, e ∈ Z
d, j ∈ Js, and gj,e

s �= 0
4
.

Moreover, we define the sub-dictionaries

Ds,j := {gj,e
s ∈ D : e ∈ Z

d and gj,e
s �= 0},

for j ∈ Js, s ∈ {1, . . . , S}, and

Dj :=
$

s∈{1,...,S} : j∈Js

Ds,j , for j ∈ N.

We call an affine dictionary canonically ordered if it is
arranged according to

(ϕi)i∈N = D = (D1,D2, . . . ) , (51)

where the elements within each Dj may be ordered arbitrarily,
and there exist constants a, c > 0 such that

j−1�
k=1

| det(As,k)| ≥ c�As,j�a
∞, (52)

for all j ∈ Js\{1}, s ∈ {1, . . . , S}. We call an affine dictionary
nondegenerate if for every j ∈ Js, s ∈ {1, . . . , S}, the sub-
dictionary Ds,j contains at least one element.

Note that for sake of greater generality, we associate pos-
sibly different sets Js ⊆ N with the generator functions
gs and, in particular, also allow these sets to be finite.
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The Haar wavelet dictionary example above is recovered as
a nondegenerate affine dictionary by taking d = 1, Ω = [0, 1],
S = 1, Js = N, g1 = ψ, δ = 1, A1,j = 2j−1, a = 1,
c = 1/2, and noting that nondegeneracy is verified as for scale
j, the sub-dictionary Ds,j contains 2j−1 elements. Moreover,
the weights of the networks approximating the individual Haar
wavelet dictionary elements grow linearly in the index of the
dictionary elements. This is a consequence of the weights
being determined by the dilation factor 2n and 2n(i) ≤ i due to
the ordering we chose. As will be shown below, morally this
continues to hold for general nondegenerate affine dictionaries,
thereby revealing what informed our definition of canonical
ordering. Besides, our notion of canonical ordering is also
inspired by the ordering employed in the tail compactness
considerations for Besov spaces and orthonormal wavelet
dictionaries as detailed in Appendix B. We remark that (52)
constitutes a very weak restriction on how fast the size of
dilations may grow; in fact, we are not aware of any affine
dictionaries in the literature that would violate this condition.
Finally, we note that the dilations As,j are not required to be
ordered in ascending size, as was the case in the Haar wavelet
dictionary example. Canonical ordering does, however, ensure
a modicum of ordering.

B. Invariance to Affine Transformations

Affine dictionaries consist of dilations and translations of
a given generator function. It is therefore important to under-
stand the impact of these operations on the approximability—
by neural networks—of a given function. As neural networks
realize concatenations of affine functions and nonlinearities,
it is clear that translations and dilations can be absorbed into
the first layer of the network and the transformed function
should inherit the approximability properties of the generator
function. However, what we will have to understand is how the
weights, the connectivity, and the domain of approximation of
the resulting network are impacted. The following result makes
this quantitative.

Proposition VIII.2: Let d ∈ N, p ∈ [1,∞], and f ∈ Lp(Rd).
Assume that there exists a bivariate polynomial π such that for
all D ∈ R+, ε ∈ (0, 1/2), there is a network ΦD,ε ∈ Nd,1

satisfying

�f − ΦD,ε�Lp([−D,D]d) ≤ ε, (53)

with M(ΦD,ε) ≤ π(log(ε−1), log(
D�)). Then, for all full-
rank matrices A ∈ Rd×d, and all e ∈ Rd, E ∈ R+, and
η ∈ (0, 1/2), there is a network ΨA,e,E,η ∈ Nd,1 satisfying���|det(A)| 1p f(A · − e) − ΨA,e,E,η

���
Lp([−E,E]d)

≤ η,

with

M(ΨA,e,E,η)≤π�(log(η−1), log(
F �)),
B(ΨA,e,E,η)≤max{B(ΦF,η),|det(A)| 1p ,�A�∞,�e�∞},

where F = dE�A�∞ + �e�∞ and π� is of the same degree
as π.

Proof: By a change of variables, we have for every
Φ ∈ Nd,1,��|det(A)| 1p 	f(A · − e)− Φ(A · − e)


��
Lp([−E,E]d) (54)

= �f − Φ�Lp(A·[−E,E]d − e).

Furthermore, observe that

A · [−E,E]d − e

⊆ [−(dE�A�∞ + �e�∞), (dE�A�∞ + �e�∞)]d (55)

= [−F, F ]d.

Next, we consider the affine transformations
WA,e(x) := Ax− e, W �

A(x) := |det(A)| 1p x as depth-1
networks and take ΨA,e,E,η := W �

A ◦ ΦF,η ◦WA,e according
to Lemma II.3. Combining (54) and (55) yields��|det(A)| 1p f(A · − e) − ΨA,e,E,η

��
Lp([−E,E]d)

= �f − ΦF,η�Lp(A·[−E,E]d− e)

≤ �f − ΦF,η�Lp([−F,F ]d) ≤ η.

The desired bounds on M(ΨA,e,E,η) and B(ΨA,e,E,η) follow
directly by construction.

C. Canonically Ordered Affine Dictionaries
Are Effectively Representable

The next result establishes that canonically ordered affine
dictionaries with generator functions that can be approximated
well by neural networks are effectively representable by neural
networks.

Theorem VIII.3: Let d, S ∈ N, Ω ⊆ Rd be bounded with
nonempty interior, (gs)S

s=1 ∈ L∞(Rd) compactly supported,
and D = (ϕi)i∈N ⊆ L2(Ω) a nondegenerate canonically
ordered affine dictionary with generator functions (gs)S

s=1.
Assume that there exists a polynomial π such that, for all
s ∈ {1, . . . , S}, ε ∈ (0, 1/2), there is a network Φs,ε ∈ Nd,1

satisfying
�gs − Φs,ε�L2(Rd) ≤ ε, (56)

with M(Φs,ε) ≤ π(log(ε−1)) and B(Φs,ε) ≤ π(ε−1). Then,
D is effectively representable by neural networks.

Proof: By Definition VII.1 we need to establish the exis-
tence of a bivariate polynomial π such that for each i ∈ N,
η ∈ (0, 1/2), there is a network Φi,η ∈ Nd,1 satisfying

�ϕi − Φi,η�L2(Ω) ≤ η, (57)

with M(Φi,η) ≤ π(log(η−1), log(i)) and
B(Φi,η) ≤ π(η−1, i). Note that we have

ϕi = gji,ei
si

=
�
|det(Asi,ji)|

1
2 gsi(Asi,ji · − δei)

� ��
Ω
,

for si ∈ {1, . . . , S}, ji ∈ Jsi , and ei ∈ Z
d. In order to

devise networks satisfying (57), we employ Proposition VIII.2,
upon noting that, by virtue of (56), the networks Φs,ε satisfy
(53) with p = 2, f = gs, for every D ∈ R+. Consequently
Proposition VIII.2 yields a connectivity bound that is even
slightly stronger than needed, as it is independent of i. It
remains to ensure that the desired bound on B(Φi,η) holds.
This is the case for �Asi,ji�∞ and �ei�∞ both bounded
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polynomially in i. In order to verify this, we first bound �ei�∞
relative to �Asi,ji�∞. As the generators (gs)S

s=1 are compactly
supported by assumption, there exists E ∈ R+ such that,
for every s ∈ {1, . . . , S}, the support of gs is contained in
[−E,E]d. We thus get, for all s ∈ {1, . . . , S}, j ∈ Js, and
e ∈ Zd, that

�δe�∞ ≥ sup
x∈Ω

�As,jx�∞ + E

=⇒ gj,e
s (x) = 0, ∀x ∈ Ω

=⇒ gj,e
s /∈ Dj .

Since Ω is bounded by assumption, there hence exists a con-
stant c = c(Ω, (gs)S

s=1, δ, d) such that, for all s ∈ {1, . . . , S},
j ∈ Js, and e ∈ Zd, we have

gj,e
s ∈ Dj =⇒ �e�∞ ≤ c�As,j�∞.

It remains to show that �Asi,ji�∞ is polynomially bounded
in i. We start by claiming that, for every s ∈ {1, . . . , S}, there
is a constant cs := cs(Ω, δ, d) > 0 such that

| det(As,j)| ≤ cs|Ds,j |, for all j ∈ Js. (58)

To verify this claim, first note that |Ds,j | ≥ 1, for all s ∈
{1, . . . , S}, j ∈ Js, owing to the nondegeneracy condition.
Thus, for every s ∈ {1, . . . , S}, j ∈ Js, there exist x0 ∈ Ω
and e0 ∈ Zd such that gj,e0

s (x0) �= 0, which implies

gj,e
s (x0 +A−1

s,jδ(e− e0))

= | det(As,j)| 12 gs(As,jx0 − δe0)

= gj,e0
s (x0) �= 0.

We can therefore conclude that x0+A−1
s,j δ(e−e0) ∈ Ω implies

gj,e
s ∈ Ds,j . Consequently, we have

|Ds,j | ≥ |{e ∈ Z
d : x0 +A−1

s,jδ(e− e0) ∈ Ω}|
= |{e ∈ Z

d : A−1
s,jδe ∈ Ω − x0}|

= |Zd ∩ 1
δAs,j(Ω − x0)|.

As Ω was assumed to have nonempty interior, there exists a
constant C = C(Ω) such that

|Zd ∩ 1
δAs,j(Ω − x0)| ≥ C vol

	
1
δAs,j(Ω − x0)



= C δ−d| det(As,j)| vol(Ω).

We have hence established the claim (58). Combining (52)
and (58), we obtain, for all si ∈ {1, . . . , S}, j ∈ Js\{1},

c�Asi,ji�a
∞ ≤

ji−1�
k=1

| det(Asi,k)| ≤ csi

ji−1�
k=1

|Dk,si | ≤ csi,

where the last inequality follows from the fact that ϕi ∈ Dji,si

and hence its index i must be larger than the number of
elements contained in preceding sub-dictionaries. This ensures
that

�Asi,ji�∞ ≤
�

1
c

max
s=1,...,S

cs

� 1
a

i
1
a + max

s=1,...,S
�As,1�∞,

for all i ∈ N, thereby completing the proof.
Remark VIII.4: Theorem VIII.3 is restricted, for ease of

exposition, to bounded Ω and compactly supported generator

functions gs. The result can be extended to Ω = Rd and to gen-
erator functions gs of unbounded support but sufficiently fast
decay. This extension requires additional technical steps and an
alternative definition of canonical ordering. For conciseness we
do not provide the details here, but instead refer to the proofs
of Theorems IX.3 and IX.5, which deal with the corresponding
technical aspects in the context of approximation of Gabor
dictionaries by neural networks.

We can now put the results together to conclude a remark-
able universality and optimality property of neural networks:
Consider an affine dictionary generated by functions gs that
can be approximated well by neural networks. If this dictionary
provides Kolmogorov-Donoho-optimal approximation for a
given function class, then so do neural networks.

Theorem VIII.5: Let d, S ∈ N, Ω ⊆ Rd be bounded with
nonempty interior, (gs)S

s=1 ∈ L∞(Rd) compactly supported,
and D = (ϕi)i∈N ⊆ L2(Ω) a nondegenerate canonically
ordered affine dictionary with generator functions (gs)S

s=1.
Assume that there exists a polynomial π such that, for all
s ∈ {1, . . . , S}, ε ∈ (0, 1/2), there is a network Φs,ε ∈
Nd,1 satisfying �gs − Φs,ε�L2(Rd) ≤ ε with M(Φs,ε) ≤
π(log(ε−1)) and B(Φs,ε) ≤ π(ε−1). Then, we have

γ∗,eff
N (C) ≥ γ∗,eff(C,D)

for all compact function classes C ⊆ L2(Ω). In particular,
if C is optimally representable by D (in the sense of Defini-
tion V.4), then C is optimally representable by neural networks
(in the sense of Definition VI.5).

