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Error Probability Bounds for Gaussian Channels
under Maximal and Average Power Constraints

Gonzalo Vazquez-Vilar, Member, IEEE

Abstract—This paper studies the performance of block coding
on an additive white Gaussian noise channel under different
power limitations at the transmitter. New lower bounds are
presented for the minimum error probability of codes satisfying
maximal and average power constraints. These bounds are tighter
than previous results in the finite blocklength regime, and yield
a better understanding on the structure of good codes under an
average power limitation. Evaluation of these bounds for short
and moderate blocklengths is also discussed.

Index Terms—Gaussian channel, channel coding, finite block-
length analysis, hypothesis testing, meta-converse, maximal power
constraint, average power constraint, constellation design.

I. INTRODUCTION

We consider the problem of transmitting equiprobable mes-
sages over several uses of an additive white Gaussian noise
(AWGN) channel using block codes. Given its practical impor-
tance, the AWGN channel has been widely studied assuming
different power limitations at the transmitter:

(i) Equal power constraint, forcing every codeword in the
transmission code to have equal energy.

(ii) Maximal power constraint, that requires that each of the
codewords satisfies a certain energy threshold.

(iii) Average power constraint, for which the energy con-
straint is satisfied in average (thus allowing that some
of the codewords violate the threshold).

In his seminal 1948 work [3], Shannon established the ca-
pacity of the power constrained AWGN channel, defined as the
highest transmission rate under which reliable communication
is possible with arbitrarily long codewords. A more refined
asymptotic analysis follows from the study of the reliability
function, which characterizes the exponential dependence be-
tween the error probability and the length of the codewords for
a certain transmission rate. For the power-constrained AWGN
channel, Shannon obtained the reliability function for rates
close to the channel capacity [4]. Both the capacity [3] and the
reliability function [4] of the AWGN channel do not depend on
the specific power restriction considered at the transmitter. We
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conclude that equal, maximal and average power constraints
can be cast as asymptotically equivalent.1

An alternative analysis of the reliability function is based
on hypothesis testing. The channel coding error probability
can be related to that of a surrogate binary hypothesis test
between the distribution induced by the codebook and a certain
auxiliary distribution [6]. An application of this technique
was used in [7] to obtain the sphere-packing bound to the
channel coding reliability function for general channels (see
[8]–[12] for alternative derivations and refinements). To obtain
the sphere-packing exponent, the hypothesis testing technique
needs to be applied with an appropriately chosen auxiliary
distribution, denoted as exponent-achieving output distribution
(analogously to the capacity-achieving output distribution that
follows from the channel capacity analysis). The sphere-
packing exponent for the power-constrained AWGN channel
was studied in [11, Sec. 4] and [12, Sec. 11].

While the focus of [4] is on the asymptotics of the power-
constrained AWGN channel, Shannon also obtained upper and
lower bounds in the finite blocklength regime [4, Eq. (20)]. His
derivation follows from applying certain geometric arguments
to codewords lying on the surface of an n-dimensional sphere,
i.e., satisfying an equal power constraint, and then extending
these results to maximal and average power limitations [4,
Sec. XIII]. Following a different approach, Polyanskiy, Poor
and Verdú established a fundamental lower bound to the error
probability in the finite blocklength regime [13, Th. 27]. This
result is usually referred to as meta-converse and corresponds
to the error probability of a hypothesis test (for a formal
definition see Sec. II-B). The standard application of the meta-
converse bound for a specific channel requires either to solve
a minimax optimization problem, or to make a lucky guess
for the auxiliary distribution appearing in the hypothesis test.
For the AWGN channel and an auxiliary distribution equal to
the capacity achieving output distribution, the meta-converse
particularizes to [13, Th. 41]. This bound is slightly weaker
than Shannon’s [4, Eq. (20)] for an equal power constraint and
can be extended to maximal and average power constraints
using the techniques in [4, Sec. XIII] (see [13, Lem. 39]).
Polyanskiy also studied the exact solution of the meta-converse
minimax optimization problem in [14]. Exploiting the existing
symmetries in the AWGN channel with an equal power
constraint, [14, Sec. VI] shows that, for a certain non-product
auxiliary distribution, the meta-converse bound coincides with
Shannon lower bound [4, Eq. (20)]. Therefore, Shannon lower

1Note however that some asymptotic differences still exits. The strong-
converse error exponent (relevant for rates above capacity) under equal and
maximal power constraints is strictly positive, while it is zero under an
average-power constraint [5, Sec. 4.3].
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bound is still the tightest finite-length converse bound for the
AWGN channel under an equal power constraint and it is often
used as a benchmark for practical codes (see, e.g., [15]–[19]).

In this work, we complement the existing results in the
literature for the AWGN channel with new lower bounds on
the error probability of codes under maximal and average
power limitations at the transmitter. In particular, our main
contributions are the following:

• We provide an exhaustive characterization of the error
probability of a binary hypothesis test between two Gaus-
sian distributions. The error probability of this test cor-
responds to the meta-converse bound for an equal power
constraint and an auxiliary independent and identically
distributed (i.i.d.) zero-mean Gaussian distribution (not
necessarily capacity achieving).

• Using this characterization, we optimize the meta-
converse bound over input distributions satisfying max-
imal and average power constraints. We obtain that the
error probability of a hypothesis test between two i.i.d.
Gaussian distributions yields a lower bound that holds
directly under a maximal power limitation. For an average
power limitation, we obtain that this bound holds if the
codebook size is below a certain threshold and, with a
certain transformation, also above this threshold.

• We propose a saddlepoint expansion to estimate the
error probability of a hypothesis test between two i.i.d.
Gaussian distributions. This expansion yields a simple
expression that can be used to evaluate [13, Th. 41]
and the new bounds for maximal and average power
constraints presented in this work.

• We provide several numerical examples and compare
the new bounds with previous results in the literature
showing their advantage in the finite-length regime. We
show that considering an exponent-achieving auxiliary
distribution under equal, maximal and average power
constraints yields tighter bounds in general.

Given the difficulty of computing [4, eq. (20)] (see,
e.g., [17], [20]–[22]), the bounds proposed here are not only
tighter (for maximal and average power constraints) but also
easier to evaluate than the original lower bound by Shannon.
While the results obtained are specific for the AWGN channel,
the techniques used in this work can in principle be extended to
other scenarios in which the optimization of the meta-converse
bound over input distributions is needed.

The organization of the manuscript is as follows. Section II
presents the system model and a formal definition of the power
constraints. Section III compares Shannon lower bound with
the meta-converse for the AWGN channel with an equal power
constraint. This section provides a geometric interpretation of
[13, Th. 41] analogous to the one formulated in [4]. Sections
IV and V introduce new bounds for maximal and average
power constraints, respectively. The evaluation of the proposed
bounds is studied in Section VI. Section VII presents a numeri-
cal comparison of the bounds with previous results and studies
the effect of considering capacity and exponent achieving
auxiliary distributions. Finally, Section VIII concludes the
article discussing the results of this work.

II. SYSTEM MODEL AND PRELIMINARIES

We consider the problem of transmitting M equiprobable
messages over n uses of an AWGN channel with noise
power σ2. Specifically, we consider a channel W , PY |X
which, for an input x = (x1, x2, . . . , xn) ∈ X and output
y = (y1, y2, . . . , yn) ∈ Y , with X = Y = Rn, has a
probability density function (pdf)

w(y|x) =
n∏
i=1

ϕxi,σ(yi), (1)

where ϕµ,σ(·) denotes the pdf of the Gaussian distribution,

ϕµ,σ(y) ,
1√
2πσ

e−
(y−µ)2

2σ2 . (2)

In our communications system, the source generates a
message v ∈ {1, . . . ,M} randomly with equal probability.
This message is then mapped by the encoder to a codeword
cv using a codebook C ,

{
c1, . . . , cM

}
, and the sequence

x = cv is transmitted over the channel. Then, based on the
channel output y, the decoder guesses the transmitted message
v̂ ∈ {1, . . . ,M}. In the following we shall assume that
maximum likelihood (ML) decoding is used at the receiver.2

We define the average error probability of a codebook C as

ε(C) , Pr{V̂ 6= V }, (3)

where the underlying probability is induced by the chain of
source, encoder, channel, and ML decoder.3

A. Power constrained codebooks

The focus of this work is on obtaining lower bounds to
the error probability ε(C) for codebooks C ,

{
c1, . . . , cM

}
satisfying the following power constraints:

(i) Equal power constraint:

Fe(n,M,Υ) ,
{
C
∣∣ ‖ci‖2 = nΥ, i = 1, . . . ,M

}
. (4)

(ii) Maximal power constraint:

Fm(n,M,Υ) ,
{
C
∣∣ ‖ci‖2 ≤ nΥ, i = 1, . . . ,M

}
. (5)

(iii) Average power constraint:

Fa(n,M,Υ) ,
{
C
∣∣ 1
M

∑M

i=1
‖ci‖2 ≤ nΥ

}
. (6)

For fixed n,M,Υ, we define the minimum error probability
under a power constraint i ∈ {e,m, a} as

ε?i (n,M,Υ) , min
C∈Fi(n,M,Υ)

ε(C). (7)

The next result relates the minimum error probability in the
three scenarios considered via simple inequalities.

2Since the ML decoder minimizes the error probability, lower bounds to
ML decoding error probability also apply to other decoding schemes.

3All the results in this article are derived under the average error proba-
bility formalism. For the maximal error probability, defined as εmax(C) ,
maxv∈{1,...,M} Pr{V̂ 6= V |V = v}, it holds that εmax(C) ≥ ε(C) and
lower bounds on ε(C) also apply to εmax(C).
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Lemma 1 ([4, Sec. XIII], [5, Lemma 65]): For any
n,M,Υ > 0, and 0 < s < 1, the following inequalities hold:

ε?e (n,M,Υ) ≥ ε?m(n,M,Υ) ≥ ε?e (n+ 1,M,Υ), (8)

ε?m(n,M,Υ) ≥ ε?a (n,M,Υ) ≥ sε?m

(
n, sM, Υ

1−s

)
. (9)

Remark: The relations (8)-(9) were first proposed by Shan-
non in [4, Sec. XIII]. Nevertheless, there is a typo in the last
equation of [4, Sec. XIII], which has been corrected in (9). In
[4, Sec. XIII], Shannon states that “The probability of error
for the new code [satisfying the maximal power constraint]
cannot exceed 1/α times that of the original code [satisfying
the average power constraint]” (brackets added). While this
reasoning is right, using his notation, this statement traslates
to P ′e opt ≤ 1

αP
′′
e opt and hence P ′′e opt ≥ αP ′e opt, which does

not coincide with the last equation of [4, Sec. XIII]. These
relations were rederived in [5, Lemma 65], where the statement
of the bound corresponding to (9) is correct.

The relations from Lemma 1 show that lower and upper
bounds on the error probability under a given power constraint
can be adapted to other settings via simple transformations. Fo-
cusing on converse bounds, the analysis under an equal power
constraint is usually simpler. However, the maximal power
constraint and average power constraint are more relevant in
practice, and therefore the transformations from Lemma 1 are
often used to adapt converse bounds to this settings. While
the loss incurred by using these transformations becomes
negligible in the asymptotic regime, it can have a relevant
impact at finite blocklengths.

In Sections IV and V we shall prove direct lower bounds in
the finite blocklength regime for maximal and average power
constraints. The new bounds are tighter than previous results
resorting on the transformations from Lemma 1.

B. Meta-converse bound

In [13], Polyanskiy et al. proved that the error probability
of a binary hypothesis test with certain parameters can be used
to lower bound the error probability ε(C) for a channel W . In
particular, [13, Th. 27] establishes the meta-converse bound:

ε(C) ≥ inf
P∈P

sup
Q

{
α 1
M

(
PW,P ×Q

)}
, (10)

where P is the set of distributions over the input alphabet X
satisfying a certain constraint, Q is an auxiliary distribution
over the output alphabet Y which is not allowed to depend on
the input x, and where αβ (PW,P ×Q) denotes the minimum
type-I error for a maximum type-II error β ∈ [0, 1] in a binary
hypothesis testing problem between the distributions PW and
P×Q. Formally, for two distributions A and B defined over an
alphabet Z , the minimum type-I error for a maximum type-II
error β ∈ [0, 1] is given by

αβ(A,B) , inf
0≤T≤1:

EB [T (Z)]≤β

{
1− EA[T (Z)]

}
, (11)

where T : Z → [0, 1] and EP [·] denotes the expectation
operator with respect to the random variable Z ∼ P .

The results in this work follow from the following inequality
chain, which always holds

inf
P∈P

sup
Q

{
α 1
M

(
PW,P ×Q

)}
≥ sup

Q
inf
P∈P

{
α 1
M

(
PW,P ×Q

)}
(12)

≥ inf
P∈P

{
α 1
M

(
PW,P ×Q

)}
. (13)

Here, the first step follows from the max-min inequality, and
the second is the result of fixing the auxiliary distribution
Q. The properties of the exact minimax solution to the
optimizations in the left-hand side of (12) are studied in [14].
Under mild assumptions, (12) is satisfied with equality and the
saddle point property holds [14, Sec. V]. Therefore, in practice
it is possible to fix the auxiliary distribution Q in (10) and still
obtain tight lower bounds. However, the minimization needs
to be carried out over all the input probability distributions P
(non necessarily product) satisfying the constraint P ∈ P .