Proof: The first statement follows from Theorem VII.2
and Theorem VIII.3, the second from Theorem VI.4.

D. Spline Wavelets

We next particularize the results developed above to show
that neural networks Kolmogorov-Donoho optimally represent
all function classes C that are optimally representable by
spline wavelet dictionaries. As spline wavelet dictionaries
have B-splines as generator functions, we start by showing
how B-splines can be realized through neural networks. For
simplicity of exposition, we restrict ourselves to the univariate
case throughout.

Definition VIII.6: Let N1 := χ[0,1] and for m ∈ N, define

Nm+1 := N1 ∁Nm,

where ∁ stands for convolution. We refer to Nm as the
univariate cardinal B-spline of order m.

Recognizing that B-splines are piecewise polynomial,
we can build on Proposition III.5 to get the following statement
on the approximation of B-splines by deep neural networks.

Lemma VIII.7: Let m ∈ N. There exists a constant C > 0
such that for all ε ∈ (0, 1/2), there is a neural network Φε ∈
N1,1 satisfying

�Φε −Nm�L∞(R) ≤ ε,

with M(Φε) ≤ C log(ε−1) and B(Φε) ≤ 1.
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Proof: The proof is based on the following representation
[81, Eq. 19]

Nm(x) =
1
m!

m+1�
k=0

(−1)k

�
m+ 1
k

�
ρ((x− k)m). (59)

While Nm is supported on [0,m], the networks Φε can
have support outside [0,m] as well. We only need to ensure
that Φε is “close” to Nm on [0,m] and at the same time
“small” outside the interval [0,m]. To accomplish this, we first
approximate Nm on the slightly larger domain [−1,m+1] by
a linear combination of networks realizing shifted monomials
according to (59), and then multiply the resulting network
by another one that takes on the value 1 on [0,m] and 0
outside of [−1,m + 1]. Specifically, we proceed as follows.
Proposition III.5 ensures the existence of a constant C1 such
that for all ε ∈ (0, 1/2), there is a network Ψm+2,ε ∈ N1,1

satisfying

�Ψm+2,ε(x) − xm�L∞([−(m+2),m+2]) ≤ ε
4(m+2) ,

with M(Ψm+2,ε) ≤ C1 log(ε−1) and B(Ψm+2,ε) ≤ 1. Note
that we did not make the dependence of M(Ψm+2,ε) on m
explicit as we consider m to be fixed. Next, let Tk(x) :=
x − k and observe that ρ((x − k)m) can be realized as a
neural network according to ρ◦Ψm+2,ε◦Tk, where Tk is taken
pursuant to Corollary A.2. Next, we define, for ε ∈ (0, 1/2),
the network

,Φε :=
1
m!

m+1�
k=0

(−1)k

�
m+ 1
k

�
ρ ◦ Ψm+2,ε ◦ Tk

and note that

1
m!

�
m+ 1
k

�
=

m+ 1
k!(m− k + 1)!

≤ 2,

for k = 0, . . . ,m + 1. As ρ is 1-Lipschitz, we have, for all
ε ∈ (0, 1/2), that (60), shown at the bottom of the page, holds.
Let now

Γ(x) := ρ(x+ 1) − ρ(x) − ρ(x −m) + ρ(x− (m+ 1)),

note that 0 ≤ Γ(x) ≤ 1, and take Φmult
1+ε/2,ε/2 to be the

multiplication network from Lemma III.3. We define Φε :=
Φmult

1+ε/2,ε/2 ◦(,Φε,Γ) according to Lemma II.3 and Lemma A.7
and note that

�Φε −Nm�L∞(R)

≤ �Φmult
1+ε/2,ε/2 ◦ (,Φε,Γ) − ,Φε · Γ�L∞([−1,m+1]) (61)

+ �,Φε · Γ −Nm�L∞([−1,m+1])

as both Nm and Γ vanish outside [−1,m+ 1] and Φmult
1+ε/2,ε/2

delivers zero whenever at least one of its inputs is zero. Note

that the first term on the right-hand-side of (61) is upper-
bounded by ε

2 as a consequence of Nm(x) ≤ 1 and hence,Φε(x) ≤ 1 + ε
2 , for x ∈ [−1,m + 1], owing to (60). For

the second term, we split up the interval [−1,m+1] and first
note that, for x ∈ [0,m], Γ(x) = 1, which implies

�,Φε · Γ −Nm�L∞([0,m]) = �,Φε −Nm�L∞([0,m]) ≤ ε/2,

again owing to (60). For x ∈ [−1,m + 1] \ [0,m], we have
Nm(x) = 0 and Γ(x) ≤ 1, which yields

|,Φε(x) · Γ(x)−Nm(x)| ≤ |,Φε(x)|
≤ |,Φε(x)−Nm(x)| + |Nm(x)|
= |,Φε(x)−Nm(x)| ≤ ε/2,

again by (60). In summary, (60) hence ensures that the second
term in (61) is also upper-bounded by ε

2 and therefore �Φε −
Nm�L∞(R) ≤ ε. Combining Lemma II.3, Proposition III.3,
Corollary A.2, Lemma A.4, and Lemma A.7 establishes the
desired bounds on M(ΦD,ε) and B(ΦD,ε).

Remark VIII.8: As both Nm and the approximating net-
works Φε we constructed in the proof of Lemma VIII.7
are supported in [−1,m + 1], we have �Φε − Nm�L2(R) ≤
(m+2)1/2�Φε−Nm�L∞(R), which shows that Lemma VIII.7
continues to hold when the approximation error is measured
in L2(R)-norm, albeit with a different constant C.

We are now ready to introduce spline wavelet dictionaries.
For n, j ∈ Z, set

Vn := closL2

�
span {Nm(2nx− k) : k ∈ Z}

�
,

where closL2 denotes closure with respect to L2-norm. Spline
spaces Vn, n ∈ Z, constitute a multiresolution analysis [82]
of L2(R) according to

{0} ⊆ . . . V−1 ⊆ V0 ⊆ V1 ⊆ · · · ⊆ L2(R).

Moreover, with the orthogonal complements
(. . . ,W−1,W0,W1, . . . ) such that Vn+1 = Vn ⊕ Wn,
where ⊕ denotes the orthogonal sum, we have

L2(R) = V0 ⊕
∞5

k=0

Wk.

Theorem VIII.9 ([83, Theorem 1]): Let m ∈ N. The m-th
order spline

ψm(x)
(62)

=
1

2m−1

2m−2�
j=0

(−1)jN2m(j + 1)
dm

dxm
N2m(2x− j),

�,Φε −Nm�L∞([−1,m+1]) ≤
m+1�
k=0

1
m!

�
m+ 1
k

�
�ρ ◦ Ψm+2,ε ◦ Tk − ρ ◦ Tm

k �L∞([−1,m+1])

(60)

≤ 2
m+1�
k=0

�Ψm+2,ε(x) − xm�L∞([−(m+2),m+2]) ≤ ε
2
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with support [0, 2m− 1], is a basic wavelet that generates W0

and thereby all the spaces Wn, n ∈ Z. Consequently, the set

Wm := {ψk,n(x)=2
n
2ψm(2nx−k):n∈N0, k∈Z}

(63)∪ {φk(x) = Nm(x− k) : k ∈ Z}
is a countable complete orthonormal wavelet basis in L2(R).

Taking Ω ⊆ R, S = 2, J1 = N, J2 = {1}, A1,j = 2j−1 for
j ∈ N, and A2,1 = 1, we get that

D :=
 
gj,e

s (x) :=
�
|Aj | 12 gs(Aj · − δe)

����
Ω

:

s ∈ {1, 2}, e ∈ Z, j ∈ Js, and gj,e
s �= 0

!
(64)

= Wm

is a nondegenerate canonically ordered affine dictionary with
generators g1 = ψm and g2 = Nm. The canonical order-
ing condition (52) is satisfied with a = 1 and c = 1/2.
Nondegeneracy follows upon noting that supp(ψk,n) =
[2−nk, 2−n(2m−1+k)] and supp(Nm( · −k)) = [k,m+k],
which implies that all sub-dictionaries contain at least one
element as required.

We have therefore established the following.
Theorem VIII.10: Let Ω ⊆ R be bounded and of nonempty

interior and D = (ϕi)i∈N ⊆ L2(Ω) a spline wavelet dictionary
according to (64) ordered per (51). Then, all compact function
classes C ⊆ L2(Ω) that are optimally representable by D (in
the sense of Definition V.4) are optimally representable by
neural networks (in the sense of Definition VI.5).

Proof: As the canonical ordering and the nondegener-
acy conditions were already verified, it remains to establish
that the generators ψm and Nm satisfy the antecedent of
Theorem VIII.3. To this end, we first devise an alterna-
tive representation of (62). Specifically, using the identity
[83, Eq. 2.2]

dm

dxm
N2m(x) =

m�
j=0

(−1)j

�
m

j

�
Nm(x− j),

we get

ψm(x) =
3m−1�
n=1

qnNm(2x− n+ 1), (65)

with

qn =
(−1)n+1

2m−1

m�
j=0

�
m

j

�
N2m(n− j).

As (65) shows that ψm is a linear combination of shifts and
dilations of Nm, combining Lemma VIII.7 and Remark VIII.8
with Lemma II.6 and Proposition VIII.2 ensures that (56) is
satisfied. Application of Theorem VIII.5 then establishes the
claim.

IX. WEYL-HEISENBERG DICTIONARIES

In this section, we consider Weyl-Heisenberg a.k.a. Gabor
dictionaries [17], which consist of time-frequency translates
of a given generator function. Gabor dictionaries play a
fundamental role in time-frequency analysis [17] and in the
study of partial differential equations [84]. We start with the
formal definition of Gabor dictionaries.

Definition IX.1 (Gabor Dictionaries): Let d ∈ N, f ∈
L2(Rd), and x, ξ ∈ Rd. We define the translation operator
Tx : L2(Rd) → L2(Rd) as

Txf(t) := f(t− x)

and the modulation operator Mξ : L2(Rd) → L2(Rd,C) as

Mξf(t) := e2πi�ξ,t�f(t).

Let Ω ⊆ Rd, α, β > 0, and g ∈ L2(Rd). The Gabor dictionary
G(g, α, β,Ω) ⊆ L2(Ω) is defined as

G(g, α, β,Ω) :=
"
MξTxg

��
Ω

: (x, ξ) ∈ αZ
d × βZ

d
#
.

In order to describe representability in neural networks in
the sense of Definition VII.1, we need to order the elements
in G(g, α, β,Ω). To this end, let G0(g, α, β,Ω) := {g��

Ω
} and

define Gn(g, α, β,Ω), n ∈ N, recursively according to

Gn(g, α, β,Ω) := 
MξTxg

��
Ω

: (x, ξ) ∈ αZ
d × βZ

d,

�x�∞ ≤ nα, �ξ�∞ ≤ nβ
!
\

n−1$
k=0

Gk(g, α, β,Ω).

We then organize G(g, α, β,Ω) as

G(g, α, β,Ω)=(G0(g, α, β,Ω), G1(g, α, β,Ω), . . . ), (66)

where the ordering within the sets Gn(g, α, β,Ω) is arbitrary.
We hasten to add that the specifics of the overall ordering
in (66) are irrelevant as long as G(g, α, β,Ω) = (ϕi)i∈N with
ϕi = Mξ(i)Tx(i)g

��
Ω

is such that �x(i)�∞ and �ξ(i)�∞ do not
grow faster than polynomially in i; this will become apparent
in the proof of Theorem IX.3. We note that this ordering
is also inspired by that employed in the tail compactness
considerations for modulation spaces and Wilson bases as
detailed in Appendix C.