In the following sections we consider the optimization of the
meta-converse bound over input distributions for the AWGN
channel under equal, maximal and average power constraints
and for a certain auxiliary distribution Q.

III. LOWER BOUNDS FOR EQUAL POWER CONSTRAINTS

In this section we briefly discuss the results from [4], [13]
and [14]. The bounds presented here apply for codes C ∈
Fe(n,M,Υ) satisfying an equal power constraint, and they
will be relevant in the sequel.

A. Shannon cone-packing bound

Consider a n-dimensional cone with vertex at the origin,
with axis going through the vector x = (1, . . . , 1) and with
half-angle θ. Let Φn(θ, σ̄2) denote the probability that the
vector x is moved outside this cone by effect of the i.i.d. zero
mean Gaussian noise with variance σ̄2 in each dimension.

Theorem 1 ([4, Eq. (20)]): Let θn,M be the half-angle of a
cone with solid angle equal to Ωn/M , where Ωn is the surface
of the n-dimensional hypersphere. The error probability of an
equal-power constrained code satisfies

ε?e (n,M,Υ) ≥ Φn

(
θn,M ,

σ2

Υ

)
. (14)

The derivation of this bound follows from deforming the
optimal decoding regions, which for codewords lying on the
surface of an sphere correspond to pyramids, to cones of the
same volume (see [4, Fig. 1]) and analyzing the resulting error
probability. Given this geometric interpretation, Theorem 1 is
often referred to as cone-packing bound. While the resulting
expression is conceptually simple and accurate for low SNRs
and relatively short codes [23], it is difficult to evaluate.
Approximate and exact computation of this bound is treated,
e.g., in [21], [22].
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B. Meta-converse bound for the AWGN channel

We consider now the meta-converse bound (10) for the equal
power constrained AWGN channel. The exact solution of the
minimax optimization in (10) was studied in [14, Sec. VI.F].
For an equal power constraint the codewords ci are restricted
to lie on the surface of a sphere of squared radius nΥ. The
optimal decoder does not depend on the norm of the received
sequence and only on its direction, and therefore it is possible
to define an equivalent channel PỸ |X̃ with

x̃ =
x√
nΥ
∈ X̃ , ỹ =

y

‖y‖
∈ Ỹ, (15)

where X̃ = Ỹ = Sn−1 corresponds to the (n−1)-dimensional
sphere centered at the origin and with unit radius. Applying
the meta-converse bound (10) to the random map W = PỸ |X̃ ,
and mapping this result back to the original channel PY |X , it
follows that the meta-converse (10) recovers Shannon cone-
packing bound (14) [14, Sec. VI.F]. Analyzing the optimizing
distributions in the original domain, we conclude that this
bound is attained for a non-product auxiliary distribution Q.

Nevertheless, the meta-converse bound (10) can be weak-
ened by fixing the auxiliary distribution Q. For any input
distribution lying on the surface of a n-dimensional hyper-
sphere of squared radius nΥ (equal power constraint) and an
auxiliary distribution Q that is invariant under rotations around
the origin, it holds that [13, Lem. 29]

α 1
M

(
PW,P ×Q

)
= α 1

M

(
ϕn√

Υ,σ
, Q
)
. (16)

In [13, Sec. III.J.2], Polyanskiy et al. fixed the auxiliary
distribution Q to be an i.i.d. zero-mean Gaussian distribution
with variance θ2. The pdf of this auxiliary distribution is

q(y) =
n∏
i=1

ϕ0,θ(yi), (17)

and its application yields the following lower bound.
Theorem 2 ([13, Th. 41]): Let θ2 = Υ + σ2. The error

probability of an equal-power constrained code satisfies

ε?e (n,M,Υ) ≥ α 1
M

(
ϕn√

Υ,σ
, ϕn0,θ

)
. (18)

This expression admits a parametric form involving two
Marcum-Q functions (see Proposition 1 in Appendix A).
However, for fixed rate R , 1

n log2M , the term 1
M = 2−nR

decreases exponentially with the blocklength and traditional
series expansions of the Marcum-Q function fail even for
moderate values of n. Nevertheless, in contrast with the
formulation in (14), the distributions appearing in (18) are
i.i.d., and Laplace methods can be used to evaluate this bound.
This point will be treated in detail in Section VI.

C. Geometric interpretation of Theorem 2

The cone-packing bound from Theorem 1 corresponds to
the probability that the additive Gaussian noise moves a
given codeword out of the n-dimensional cone centered at the
codeword that roughly covers 1/M -th of the output space. We
next show that the hypothesis-testing bound from Theorem 2
admits an analogous geometric interpretation.

(a) (b)

Fig. 1: Induced regions by (a) the Shannon cone-packing
bound in (14), and (b) the hypothesis-testing bound in (18),
for codewords (•) located on the shell of the sphere.

Let x =
(√

Υ, . . . ,
√

Υ
)

and let θ > σ. For the hypothesis
test on the right-hand side (RHS) of (18), the condition

log
ϕn√

Υ,σ
(y)

ϕn0,θ(y)
= n log

θ

σ
+
‖y‖2

2θ2
− ‖y − x‖2

2σ2
= t (19)

defines the boundary of the decision region induced by the
optimal Neyman-Pearson test for some −∞ < t < ∞. We
characterize the shape of this region. To this end, we write

‖y‖2

2θ2
−‖y − x‖2

2σ2

= −θ
2 − σ2

2σ2θ2

(
‖y‖2 − 2axTy + a‖x‖2

)
(20)

= −θ
2−σ2

2σ2θ2

(
‖y − ax‖2 + (a−a2)‖x‖2

)
, (21)

where we defined a = θ2

θ2−σ2 .
The boundary of the decision region induced by the optimal

NP test, defined by (19) corresponds to (21) being equal to
t−n log θ

σ . Using that, for an equal power constraint, ‖x‖2 =
nΥ and letting θ2 = Υ+σ2 (value considered in Theorem 2),
this identity yields∥∥∥∥y − (1 +

σ2

Υ

)
x

∥∥∥∥2

= r, (22)

where r = nσ2
(
1 + σ2

Υ

)(
1− 2t

n + log
(
1 + Υ

σ2

))
.

The region inside the boundary (22) corresponds to the
interior of an n-dimensional sphere centered at

(
1 + σ2

Υ

)
x

with squared radius r. Then, we can describe the lower bound
in Theorem 2 as the probability that the additive Gaussian
noise moves the codeword x out of the n-dimensional sphere
centered at

(
1 + σ2

Υ

)
x that roughly covers 1/M -th of the

auxiliary measure ϕn0,θ.
The regions considered in Theorem 1 correspond to cones,

while those induced by the hypothesis-testing bound in Theo-
rem 2 are spheres (see Fig. 1). Cones are close to the optimal
ML decoding regions for codewords evenly distributed on
surface of an n-dimensional sphere with squared radius nΥ.
On the other hand, spheres would be close to the optimal ML
decoding regions for other configurations of the codewords.
This fact suggests that the hypothesis-testing bound in The-
orem 2 may hold beyond the equal power constraint setting.
This intuition is shown to be correct in the next sections.
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IV. LOWER BOUNDS FOR MAXIMAL POWER
CONSTRAINTS

We consider now the family of codes satisfying a maximal
power limitation, C ∈ Fm(n,M,Υ). As discussed in Sec-
tion II, Theorems 1 and 2 can be extended to the maximal
power constraint via Lemma 1. Indeed, the second inequality
in (8) can be slightly tightened to

ε?m(n,M,Υ) ≥ ε?e
(
n+ 1,M, nΥ

n+1

)
. (23)

The proof of Lemma 1 (see [4, Sec. XIII] and [13, Lem. 39]) is
based on extending a maximal power constrained codebook of
length n by adding an extra coordinate. The energy of the new
codewords of length n + 1 is then normalized to (n + 1)Υ,
so that the equal power constraint is satisfied. The proof of
(23) follows the same lines, but by normalizing the energy of
the codewords to nΥ, instead to (n + 1)Υ. Applying (23) to
Theorem 1 we obtain the following result.

Corollary 1: Let θn,M denote the half-angle of a cone with
solid angle equal to Ωn/M , where Ωn is the surface of the
n-dimensional hypersphere. Then,

ε?m(n,M,Υ) ≥ Φn+1

(
θn+1,M ,

(n+ 1)σ2

nΥ

)
. (24)

An alternative lower bound to the error probability under
maximal power constraint can be obtained via hypothesis
testing. To this end, we consider the weakening of the meta-
converse in (10) by fixing the auxiliary distribution Q to be
the zero-mean i.i.d. Gaussian distribution (17).

Theorem 3 (Converse, maximal power constraint): Let
θ > σ, n ≥ 1. The error probability of a maximal-power
constrained code satisfies

ε?m(n,M,Υ) ≥ α 1
M

(
ϕn√

Υ,σ
, ϕn0,θ

)
. (25)

Proof: See Section IV-A.
Setting θ2 = Υ + σ2 in (25), we recover the bound

from Theorem 2. We conclude that the hypothesis-testing
lower bound from Theorem 2 also holds under a maximal
power constraint and not only for equal-power constrained
codewords. This is not the case for the Shannon cone-packing
bound from Theorem 1 as we show next with an example.

Example: We consider the problem of transmitting M = 16
codewords over n = 2 uses of an additive Gaussian noise
channel. For n = 2, Shannon cone-packing bound (SCPB)
from Theorem 1 coincides with the ML decoding error prob-
ability of a M -PSK constellation CM -PSK satisfying the equal
power constraint Υ (as 2-dimensional cones are precisely the
ML decoding regions of the M -PSK constellation). For in-
stance, for a 2-dimensional Gaussian channel with a signal-to-
noise ratio (SNR) Υ

σ2 = 10 and M = 16 codewords, we obtain
SCPB = ε(C16-PSK) ≈ 0.38. Let us define a new code CM -APSK
composed by the points of an (M − 1)-PSK constellation
and an additional codeword located at x = (0, 0). While
this code satisfies the maximal power constraint Υ, its error
probability violates SCPB for sufficiently large M . Indeed,
the modified codebook attains ε(C16-APSK) ≈ 0.34 < 0.38. We
conclude that, in general, Theorem 1 holds only under an equal
power constraint. For a more detailed discussion comparing
the bounds under different power constraints, see Section VII.

A. Proof of Theorem 3

We consider the set of input distributions X ∼ P satisfying
the maximal power constraint

Pm(Υ) ,
{
P
∣∣∣ Pr

[
‖X‖2 ≤ nΥ

]
= 1
}
. (26)

Then, the meta-converse bound (10) for some fixed Q becomes

ε?m(n,M,Υ) ≥ inf
P∈Pm(Υ)

{
α 1
M

(
PW,P ×Q

)}
. (27)

In order to make the minimization over P tractable, we shall
use the following technical result.

Lemma 2: Let
{
Pλ
}

be a family of probability measures
defined over the input alphabet X , parametrized by λ ∈ R.
Assume that the distributions Pλ have pairwise disjoint sup-
ports and that there exists a probability distribution S over the
parameter λ such that P =

∫
PλS(dλ). Then, the hypothesis

testing error trade-off function satisfies

αβ
(
PW,P ×Q

)
= min

{βλ}:
β=
∫
βλS(dλ)

∫
αβλ

(
PλW,Pλ ×Q

)
S(dλ). (28)

Proof: This lemma is analogous to the second part of
[14, Lem. 25]. Since here we require the family Pλ to
be parametrized by a continuous λ, for completeness, we
reproduce the proof here for this case.

First, we observe that αβ
(
PW,P ×Q

)
is a jointly convex

function on (β, P ) [14, Thm. 6]. Let
{
βλ
}

and
{
Pλ
}

satisfy
β = ES [βλ] =

∫
βλS(dλ) and P = ES [Pλ] =

∫
PλS(dλ).

Then, using Jensen’s inequality it follows that

ES
[
αβλ

(
PλW,Pλ ×Q

)]
≥ αES [βλ]

(
ES [Pλ]W, ES [Pλ]×Q

)
(29)

= αβ
(
PW,P ×Q

)
. (30)

The RHS of (28) is thus an upper bound on αβ
(
PW,P ×Q

)
.

To prove the identity (28), it remains to show that there
exists

{
βλ
}

satisfying β =
∫
βλS(dλ) and such that (29)-(30)

holds with equality. We consider the Neyman-Pearson test for
the testing problem αβ

(
PW,P ×Q

)
, which is given by

T (x,y) = 11
[
log

W (y|x)

Q(y)
> t′

]
+ c11

[
log

W (y|x)

Q(y)
= t′

]
(31)

for t′ ≥ 0 and c ∈ [0, 1] two parameters chosen to satisfy
β =

∫
T (x,y)Q(dy)P (dx). We apply T (x,y) to the testing

problem between PλW and Pλ × Q and obtain the error
probabilities

ε1(λ) = 1−
∫
T (x,y)W (dy|x)Pλ(dx), (32)

ε2(λ) =

∫
T (x,y)Q(dy)Pλ(dx). (33)
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For the choice βλ = ε2(λ), the test (31) is precisely the
Neyman-Pearson test of the problem αβλ

(
PλW,Pλ × Q

)
.

Therefore,

ES
[
αβλ

(
PλW,Pλ ×Q

)]
=

∫
ε1(λ)S(dλ) (34)

= 1−
∫
T (x,y)W (dy|x)Pλ(dx)S(dλ) (35)

= 1−
∫
T (x,y)W (dy|x)P (dx) (36)

= αβ
(
PW,P ×Q

)
. (37)

Similarly, we can show that ES
[
βλ
]

= ES
[
ε2(λ)

]
= β. We

conclude that this choice of
{
βλ
}

yields equality in (30).
Given the lower bound (29)-(30), it also attains the minimum
in the RHS of (28) and the result follows.

Lemma 2 asserts that it is possible to express a binary
hypothesis test as a convex combination of disjoint sub-
tests provided that the type-II error is optimally distributed
among them. For our problem, we shall decompose the input
distribution P based on γ = ‖x‖2/n and apply this result.

For any γ ≥ 0, we define the set Sγ ,
{
x | ‖x‖2 = nγ

}
. In

words, the set Sγ corresponds to the spherical shell centered
at the origin that contains all input sequences with energy nγ.
Note that, whenever γ1 6= γ2, the sets Sγ1

and Sγ2
are disjoint.

We define the distribution S(γ) , Pr{X ∈ Sγ}, and we let
Pγ be a distribution defined over X satisfying Pγ(x) = 0 for
any x /∈ Sγ , and

P (x) =

∫
Pγ(x)S(dγ). (38)

This condition implies that Pγ(x) = P (x)
S(γ) 11[x ∈ Sγ ] for

S(γ) > 0, where 11[·] denotes the indicator function. When
S(γ) = 0, then Pγ can be an arbitrary distribution such that
Pγ(x) = 0 for any x /∈ Sγ .

Given (38) and since the measures Pγ have disjoint supports
for different values of γ, the conditions in Lemma 2 hold for
λ↔ γ. Then, using (28), we obtain that the RHS of (27), for
the auxiliary distribution Q from (17), becomes

inf
P∈Pm(Υ)

{
α 1
M

(
PW,P ×Q

)}
= inf
{S,βγ}: γ≤Υ,∫
βγS(dγ)= 1

M

{∫
αβγ

(
PγW,Pγ ×Q

)
S(dγ)

}
(39)

= inf
{S,βγ}: γ≤Υ,∫
βγS(dγ)= 1

M

{∫
αβγ

(
ϕn√γ,σ, ϕ

n
0,θ

)
S(dγ)

}
, (40)

where (40) follows given the spherical symmetry of each of
the sub-tests in (39), since x = (

√
γ, . . . ,

√
γ) ∈ Sγ .

In a nutshell, we transformed the original optimization over
the n-dimensional distribution P in the left-hand side of (39)
into an optimization over a one-dimensional distribution S and
auxiliary function βγ in the RHS of (40). To obtain the lower
bound stated in the theorem, we make use of the following
properties of the function αβ

(
ϕn√γ,σ, ϕ

n
0,θ

)
.

Lemma 3: Let 0 < σ < θ, with σ, θ ∈ R and n ≥ 1. Then,
the function

f(β, γ) , αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
(41)

is non-increasing in γ for any fixed β ∈ [0, 1], and convex
non-increasing in β for any fixed γ > 0.

Proof: The minimum type-I error α is a non-increasing
convex function of the type-II error β (see, e.g., [14, Sec. I]).
Since f(β, γ) characterizes the trade-off between the type-I
and type-II errors of a hypothesis test, for fixed γ ≥ 0, the
function f(β, γ) is non-increasing and convex in β ∈ [0, 1].

To characterize the behavior of f(β, γ) with respect to γ, in
Appendix A we show that f(β, γ) is differentiable with respect
to both parameters and obtain the derivative of f(β, γ) with
respect to γ. In particular, it follows from (150) that

∂f(β, γ)

∂γ
= − n

2δ

(
tδ

σ2√nγ

)n
2

e
− 1

2

(
nγσ2

δ2
+ t2

σ2

)
In

2

(
t
√
nγ

δ

)
,

(42)

where δ = θ2 − σ2 > 0, t satisfies β(γ, t) = β for β(γ, t)
defined in (119) and Im(·) denotes the m-th order modified
Bessel function of the first kind.

For any γ ≥ 0 and β ∈ [0, 1], the parameter t that follows
from the identity β(γ, t) = β is non-negative. Then, using that
e−x/2 ≥ 0 and since x ≥ 0 implies Im(x) ≥ 0, we conclude
that (42) is non-positive for any δ = θ2−σ2 > 0. As a result,
the function f(β, γ) = αβ

(
ϕn√γ,σ, ϕ

n
0,θ

)
is non-increasing in

γ for any fixed value of β, provided that the conditions in the
lemma hold.

According to Lemma 3, for any 0 ≤ γ ≤ Υ, it follows
that αβ

(
ϕn√γ,σ, ϕ

n
0,θ

)
= f(β, γ) ≥ f(β,Υ). As any maximal

power constrained input distribution P ∈ Pm(Υ) satisfies
S(γ) = 0 for γ > Υ, we obtain

inf
{S,βγ}: γ≤Υ,∫
βγS(dγ)= 1

M

{∫
f
(
βγ , γ

)
S(dγ)

}

≥ inf
{S,βγ}: γ≤Υ,∫
βγS(dγ)= 1

M

{∫
f
(
βγ ,Υ

)
S(dγ)

}
(43)

≥ f
(

1
M ,Υ

)
, (44)

where in (44) we used that the function f(β,Υ) is convex
with respect to β (Lemma 3); hence, by Jensen’s inequality
and using the constraint

∫
βγS(dγ) = 1

M , it yields∫
f
(
βγ ,Υ

)
S(dγ) ≥ f

(∫
βγS(dγ),Υ

)
= f

(
1
M ,Υ

)
. (45)

Then, using (27), (40), (44), and since the function
f
(

1
M ,Υ

)
= α 1

M

(
ϕn√

Υ,σ
, ϕn0,θ

)
, the result follows.

V. LOWER BOUNDS FOR AVERAGE POWER CONSTRAINTS

We now turn our attention to codes satisfying an average
power limitation. To this end, we first introduce some use-
ful concepts of convex analysis. The Legendre-Fenchel (LF)
transform of a function g is

g∗(b) = max
a∈A

{
〈a, b〉 − g(a)

}
, (46)
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where A is the domain of the function g and 〈a, b〉 denotes
the interior product between a and b.

The function g∗ is usually referred to as Fenchel’s conjugate
(or convex conjugate) of g. If g is a convex function with
closed domain, applying the LF transform twice recovers the
original function, i.e., g∗∗ = g. If g is not convex, applying the
LF transform twice returns the lower convex envelope of g,
which is defined as the largest lower semi-continuous convex
function majorized by g.

In our problem, for the 2-dimensional function f(β, γ) =
αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
with domain β ∈ [0, 1] and γ ≥ 0, we define

the lower convex envelope

f(β, γ) , f∗∗(β, γ), (47)

and note that f(β, γ) ≤ f(β, γ).
The lower convex envelope (47) with certain parameters is

a lower bound to the error probability in the average power
constraint setting, as the next result shows.

Theorem 4 (Converse, average power constraint): Let θ >
σ, n ≥ 1. The error probability of an average-power con-
strained code satisfies

ε?a (n,M,Υ) ≥ f
(

1
M ,Υ

)
, (48)

where f(β, γ) denotes the lower convex envelope of the
function f(β, γ) = αβ

(
ϕn√γ,σ, ϕ

n
0,θ

)
(see (47)).

Proof: We start by considering the general meta-converse
bound in (10) where P is the set of distributions satisfying an
average power constraint, i.e., P = Pa(Υ) with

Pa(Υ) ,
{
X ∼ PX

∣∣∣ E
[
‖X‖2

]
≤ nΥ

}
. (49)

Proceeding analogously as in (39)-(40), but with the average
power constraint

∫
γS(dγ) ≤ Υ instead of the maximal power

constraint, it follows that

inf
P∈Pa(Υ)

{
α 1
M

(
PW,P ×Q

)}
= inf

{S,βγ}:∫
γS(dγ)≤Υ∫
βγS(dγ)= 1

M

{∫
αβγ

(
ϕn√γ,σ, ϕ

n
0,θ

)
S(dγ)

}
. (50)

The function f(β, γ) = αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
is non-increasing

in γ for any fixed β ∈ [0, 1] (see Lemma 3). Therefore,

inf
{S,βγ}:∫
γS(dγ)≤Υ∫
βγS(dγ)= 1

M

{∫
f
(
βγ , γ

)
S(dγ)

}

≥ inf
{S,βγ}:∫
γS(dγ)=Υ∫
βγS(dγ)= 1

M

{∫
f
(
βγ , γ

)
S(dγ)

}
. (51)

In words, the average power constraint can be assumed to hold
with equality as this restriction does not increase the bound.

Using (51) and since f(β, γ) ≥ f(β, γ), we lower-bound the
RHS of (50) as

inf
{S,βγ}:∫
γS(dγ)≤Υ∫
βγS(dγ)= 1

M

{∫
f
(
βγ , γ

)
S(dγ)

}

≥ inf
{S,βγ}:∫
γS(dγ)=Υ∫
βγS(dγ)= 1

M

{∫
f
(
βγ , γ

)
S(dγ)

}
(52)

≥ inf
{S,βγ}:∫
γS(dγ)=Υ∫
βγS(dγ)= 1

M

{
f
(∫
βγS(dγ),

∫
γS(dγ)

)}
(53)

= f
(

1
M ,Υ

)
, (54)

where (53) follows from applying Jensen’s inequality since
f(·) is convex by definition, and (54) holds since, given the
constraints

∫
βγS(dγ) = 1

M and
∫
γS(dγ) = Υ, the objective

of the optimization does not depend on {S, βγ}.
The lower bound (48) then follows from combining (10),

(50) and the inequalities (52)-(54).
The function f(β, γ) can be evaluated numerically by con-

sidering a 2-dimensional grid on the parameters (β, γ), com-
puting f(β, γ) over this grid, and obtaining the corresponding
convex envelope. Nevertheless, sometimes f(β, γ) = f(β, γ)
and these steps can be avoided, as the next result shows.

Lemma 4: Let σ, θ, γ and n, be fixed parameters satisfying
0 < σ < θ, γ > 0, and n ≥ 1; and let δ = θ2−σ2. For t ≥ 0,
we define the auxiliary functions

ξ1(t) , Qn
2

(
√
nγ
σ

δ
,
t

σ

)
−Qn

2

(
0,
√(

t2

σ2 − nγ θ
2

δ2

)
+

)
,

(55)

ξ2(t) ,
θn

σn
e

1
2

(
nγ
δ −

δt2

σ2θ2

)(
Qn

2

(
0,
√(

t2

θ2 − nγ σ
2

δ2

)
+

)
−Qn

2

(
√
nγ
θ

δ
,
t

θ

))
, (56)

ξ3(t) ,
nγ

2δ

(
tδ

σ2√nγ

)n
2

e
− 1

2

(
nγ σ

2

δ2
+ t2

σ2

)
In

2

(√
nγ

t

δ

)
, (57)

where (a)+ = max(0, a), Qm(a, b) is the Marcum Q-function
and Im(·) denotes the m-th order modified Bessel function of
the first kind. Let t0 be the solution to the implicit equation

ξ1(t0) + ξ2(t0) + ξ3(t0) = 0. (58)

Then, for any β satisfying
(
1−Qn

2

(√
nγθ/δ, t0/θ

))
≤ β ≤ 1,

it holds that

f(β, γ) = f(β, γ). (59)

Proof: See Appendix B.
Combining Theorem 4 and Lemma 4 we obtain a simple

lower bound on the error probability of any code satisfying
an average-power constraint, provided that its cardinality is
below a certain threshold.
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Fig. 2: Condition from Corollary 2 for AWGN channels with
SNR of 0 dB, 5 dB and 9 dB compared with the channel
capacity C.