As Gabor dictionaries are built from time-shifted and mod-
ulated versions of the generator function g, and invariance
to time-shifts was already established in Proposition VIII.2,
we proceed to showing that the approximation-theoretic prop-
erties of the generator function are inherited by its modulated
versions. This result can be interpreted as an invariance
property to frequency shifts akin to that established in Propo-
sition VIII.2 for affine transformations in the context of affine
dictionaries. In summary, neural networks exhibit a remarkable
invariance property both to the affine group operations of
scaling and translation and to the Weyl-Heisenberg group
operations of modulation and translation.

Lemma IX.2: Let d ∈ N, f ∈ L2(Rd) ∩ L∞(Rd), and for
every D ∈ R+, ε ∈ (0, 1/2), let ΦD,ε ∈ Nd,1 satisfy

�f − ΦD,ε�L∞([−D,D]d) ≤ ε.

Then, there exists a constant C > 0 (which does not depend
on f ) such that for all D ∈ R+, ε ∈ (0, 1/2), ξ ∈ Rd, there
are networks ΦRe

D,ξ,ε,Φ
Im
D,ξ,ε ∈ Nd,1 satisfying

�Re(Mξf) − ΦRe
D,ξ,ε�L∞([−D,D]d)

+ �Im(Mξf) − ΦIm
D,ξ,ε�L∞([−D,D]d) ≤ 3ε
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with

L(ΦRe
D,ξ,ε),L(ΦIm

D,ξ,ε)

≤ C((log(ε−1))2 + log(
dD�ξ�∞�)
+ (log(
Sf�))2) + L(ΦD,ε),

M(ΦRe
D,ξ,ε),M(ΦIm

D,ξ,ε)

≤ C((log(ε−1))2 + log(
dD�ξ�∞�)
+ (log(
Sf�))2 + d) + 4M(ΦD,ε) + 4L(ΦD,ε),

and B(ΦRe
D,ξ,ε) ≤ 1, where Sf := max{1, �f�L∞(Rd)}.

Proof: All statements in the proof involving ε pertain to
ε ∈ (0, 1/2) without explicitly stating this every time. We start
by observing that

Re(Mξf)(t) = cos(2π�ξ, t�)f(t)
Im(Mξf)(t) = sin(2π�ξ, t�)f(t)

due to f ∈ R. Note that for given ξ ∈ Rd, the map
t �→ �ξ, t� = ξT t = t1ξ1 + · · · + tdξd is simply a linear
transformation. Hence, combining Lemma II.3, Theorem III.8,
and Corollary A.2 establishes the existence of a constant C1

such that for all D ∈ R+, ξ ∈ R
d, ε ∈ (0, 1/2), there is a

network ΨD,ξ,ε ∈ Nd,1 satisfying

sup
t∈[−D,D]d

| cos(2π�ξ, t�) − ΨD,ξ,ε(t)| ≤ ε
6Sf

(67)

with

L(ΨD,ξ,ε) ≤ C1((log(ε−1))2 + (log(Sf ))2

+ log(
dD�ξ�∞�)),
(68)M(ΨD,ξ,ε) ≤ C1((log(ε−1))2 + (log(Sf ))2

+ log(
dD�ξ�∞�) + d),

and B(ΨD,ξ,ε) ≤ 1. Moreover, Proposition III.3 guarantees the
existence of a constant C2 > 0 such that for all ε ∈ (0, 1/2),
there is a network με ∈ N2,1 satisfying

sup
x,y∈[−Sf−1/2,Sf+1/2]

|με(x, y) − xy| ≤ ε
6 (69)

with

L(με),M(με) ≤ C2(log(ε−1) + log(
Sf�)) (70)

and B(με) ≤ 1. Using Lemmas II.4 and II.5, we get that the
network ΓD,ξ,ε := (ΨD,ξ,ε,ΦD,ε) ∈ Nd,2 satisfies

L(ΓD,ξ,ε) ≤ max{L(ΨD,ξ,ε),L(ΦD,ε)},
M(ΓD,ξ,ε) ≤ 2M(ΨD,ξ,ε) + 2M(ΦD,ε)

+ 2L(ΨD,ξ,ε) + 2L(ΦD,ε),

and B(ΓD,ξ,ε) ≤ 1. Finally, applying Lemma II.3 to concate-
nate the networks ΓD,ξ,ε and με, we obtain the network

ΦRe
D,ξ,ε := με ◦ ΓD,ξ,ε = με ◦ (ΨD,ξ,ε,ΦD,ε) ∈ Nd,1

satisfying

L(ΦRe
D,ξ,ε)≤max{L(ΨD,ξ,ε),L(ΦD,ε)} + L(με), (71)

M(ΦRe
D,ξ,ε)≤4M(ΨD,ξ,ε) + 4M(ΦD,ε)

+ 4L(ΨD,ξ,ε) + 4L(ΦD,ε) (72)

+ 2M(με),

and B(ΦRe
D,ξ,ε) ≤ 1. Next, observe that (67) and (69) imply

that

�ΦRe
D,ξ,ε − Re(Mξf)�L∞

= �με(ΨD,ξ,ε( · ),ΦD,ε( · )) − cos(2π�ξ, · �)f( · )�L∞

≤ �με(ΨD,ξ,ε( · ),ΦD,ε( · )) − ΨD,ξ,ε( · )ΦD,ε( · )�L∞

+ �ΨD,ξ,ε( · )ΦD,ε( · ) − cos(2π�ξ, · �)f( · )�L∞

≤ �με(ΨD,ξ,ε( · ),ΦD,ε( · )) − ΨD,ξ,ε( · )ΦD,ε( · )�L∞

+ �ΨD,ξ,ε( · )(ΦD,ε( · ) − f( · ))�L∞

+ �ΨD,ξ,ε( · )f( · ) − cos(2π�ξ, · �)f( · )�L∞

≤ ε
6 + (1 + ε

6Sf
)ε+ ε

6 ≤ 3
2ε,

where we wrote L∞ for L∞([−D,D]d). Combining (68),
(70), (72), and (71) we can further see that there exists a
constant C > 0 such that

L(ΦRe
D,ξ,ε) ≤ C((log(ε−1))2 + log(
dD�ξ�∞�)

+ (log(
Sf�))2) + L(ΦD,ε),

M(ΦRe
D,ξ,ε) ≤ C((log(ε−1))2 + log(
dD�ξ�∞�)

+ (log(
Sf�))2 + d)
+ 4M(ΦD,ε) + 4L(ΦD,ε),

and B(ΦRe
D,ξ,ε)) ≤ 1. The results for ΦIm

D,ξ,ε follow analo-
gously, simply by using sin(x) = cos(x− π/2).

Note that Gabor dictionaries necessarily contain complex-
valued functions. The theory developed so far was, how-
ever, phrased for neural networks with real-valued outputs.
As is evident from the proof of Lemma IX.2, this is not
problematic when the generator function g is real-valued.
For complex-valued generator functions we would need a
version of Proposition III.3 that applies to the multiplication
of complex numbers. Due to (a+ ib)(a�+ ib�) = (aa�− bb�)+
i(ab� + a�b) such a network can be constructed by realizing
the real and imaginary parts of the product as a sum of real-
valued multiplication networks and then proceeding as in the
proof above. We omit the details as they are straightforward
and would not lead to new conceptual insights. Furthermore,
an extension—to the complex-valued case—of the concept
of effective representability by neural networks according to
Definition VII.1 would be needed. This can be effected by
considering the set of neural networks with 1-dimensional
complex-valued output as neural networks with 2-dimensional
real-valued output, i.e., by setting

NC

d,1 := Nd,2,

with the convention that the first component represents the real
part and the second the imaginary part.

We proceed to establish conditions for effective repre-
sentability of Gabor dictionaries by neural networks.

Theorem IX.3: Let d ∈ N, Ω ⊆ Rd, α, β > 0, g ∈ L2(Rd)∩
L∞(Rd), and let G(g, α, β,Ω) be the corresponding Gabor
dictionary with ordering as defined in (66). Assume that Ω
is bounded or that Ω = Rd and g is compactly supported.
Further, suppose that there exists a polynomial π such that for
every x ∈ Rd, ε ∈ (0, 1/2), there is a network Φx,ε ∈ Nd,1
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satisfying

�g − Φx,ε�L∞(x+Ω) ≤ ε, (73)

with M(Φx,ε) ≤ π(log(ε−1), log(�x�∞)),
B(Φx,ε) ≤ π(ε−1, �x�∞). Then, G(g, α, β,Ω) is effectively
representable by neural networks.

Proof: We start by noting that owing to (66), we have
G(g, α, β,Ω) = (ϕi)i∈N with

ϕi = Mξ(i)Tx(i)g ∈ Gn(i)(g, α, β,Ω),

where

�ξ(i)�∞ ≤ n(i)β ≤ iβ and
(74)�x(i)�∞ ≤ n(i)α ≤ iα.

Next, we take the affine transformationWx(y) := y−x to be a
depth-1 network and observe that, due to (73) and Lemma II.3,
we have, for all x ∈ Rd, ε ∈ (0, 1/2),

�Txg−Φ−x,ε◦Wx�L∞(Ω) =�g−Φ−x,ε�L∞(−x+Ω) (75)≤ ε,

with

M(Φ−x,ε ◦Wx) ≤ 2(π(log(ε−1), log(�x�∞))+2d)
B(M(Φ−x,ε ◦Wx)) ≤ max{B(Φ−x,ε), �x�∞}

≤ π(ε−1, �x�∞) + �x�∞.
We first consider the case where Ω is bounded and let
E ∈ R+ be such that Ω ⊆ [−E,E]d. Combining (75) with
Proposition VIII.2 and Lemma IX.2, we can infer the existence
of a multivariate polynomial π1 such that for all i ∈ N,
ε ∈ (0, 1/2), there is a network Φi,ε = (ΦRe

i,ε,Φ
Im
i,ε) ∈ NC

d,1

satisfying

�Re(Mξ(i)Tx(i)g) − ΦRe
i,ε�L∞(Ω) (76)

+ �Im(Mξ(i)Tx(i)g) − ΦIm
i,ε�L∞(Ω) ≤ (2E)−

d
2 ε,

with

M(ΦRe
i,ε),M(ΦIm

i,ε)

≤ π1(log(ε−1), log(�ξ(i)�∞), log(�x(i)�∞)), (77)

B(ΦRe
i,ε),B(ΦIm

i,ε) ≤ π1(ε−1, �ξ(i)�∞, �x(i)�∞).

Note that here we did not make the dependence of the
connectivity and the weight upper bounds on d and E explicit
as these quantities are irrelevant for the purposes of what we
want to show, as long as they are finite, of course, which
is the case by assumption. Likewise, we did not explicitly
indicate the dependence of π1 on g. As |z| ≤ |Re(z)|+|Im(z)|,
it follows from (76) that for all i ∈ N, ε ∈ (0, 1/2),

�ϕi − Φi,ε�L2(Ω,C) ≤ (2E)
d
2 �ϕi − Φi,ε�L∞(Ω,C)

≤ (2E)
d
2

�
�Re(ϕi) − ΦRe

i,ε�L∞(Ω)

+ �Im(ϕi) − ΦIm
i,ε�L∞(Ω)

�
≤ ε.

Moreover, (74) and (77) imply the existence of a polynomial
π2 such that

M(ΦRe
i,ε),M(ΦIm

i,ε) ≤ π2(log(ε−1), log(i)),

B(ΦRe
i,ε),B(ΦIm

i,ε) ≤ π2(ε−1, i),

for all i ∈ N, ε ∈ (0, 1/2). We can therefore conclude that
G(g, α, β,Ω) is effectively representable by neural networks.

We proceed to proving the statement for the case Ω = R
d

and g compactly supported, i.e., there exists E ∈ R+ such
that supp(g) ⊆ [−E,E]d. This implies

supp(MξTxg) = supp(Txg) ⊆ x+ [−E,E]d

⊆ [−(�x�∞ + E), �x�∞ + E]d.

Again, combining (75) with Proposition VIII.2 and
Lemma IX.2 establishes the existence of a polynomial π3

such that for all x, ξ ∈ Rd, ε ∈ (0, 1/2), there are networks
ΨRe

x,ξ,ε,Ψ
Im
x,ξ,ε ∈ Nd,1 satisfying

�Re(MξTxg) − ΨRe
x,ξ,ε�L∞(Sx) (78)

+ �Im(MξTxg) − ΨIm
x,ξ,ε�L∞(Sx) ≤ ε

2sx
,

with

M(ΨRe
x,ξ,ε) ≤ π3(log(ε−1), log(�x�∞), log(�ξ�∞)),

M(ΨIm
x,ξ,ε) ≤ π3(log(ε−1), log(�x�∞), log(�ξ�∞)),

B(ΨRe
x,ξ,ε) ≤ π3(ε−1, �x�∞, �ξ�∞),

B(ΨIm
x,ξ,ε) ≤ π3(ε−1, �x�∞, �ξ�∞),

where we set

Sx := [−(�x�∞ + E + 1), �x�∞ + E + 1]d

and sx := |Sx|1/2 to simplify notation. As we want to establish
effective representability for Ω = Rd, the estimate in (78) is
insufficient. In particular, we have no control over the behavior
of the networks ΨRe

x,ξ,ε,Ψ
Im
x,ξ,ε outside the set Sx. We can,

however, construct networks which exhibit the same scaling
behavior in terms of M and B, are supported in Sx, and
realize the same output for all inputs in Sx. To this end let, for
y ∈ R+, the network αy ∈ N1,1 be given by

αy(t) := ρ(t− (−y − 1)) − ρ(t− (−y)) − ρ(t− y)
+ ρ(t− (y + 1)),

t ∈ R. Note that αy(t) = 1 for t ∈ [−y, y], αy(t) = 0 for
t /∈ [−y − 1, y + 1], and αy(t) ∈ (0, 1) else. Next, consider,
for x ∈ Rd, the network given by

χx(t) := ρ

�6
d�

i=1

α�x�∞+E(ti)

7
− (d− 1)

�
,

t = (t1, t2, . . . , td) ∈ Rd, and note that

χx(t) = 1, ∀t ∈ [−(�x�∞ + E), �x�∞ + E]d

χx(t) = 0, ∀t /∈ [−(�x�∞ + E + 1), �x�∞ + E + 1]d

0 ≤ χx(t) ≤ 1, ∀t ∈ R
d.

As d and E are considered fixed here, there exists
a constant C1 such that, for all x ∈ Rd, we have
M(χx) ≤ C1 and B(χx) ≤ C1 max{1, �x�∞}. Now, let
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B := max{1, �g�L∞(R)}. Next, by Proposition III.3 there
exists a constant C2 such that, for all x ∈ Rd, ε ∈ (0, 1/2),
there is a network μx,ε ∈ N1,1 satisfying

sup
y,z∈[−2B,2B]

|μx,ε(y, z) − yz| ≤ ε
4sx

, (79)

and, for all y ∈ R,

μx,ε(0, y) = μx,ε(y, 0) = 0, (80)

with M(μx,ε) ≤ C2(log(ε−1) + log(sx)) and B(μx,ε) ≤ 1.
Note that in the upper bound on M(μx,ε), we did not make
the dependence on B explicit as we consider g fixed for the
purposes of the proof. Next, as E is fixed, there exists a
constant C3 such that M(μx,ε) ≤ C3(log(ε−1)+log(�x�∞+
1)), for all x ∈ R

d, ε ∈ (0, 1/2). We now take

ΓRe
x,ξ,ε := μx,ε ◦ (ΨRe

x,ξ,ε, χx) and

ΓIm
x,ξ,ε := μx,ε ◦ (ΨIm

x,ξ,ε, χx)

according to Lemmas II.5 and II.3, which ensures the existence
of a polynomial π4 such that, for all x, ξ ∈ Rd, ε ∈ (0, 1/2),

M(ΓRe
x,ξ,ε) ≤ π4(log(ε−1), log(�x�∞), log(�ξ�∞)),

M(ΓIm
x,ξ,ε) ≤ π4(log(ε−1), log(�x�∞), log(�ξ�∞)),

(81)B(ΓRe
x,ξ,ε) ≤ π4(ε−1, �x�∞, �ξ�∞),

B(ΓIm
x,ξ,ε) ≤ π4(ε−1, �x�∞, �ξ�∞).

Furthermore,

�ΓRe
x,ξ,ε − Re(MξTxg)�L∞(Sx)

≤ �μx,ε ◦ (ΨRe
x,ξ,ε, χx) − ΨRe

x,ξ,ε · χx�L∞(Sx) (82)

+ �ΨRe
x,ξ,ε · χx − Re(MξTxg)�L∞(Sx),

where the first term is upper-bounded by ε
4sx

due
to (79). The second term on the right-hand side
of (82) is upper-bounded as follows. First, note that
for t ∈ Sx \ [−(�x�∞ + E), �x�∞ + E]d, we have
Re(MξTxg)(t) = 0 and |χx(t)| ≤ 1, which implies

|ΨRe
x,ξ,ε(t) · χx(t) − Re(MξTxg)(t)|
≤ |ΨRe

x,ξ,ε(t)|
≤ |ΨRe

x,ξ,ε(t) − Re(MξTxg)(t)| + |Re(MξTxg)(t)|
= |ΨRe

x,ξ,ε(t) − Re(MξTxg)(t)|.
As |χx(t)| = 1 for t ∈ [−(�x�∞ +E), �x�∞ +E]d, together
with (82), this yields

�ΓRe
x,ξ,ε − Re(MξTxg)�L∞(Sx)

≤ ε
4sx

+ �ΨRe
x,ξ,ε − Re(MξTxg)�L∞(Sx).

For �ΓIm
x,ξ,ε − Im(MξTxg)�L∞(Sx) the analogous estimate is

obtained in exactly the same manner. Together with (78),
we can finally infer that, for all x, ξ ∈ Rd, ε ∈ (0, 1/2),

�Re(MξTxg) − ΓRe
x,ξ,ε�L∞(Sx)

+ �Im(MξTxg) − ΓIm
x,ξ,ε�L∞(Sx) ≤ ε

sx
.

As MξTxg, ΓRe
x,ξ,ε, and ΓIm

x,ξ,ε are supported in Sx for all x, ξ ∈
Rd, ε ∈ (0, 1/2), using (80), we get

�Re(MξTxg) − ΓRe
x,ξ,ε�L2(Rd)

+ �Im(MξTxg) − ΓIm
x,ξ,ε�L2(Rd)

= �Re(MξTxg) − ΓRe
x,ξ,ε�L2(Sx)

+ �Im(MξTxg) − ΓIm
x,ξ,ε�L2(Sx) (83)

≤ sx�Re(MξTxg) − ΓRe
x,ξ,ε�L∞(Sx)

+ sx�Im(MξTxg) − ΓIm
x,ξ,ε�L∞(Sx)

≤ ε.

Consider now, for i ∈ N, ε ∈ (0, 1/2), the complex-valued
network Γi,ε ∈ NC

d,1 given by

Γi,ε := (ΓRe
x(i),ξ(i),ε,Γ

Im
x(i),ξ(i),ε)

and note that, for f ∈ L2(Ω,C),

�f�L2(Ω,C) =
�8

Ω

|f(t)|2dt

� 1
2

=
�8

Ω

|Re(f(t))|2 + |Im(f(t))|2dt

� 1
2

=
�
�Re(f)�2

L2(Ω) + �Im(f)�2
L2(Ω)

� 1
2

≤ �Re(f)�L2(Ω) + �Im(f)�L2(Ω).

Hence, (83) implies that, for all i ∈ N, ε ∈ (0, 1/2),

�ϕi − Γi,ε�L2(Rd,C)

= �Mξ(i)Tx(i)g − (ΓRe
x(i),ξ(i),ε,Γ

Im
x(i),ξ(i),ε)�L2(Rd,C)

≤ ε.

Finally, using (74) in (81), it follows that there exists a
polynomial π5 such that for all i ∈ N, ε ∈ (0, 1/2), we have
M(ΓRe

x(i),ξ(i),ε),M(ΓIm
x(i),ξ(i),ε) ≤ π5(log(ε−1), log(i)) and

B(ΓRe
x(i),ξ(i),ε),B(ΓIm

x(i),ξ(i),ε) ≤ π5(ε−1, i), which finalizes the
proof.

Next, we establish the central result of this section. To this
end, we first recall that according to Theorem VIII.5 neural
networks provide optimal approximations for all function
classes that are optimally approximated by affine dictionaries
(generated by functions f that can be approximated well by
neural networks). While this universality property is significant
as it applies to all affine dictionaries, it is perhaps not com-
pletely surprising as affine dictionaries are generated by affine
transformations and neural networks consist of concatenations
of affine transformations and nonlinearities. Gabor dictio-
naries, on the other hand, exhibit a fundamentally different
mathematical structure. The next result shows that neural
networks also provide optimal approximations for all function
classes that are optimally approximated by Gabor dictionaries
(again, with generator functions that can be approximated well
by neural networks).

Theorem IX.4: Let d ∈ N, Ω ⊆ R
d, α, β > 0, g ∈ L2(Rd)∩

L∞(Rd), and let G(g, α, β,Ω) be the corresponding Gabor
dictionary with ordering as defined in (66). Assume that Ω
is bounded or that Ω = Rd and g is compactly supported.
Further, suppose that there exists a polynomial π such that for
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every x ∈ Rd, ε ∈ (0, 1/2), there is a network Φx,ε ∈ Nd,1

satisfying

�g − Φx,ε�L∞(x+Ω) ≤ ε,

with M(Φx,ε) ≤ π(log(ε−1), log(�x�∞)),
B(Φx,ε) ≤ π(ε−1, �x�∞). Then, for all compact function
classes C ⊆ L2(Ω), we have

γ∗,eff
N (C) ≥ γ∗,eff(C,G(g, α, β,Ω)).

In particular, if C is optimally representable by G(g, α, β,Ω)
(in the sense of Definition V.4), then C is optimally repre-
sentable by neural networks (in the sense of Definition VI.5).

Proof: The first statement follows from Theorem VII.2
and Theorem IX.3, the second is by Theorem VI.4.

We complete the program in this section by showing that the
Gaussian function satisfies the conditions on the generator g
in Theorem IX.3 for bounded Ω. Gaussian functions are
widely used generator functions for Gabor dictionaries owing
to their excellent time-frequency localization and their frame-
theoretic optimality properties [17]. We hasten to add that the
result below can be extended to any generator function g of
sufficiently fast decay and sufficient smoothness.

Lemma IX.5: For d ∈ N, let gd ∈ L2(Rd) be given by

gd(x) := e−�x�2
2 .

There exists a constant C > 0 such that, for all d ∈ N and
ε ∈ (0, 1/2), there is a network Φd,ε ∈ Nd,1 satisfying

�Φd,ε − g�L∞(Rd) ≤ ε,

with M(Φd,ε) ≤ Cd(log(ε−1))2((log(ε−1))2 + log(d)),
B(Φd,ε) ≤ 1.