Corollary 2: Let σ, θ > 0 and n ≥ 1, be fixed parameters,
and δ = θ2−σ2. Let t0 be the solution to the implicit equation
(58) with γ = Υ and define

M̄n ,

(
1−Qn

2

(√
nΥθ

δ
,
t0
θ

))−1

. (60)

Then, for any code C ∈ Fa(n,M,Υ) with M ≤ M̄n,

ε?a (n,M,Υ) ≥ α 1
M

(
ϕn√

Υ,σ
, ϕn0,θ

)
. (61)

Figure 2 shows the condition M ≤ M̄n in Corollary 2 as an
upper bound on the transmission rate of the system, defined
as R = 1

n log2M . In this example, we let θ2 = Υ + σ2

and consider three different values of the signal-to-noise ratio,
SNR=10 log10

Υ
σ2 . The channel capacity C = 1

2 log2

(
1 + Υ

σ2

)
for each of the SNRs is also included for reference. According
to Corollary 2, for any code satisfying an average power
constraint Υ with blocklength n and rate R ≤ R̄n, the
lower bound (61) holds. Then, we can see in Fig. 2 that
this condition holds except for rates very close to and above
capacity (provided that the blocklegth n is sufficiently large).
For transmission rates above R̄n in the plot, (61) does not
apply and the lower convex envelope from Theorem 4 needs
to be used instead.

The condition stated in Corollary 2 agrees with previous
results in the literature. The asymptotic analysis of the RHS
of (61) yields a strong converse behavior for rates above ca-
pacity [5, Th. 74]. That is, for any rate above capacity the RHS
of (61) tends to one as the blocklength increases. However, [5,
Th. 77] shows that for the AWGN channel under an average
power constraint there exist no strong converse behavior in this
regime. We conclude that the bound (61) cannot hold above
capacity. The condition (60) thus corresponds to the finite-
length equivalent of this asymptotic result.

A. Optimal input distribution
The derivation of Theorem 4 and Corollary 2 can be used

to characterize the structure of the optimal input distribution.
Indeed, it follows that the tightest meta-converse bound for the
auxiliary distribution Q given in (17) corresponds precisely to
the RHS of (48), i.e.,

inf
P∈Pa(Υ)

{
α 1
M

(
PW,P ×Q

)}
= f

(
1
M ,Υ

)
. (62)

To show this identity, we first note that the RHS of (62)
corresponds to the value of the convex envelope f at the point(

1
M ,Υ

)
. Using Carathéodory’s theorem, it follows that any

point on f can be written as a convex combination of (at
most) 4 points in f .4 Let us denote these 4 points as

(
βi, γi

)
,

i = 1, . . . , 4. Then, for some λi ≥ 0, i = 1, . . . , 4, such that∑4
i=1 λi = 1, the following identities hold

f
(

1
M ,Υ

)
=

4∑
i=1

λif
(
βi, γi

)
, (63)

1

M
=

4∑
i=1

λiβi, (64)

Υ =
4∑
i=1

λiγi. (65)

Let S be the probability distribution that sets its mass
points at γi, i = 1, . . . , 4, with probabilities S(γi) = λi.
Let βγi = βi, i = 1, . . . , 4. This choice of {S, βγ} satisfies
the constraints of the left-hand side of (52). Moreover, for
this choice of {S, βγ} the left-hand side of (52) becomes∑4
i=1 λif

(
βi, γi

)
= f

(
1
M ,Υ

)
and therefore the inequality

chain in (52)-(54) holds with equality. Also, increasing the
power limit Υ yields a strictly lower error probability, and
therefore (51) holds with equality. Then, according to this
reasoning and using (50) we conclude that (62) holds.

To characterize the structure of the input distribution opti-
mizing the left-hand side of (62), we recall (38). We conclude
that the input distribution P optimizing the left-hand side of
(50) concentrates its mass on (at most) 4 spherical shells with
squared radius nγi, i = 1, . . . , 4. The probability of each of
these shells is precisely S(γi) = λi and the optimizing input
distribution is uniformly distributed on the surface of each of
the shells [14, Sec. VI.F].

In the discussion above we have not used specific properties
of f(β, γ) beyond that it is a function of two real variables
and that it is strictly decreasing in γ. Studying the form of the
function f(β, γ) and its convex envelope we can describe the
structure of the optimal input distribution more precisely.

The convex envelope f(β, γ) is analyzed in the proof of
Lemma 4 in Appendix B. Let (β0, γ0) denote the boundary
described in Lemma 4, i.e., the points (β0, γ0) satisfying

β0 = 1−Qn
2

(√
nγ0θ/δ, t0/θ

)
. (66)

where t0 is the solution of (58) for γ = γ0. This boundary
defines two regions:

4For a 2-dimensional function its epigraph is a 3-dimensional set. There-
fore, Carathéodory’s theorem implies that at most 3+ 1 points are needed to
construct the convex hull of the epigraph, which corresponds to the convex
envelope of the original function.
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Fig. 3: In gray, the level curves of f(β, γ) with parameters
n = 6, σ2 = 1, θ2 = 2. The bold line corresponds
to the boundary (66). The dashed lines show the convex
combinations that yield f(β, γ) below the boundary.

1) Above the boundary (66): This region corresponds to
γ ≥ 0 and

(
1 − Qn

2

(√
nγθ/δ, t0/θ

))
≤ β ≤ 1 where t0 is

the solution of (58). From Lemma 4 we know that, for this
region, f = f and hence f is the convex combination of a
single point of f .

2) Below the boundary (66): For γ ≥ 0 and 0 ≤ β <(
1−Qn

2

(√
nγθ/δ, t0/θ

))
, f and f do not coincide. Instead,

the convex envelope f evaluated at (β, γ) corresponds to a
convex combination of the function f at the points (β0, γ0) and
(β̄, 0), where (β0, γ0) satisfies (66), and β̄ = 1−Qn

2

(
0, t̄?/θ

)
for t̄? in (185) (for details, see Appendix B).

An example of the construction of the convex envelope f
is shown in Fig. 3. This figure shows in gray the level lines of
f
(
β, γ

)
; the bold line corresponds to the boundary (66); and

with dashed lines we show the convex combinations between
(β0, γ0

)
and (β̄, 0

)
that yield f(β, γ) for different values of γ0.

Above the boundary, the convex envelope f coincides with f ,
and therefore the input distribution P optimizing the left-hand
side of (62) is uniform over a spherical shell centered at the
origin and with squared radius nΥ. Below the boundary, the
convex envelope f corresponds to the convex combination of
two points of f and, as a result, the optimal input distribution
P corresponds to a mass point at the origin (corresponding to
the axis γ = 0) and a spherical shell centered at the origin and
with squared radius nγ0, where γ0 ≥ Υ. The probability mass
of each of these two components depends on the parameters
of the system.

VI. COMPUTATION OF f(β, γ) = αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
In the previous sections we showed that both the function

f(β, γ) and its convex envelope f(β, γ) yield lower bounds
to the error probability for Gaussian channels under different
power constraints. In this section we provide several tools that
can be used in the numerical evaluation of these functions.

A. Exact computation of f(β, γ)

Proposition 1 in Appendix A provides a parametric formu-
lation of the function f(β, γ). A non-parametric expression
for f(β, γ) can be obtained by combining Proposition 1 and
[24, Lem. 1] as shown next.

Theorem 5 (Non-parametric formulation): Let σ, θ > 0 and
n ≥ 1, be fixed parameters. Then, it holds that

f(β, γ) = max
t≥0

{
Qn

2

(
√
nγ
σ

δ
,
t

σ

)
+
θn

σn
e

1
2

(
nγ
δ −

δt2

σ2θ2

)

×
(

1− β −Qn
2

(
√
nγ
θ

δ
,
t

θ

))}
.

(67)

Proof: Using [24, Lem. 1], we obtain the following
alternative expression for αβ

(
ϕn√γ,σ, ϕ

n
0,θ

)
:

αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
= max

t′

{
Pr
[
j(Y 0) ≤ t′

]
+et

′(
Pr
[
j(Y 1) > t′

]
−β
)}
, (68)

where Y 0 ∼ ϕn√γ,σ and Y 1 ∼ ϕn0,θ and where j(y) denotes
the log-likelihood ratio

j(y) = log
ϕn√γ,σ(y)

ϕn0,θ(y)
(69)

= n log
θ

σ
− 1

2

n∑
i=1

θ2(yi −
√
γ)2 − σ2y2

i

σ2θ2
. (70)

Following analogous steps as in the proof of Proposition 1 in
Appendix A, we obtain that

Pr
[
j(Y 0) ≤ t′

]
= Qn

2

(
√
nγ
σ

δ
,
t

σ

)
, (71)

Pr
[
j(Y 1) > t′

]
= 1−Qn

2

(
√
nγ
θ

δ
,
t

θ

)
, (72)

where the variables t′ and t are related according to (131),

c.f., et
′

= θn

σn e
1
2

(
nγ
δ −

δt2

σ2θ2

)
. Then, the result follows from

(68), (71) and (72) via the change of variable t′ ↔ t.
The formulation in Theorem 5 allows to obtain simple

lower bounds on f(β, γ) by fixing the value of t in (67).
Alternatively, Verdú-Han-type lower bounds can be obtained
by using that Qn

2

(√
nγ θδ ,

t
θ

)
≤ 1, e.g.,

f(β, γ) ≥ max
t≥0

{
Qn

2

(
√
nγ
σ

δ
,
t

σ

)
− θn

σn
e

1
2

(
nγ
δ −

δt2

σ2θ2

)
β

}
.

(73)

In order to evaluate (67) in Theorem 5 we need to solve
a maximization over the scalar parameter t ≥ 0 with an ob-
jective involving two Marcum-Q functions. The computation
of the bounds from Theorems 2, 3 and 4 for a fixed rate
R , 1

n log2M , implies that the parameter β = 2−nR de-
creases exponentially with the blocklength n. Then, traditional
Taylor series expansions of the Marcum-Q function fail to
achieve the required precision even for moderate values of
n. In this regime, the following expansion yields an accurate
approximation of f(β, γ).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIT.2021.3063311

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

B. Saddlepoint expansion of f(β, γ)

We define the (scalar) information density

j(y) , log
ϕ√γ,σ(y)

ϕ0,θ(y)
= log

θ

σ
− 1

2

θ2(y −√γ)2 − σ2y2

σ2θ2
,

(74)

and we consider the cumulant generating function of the
random variable j(Y ), Y ∼ ϕ0,θ, given by

κγ(s) , log

∫ ∞
−∞

ϕ√γ,σ(y)s

ϕ0,θ(y)s−1
dy (75)

= γ
s(s− 1)

2η(s)
+ log

θsσ1−s√
η(s)

, (76)

where we defined η(s) , sθ2 + (1 − s)σ2. The first three
derivatives of (76) with respect to s are, respectively,

κ′γ(s) = γ
s2θ2 − (1− s)2σ2

2η(s)2
− θ2 − σ2

2η(s)
+ log

θ

σ
, (77)

κ′′γ(s) = γ
θ2σ2

η(s)3
+

(θ2 − σ2)2

2η(s)2
, (78)

κ′′′γ (s) = −
(

3γ
θ2σ2(θ2 − σ2)

η(s)4
+

(θ2 − σ2)3

η(s)3

)
. (79)

Theorem 6 (Saddlepoint expansion): We let σ, θ > 0 and
n ≥ 1, be fixed parameters. Then,

f(β, γ) = max
s

{(
a(s, γ) + b(s, γ)

)
en(κγ(s)+(1−s)κ′γ(s))

+ 11[s > 1] +
(

11[s < 0]− β
)
enκ

′
γ(s)
}
, (80)

where 11[·] denotes the indicator function and, for λa(s) ,

|1− s|
√
nκ′′γ(s) and λb(s) , |s|

√
nκ′′γ(s),

a(s, γ) = sgn(1− s)
(

Ψ
(
λa(s)

)
+
n(s− 1)3

6

×
(
λa(s)−1 − λa(s)−3

√
2π

−Ψ
(
λa(s)

))
κ′′′γ (s)

)
+ o
(
n−

1
2

)
,

(81)

b(s, γ) = sgn(s)

(
Ψ
(
λb(s)

)
+
ns3

6

×
(
λb(s)

−1 − λb(s)−3

√
2π

−Ψ
(
λb(s)

))
κ′′′γ (s)

)
+ o
(
n−

1
2

)
.

(82)

Here, sgn(·) denotes the sign function, defined as sgn(s) = −1
for s < 0 and sgn(s) = 1 otherwise; the function Ψ(λ) is
defined as Ψ(λ) , Q(|λ|)eλ

2

2 where Q(·) is the Gaussian
Q-function; and o

(
g(n)

)
summarizes the terms that approach

zero faster than g(n), i.e., limn→∞
o(g(n))
g(n) = 0.

Proof: The proof follows the lines of [25, Th. 2] with a
more refined expansion of a(s, γ) and b(s, γ).

We consider a sequence of i.i.d. non-lattice real-valued
random variables with positive variance, {Z`}n`=1, and we
define their mean as

Z̄n ,
1

n

n∑
`=0

Z`. (83)

Let κZ(s) , log E
[
esZ`

]
denote the cumulant generating

function of Z`, and let κ′Z(s), κ′′Z(s) and κ′′′Z (s) denote its
1st, 2nd and 3rd derivatives with respect to s, respectively.