Proof: Observe that gd can be written as the composition
h ◦ fd of the functions fd : R

d → R+ and h : R+ → R given
by

fd(x) := �x�2
2 =

d�
i=1

x2
i and h(y) := e−y.

By Proposition III.3 and Lemma II.6, there exists a constant
C1 > 0 such that, for every d ∈ N, D ∈ [1,∞), ε ∈ (0, 1/2),
there is a network Ψd,D,ε ∈ Nd,1 satisfying

sup
x∈[−D,D]d

|Ψd,D,ε(x) − �x�2
2| ≤ ε

2 , (84)

and

M(Ψd,D,ε) ≤ C1d(log(ε−1) + log(
D�)),
(85)B(Ψd,D,ε) ≤ 1.

Moreover, as | dn

dyn e
−y| = |e−y| ≤ 1 for all n ∈ N, y ≥ 0,

Lemma A.6 implies the existence of a constant C2 > 0 such
that for every d ∈ N, D ∈ [1,∞), ε ∈ (0, 1/2), there is a
network Γd,D,ε ∈ N1,1 satisfying

sup
y∈[0,dD2]

|Γd,D,ε(y) − e−y| ≤ ε
2 , (86)

and

M(Γd,D,ε)
≤ C2dD

2((log(ε−1))2 + log(d) + log(
D�)), (87)

B(ΓD,ε) ≤ 1.

Now, let Dε := log(ε−1) and take,Φd,ε := Γd,Dε,ε ◦ Ψd,Dε,ε

according to Lemma II.3. Consequently, it follows from (85)
and (87) that there exists a constant C2 > 0 such that for all
d ∈ N, ε ∈ (0, 1/2), we have

M(,Φd,ε) ≤ C2 d(log(ε−1))2((log(ε−1))2 + log(d))

and B(,Φd,ε) ≤ 1. Moreover, as |e−y| ≤ 1 for all
y ≥ 0, combining (84) and (86) yields for all ε ∈ (0, 1/2),
x ∈ [−Dε, Dε]d,

|g(x)−,Φd,ε(x)|= |e−�x�2
2 − Γd,Dε,ε(Ψd,Dε,ε(x))|

≤ |e−�x�2
2 − e−Ψd,Dε,ε(x)|

+|e−Ψd,Dε,ε(x)−Γd,Dε,ε(Ψd,Dε,ε(x))|
≤ ε

2 + ε
2 = ε.

We can now use the same approach as in the proof of
Theorem IX.3 to construct networks Φd,ε supported on the
interval [−Dε, Dε]d over which they approximate g to within
error ε, and obey

M(Φε) ≤ Cd(log(ε−1))2((log(ε−1))2 + log(d)),

B(Φd,ε) ≤ 1 for some absolute constant C. Together with
|g(x)| ≤ ε, for all x ∈ Rd\[−Dε, Dε]d, this completes the
proof.

Remark IX.6: Note that Lemma IX.5 establishes an approx-
imation result that is even stronger than what is required by
Theorem IX.3. Specifically, we achieve ε-approximation over
all of Rd with a network that does not depend on the shift
parameter x, while exhibiting the desired growth rates on
M and B, which consequently do not depend on the shift
parameter as well. The idea underlying this construction can
be used to strengthen Theorem IX.3 to apply to Ω = R

d

and generator functions of unbounded support, but sufficiently
rapid decay.

We conclude this section with a remark on the neural
network approximation of the real-valued counterpart of Gabor
dictionaries known as Wilson dictionaries [17], [74] and
consisting of cosine-modulated and time-shifted versions of a
given generator function, see also Appendix C. The techniques
developed in this section, mutatis mutandis, show that neural
networks provide Kolmogorov-Donoho optimal approxima-
tion for all function classes that are optimally approximated
by Wilson dictionaries (generated by functions that can be
approximated well by neural networks). Specifically, we point
out that the proofs of Lemma IX.2 and Theorem IX.3 explicitly
construct neural network approximations of time-shifted and
cosine- and sine-modulated versions of the generator g. As
identified in Table I, Wilson bases provide optimal nonlinear
approximation of (unit) balls in modulation spaces [74], [85].
Finally, we note that similarly the techniques developed in
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the proofs of Lemma IX.2 and Theorem IX.3 can be used to
establish optimal representability of Fourier bases.

X. IMPROVING POLYNOMIAL APPROXIMATION RATES TO

EXPONENTIAL RATES

Having established that for all function classes listed
in Table I, Kolmogorov-Donoho-optimal approximation
through neural networks is possible, this section proceeds
to show that neural networks, in addition to their striking
Kolmogorov-Donoho universality property, can also do some-
thing that has no classical equivalent.

Specifically, as mentioned in the introduction, for the class
of oscillatory textures as considered below and for the Weier-
strass function, there are no known methods that achieve
exponential accuracy, i.e., an approximation error that decays
exponentially in the number of parameters employed in the
approximant. We establish below that deep networks fill this
gap.

Let us start by defining one-dimensional “oscillatory tex-
tures” according to [18]. To this end, we recall the following
definition from Lemma A.6,

S[a,b] =
"
f ∈ C∞([a, b],R) :

�f (n)(x)�L∞([a,b]) ≤ n!, for all n ∈ N0

#
.

Definition X.1: Let the sets FD,a,D, a ∈ R+, be given by

FD,a =
"
cos(ag)h : g, h ∈ S[−D,D]

#
.

The efficient approximation of functions in FD,a with a
large represents a notoriously difficult problem due to the
combination of the rapidly oscillating cosine term and the
warping function g. The best approximation results available
in the literature [18] are based on wave-atom dictionaries11

and yield low-order polynomial approximation rates. In what
follows we show that finite-width deep networks drastically
improve these results to exponential approximation rates.

We start with our statement on the neural network approx-
imation of oscillatory textures.

Proposition X.2: There exists a constant C > 0 such that
for all D, a ∈ R+, f ∈ FD,a, and ε ∈ (0, 1/2), there is a
network Γf,ε ∈ N1,1 satisfying

�f − Γf,ε�L∞([−D,D]) ≤ ε,

with

L(Γf,ε) ≤ C
D�	(log(ε−1) + log(
a�))2
+ log(
D�) + log(
D−1�)
,

W(Γf,ε) ≤ 32, B(Γf,ε) ≤ 1.
Proof: For D, a ∈ R+, f ∈ FD,a, let gf , hf ∈ S[−D,D]

be functions such that f = cos(agf)hf . Note that Lemma A.6
guarantees the existence of a constant C1 > 0 such that

11To be precise, the results of [18] are concerned with the two-dimensional
case, whereas here we focus on the one-dimensional case. Note, however, that
all our results are readily extended to the multi-dimensional case.

for all D, a ∈ R+, ε ∈ (0, 1/2), there are networks
Ψgf ,ε,Ψhf ,ε ∈ N1,1 satisfying

�Ψgf ,ε − gf�L∞([−D,D]) ≤ ε
12�a� , (88)�Ψhf ,ε − hf�L∞([−D,D]) ≤ ε
12�a�

with

L(Ψgf ,ε),L(Ψhf ,ε) ≤ C1
D�	 log(( ε
12�a� )

−1)2

+ log(
D�) + log(
D−1�)
,
W(Ψgf ,ε),W(Ψhf ,ε) ≤ 16, B(Ψgf ,ε),B(Ψhf ,ε) ≤ 1. Fur-
thermore, Theorem III.8 ensures the existence of a constant
C2 > 0 such that for all D, a ∈ R+, ε ∈ (0, 1/2), there is a
neural network Φa,D,ε ∈ N1,1 satisfying

�Φa,D,ε − cos(a · )�L∞([−3/2,3/2]) ≤ ε
3 , (89)

with L(Φa,D,ε) ≤ C2((log(ε−1))2 + log(
3a/2�)),
W(Φa,D,ε) ≤ 9, and B(Φa,D,ε) ≤ 1. Moreover, due to
Proposition III.3, there exists a constant C3 > 0 such that for
all ε ∈ (0, 1/2), there is a network με ∈ N2,1 satisfying

sup
x,y∈[−3/2,3/2]

|με(x, y) − xy| ≤ ε
3 , (90)

with L(με) ≤ C3 log(ε−1), W(με) ≤ 5, and B(με) ≤ 1. By
Lemma II.3 there exists a network Ψ1 satisfying Ψ1 = Φa,D,ε◦
Ψgf ,ε with W(Ψ1) ≤ 16, L(Ψ1) = L(Φa,D,ε) + L(Ψgf ,ε),
and B(Ψ1) ≤ 1. Furthermore, combining Lemma II.4 and
Lemma A.7, we can conclude the existence of a network

Ψ2(x) = (Ψ1(x),Ψhf ,ε(x))
= (Φa,D,ε(Ψgf ,ε(x)),Ψhf ,ε(x))

with W(Ψ2) ≤ 32,

L(Ψ2) = max{L(Φa,D,ε) + L(Ψgf ,ε),L(Ψhf ,ε)},
and B(Ψ2) ≤ 1. Next, for all D, a ∈ R+, f ∈ FD,a, ε ∈
(0, 1/2), we define the network Γf,ε := με◦Ψ2. By (88), (89),
and supx∈R | d

dx cos(ax)| = a, we have, for all x ∈ [−D,D],

|Φa,D,ε(Ψgf ,ε(x)) − cos(agf (x))|
≤ |Φa,D,ε(Ψgf ,ε(x)) − cos(aΨgf ,ε(x))|

+ | cos(aΨgf ,ε(x)) − cos(agf (x))|
≤ ε

3 + a ε
12�a� ≤ 5ε

12 .

Combining this with (88), (90), and
� cos�L∞([−D,D]), �f�L∞([−D,D]) ≤ 1 yields for all
x ∈ [−D,D],

|Γf,ε(x) − f(x)|
= |με(Φa,D,ε(Ψgf ,ε(x)),Ψhf ,ε(x))−cos(agf (x))hf (x)|
≤|με(Φa,D,ε(Ψgf ,ε(x)),Ψhf ,ε(x))

− Φa,D,ε(Ψgf ,ε(x))Ψhf ,ε(x)|
+|Φa,D,ε(Ψgf ,ε(x))Ψhf ,ε(x)−cos(agf (x))Ψhf ,ε(x)|
+| cos(agf (x))Ψhf ,ε(x) − cos(agf (x))hf (x)|

≤ ε
3 + 5ε

12

�
1 + ε

12�a�
�

+ ε
12�a� ≤ ε.
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Fig. 4. Left: A function in F1,100 . Right: The function W 1√
2

,2.

Finally, by Lemma II.3 there exists a constant C4 such that
for all D, a ∈ R+, f ∈ FD,a, ε ∈ (0, 1/2), it holds that
W(Γf,ε) ≤ 32,

L(Γf,ε) ≤ L(με)
+ max{L(Φa,D,ε) + L(Ψgf ,ε),L(Ψhf ,ε)}

≤ C4
D�((log(ε−1)
+ log(
a�))2 + log(
D�) + log(
D−1�)),

and B(Γf,ε) ≤ 1.
Finally, we show how the Weierstrass function—a fractal

function, which is continuous everywhere but differentiable
nowhere—can be approximated with exponential accuracy by
deep ReLU networks. Specifically, we consider

Wp,a(x) =
∞�

k=0

pk cos(akπx),

for p ∈ (0, 1/2), a ∈ R+, with ap ≥ 1, and let α = − log(p)
log(a) ,

see Figure 4 right for an example. It is well known [86]
that Wp,a possesses Hölder smoothness α which may be
made arbitrarily small by suitable choice of a. While classi-
cal approximation methods achieve polynomial approximation
rates only, it turns out that finite-width deep networks yield
exponential approximation rates. This is formalized as follows.

Proposition X.3: There exists a constantC > 0 such that for
all ε, p ∈ (0, 1/2), D, a ∈ R+, there is a network Ψp,a,D,ε ∈
N1,1 satisfying

�Ψp,a,D,ε −Wp,a�L∞([−D,D]) ≤ ε,

with

L(Ψp,a,D,ε) ≤ C
	
(log(ε−1))3 + (log(ε−1))2 log(
a�)

+ log(ε−1) log(
D�)
,
W(Ψp,a,D,ε) ≤ 13, B(Ψp,a,D,ε) ≤ 1.

Proof: For every N ∈ N, p ∈ (0, 1/2), a ∈ R+, x ∈ R,
let SN,p,a(x) =

�N
k=0 p

k cos(akπx) and note that

|SN,p,a(x) −Wp,a(x)| ≤
∞�

k=N+1

|pk cos(akπx)|

≤
∞�

k=N+1

pk (91)

= 1
1−p − 1−pN+1

1−p

≤ 2−N .

Let Nε := 
log(2/ε)� for ε ∈ (0, 1/2). Next, note that
Theorem III.8 ensures the existence of a constant C1 > 0
such that for all D, a ∈ R+, k ∈ N0, ε ∈ (0, 1/2), there is a
network φak,D,ε ∈ N1,1 satisfying

�φak,D,ε − cos(akπ · )�L∞([−D,D]) ≤ ε
4 , (92)

with L(φak,D,ε) ≤ C1((log(ε−1))2 + log(
akπD�)),
W(φak,D,ε) ≤ 9, B(φak,D,ε) ≤ 1. Let A : R3 → R3

and B : R3 → R be the affine transformations
given by A(x1, x2, x3) = (x1, x1, x2 + x3)T and
B(x1, x2, x3) = x2 + x3, respectively. We now define,
for all p ∈ (0, 1/2), D, a ∈ R+, k ∈ N0, ε ∈ (0, 1/2),
the networks

ψp,a,0
D,ε (x) =

⎛⎝ x
p0φa0,D,ε(x)

0

⎞⎠ and

ψp,a,k
D,ε (x1, x2, x3) =

⎛⎝ x1

pkφak,D,ε(x2)
x3

⎞⎠ , k > 0,

and, for all p ∈ (0, 1/2), D, a ∈ R+, ε ∈ (0, 1/2), the network

Ψp,a,D,ε :=

B ◦ ψp,a,Nε

D,ε ◦A ◦ ψp,a,Nε−1
D,ε ◦ · · · ◦A ◦ ψp,a,0

D,ε .

Due to (92) we get, for all p ∈ (0, 1/2), D, a ∈ R+,
ε ∈ (0, 1/2), x ∈ [−D,D], that

|Ψp,a,D,ε(x) − SNε,p,a(x)|

=

�����
Nε�
k=0

pkφak,D,ε(x) −
Nε�
k=0

pk cos(akπx)

�����



2616 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 5, MAY 2021

≤
Nε�
k=0

pk|φak,D,ε(x) − cos(akπx)|

≤ ε
4

Nε�
k=0

2−k ≤ ε
2 .

Combining this with (91) establishes, for all p ∈ (0, 1/2),
D, a ∈ R+, ε ∈ (0, 1/2), x ∈ [−D,D],

|Ψp,a,D,ε(x) −Wp,a(x)| ≤ 2−�log( 2
ε )� + ε

2

≤ ε
2 + ε

2 = ε.

Applying Lemmas II.3, II.4, and II.5 establishes the existence
of a constant C2 such that for all p ∈ (0, 1/2), D, a ∈ R+,
ε ∈ (0, 1/2),

L(Ψp,a,D,ε) ≤
Nε�
k=0

(L(φak,D,ε) + 1)

≤ Nε + 1 + (Nε + 1)C1

	
(log(ε−1))2

+ log(
aNεπD�)

≤ C2

	
(log(ε−1))3 + (log(ε−1))2 log(
a�)

+ log(ε−1) log(
D�)
,
W(Ψp,a,D,ε) ≤ 13, and B(Ψp,a,D,ε) ≤ 1.

We finally note that the restriction p ∈ (0, 1/2) in Propo-
sition X.3 was made for simplicity of exposition and can be
relaxed to p ∈ (0, r), with r < 1, while only changing the
constant C.

XI. IMPOSSIBILITY RESULTS FOR

FINITE-DEPTH NETWORKS

The recent successes of neural networks in machine learn-
ing applications have been enabled by various technological
factors, but they all have in common the use of deep networks
as opposed to shallow networks studied intensely in the 1990s.
It is hence of interest to understand whether the use of depth
offers fundamental advantages. In this spirit, the goal of this
section is to make a formal case for depth in neural network
approximation by establishing that, for nonconstant periodic
functions, finite-width deep networks require asymptotically—
in the function’s “highest frequency”—smaller connectiv-
ity than finite-depth wide networks. This statement is
then extended to sufficiently smooth nonperiodic functions,
thereby formalizing the benefit of deep networks over shal-
low networks for the approximation of a broad class of
functions.

We start with preparatory material taken from [26].
Definition XI.1 ([26]): Let k ∈ N. A function f : R → R is

called k-sawtooth if it is piecewise linear with no more than
k pieces, i.e., its domain R can be partitioned into k intervals
such that f is linear on each of these intervals.

Lemma XI.2 ([26]): Every Φ ∈ N1,1 is (2W(Φ))L(Φ)-
sawtooth.

Definition XI.3: For a u-periodic function f ∈ C(R),
we define

ξ(f) := sup
δ∈[0,u)

inf
c,d∈R

�f(x) − (cx + d)�L∞([δ,δ+u]).

The quantity ξ(f) measures the error incurred by the best
linear approximation of f on any segment of length equal to
the period of f ; ξ(f) can hence be interpreted as quantifying
the nonlinearity of f . The next result states that finite-depth
networks with width and hence also connectivity scaling
polylogarithmically in the “highest frequency” of the periodic
function to be approximated can not achieve arbitrarily small
approximation error.

Proposition XI.4: Let f ∈ C(R) be a nonconstant
u-periodic function, L ∈ N, and π a polynomial. Then, there
exists an a ∈ N such that for every network Φ ∈ N1,1 with
L(Φ) ≤ L and W(Φ) ≤ π(log(a)), we have

�f(a · ) − Φ�L∞([0,u]) ≥ ξ(f) > 0.

Proof: First note that there exists an even a ∈ N such that
a/2 > (2π(log(a)))L. Lemma XI.2 now implies that every
network Φ ∈ N1,1 with L(Φ) ≤ L and W(Φ) ≤ π(log(a))
is (2π(log(a)))L-sawtooth and therefore consists of no more
than a/2 different linear pieces. Hence, there exists an interval
[u1, u2] ⊆ [0, u] with u2 − u1 ≥ (2u/a) on which Φ is linear.
Since u2−u1 ≥ (2u/a) the interval supports two full periods
of f(a · ) and we can therefore conclude that

�f(a · )− Φ�L∞([0,u])

≥ �f(a · ) − Φ�L∞([u1,u2])

≥ inf
c,d∈R

�f(x) − (cx + d)�L∞([0,2u])

≥ sup
δ∈[0,u)

inf
c,d∈R

�f(x) − (cx+ d)�L∞([δ,u+δ])

= ξ(f).

Finally, note that ξ(f) > 0 as ξ(f) = 0 for u-periodic f ∈
C(R) necessarily implies that f is constant, which, however,
is ruled out by assumption.

Application of Proposition XI.4 to f(x) = cos(x) shows
that finite-depth networks, owing to ξ(cos) > 0, require
faster than polylogarithmic growth of connectivity in a to
approximate x �→ cos(ax) with arbitrarily small error, whereas
finite-width networks, due to Theorem III.8, can accomplish
this with polylogarithmic connectivity growth.

The following result from [87] allows a similar observation
for functions that are sufficiently smooth.

Theorem XI.5 ([87]): Let [a, b] ⊆ R, f ∈ C3([a, b]), and
for ε ∈ (0, 1/2), let s(ε) ∈ N denote the smallest number
such that there exists a piecewise linear approximation of f
with s(ε) pieces and error at most ε in L∞([a, b])-norm. Then,
it holds that

s(ε) ∼ c√
ε
, ε→ 0, where c =

1
4

8 b

a

9
|f ��(x)|dx.

Combining this with Lemma XI.2 yields the following
result on depth-width tradeoff for three-times continuously
differentiable functions.

Theorem XI.6: Let f ∈ C3([a, b]) with
: b

a

9|f ��(x)|dx >
0, L ∈ N, and π a polynomial. Then, there exists ε > 0
such that for every network Φ ∈ N1,1 with L(Φ) ≤ L and
W(Φ) ≤ π(log(ε−1)), we have

�f − Φ�L∞([a,b]) > ε.
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Proof: The proof will be effected by contradiction.
Assume that for every ε > 0, there exists a network Φε ∈
N1,1 with L(Φε) ≤ L, W(Φε) ≤ π(log(ε−1)), and �f −
Φε�L∞([a,b]) ≤ ε. By Lemma XI.2 every (ReLU) neural
network realizes a piecewise linear function. Application of
Theorem XI.5 hence allows us to conclude the existence of a
constant C such that, for all ε > 0, the network Φε must
have at least Cε−

1
2 different linear pieces. This, however,

leads to a contradiction as, by Lemma XI.2, Φε is at most
(2π(log(ε−1)))L-sawtooth and π̃(log(ε−1)) ∈ o(ε−1/2), ε →
0, for every polynomial π̃.

In summary, we have hence established that any func-
tion which is at least three times continuously differentiable
(and does not have a vanishing second derivative) cannot
be approximated by finite-depth networks with connectivity
scaling polylogarithmically in the inverse of the approximation
error. Our results in Section III establish that, in contrast,
this “is” possible with finite-width deep networks for various
interesting types of smooth functions such as polynomials and
sinusoidal functions. Further results on the limitations of finite-
depth networks akin to Theorem XI.6 were reported in [23].

APPENDIX A
AUXILIARY NEURAL NETWORK CONSTRUCTIONS

The following three results are concerned with the realiza-
tion of affine transformations of arbitrary weights by neural
networks with weights upper-bounded by 1.

Lemma A.1: Let d ∈ N and a ∈ R. There exists a network
Φa ∈ Nd,d satisfying Φa(x) = ax, with L(Φa) ≤ �log(|a|)�+
4, W(Φa) ≤ 3d, B(Φa) ≤ 1.

Proof: First note that for |a| ≤ 1 the claim holds trivially,
which can be seen by taking Φa to be the affine transformation
x �→ ax and interpreting it according to Definition II.1 as a
depth-1 neural network. Next, we consider the case |a| > 1
for d = 1, set K := �log(a)�, α := a2−(K+1), and define
A1 := (1,−1)T ∈ R2×1,

A2 :=

⎛⎝1 0
1 1
0 1

⎞⎠ ∈ R
3×2,

Ak :=

⎛⎝ 1 1 −1
1 1 1
−1 1 1

⎞⎠ ∈ R
3×3, k ∈ {3, . . . ,K + 3},

and AK+4 := (α, 0,−α). Note that

(ρ ◦A2 ◦ ρ ◦A1)(x) = (ρ(x), ρ(x) + ρ(−x), ρ(−x))
and

ρ(Ak(x, x + y, y)T ) = 2(x, x+ y, y),

for k ∈ {3, . . . ,K + 3}. The network

Ψa := AK+4 ◦ ρ ◦ · · · ◦ ρ ◦A1

hence satisfies Ψa(x) = ax, L(Ψa) = �log(a)�+4, W(Ψa) =
3, and B(Φa) ≤ 1. Applying Lemma II.5 to get a paralleliza-
tion of d copies of Ψa completes the proof.