Assume that there exists s in the region of convergence of
κZ(s) such that κ′Z(s) = t and t ≥ E

[
Z̄n
]
. Then, the tail

probability Pr
[
Z̄n ≥ t

]
satisfies [26, Prop. 1, Part 1]

Pr
[
Z̄n ≥ t

]
= en(κZ(s)−sκ′Z(s))

×
(

Ψ(λZ,s) +
ns3

6

(
λ−1
Z,s − λ

−3
Z,s√

2π
−Ψ(λZ,s)

)
κ′′′Z (s)

+ o
(
n−

1
2

))
, (84)

where λZ,s , |s|
√
nκ′′Z(s) and the error term o

(
n−

1
2

)
holds

uniformly in s.
We now apply this expansion to the probability terms

Pr
[
j(Y 0) ≤ t′

]
and Pr

[
j(Y 1) > t′

]
appearing in (68). To

this end, we consider the random variables Z0 = −j(Y0),
Y0 ∼ ϕ√γ,σ , and Z1 = j(Y1), Y1 ∼ ϕ0,θ, with j(y) defined
in (74). The cumulant generating functions of the random
variables Z0 and Z1 are, respectively, given by

κZ0(s) = log E

[(
ϕ√γ,σ(Y0)

ϕ0,θ(Y0)

)−s]
= κγ(1− s), (85)

κZ1(s) = log E

[(
ϕ√γ,σ(Y1)

ϕ0,θ(Y1)

)s]
= κγ(s), (86)

for the function κγ(s) defined in (76). The fact that the
cumulant generating functions κZ0

(s) and κZ1
(s) are shifted

and mirrored versions of each other will allow us to simplify
the resulting expression.

The expansion in (84) requires that the threshold t is above
the average value E

[
Z̄n
]

= E
[
Z`
]
. That is, this expansion

is only accurate for evaluating the tail of the probability
distribution. Whenever t < E

[
Z̄n
]
, we shall use that

Pr
[
Z̄n ≥ t

]
= 1− Pr

[
Z̄n < t

]
(87)

= 1− Pr
[
−Z̄n > −t

]
. (88)

For non-lattice distributions, the expansion (84) coincides with
that of Pr

[
Z̄n > t

]
and therefore, it can be used to estimate

Pr
[
−Z̄n > −t

]
. Moreover, given the mapping κ′Z(s) = t, it

can be checked that the condition t ≥ E
[
Z̄n
]

corresponds to
s ≥ 0. Similarly, for t < E

[
Z̄n
]

and the mapping κ′Z(s) = t,
we obtain s < 0.

We use (84) for Z̄0,n , − 1
nj(Y 0) = − 1

n

∑n
`=1 j(Y0,`),

and apply (87)-(88) whenever t < E
[
Z̄0,n

]
, to obtain

Pr
[
Z̄0,n ≥ t

]
= 11[s̄ < 0] + sgn(s̄)en(κZ0

(s̄)−s̄κ′Z0
(s̄))

×
(

Ψ(λZ0,s̄) +
ns̄3

6

(
λ−1
Z0,s̄
− λ−3

Z0,s̄√
2π

−Ψ(λZ0,s̄)

)
κ′′′Z0

(s̄)

+ o
(
n−

1
2

))
, (89)

where the value of s̄ satisfies κ′Z0
(s̄) = t.
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We consider the change of variable s̄ ↔ s with s̄ = 1 − s
and s = 1 − s̄. For this change of variables, from (85) we
obtain the identities

κZ0
(s̄) = κγ(1− s̄) = κγ(s), (90)

κ′Z0
(s̄) = −κ′γ(1− s̄) = −κ′γ(s), (91)

κ′′Z0
(s̄) = κ′′γ(1− s̄) = κ′′γ(s), (92)

κ′′′Z0
(s̄) = −κ′′′γ (1− s̄) = −κ′′′γ (s). (93)

Then, using s̄ = 1− s and (90)-(93) in (89), it yields

Pr
[
j(Y 0) ≤ t′

]
= 11[s > 1] + a(s, γ)en(κγ(s)+(1−s)κ′γ(s))

(94)

where s satisfies κ′γ(s) = t′/n.
Proceeding analogously for the random variable Z̄1,n =

1
nj(Y 1) = 1

n

∑n
`=1 j(Y1,`), using (84) and (86), we obtain

Pr
[
j(Y 1) > t′

]
= 11[s < 0] + b(s, γ)en(κγ(s)−sκ′γ(s)) (95)

where s satisfies again κ′γ(s) = t′/n.
We replace (94) and (95) in (68) and change the optimiza-

tion variable from t′ to s acording to the relation t′ = nκ′γ(s).
Noting that et

′
becomes enκ

′
γ(s), then (68) becomes

αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
= max

s

{
11[s > 1] + a(s, γ)en(κγ(s)+(1−s)κ′γ(s))

+ enκ
′
γ(s)
(

11[s < 0] + b(s, γ)en(κγ(s)−sκ′γ(s)) − β
)}
.

(96)

The result follows from (96) by reorganizing terms.
Remark: The refined expressions from (81)-(82) are needed

to obtain an error term o
(
n−

1
2

)
that is uniform on s. For

practical purposes, however, the function f(β, γ) can be
approximated using (80) from Theorem 6 with a(s, γ) and
b(s, γ) replaced by the simpler expressions

â(s, γ) , sgn(1− s)Ψ
(
λa(s)

)
, (97)

b̂(s, γ) , sgn(s)Ψ
(
λb(s)

)
, (98)

respectively. This approximation yields accurate results for
blocklengths as short as n = 20 (see [25] for details), and
we still obtain an approximation error of order o

(
n−

1
2

)
for

values of s satisfying s0 ≤ s ≤ s1 for any s0 > 0 and s1 < 1,
i.e., for s bounded away from 0 and 1.

C. Exponent-achieving output distribution
Often, the variance of the auxiliary distribution in Theorems

2, 3 and 4 is chosen to be the variance of the capacity-
achieving output distribution, θ2 = Υ + σ2. While this choice
of θ2 is adequate for rates approaching the capacity of the
channel, it does not attain the sphere-packing exponent in
general [7]. An auxiliary distribution that yields the right expo-
nential behavior is the exponent-achieving output distribution.5

5If we restrict the auxiliary output distribution to be product, the exponent-
achieving output distribution is unique in the sense that the hypothesis-testing
bound with this auxiliary distribution attains the sphere-packing exponent [7].
Nevertheless, using other non-product auxiliary distributions can yield the
same exponential behavior. One example is the optimizing distribution in
(10) for the AWGN channel under an equal power constraint. As discussed
in Section III-B this distribution recovers Shannon cone-packing bound with
the sphere-packing exponent [14, Sec. VI.F].

The exponent-achieving output distribution for memory-
less channels channels under input constraints was studied
in [11], [27], among other works., The exponent-achieving
output distribution for the power-constrained AWGN channel
corresponds to be the zero-mean i.i.d. Gaussian distribution
defined in (17), but with variance θ2 = θ̃2

s where (see [27,
Sec. 6, Example 4], [11, Sec. 4, Example 1])

θ̃2
s , σ2 +

γ

2
− σ2

2s
+

√(
γ

2
− σ2

2s

)2

+ γσ2. (99)

Here, γ = Υ is the power constraint and the parameter s
is the result of optimizing the sphere-packing exponent [11,
Eq. (10)] for a transmission rate R = 1

n logM :

Esp(R) , sup
s∈(0,1)

{
1− s
s

(
Cs,W,Υ −R

)}
, (100)

where the units of the rate R are nats/channel use and Cs,W,Υ
is the so-called Augustin capacity. For the power-constrained
AWGN channel, Cs,W,Υ is given by [11, Eq. (62)]

Cs,W,Υ =

 sΥ
2η̃(s) + 1

s−1 log
θ̃ssσ

1−s
√
η̃(s)

, s ≥ 0, s 6= 1,

1
2 log

(
1 + Υ

σ2

)
, s = 1,

(101)

where we defined η̃(s) , sθ̃2
s + (1− s)σ2. Note that Cs,W,Υ

with s = 1 recovers the usual notion of channel capacity C =
1
2 log

(
1+ Υ

σ2

)
. For any rate R below capacity, i.e. R < C, the

optimal value of s in (100) is given by [11, Eq. (72)]

s =
e2R − 1

2

√1 +
4σ2

Υ

e2R

e2R − 1
− 1

 . (102)

For transmission rates approaching the channel capacity C,
the optimal value of s in (102) tends to 1 and, therefore,
θ2
s → θ2

1 = Υ + σ2. Hence, in this case ϕn0,θ(y) becomes the
capacity-achieving output distribution used in [13, Th. 41].

In principle, we can use the (asymptotically) optimal value
of s from (102) in the variance (99). Nevertheless, the sad-
dlepoint expansion from Theorem 6 allows to introduce a
dependence of θ2 with the auxiliary parameter s without
incurring in an extra computational cost, as we show next.

For η̃(s) = sθ̃2
s + (1− s)σ2 we define

κ̃γ(s) , γ
s(s− 1)

2η̃(s)
+ log

θ̃ssσ
1−s√
η̃(s)

, (103)

κ̃(1)
γ (s) , γ

s2θ̃2
s − (1− s)2σ2

2η̃(s)2
− θ̃2

s − σ2

2η̃(s)
+ log

θ̃s
σ
, (104)

κ̃(2)
γ (s) , γ

θ̃2
sσ

2

η̃(s)3
+

(θ̃2
s − σ2)2

2η̃(s)2
, (105)

κ̃(3)
γ (s) , −

(
3γ
θ̃2
sσ

2(θ̃2
s − σ2)

η̃(s)4
+

(θ̃2
s − σ2)3

η̃(s)3

)
. (106)

The definitions (103)-(106) correspond to (76)-(79) after set-
ting θ = θ̃s. Note however that (104)-(106) do not coincide
with the derivatives of (103) in general, since in obtaining
(77)-(79) we have considered θ to be independent of s.
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Corollary 3 (Exponent-achieving saddlepoint expansion):
Let σ > 0 and n ≥ 1, be fixed parameters. Then,

max
θ≥σ

{
αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)}
≥ f̃(β, γ), (107)

where the function f̃(β, γ) is defined as

f̃(β, γ) , max
s

{(
ã(s, γ) + b̃(s, γ)

)
en(κ̃γ(s)+(1−s)κ̃(1)

γ (s))

+ 11[s > 1] +
(

11[s < 0]− β
)
enκ̃

(1)
γ (s)

}
,

(108)

ã(s, γ) = sgn(1− s)
(

Ψ
(
λ̃a(s)

)
+
n(s− 1)3

6

×
(
λ̃a(s)−1 − λ̃a(s)−3

√
2π

−Ψ
(
λ̃a(s)

))
κ̃(3)
γ (s)

)
+ o
(
n−

1
2

)
,

(109)

b̃(s, γ) = sgn(s)

(
Ψ
(
λ̃b(s)

)
+
ns3

6

×
(
λ̃b(s)

−1 − λ̃b(s)−3

√
2π

−Ψ
(
λ̃b(s)

))
κ̃(3)
γ (s)

)
+ o
(
n−

1
2

)
.

(110)

with λ̃a(s) , |1− s|
√
nκ̃

(2)
γ (s) and λ̃b(s) , |s|

√
nκ̃

(2)
γ (s).

Proof: We follow the steps in the proof of Theorem 6,
but we let the variance θ2 depend on s. To this end, we note
that [26, Prop. 1, Part 1] establishes the saddlepoint expansion
for a family of non-lattice random variables parametrized by
some parameter θ ∈ Θ.

Let {Z`}n`=1 be a sequence of i.i.d. non-lattice real-valued
random variables parametrized by θ ∈ Θ and let Z̄n denote
their average (see (83)). Let mZ,θ(s) , E

[
esZ`

]
denote

the moment generating function of Z`, and let κZ,θ(s) ,
logmZ,θ(s) denote its cumulant generating function. Suppose
that

sup
θ∈Θ
|miv

Z,θ(s)| <∞ (111)

where miv
Z,θ(s) denotes the 4th derivative of the moment

generating function, and

inf
θ∈Θ
|κ′′Z,θ(s)| > 0. (112)

Then, if there exists s in the region of convergence of κZ,θ(s)
such that κ′Z,θ(s) = t, with t ≥ E

[
Z̄n
]
, the tail probability

Pr
[
Z̄n ≥ t

]
satisfies (84) with κZ replaced by κZ,θ and with

an error term o
(
n−

1
2

)
that holds uniformly in s and θ.

Both the random variables Z0 = −j(Y0), Y0 ∼ ϕ√γ,σ ,
and Z1 = j(Y1), Y1 ∼ ϕ0,θ, with j(y) defined in (74), are
parametrized by the variance θ2. We recall that their cumulant
generating functions (85)-(86) are shifted and mirrored ver-
sions of κγ(s). Moreover, the 4th derivative of the moment
generating function only depends on the cumulant generating
function and its 4 first derivatives as

miv
Z,θ(s) = eκZ,θ(s)

((
κ′Z,θ(s)

)4
+ 6
(
κ′Z,θ(s)

)2
κ′′Z,θ(s)

+ 4κ′Z,θ(s)κ
′′′
Z,θ(s) + 3

(
κ′′Z,θ(s)

)2
+ κiv

Z,θ(s)
)
.