Corollary A.2: Let d, d� ∈ N, a ∈ R+, A ∈ [−a, a]d�×d, and
b ∈ [−a, a]d�

. There exists a network ΦA,b ∈ Nd,d� satisfying

ΦA,b(x) = Ax+b, with L(ΦA,b) ≤ �log(|a|)�+5, W(ΦA,b) ≤
max{d, 3d�}, B(ΦA,b) ≤ 1.

Proof: Let Φa ∈ Nd�,d� be the multiplication network
from Lemma A.1, consider W (x) := a−1(Ax + b) as a
1-layer network, and take ΦA,b := Φa ◦ W according to
Lemma II.3.

Proposition A.3: Let d, d� ∈ N and Φ ∈ Nd,d� . There
exists a network Ψ ∈ Nd,d� satisfying Ψ(x) = Φ(x), for
all x ∈ Rd, and with L(Ψ) ≤ (
log(B(Φ))� + 5)L(Φ),
W(Ψ) ≤ max{3d�,W(Φ)}, B(Ψ) ≤ 1.

Proof: We write Φ = WL(Φ) ◦ ρ ◦ . . . ◦ ρ ◦ W1 and
set �W� := (B(Φ))−1W�, for � ∈ {1, . . . ,L(Φ)}, and a :=
B(Φ)L(Φ). Let Φa ∈ Nd�,d� be the multiplication network from
Lemma A.1 and define

,Φ := �WL(Φ) ◦ ρ ◦ · · · ◦ ρ ◦�W1,

and Ψ := Φa ◦ ,Φ according to Lemma II.3. Note that ,Φ has
weights upper-bounded by 1 and is of the same depth and
width as Φ. As ρ is positively homogeneous, i.e., ρ(λx) =
λρ(x), for all λ ≥ 0, x ∈ R, we have Ψ(x) = Φ(x), for all
x ∈ Rd. Application of Lemma II.3 and Lemma A.1 completes
the proof.

Next we record a technical Lemma on how to realize a sum
of networks with the same input by a network whose width is
independent of the number of constituent networks.

Lemma A.4: Let d, d� ∈ N, N ∈ N, and Φi ∈ Nd,d� , i ∈
{1, . . . , N}. There exists a network Φ ∈ Nd,d� satisfying

Φ(x) =
N�

i=1

Φi(x), for allx ∈ R
d,

with

L(Φ) =
N�

i=1

L(Φi),

W(Φ) ≤ 2d+ 2d� + max{2d,max
i

{W(Φi)}},
B(Φ) = max{1,max

i
B(Φi)}.

Proof: We set Li = L(Φi) and write the networks Φi as

Φi = W i
Li

◦ ρ ◦W i
Li−1 ◦ ρ ◦ · · · ◦ ρ ◦W i

1,

with W i
� (x) = Ai

�x+b
i
�, whereAi

� ∈ R
Ni

�×Ni
�−1 and bi� ∈ R

Ni
� .

Next, using Lemma II.4, we turn the identity matrices Id

and Id� into networks Ii
d and Ii

d� , respectively, of depth Li

and then parallelize these networks, according to Lemma II.5,
to get Ψi := (Ii

d, Ii
d� , Φi). Let V i

1 (x) = Ei
1 x + f i

1 and
V i

Li
(x) = Ei

Li
x + f i

Li
denote the first and last, respectively,

affine transformation of the network Ψi. By construction we
have

Ei
1 =

⎛⎜⎜⎜⎜⎝
Id 0 0
−Id 0 0
0 Id� 0
0 −Id� 0
0 0 Ai

1

⎞⎟⎟⎟⎟⎠ ∈ R
(2d+2d�+Ni

1)×(2d+d�),
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f i
1 =

⎛⎜⎜⎜⎜⎝
0
0
0
0
bi1

⎞⎟⎟⎟⎟⎠ ∈ R
2d+2d�+Ni

1

and

Ei
Li

=

⎛⎝Id −Id 0 0 0
0 0 Id� −Id� 0
0 0 0 0 Ai

Li

⎞⎠
∈ R

(d+2d�)×(2d+2d�+Ni
Li−1),

f i
Li

=

⎛⎝ 0
0
biLi

⎞⎠ ∈ R
d+2d�

.

Next, we define the matrices

Ain :=

⎛⎝Id

0
Id

⎞⎠ ∈ R
(2d+d�)×d,

A :=

⎛⎝Id 0 0
0 Id� Id�

Id 0 0

⎞⎠ ∈ R
(2d+d�)×(d+2d�),

Aout :=
	
0 Id� Id�


 ∈ R
d�×(d+2d�),

and note that Ainx = (x, 0, x),

A(x, y, z)T = (x, y + z, x)T ,

and Aout(x, y, z)T = y + z, for x ∈ Rd, y, z ∈ Rd�
. We

construct

• the network ,Ψ1 by taking Ψ1 and replacing E1
1 with

E1
1Ain, E1

L1
with AE1

L1
, and f1

L1
with Af1

L1
,

• the network ,ΨN by taking ΨN and replacing EN
LN

with
AoutE

N
LN

and fN
LN

with Aoutf
N
LN

,
• the networks ,Ψi, i ∈ {2, . . . , N − 1} by taking Ψi and

replacing Ei
Li

with AEi
Li

and f i
Li

with Af i
Li

.

We can now verify that

Φ = ,ΨN ◦ ,ΨN−1 ◦ · · · ◦ ,Ψ1,

when the compositions are taken in the sense of Lemma II.3.
Due to Lemmas II.4 and II.5, we have L(Ψi) = L(Φi),
W(Ψi) = 2d + 2d� + W(Φi), and B(Ψi) = max{1,B(Φi)}.
The proof is finalized by noting that, owing to the structure
of the involved matrices, the depth and the weight magnitude
remain unchanged by turning Ψi into ,Ψi, whereas the width
can not increase, but may decrease owing to the replacement
of E1

1 by E1
1Ain.

The following lemma shows how to patch together local
approximations using multiplication networks and a partition
of unity consisting of hat functions. We note that this argument
can be extended to higher dimensions using tensor products
(which can be realized efficiently through multiplication net-
works) of the one-dimensional hat function.

Lemma A.5: Let ε ∈ (0, 1/2), n ∈ N,

a0 < a1 < · · · < an ∈ R,

f ∈ L∞([a0, an]), and

A :=
*
max{|a0|, |an|, 2 max

i∈{2,...,n−1}
1

|ai−ai−1|}
+
,

B := max{1, �f�L∞([a0,an])}.
Assume that for every i ∈ {1, . . . , n − 1}, there exists a
network Φi ∈ N1,1 with �f−Φi�L∞([ai−1,ai+1]) ≤ ε/3. Then,
there is a network Φ ∈ N1,1 satisfying

�f − Φ�L∞([a0,an]) ≤ ε,

with

L(Φ) ≤
n−1�
i=1

L(Φi)

+ Cn(log(ε−1) + log(B) + log(A)),
W(Φ) ≤ 7 + max{2, max

i∈{1,...,n−1}
W(Φi)},

B(Φ) = max{1,max
i

B(Φi)},

and with C > 0 an absolute constant, i.e., independent of
ε, n, f, a0, . . . , an.

Proof: We first define the neural networks
(Ψi)n−1

i=1 ∈ N1,1 forming a partition of unity according
to

Ψ1(x) := 1 − 1
a2−a1

ρ(x− a1) + 1
a2−a1

ρ(x− a2),

Ψi(x) := 1
ai−ai−1

ρ(x− ai−1)

− ( 1
ai−ai−1

+ 1
ai+1−ai

) ρ(x− ai)

+ 1
ai+1−ai

ρ(x − ai+1),

i ∈ {2, . . . , n− 2},

Ψn−1(x) := 1
an−1−an−2

ρ(x− an−2)

− 1
an−1−an−2

ρ(x− an−1).

Note that supp(Ψ1) = (∞, a2), supp(Ψi) = [ai−1, ai+1], and
supp(Ψn−1) = [an−2,∞). Proposition A.3 now ensures that,
for all i ∈ {1, . . . , n− 1}, Ψi can be realized as a network
with L(Ψi) ≤ 2(
log(A)� + 5), W(Ψi) ≤ 3, and B(Ψi) ≤ 1.
Next, let ΦB+1/6,ε/3 ∈ N2,1 be the multiplication network
according to Proposition III.3 and define the networks,Φi(x) := ΦB+1/6,ε/3(Φi(x),Ψi(x))

according to Lemma II.5 and Lemma II.3, along with their
sum Φ(x) :=

�n−1
i=1

,Φi(x) according to Lemma A.4. Proposi-
tion III.3 ensures, for all i ∈ {1, . . . , n− 1}, x ∈ [ai−1, ai+1],
that

|f(x)Ψi(x) − ,Φi(x)|
≤ |f(x)Ψi(x) − Φi(x)Ψi(x)|

+ |Φi(x)Ψi(x) − ΦB+1/6,ε/3(Φi(x),Ψi(x))|
≤ (Ψi(x) + 1) ε

3

and supp(,Φi) = [ai−1, ai+1]. In particular, for every x ∈
[a0, an], the set

I(x) := {i ∈ {1, . . . , n− 1} : ,Φi(x) �= 0}
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of active indices contains at most two elements. Moreover,
we have

�
i∈I(x) Ψi(x) = 1 by construction, which implies

that, for all x ∈ R,

|f(x) − Φ(x)| =

������
�

i∈I(x)

Ψi(x)f(x) −
�

i∈I(x)

Φ̃i(x)

������
≤

�
i∈I(x)

(Ψi(x) + 1) ε
3 ≤ ε.

Due to Lemma II.3, Lemma II.5, Proposition III.3, and
Lemma A.4, we can conclude that Φ, indeed, satisfies the
claimed properties.

Next, we present an extension of Lemma III.7 to arbitrary
(finite) intervals.

Lemma A.6: For a, b ∈ R with a < b, let

S[a,b] :=
"
f ∈ C∞([a, b],R) :

�f (n)(x)�L∞([a,b]) ≤ n!, for all n ∈ N0

#
.

There exists a constant C > 0 such that for all a, b ∈ R

with a < b, f ∈ S[a,b], and ε ∈ (0, 1/2), there is a network
Ψf,ε ∈ N1,1 satisfying

�Ψf,ε − f�L∞([a,b]) ≤ ε,

with

L(Ψf,ε) ≤ Cmax{2, (b− a)}	(log(ε−1))2

+ log(
max{|a|, |b|}�) + log(
 1
b−a�)



,

W(Ψf,ε) ≤ 16, B(Ψf,ε) ≤ 1.
Proof: We first recall that the case [a, b] = [−1, 1] has

already been dealt with in Lemma III.7. Here, we will first
prove the statement for the interval [−D,D] with D ∈ (0, 1)
and then use this result to establish the general case through a
patching argument according to Lemma A.5. We start by not-
ing that for g ∈ S[−D,D], the function fg : [−1, 1] → R, x �→
g(Dx) is in S[−1,1] due to D < 1. Hence, by Lemma III.7,
there exists a constant C > 0 such that for all g ∈ S[−D,D]

and ε ∈ (0, 1/2), there is a network ,Ψg,ε ∈ N1,1 satisfying
�,Ψg,ε − fg�L∞([−1,1]) ≤ ε, with L(,Ψg,ε) ≤ C(log(ε−1))2,
W(,Ψg,ε) ≤ 9, B(,Ψg,ε) ≤ 1. The claim is then established
by taking the network approximating g to be Ψg,ε := ,Ψg,ε ◦
ΦD−1 , where ΦD−1 is the scalar multiplication network from
Lemma A.1, and noting that

�Ψg,ε(x) − g(x)�L∞([−D,D])

= sup
x∈[−D,D]

|,Ψg,ε( x
D ) − fg( x

D )|

= sup
x∈[−1,1]

|,Ψg,ε(x) − fg(x)| ≤ ε.

Due to Lemma II.3, we have
L(Ψg,ε) ≤ C((log(ε−1))2 + log(
 1

D �)), W(Ψg,ε) ≤ 9,
and B(Ψg,ε) ≤ 1. We are now ready to proceed to the
proof of the statement for general intervals [a, b]. This will
be accomplished by approximating f on intervals of length
no more than 2 and stitching the resulting approximations
together according to Lemma A.5. We start with the case
b − a ≤ 2 and note that here we can simply shift the

function by (a + b)/2 to center its domain around the
origin and then use the result above for approximation on
[−D,D] with D ∈ (0, 1) or Lemma III.7 if b − a = 2,
both in combination with Corollary A.2 to realize the shift
through a neural network with weights bounded by 1.
Using Lemma II.3 to implement the composition of the
network realizing this shift with that realizing g, we can
conclude the existence of a constant C� > 0 such that, for
all [a, b] ⊆ R with b − a ≤ 2, g ∈ S[a,b], ε ∈ (0, 1/2),
there is a network satisfying �g − Ψg,ε�L∞([a,b]) ≤ ε with
L(Ψg,ε) ≤ C�((log(ε−1))2 + log(
 1

b−a�)), W(Ψg,ε) ≤ 9, and
B(Ψg,ε) ≤ 1. Finally, for b − a > 2, we partition the interval
[a, b] and apply Lemma A.5 as follows. We set n := 
b − a�
and define

ai := a+ i b−a
n , i ∈ {0, . . . , n}.

Next, for i ∈ {1, . . . , n− 1}, let gi : [ai−1, ai+1] → R be the
restriction of g to the interval [ai−1, ai+1], and note that ai+1−
ai−1 = 2(b−a)

n ∈ (4
3 , 2]. Furthermore, for i ∈ {1, . . . , n− 1},

let Ψgi,ε/3 be the network approximating gi with error ε/3
as constructed above. Then, for every i ∈ {1, . . . , n − 1},
it holds that �g−Ψgi,ε/3�L∞([ai−1,ai+1]) ≤ ε

3 and application
of Lemma A.5 yields the desired result.

We finally record, for technical purposes, slight variations of
Lemmas II.5 and II.6 to account for parallelizations and linear
combinations, respectively, of neural networks with shared
input.

Lemma A.7: Let n, d, L ∈ N and, for i ∈ {1, 2, . . . , n},
let d�i ∈ N and Φi ∈ Nd,d�

i
with L(Φi) = L. Then, there

exists a network Ψ ∈ Nd,
�n

i=1 d�
i

with L(Ψ) = L, M(Ψ) =�n
i=1 M(Φi), W(Ψ) ≤ �n

i=1 W(Φi), B(Ψ) = maxi B(Φi),
and satisfying

Ψ(x) = (Φ1(x),Φ2(x), . . . ,Φn(x)) ∈ R

�n
i=1 d�

i ,

for x ∈ Rd.
Proof: The claim is established by following the con-

struction in the proof of Lemma II.5, but with the matrix
A1 = diag(A1

1, A
2
1, . . . , A

n
1 ) replaced by

A1 =

⎛⎜⎝A
1
1

...
An

1

⎞⎟⎠ ∈ R
(
�n

i=1 Ni
1)×d,

where N i
1 is the dimension of the first layer of Φi.

Lemma A.8: Let n, d, d�, L ∈ N and, for i ∈ {1, . . . , n}, let
ai ∈ R and Φi ∈ Nd,d� with L(Φi) = L. Then, there exists a
network Ψ ∈ Nd,d� with L(Ψ) = L, M(Ψ) ≤ �n

i=1 M(Φi),
W(Ψ) ≤ �n

i=1 W(Φi), B(Ψ) = maxi{|ai|B(Φi)}, and
satisfying

Ψ(x) =
n�

i=1

aiΦi(x) ∈ R
d�
,

for x ∈ Rd.
Proof: The proof follows directly from that of Lemma A.7

with the same modifications as those needed in the proof of
Lemma II.6 relative to that of Lemma II.5.
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APPENDIX B
TAIL COMPACTNESS FOR BESOV SPACES

We consider the Besov space Bm
p,q([0, 1]) [16] given by the

set of functions f ∈ L2([0, 1]) satisfying �f�m,p,q < ∞,
where

�f�m,p,q (93)
:= �(2n(m+ 1

2− 1
p )�(�f, ψn,k�)2n−1

k=0 ��p)n∈N0��q .

The dictionary D = {ψn,k : n ∈ N0, k = 0, . . . , 2n − 1} is an
orthonormal wavelet basis12 for L2([0, 1]) and �p denotes the
usual sequence norm

�(ai)i∈I��p =

�	�
i∈I |ai|p


 1
p , 1 ≤ p <∞

supi∈I |ai|, p = ∞ .

The unit ball in Bm
p,q([0, 1]) is

U(Bm
p,q([0, 1])) = {f ∈ L2([0, 1]) : �f�m,p,q ≤ 1}. (94)

For simplicity of notation, we set an,k(f) := �f, ψn,k� and
An(f) := (an,k(f))2

n−1
k=0 ∈ R2n

, for n ∈ N0. We now want
to verify that for q ∈ [1, 2] tail compactness holds for the pair
(U(Bm

p,q([0, 1])),D) under the ordering D = (D0,D1, . . . ),
where

Dn := {ψn,k : k = 0, . . . , 2n − 1}.
To this end, we first note that owing to

N�
n=0

|Dn| = 2N+1 − 1,

we have tail compactness according to (26) if there exist
C, β > 0 such that for all f ∈ U(Bm

p,q([0, 1])), N ∈ N,�����f −
N�

n=0

2n−1�
k=0

an,k(f)ψn,k

�����
L2([0,1])

≤ C(2N+1)−β . (95)

To see that (93) implies (95), we note that by orthonormality
of D, �����f −

N�
n=0

2n−1�
k=0

an,k(f)ψn,k

�����
L2([0,1])

=

�����
∞�

n=N+1

2n−1�
k=0

an,k(f)ψn,k

�����
L2([0,1])

=

� ∞�
n=N+1

2n−1�
k=0

|an,k(f)|2
� 1

2

= �(�An(f)��2)∞n=N+1��2 .

As the An(f) are finite sequences of length |Dn| = 2n, it fol-
lows, by application of Hölder’s inequality, that �An(f)��2 ≤
2n( 1

2− 1
p )�An(f)��p . Together with � · ��2 ≤ � · ��q , for q ≤ 2,

(93) then ensures, for all f ∈ U(Bm
p,q([0, 1])) and q ∈ [1, 2],

12The space does not depend on the particular choice of mother wavelet ψ
as long as ψ has at least r vanishing moments and is in Cr([0, 1]) for some
r > m. For further details we refer to Section 9.2.3 in [16].

that

�(�An(f)��2)∞n=N+1��2

≤ �(2n( 1
2− 1

p )�An(f)��p)∞n=N+1��q

≤ 2−(N+1)m�(2n(m+ 1
2− 1

p )�An(f)��p)∞n=N+1��q

≤ 2−(N+1)m�f�m,p,q ≤ (2N+1)−m,

which establishes (95) with C = 1 and β = m.

APPENDIX C
TAIL COMPACTNESS FOR MODULATION SPACES

We consider tail compactness for unit balls in (polynomi-
ally) weighted modulation spaces, which, for p, q ∈ [1,∞), are
defined as follows

M s
p,q(R) := {f : �f�Ms

p,q(R) <∞},
with

�f�Ms
p,q(R)

:=

�8
R

�8
R

|Vwf(x, ξ)|p(1 + |x| + |ξ|)spdx
� q

p

dξ

� 1
q

,

where

Vwf(x, ξ) :=
8

R

f(t)w(t− x)e−2πitξdt, x, ξ ∈ R,

is the short-time Fourier transform of f with respect to the
window function13 w ∈ S(R).

Next, let g ∈ L2(R) with �g�L2(R) = 1 and g(x) =
g(−x) such that the Gabor dictionary G(g, 1

2 , 1,R) is a tight
frame [68] for L2(R). Then, the Wilson dictionary D =
{ψk,n : (k, n) ∈ Z × N0} with

ψk,0 = Tkg, k ∈ Z,

ψk,n = 1√
2
T k

2
(Mn + (−1)k+nM−n)g, (k, n) ∈ Z × N,

is an orthonormal basis for L2(R) (see [17, Thm. 8.5.1]). We
have, for every f ∈M s

p,q(R), the expansion [17, Thm. 12.3.4]

f =
�

(k,n)∈Z×N0

ck,n(f)ψk,n,

where

ck,n(f) = �f, ψk,n�, c(f) ∈ �sp,q(Z × N0),

with �sp,q(Z×N0) the space of sequences c ∈ RZ×N0 satisfying

�c��s
p,q(Z×N0)

:=

⎛⎝�
n∈N0

��
k∈Z

|ck,n|p(1 + |k2 | + |n|)sp

� q
p

⎞⎠
1
q

<∞.

Moreover, there exists [17, Thm. 12.3.1] a constant D ≥ 1
such that, for all f ∈M s

p,q(R),
1
D�f�Ms

p,q(R) ≤ �c(f)��s
p,q(Z×N0) ≤ D�f�Ms

p,q(R).

13The resulting modulation space does not depend on the specific choice
of window function w as long as w is in the Schwartz space S(R) =
{f ∈ C∞(R) : supx∈R |xαf(β)(x)| < ∞, for all α, β ∈ N0}, where
f(n) stands for the n-th derivative of f .
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�����f −
N�

n=0

N�
k=−N

ck,n(f)ψk,n

�����
L2(R)

=

������
�
n>N

�
|k|>N

ck,n(f)ψk,n

������
L2(R)

=

⎛⎝�
n>N

�
|k|>N

|ck,n(f)|2
⎞⎠

1
2

≤

⎛⎜⎝�
n>N

⎛⎝ �
|k|>N

|ck,n(f)|p
⎞⎠

q
p

⎞⎟⎠
1
q

(97)

≤ (1 + 3
2N)−s

⎛⎜⎝�
n>N

⎛⎝ �
|k|>N

|ck,n(f)|p(1 + |k2 | + |n|)sp

⎞⎠
q
p

⎞⎟⎠
1
q

≤ (1 + 3
2N)−s�c(f)��s

p,q(Z×N0) ≤ (3/2)−sDN−s

In particular, we can characterize the unit ball of M s
p,q(R)

according to

U(M s
p,q(R)) = {f : �c(f)��s

p,q(Z×N0) ≤ D}.
We now order the Wilson basis dictionary as follows. Define
D0 := {ψ0,0} and

D� := {ψk,n : |k|, n ≤ �} \
�−1$
i=0

Di

for � ≥ 1, and order the overall dictionary according to
D = (D0,D1, . . . ). Owing to

N�
�=0

|D�| = (2N + 1)(N + 1),

we have tail compactness for the pair (U(M s
p,q(R)),D) if there

exist C, β > 0 such that, for all f ∈ U(M s
p,q(R)), N ∈ N,�����f −

N�
n=0

N�
k=−N

ck,n(f)ψk,n

�����
L2(R)

≤ CN−β. (96)

We restrict our attention to p, q ≤ 2 and use orthonormality of
D and the fact that � · ��2 ≤ � · ��p , for p ≤ 2, to obtain, for
all f ∈ U(M s

p,q(R)), that (97), shown at the top of the page,
holds, which establishes tail compactness with C = (3/2)−sD
and β = s.
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