(113)

Then, to apply [26, Prop. 1, Part 1], it suffices to show that
κγ(s), κ′γ(s), κ′′γ(s), κ′′′γ (s), and κiv

γ (s) are bounded for the
range of interest of θ. The cumulant generating function κγ(s)
and its 3 first derivatives are given in (76)-(79), and its 4th
derivative is

κiv
γ (s) = 12γ

θ2σ2(θ2 − σ2)2

η(s)5
+ 3

(θ2 − σ2)4

η(s)4
, (114)

with η(s) = sθ2 + (1 − s)σ2. We define the interval Θ ={
θ |σ < θ ≤ θ̄

}
for an arbitrary θ̄ < ∞. For any θ ∈ Θ,

(76)-(79) and (114) are bounded. Therefore, the conditions of
[26, Prop. 1, Part 1] are satisfied.

Following analogous steps as in the proof of Theorem 6, we
conclude that (96) holds with the error terms o

(
n−

1
2

)
uniform

in s and θ ∈ Θ. Then, it follows that

max
θ≥σ

{
αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)}
≥ max

θ∈Θ

{
αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)}
(115)

= max
θ∈Θ

max
s

{(
a(s, γ) + b(s, γ)

)
en(κγ(s)+(1−s)κ′γ(s))

+ 11[s > 1] +
(

11[s < 0]− β
)
enκ

′
γ(s)
}

(116)

= max
s

max
θ∈Θ

{(
a(s, γ) + b(s, γ)

)
en(κγ(s)+(1−s)κ′γ(s))

+ 11[s > 1] +
(

11[s < 0]− β
)
enκ

′
γ(s)
}
, (117)

where in (115) we restricted the range over which the max-
imization is performed, in (116) we used (96) with the error
terms o

(
n−

1
2

)
uniform in s and θ ∈ Θ, and in (117) we

interchanged the two maximizations.
In (117), we can fix a value θ ∈ Θ and still obtain a

lower bound to maxθ≥σ
{
αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)}
. Moreover, as the

maximization over θ is inside the maximization over s, the
chosen value for θ may depend on s. Then, letting θ = θ̃s in
the inner maximization we obtain the desired result.

According to Corollary 3, we can use f̃
(

1
M , γ

)
instead of

f
(

1
M , γ

)
in Theorems 2, 3 and in Corollary 2 and obtain a

lower bound to the error probability. In Theorem 4 however,
the convex hull of f

(
β, γ

)
needs to be evaluated for a fixed

variance θ2, which can be (i) the capacity-achieving θ2 =
Υ+σ2, (ii) the exponent-achieving θ2 = θ̃2

s for the value (102)
optimizing the sphere-packing exponent (100), or (iii) θ2 = θ̃2

s

for the value of s optimizing the finite-length expression (108)
disregarding the o

(
n−

1
2

)
terms.

VII. NUMERICAL EXAMPLES

A. Comparison under the different power constraints

We consider the transmission of M = 2nR codewords over
n uses of an AWGN channel with R = 1.5 bits/channel use
and SNR = 10 log10

Υ
σ2 = 10 dB. The channel capacity is

C = 1
2 log2

(
1 + Υ

σ2

)
≈ 1.73 bits/channel use under the three

power constraints considered.
1) Equal power constraint: In Fig. 4, we compare the

lower bounds discussed in Section III for the AWGN channel
under an equal power constraint. For reference, we include
the achievability part of [4, Eq. (20)], which was derived for
an average power limitation and that, therefore, applies under
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Fig. 4: Upper and lower bounds to the error probability for
an AWGN channel under an equal power constraint. System
parameters: SNR = 10 dB, and rate R = 1.5 bits/channel use.
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Fig. 5: Upper and lower bounds to the error probability for an
AWGN channel under a maximal power constraint. System
parameters: SNR = 10 dB, and rate R = 1.5 bits/channel use.

equal, maximal and average power constraints. We observe
that Shannon cone-packing bound from Theorem 1 is the
tightest lower bound in this setting. As discussed in Sec-
tion III-A, by considering the optimal auxiliary (non-product)
distribution, the meta-converse bound (10) recovers the cone-
packing bound and therefore, it coincides with the curve from
Theorem 1. The hypothesis testing bound from Theorem 2,
with an auxiliary i.i.d. Gaussian distribution, is slightly weaker.
Since the rate of the system R = 1.5 bits/channel use is
relatively close to channel capacity C ≈ 1.8 bits/channel
use, the gain by using an auxiliary distribution equal to the
exponent achieving output distribution is negligible in this
example.

2) Maximal power constraint: For the same system param-
eters as in the previous example, Fig. 5 compares the bounds
derived under a maximal power constraint. In particular, we
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Fig. 6: Upper and lower bounds to the error probability for an
AWGN channel under an average power constraint. System
parameters: SNR = 10 dB, and rate R = 1.5 bits/channel use.

consider the combination of Theorem 1 with (8), the slightly
sharper Corollary 1 and the hypothesis testing bound from
Theorem 3 with θ = θs as defined in (99). In the figure, we
can see that the tightest bound in this setting corresponds to the
new hypothesis testing bound from Theorem 3. Applying the
relation (8) to extend the cone-packing bound from Theorem 1
to a maximal power constraint incurs in a certain loss, which
is slightly tightened in Corollary 1. In the figure we observe
that the four curves present the same asymptotic slope as they
feature the same error exponent.

3) Average power constraint: We compare now the bounds
for an average power constraint. In particular, we consider the
combination of Theorem 1 with (8)-(9), the combination of
Corollary 1 with (9) and the hypothesis testing bound from
Theorem 4 with θ = θs as defined in (99). For this set of
system parameters, the condition in Corollary 2 is satisfied
for all n, and the simplified bound (61) can be used to
evaluate Theorem 4. The proposed hypothesis testing bound
from Theorem 4 is the tightest lower bound in this setting, as
shown in Fig. 6. The application of (9) to obtain bounds for
an average power constraint incurs in a large loss with respect
to the bound from Theorem 4.6

For this choice of system parameters, the condition in
Corollary 2 is satisfied for all n. Then, it follows that the
bounds from Theorems 2, 3 and 4 coincide in Figs. 4, 5
and 6. While in the equal power constraint setting, Shannon
cone-packing bound is still the best lower bound, under both
maximal and average power constraints the new hypothesis
testing bounds yield tighter results. Indeed, for an average
power constraint the advantage of Theorem 4 over previous
results is significant in the finite blocklength regime, as shown
in Fig. 6.

6All the bounds presented here hold under the average probability of error
formalism. While the counterpart of (9) for maximal error probability is tighter
(see [5, Lem. 65]), the finite-length gap to Theorem 4 is still significant.
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Fig. 7: Upper and lower bounds to the channel coding error probability for an AWGN channel with SNR = 5 dB and rate
R = 0.58 bits/channel use.

B. Exponent-achieving output distribution

In the previous examples, the transmission rate was very
close to channel capacity. Therefore, using the exponent
achieving or the capacity achieving output distributions in
the hypothesis-testing bounds did not result in significant
differences. We consider now an power-constrained AWGN
channel with SNR = 10 log10

Υ
σ2 = 5 dB. The asymptotic

capacity of this channel is C ≈ 1.03 bits/channel use and its
critical rate is Rcr ≈ 0.577 bits/channel use.7

Figure 7 shows several of the bounds from previous exam-
ples for M = d2nRemessages with R = 0.58 bits/channel use.
This transmission rate is slightly above the critical rate of the
channel. We first note that the gap between the achievability
part of [4, Eq. (20)] and the converse bounds is larger than
in the Figures 4, 5 and 6. We can see that Shannon cone-
packing bound Theorem 1 is still the tightest lower bound.
Nevertheless, the gap between Theorem 1 and the curve
of Theorem 4 with θ2 = θ̃2

s in (99) for the value of s
optimizing (108) is very small, and both bounds are almost
indistinguishable in the plot. Moreover, while Theorem 1 holds
only under equal power constraints, the bound from Theorem 4
holds under the three power constraints considered. In this
example, Corollary 1 and Corollary 1 + Eq. (9) yield weaker
and much weaker bounds, respectively. An error exponent
analysis shows that the asymptotic slope of the hypothesis-

7The critical rate of a channel is defined as the point below which
the sphere-packing exponent and the random-coding exponent start to di-
verge [28]. For the power-constrained AWGN channel this point corresponds
to the rate at which the maximum in (100) is attained for s = 1

2
.

testing lower bound from Theorem 4 with θ̃2
s coincides with

that of Shannon cone-packing lower bound from Theorem 1,
hence both curves are parallel. In contrast, the curve with
θ2 = Υ + σ2 presents a (slightly) larger error exponent
and hence this bound will diverge as n grows and become
increasingly weaker. As a final remark on this results, note that
by using the value θ2 = θ̃2

s , we obtain not only the sphere-
packing exponent but also tighter finite-length bounds.

The observations from Fig. 7 are complemented in Fig. 8.
In this figure, we analyze the highest transmission rate versus
the blocklength for a given error probability ε = 10−6.
We include the bounds from Fig. 7 and, for reference, the
asymptotic channel capacity C and the condition from Corol-
lary 2 as an upper bound on the transmission rate of the
system R ≤ R̄n = 1

n log2 M̄n. The upper bounds from
Theorem 1, Corollary 1 and Theorem 4 with θ2 = θ̃2

s

are almost indistinguishable from each other. Note however
that Theorem 1 was derived for an equal power constraint,
Corollary 1 for a maximal power constraint and Theorem 4 for
an average power constraint. Comparing these bounds with the
achievability bound [4, Eq. (20)], we observe that the behavior
of the transmission rate approaching capacity is precisely
characterized for blocklengths n ≥ 30. The upper bound from
Theorem 4 with θ2 = Υ + σ2 is slightly weaker than that
considering the exponent achieving output distribution and
Corollary 1 + Eq. (9) yields a much weaker bound for average
power constraints. The condition from Corollary 2 shows that
the simpler bound (61) can be used to evaluate Theorem 4 in
the range of values of n considered, as R̄n = 1

n log2 M̄n is
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Fig. 8: Bounds to the transmission rate for an AWGN channel with SNR = 5 dB and error probability ε = 10−6.

well-above of the curve corresponding to Theorem 4.

C. Numerical evaluation via the saddlepoint expansion

We now evaluate the accuracy of the saddlepoint expansion
introduced in Theorem 6. To this end, in Fig. 9 we show
with lines the exact hypothesis-testing bound evaluated using
Theorem 5, and with markers (•) the approximation that
follows from disregarding the o

(
n−

1
2

)
terms in Theorem 6.

We observe that, both for the capacity-achieving variance θ2

and for the exponent-achieving variance θ̃2
s , the approximation

is accurate for blocklengths as short as n = 10. This is also be
true for larger values of n, for which numerical evaluation of
the Marcum-Q functions appearing in Theorem 5 becomes
unfeasible using traditional methods. In this scenario, the
saddlepoint expansion from Theorem 6 is an useful tool to
evaluate the hypothesis-testing bounds presented in this work.

Moreover, if we compare the curves of Shannon cone-
packing bound from Theorem 1 and the hypothesis-testing
bounds from Theorems 2, 3 and 4 in Figs. 4-9, we only
observe a small difference. Then, regardless of the power
constraint considered, it may be sufficient to use Theorem 4
as lower bound –since it was derived under an average power
constraint, it applies for all equal, maximal and average power
limitations– and the achievability part of [4, Eq. (20)] as an
upper bound –this bound was derived assuming an equal-
power constraint, and since it is an achievability result, it
applies for all equal, maximal and average power limitations.
The saddlepoint approximation from Theorem 6 is accurate for
values of n ≥ 10 and it can be safely applied in the evaluation
of Theorem 4.
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Fig. 9: Bounds to the error probability for an AWGN channel
with SNR = 5 dB and R = 0.8 bits/channel use. The
bounds from Theorem 4 have been evaluated exactly using
Theorem 5 (lines) and using the approximation that follows
from Theorem 6 disregarding the small-o terms (markers •).

D. Constellation design for uncoded transmission (n = 2)

In the last example of this section, we consider the problem
of transmitting M ≥ 2 codewords over n = 2 uses of an
AWGN channel with SNR = 10 dB. This problem corresponds
to finding the best constellation for an uncoded quadrature
communication system.

Figure 10 depicts cone-packing bound from Theorem 1,
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over an AWGN channel with n = 2 and SNR = 10 dB.
Markers show the simulated error probability of a sequence
of codes satisfying an equal (◦), maximal (×) and average (•)
power constraints. Vertical line corresponds to the boundary
M ≤ M̄ from Corollary 2.

valid for equal power-constraints, the bound from Theorem 3
for θ2 = Υ+σ2, which is valid for maximal power-constraint,
and that from Theorem 4, valid for average power-constraint.
The vertical line shows the boundary of the region M ≤ M̄
defined in Corollary 2 where the bounds from Theorems 3 and
4 coincide. With markers, we show the simulated ML decoding
error probability of a sequence of M -PSK (phase-shift keying)
constellations satisfying the equal power constraint (◦) and
that of a sequence of M -APSK (amplitude-phase-shift keying)
constellations satisfying maximal (×) and average (•) power
constraints.8

Since the ML decoding regions of an M -PSK constellation
are precisely 2-dimensional cones, Shannon’59 lower bound
coincides with the corresponding simulated probability (◦).
However, Shannon’59 lower bound does not apply to general
M -APSK constellations satisfying maximal (×) and average
(•) power constraints, as discussed in Section IV.

We discuss now the results observed for codes satisfying
maximal and average power constraints. We can see that while
Theorem 4 applies in both of these settings, this is not the case
for Theorem 3, that in general only applies under maximal
power constraint. As stated in Corollary 2, the bounds from
Theorems 3 and 4 coincide for M ≤ M̄ ≈ 22.8. Above this
point, the two bounds diverge, and we can see from the figure
that the average power constrained code (•) violates the bound
from Theorem 3 for M > 45.

Analyzing the constellations that violate Theorem 3, we
found that they present several symbols concentrated at the

8The parameters of the M -APSK constellations (number of rings, number
of points, amplitude and phase of each ring) have been optimized to minimize
the error probability ε for each value of M . To this end, the constellation
parameters are randomly chosen around their best known values, and only
the constellations with lower error probability are used in the next iteration
of the stochastic optimization algorithm.

origin of coordinates (0, 0). As these symbols coincide, it is
not possible to distinguish between them and they will often
yield a decoding error. However, since the symbol (0, 0) does
not require any energy for its transmission, the average power
for the remaining constellation points is increased and this
code yields an overall smaller error probability. This effect
was also observed in [5, Sec. 4.3.3], where a code with
several codewords concentrated at the origin was used to study
the asymptotics of the error probability in an average power
constrained AWGN channel.

Interestingly, this optimal structure is also suggested by
the input distribution that follows from the derivation of
Theorem 4. The lower bound (48) in Theorem 4 corresponds
to the value of the convex envelope f at the point

(
1
M ,Υ

)
.

Whenever M ≤ M̄ , this convex envelope corresponds to a
convex combination of the functions f

(
β̄, 0
)

and f
(
β0, γ0

)
with γ0 > Υ. Therefore, the input distribution induced by
Theorem 4 is composed by a mass point at the origin and by
a uniform distribution over the spherical shell with squared
radius γ0 > Υ (see Section V-A). While this distribution does
not characterize how the codewords are distributed over the
space, it suggest that several codewords could be concentrated
at the symbol (0, 0).

VIII. DISCUSSION

We studied the performance of block coding on an AWGN
channel under different power limitations at the transmitter.
In particular, we showed that the hypothesis-testing bound,
[13, Th. 41] which was originally derived under an equal
power limitation, also holds under maximal power constraints
(Theorem 3), and, for rates below a given threshold, under
average power constraints (Corollary 2). For rates close and
above capacity, we proposed a new bound using the convex
envelope of the error probability function of a certain binary
hypothesis test (Theorem 4).

The performance bounds described above follow from the
analysis of the meta-converse bound [13, Th. 27], which
corresponds to the error probability a surrogate hypothesis test
between the distribution induced by the channel and a certain
auxiliary distribution. For the optimal auxiliary distribution
and an equal power-constraint, Polyanskiy showed in [14, Sec.
VI.F] that the meta-converse bound recovers Shannon cone-
packing bound [4, Eq. (20)]. In this work, however, we chose
the auxiliary distribution to be an i.i.d. Gaussian distribution
with zero-mean and certain variance. If the variance is chosen
to be capacity achieving, the resulting bound has a sub-optimal
error exponent [11], [27]. Considering the variance of the
exponent-achieving output distribution yields tighter finite-
length bounds in general, which feature the sphere-packing
exponent. Moreover, using an accurate asymptotic expansion
(Theorem 6), it is possible to evaluate the bounds for the
exponent-achieving output distribution without incurring in
extra computational cost (Corollary 3).

While the numerical advantage of the new finite-length
bounds compared to previous results in the literature is small
for a maximal power constraint, it is significant for an average
power constraint, as shown in Figures 5-8. Additionally, sev-
eral of the theoretical contributions are of independent interest:
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• A new geometric interpretation of [13, Th. 41] which is
analogous to the one in [4]. The hypothesis testing bound
[13, Th. 41] can then be described as the probability of
the noise moving a codeword x out of an n-dimensional
sphere that roughly covers 1/M -th of the output space.
Interestingly, this sphere is not centered at the codeword
x but at

(
1 + σ2

Υ

)
x.

• Optimization of the meta-converse bound over input
distributions. While the results obtained are specific for
an additive Gaussian noise channel, the techniques used
can in principle be applied to more complicated channels,
e.g., via the analysis of the saddlepoint expansion of the
meta-converse bound [25].

• For an average power constraint and rates close to and
above capacity, the input distribution that optimizing
the meta-converse bound presents a mass point at the
origin. This suggest that the optimal codes in this region
must have several all-zeros codewords (as it occurs for
the APSK constellations studied in Section VII-D) and
motivates the fact that no strong-converse exists for an
average power limitation at the transmitter [5, Th. 77].

• In Appendix A, we provide an exhaustive characteriza-
tion of the error probability of a binary hypothesis test
between two Gaussian distributions, which may be of
interest in related problems.

In our derivations, we did not impose any structure to the
codebooks beyond the corresponding power limitation. Then,
the results obtained are general and do not require the codes
to belong to a certain family, to use a specific modulation,
or to satisfy minimum distance constraints. Nevertheless, the
study of lower bounds for structured codes remains an active
area of research (see, e.g., [22]). Tight lower bounds for
BPSK modulations (or general M -PSK modulations), can
be obtained from the meta-converse bound using the results
from [25]. Evaluation of the meta-converse bound for general
modulations is still an open problem due to the combinatorial
nature of the optimization over input distributions.
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APPENDIX A
ANALYSIS OF f(β, γ) = αβ

(
ϕn√γ,σ, ϕ

n
0,θ

)
A. Parametric computation of f(β, γ)

Proposition 1: Let σ, θ > 0 and n ≥ 1, be fixed parameters,
and define δ , θ2 − σ2. The function trade-off between α
and β in αβ

(
ϕn√γ,σ, ϕ

n
0,θ

)
admits the following parametric

formulation as a function of the auxiliary parameter t ≥ 0,

α(γ, t) = Qn
2

(
√
nγ
σ

δ
,
t

σ

)
, (118)

β(γ, t) = 1−Qn
2

(
√
nγ
θ

δ
,
t

θ

)
, (119)

where Qm(a, b) denotes the Marcum Q-function

Qm(a, b) ,
∫ ∞
b

tm

am−1
e−

a2+t2

2 Im−1(at) dt. (120)

To evaluate f(β, γ) = αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
, we let t? be the

solution to the implicit equation β(γ, t?) = β for β(γ, t)
defined in (119). Then, for α(γ, t) defined in (118), it follows
that

f(β, γ) = α(γ, t?). (121)

Proof: The proof follows the lines of that of [13, Th. 41],
and it is included here for completeness.9

Let σ, θ > 0 and n ≥ 1, be fixed parameters. We define the
log-likelihood ratio

j(y) , log
ϕn√γ,σ(y)

ϕn0,θ(y)
(122)

= n log
θ

σ
− 1

2

n∑
i=1

θ2(yi −
√
γ)2 − σ2y2

i

σ2θ2
. (123)

According to the Neyman-Pearson lemma, the trade-off
αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
admits the parametric form

α(t′) = Pr
[
j(Y 0) ≤ t′

]
, (124)

β(t′) = Pr
[
j(Y 1) > t′

]
, (125)

in terms of the auxiliary parameter t′ ∈ R and where Y 0 ∼
ϕn√γ,σ , Y 1 ∼ ϕn0,θ.

We now apply the change of variable z = (y0 −
√
γ)/σ

such that for Y 0 ∼ ϕn√γ,σ we have that Z ∼ ϕn0,1. It can be
checked that the distribution of the random variable j(Y 0),
Y 0 ∼ ϕn√γ,σ coincides with that of j0(Z), Z ∼ ϕn0,1, where

j0(z) , n log
θ

σ
+
n

2

γ

δ
− 1

2

δ

θ2

n∑
i=1

(
zi −

σ
√
γ

δ

)2

. (126)

Analogously, if we define

j1(z) , n log
θ

σ
+
n

2

γ

δ
− 1

2

δ

σ2

n∑
i=1

(
zi −

θ
√
γ

δ

)2

, (127)

it follows that the distributions of j(Y 1), Y 1 ∼ ϕn0,θ, and that
of j1(Z), Z ∼ ϕn0,1 coincide.

Then, we may rewrite (124)-(125) as

α(t′) = Pr
[
j0(Z) ≤ t′

]
, (128)

β(t′) = Pr
[
j1(Z) > t′

]
, (129)

where Z ∼ ϕn0,1. Using (126) in (128), we obtain

α(t′) = Pr

[
n log

θ

σ
+
n

2

γ

δ
− 1

2

δ

θ2

n∑
i=1

(
Zi −

σ
√
γ

δ

)2

≤ t′
]
.

(130)

We consider the change of variable t′ ↔ t such that

t′ = n log
θ

σ
+
n

2

γ

δ
− δt2

2σ2θ2
. (131)

Using (131) in (130) and making the dependence on the
parameter γ explicit, we obtain

α(γ, t) = Pr

[
n∑
i=1

(
Zi −

σ
√
γ

δ

)2

≥
(
t

σ

)2
]
. (132)

9Note that the resulting trade-off (118)-(119) is scale invariant provided
that σ2, θ2 and γ are scaled by the same quantity. Therefore, Proposition 1
is not more general than [13, Th. 41] by allowing σ2 6= 1.
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Proceeding analogously for (129) yields

β(γ, t) = Pr

[
n∑
i=1

(
Zi −

θ
√
γ

δ

)2

<

(
t

θ

)2
]
. (133)

Given (132) and (133), we conclude that j0(Z) and j1(Z)
follow a (shifted and scaled) noncentral χ2 distribution with
n degrees of freedom and non-centrality parameters nγσ2/δ2

and nγθ2/δ2, respectively. The cumulative density function
of a non-central χ2 distribution with n degrees of freedom
and non-centrality parameter ν can be written in terms of the
generalized Marcum Q-function Qm(a, b) as [29]

Fn,ν(x) = 1−Qn
2

(√
ν,
√
x
)
. (134)

Noting that Fn,ν(x) is continuous, using (134) in (132) and
(133), we obtain the desired result.

B. Derivatives of f(β, γ)

Let σ, θ > 0 and n ≥ 1, be fixed parameters, and let δ =
θ2 − σ2. To obtain the derivatives of f(β, γ) with respect
to β and γ, we start from the parametric formulation from
Proposition 1 and use the following result.

Proposition 2: The derivatives of Qm(a, b) defined in (120)
with respect to its parameters a > 0 and b > 0 are

∂Qm(a, b)

∂a
=

bm

am−1
e−

a2+b2

2 Im(ab), (135)

∂Qm(a, b)

∂b
= − bm

am−1
e−

a2+b2

2 Im−1(ab), (136)

where Im(·) denotes the m-th order modified Bessel function
of the first kind.

Proof: The derivative (136) follows since the variable b
appears only in the lower limit of the definite integral in (120),
then the derivative corresponds to the integrand evaluated at
t = b.

To prove (135), let n = m+ ` for some ` ∈ Z+, and define
the truncated sum

Q̃(n)
m (a, b) , 1− e−

a2+b2

2

n∑
r=m

( b
a

)r
Ir(ab). (137)

The sequence of functions Q̃(n)
m (a, b) converges to Qm(a, b) as

n→∞ [30, Eq. (4.63)]. The partial derivate of the truncated
function (137) with respect to a is given by

∂Q̃
(n)
m (a, b)

∂a

= e−
a2+b2

2

n∑
r=m

( b
a

)r((
a+

r

a

)
Ir(ab)− bI ′r(ab)

)
. (138)

Using the identity I ′m(x) = m
x Im(x) + Im+1(x) [31,

Sec. 8.486] and canceling terms, we obtain

∂Q̃
(n)
m (a, b)

∂a

=
bm

am−1
e−

a2+b2

2 Im(ab)− bn+1

an
e−

a2+b2

2 In+1(ab). (139)

Interchanging summation and differentiation is possible if
the derivatives of the summands present uniform conver-
gence [31, Sec. 0.307]. We next show that the sequence (139)

presents uniform convergence to the RHS of (135). Then,
noting that the sequence of functions Q̃(n)

m (a, b) converges to
Qm(a, b) as n→∞, and since the sequence ∂Q̃(n)

m (a, b)/∂a
converges uniformly to ∂Qm(a, b)/∂a, we obtain the desired
identity (135).

Indeed, using [31, Sec. 8.431] it follows that, for n ≥ 2(
b

a

)n+1

In+1(ab) =
(b2/2)n+1

Γ
(
n+ 3

2

)
Γ
(

1
2

) ∫ 1

−1

(
1− t2

)n+ 1
2 eabt dt

(140)

≤ (b2/2)n+1eab

Γ
(
n+ 3

2

)
Γ
(

1
2

) , (141)

where in the last step we used that eabt ≤ eab for t ∈ [−1, 1]

and that
∫ 1

−1

(
1− t2

)n+ 1
2 dt < 1 for n ≥ 2.

Then, from (139) and (141) we obtain∣∣∣∣∂Q̃(n)
m (a, b)

∂a
− bm

am−1
e−

a2+b2

2 Im(ab)

∣∣∣∣
= ae−

a2−2ab+b2

2
(b2/2)n+1

Γ
(
n+ 3

2

)
Γ
(

1
2

) (142)

which, for n sufficiently large, is uniformly bounded for any
0 < a ≤ ā and 0 < b ≤ b̄ with ā, b̄ <∞, since the growth of
Γ
(
n+ 3

2

)
is asymptotically faster than that of (b2/2)n+1.

Using the derivatives of the Marcum-Q function (135) and
(136), we obtain that the derivatives of (118) are

∂α(γ, t)

∂γ
=

1

2

σ
√
n/γ

δ

b
n
2

a
n
2−1

e−
a2+b2

2 In
2

(ab), (143)

∂α(γ, t)

∂t
= − 1

σ

b
n
2

a
n
2−1

e−
a2+b2

2 In
2−1(ab), (144)

with a =
√
nγ σδ and b = t

σ . Proceeding analogously, for the
derivatives of (119) we obtain

∂β(γ, t)

∂γ
= −1

2

θ
√
n/γ

δ

b̄
n
2

ā
n
2−1

e−
ā2+b̄2

2 In
2

(āb̄), (145)

∂β(γ, t)

∂t
=

1

θ

b̄
n
2

ā
n
2−1

e−
ā2+b̄2

2 In
2−1(āb̄), (146)

where ā =
√
nγ θδ and b̄ = t

θ . Note that ab = āb̄, hence,
In

2
(ab) = In

2
(āb̄) and In

2−1(ab) = In
2−1(āb̄).

We now obtain the derivatives of f(β, γ) with respect to
the parameters β and γ:

1) Derivative ∂f(β, γ)/∂γ for fixed β: Let β ∈ [0, 1] be
fixed and let t(γ) be such that β

(
γ, t(γ)

)
= β from (119). We

apply the chain rule for total derivatives to write

∂β
(
γ, t(γ)

)
∂γ

=

(
∂β(γ, t)

∂γ
+
∂β(γ, t)

∂t

∂t(γ)

∂γ

)∣∣∣∣
t=t(γ)

. (147)

As β
(
γ, t(γ)

)
= β is fixed, then (147) must be equal to 0.

Then, identifying (147) to 0 and solving for ∂t(γ)
∂γ yields

∂t(γ)

∂γ
= −

∂
∂γβ(γ, t)
∂
∂tβ(γ, t)

=
θ2

2δ

√
n

γ

In
2

(√
nγ tδ

)
In

2−1

(√
nγ tδ

) , (148)

where t = t(γ), and where we used (145) and (146). Note that
we obtained an expression for ∂t(γ)

∂γ without computing t(γ)
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explicitly, as doing this would require to invert (119) which is
not analytically tractable.

We apply now the chain rule for total derivatives to
α
(
γ, t(γ)

)
to write

∂α
(
γ, t(γ)

)
∂γ

=

(
∂α(γ, t)

∂γ
+
∂α(γ, t)

∂t

∂t(γ)

∂γ

)∣∣∣∣
t=t(γ)

(149)

Note that, for fixed β, ∂f(β,γ)
∂γ = ∂α(γ,t(γ))

∂γ . Hence, using
(143), (144) and (148) in (149) we finally obtain

∂f(β, γ)

∂γ
= − n

2δ

(
tδ

σ2√nγ

)n
2

e
− 1

2

(
nγσ2

δ2
+ t2

σ2

)
In

2

(
√
nγ

t

δ

)
,

(150)

where t satisfies β(γ, t) = β with β(γ, t) given in (119).
2) Derivative ∂f(β, γ)/∂β for fixed γ: In this case we use

(144) and (146) to obtain

∂f(β, γ)

∂β
=

∂
∂tα(γ, t)
∂
∂tβ(γ, t)

= − θ
n

σn
e

1
2 (nγδ −t

2( 1
σ2− 1

θ2
)) (151)

where t satisfies β(γ, t) = β with β(γ, t) given in (119).
3) Derivative ∂2f(β, γ)/(∂β∂γ): Taking the derivative of

(151) with respect to γ yields

∂2f(β, γ)

∂β∂γ
= − θ

n

σn
e

1
2 (nγδ −t

2( 1
σ2− 1

θ2
))

×
(
n

2δ
− t
(

1

σ2
− 1

θ2

)
∂t(γ)

∂γ

)
, (152)

where t satisfies β(γ, t) = β with β(γ, t) given in (119), and
where ∂t(γ)

∂γ is given in (148).
4) Derivative ∂2f(β, γ)/(∂β)2: Taking the derivative of

(151) with respect to β yields

∂2f(β, γ)

(∂β)2
= t

θn

σn
e

1
2 (nγδ −t

2( 1
σ2− 1

θ2
))
(

1

σ2
− 1

θ2

)
∂t

∂β
(153)

where t satisfies β(γ, t) = β with β(γ, t) given in (119), and
where the term ∂t

∂β can be obtained from (146),

∂t

∂β
=

(
∂β(γ, t)

∂t

)−1

(154)

=
δ
√
nγ

(
θ2√nγ
tδ

)n
2

e
1
2

(
nγθ2

δ2
+ t2

θ2

)

×
(
In

2−1

(
√
nγ

t

δ

))−1

. (155)

5) Derivative ∂2f(β, γ)/(∂γ)2: Taking the derivative of
(150) with respect to γ, straightforward but tedious algebra
yields

∂2f(β, γ)

(∂γ)2
= − n

4δ

( tδ

σ2√nγ

)n
2

e
− 1

2

(
nγσ2

δ2
+ t2

σ2

)
In

2

(
√
nγ

t

δ

)

×

(
n

δ
− n

γ
+

√
n

γ

t

δ

(
In

2−1

(√
nγ tδ

)
In

2

(√
nγ tδ

)
− θ2

σ2

In
2

(√
nγ tδ

)
In

2−1

(√
nγ tδ

))),
(156)

where t satisfies β(γ, t) = β with β(γ, t) given in (119).
Here, we used the identity I ′m(x) = Im−1(x)− m

x Im(x) [31,
Sec. 8.486].

C. Derivatives of f(β, γ) at γ = 0

The function f(β, 0) can be evaluated by setting γ = 0 and
using (118)-(119). However, the preceding expressions for the
derivatives of f(β, γ) often yield an indeterminacy in this case.
This can be avoided by taking the limit as γ → 0 and using
that [31, Sec. 8.445]

Im(x) =

(
x
2

)m
Γ
(
m+ 1

) + o(xm), (157)

where Γ(·) denotes the gamma function and o
(
g(x)

)
sum-

marizes the terms that approach zero faster than g(x), i.e.,
limx→0

o(g(x))
g(x) = 0. For example, using (157) and Γ(m+1)

Γ(m) =
m we obtain from (148) that

∂t(γ)

∂γ

∣∣∣∣
γ=0

=
t

2

θ2

δ2
. (158)

Proceeding analogously for the derivatives of f(β, γ), it
follows that

∂f(β, γ)

∂γ

∣∣∣∣
γ=0

= −1

δ

tn0
σn

e−
1
2

t20
σ2

Γ
(
n
2

)
2
n
2

, (159)

∂f(β, γ)

∂β

∣∣∣∣
γ=0

= − θ
n

σn
e−

1
2 t

2
0( 1
σ2− 1

θ2
), (160)

∂2f(β, γ)

∂β∂γ

∣∣∣∣
γ=0

= − θ
n

σn

(
n

2δ
− t20

2δσ2

)
e−

1
2 t

2
0( 1
σ2− 1

θ2
), (161)

∂2f(β, γ)

(∂β)2

∣∣∣∣
γ=0

=
θn

σn

(
θ
√

2

t0

)n−2
δ

σ2
Γ
(
n
2

)
e−

1
2 t

2
0
δ−σ2

θ2σ2 , (162)

∂2f(β, γ)

(∂γ)2

∣∣∣∣
γ=0

= − n

4δ

tn0
σn2

n
2

(
n

δ
+

(
n

n+ 2
− θ2

σ2

)
t20
δ2

)

× e−
1
2

t20
σ2

Γ(n2 + 1)
, (163)

where in all cases t0 satisfies β(0, t0) = β with β(γ, t) given
in (119). To obtain (163) from (156) we used (157) and the
expansions

Im−1(x)

Im(x)
=

2m

x
+

x

2(m+ 1)
+ o(x), (164)

Im(x)

Im−1(x)
=

x

2m
+ o(x). (165)

APPENDIX B
PROOF OF LEMMA 4

We characterize the region where f(β, γ) and its convex
envelope f(β, γ) coincide using the following result.

Proposition 3: Suppose g is differentiable with gradient ∇g.
Let A denote the domain of g, and let a0 ∈ A. If the inequality

g(ā) ≥ g(a0) +∇g(a0)T (ā− a0), (166)

is satisfied for all ā ∈ A, then, g(a0) = g∗∗(a0) holds.
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Fig. 11: Example of Proposition 3 for the one-dimensional
function g(ā) = f(β, ā) with β = 0.001, n = 6, σ2 = 1 and
θ2 = 3, which is defined for ā ≥ 0.

Proof: As g∗∗ is the lower convex envelope of g, then
g(a0) ≥ g∗∗(a0) trivially. It remains to show that (166) implies
g(a0) ≤ g∗∗(a0). Fenchel’s inequality [32, Sec. 3.3.2] yields

g∗∗(a0) ≥ 〈a0, b〉 − g∗(b), (167)

for any b in the domain of g∗.
Setting b = ∇g(a0) and using (46) in (167), we obtain

g∗∗(a0) ≥ ∇g(a0)Ta0 −max
ā∈A

{
∇g(a0)T ā− g(ā)

}
(168)

= min
ā∈A

{
∇g(a0)T (a0 − ā) + g(ā)

}
(169)

≥ min
ā∈A

{
g(a0)

}
, (170)

where in the last step we used (166) to lower bound g(ā). Since
the objective of (170) does not depend on ā, we conclude from
(168)-(170) that g(a0) ≤ g∗∗(a0) and the result follows.

Figure 11 shows an example of Proposition 3 for a certain
one-dimensional function g. When a0 = a1, we can see in
the figure that (173) is violated as the corresponding first
order Taylor approximation (dash-dotted line) is larger than
g(ā) (thin solid line) for small values of ā. Then, the convex
envelope g∗∗ (thick solid line) is strictly smaller than the
function g at the point a0 = a1. In contrast, when a0 = a2

(173) is satisfied for all values of ā ≥ 0. Therefore g coincides
with its convex envelope g∗∗ at a0 = a2. This is also true for
any a0 > a2 (e.g., a0 = a3), and therefore g and its convex
envelope g∗∗ coincide for a0 ≥ a2.

We apply Proposition 3 to the function f(β, γ). We recall
that f(β, γ) is differentiable for β ∈ [0, 1] and γ ≥ 0 with
derivatives given in Appendix A. We define the gradients

∇βf(b, g) ,
∂f(β, γ)

∂β

∣∣∣
β=b,γ=g

, (171)

∇γf(b, g) ,
∂f(β, γ)

∂γ

∣∣∣
β=b,γ=g

. (172)

According to Proposition 3, the function f(β0, γ0) and its
convex envelope f(β0, γ0) coincide if

f(β̄, γ̄) ≥ f(β0, γ0) + (β̄ − β0)∇βf(β0, γ0)

+ (γ̄ − γ0)∇γf(β0, γ0). (173)

is satisfied for all β ∈ [0, 1] and γ ≥ 0. This condition implies
that the first-order Taylor approximation of f(β, γ) at (β0, γ0)
is a global under-estimator of the original function f .

The derivatives of f(β, γ), given in Appendix A, imply that
the function is decreasing in both parameters, convex with
respect to β ∈ [0, 1], and jointly convex with respect to (β, γ)
except for a neighborhood near the axis γ = 0. Using these
properties, it follows that the condition (173) only needs to
be verified along the axis γ̄ = 0. For example, for the one-
dimensional function g shown in Fig. 11, we can see that if
the first-order condition is satisfied at ā = 0, it is also satisfied
for any ā ≥ 0.

Then, we conclude that f(β0, γ0) = f(β0, γ0) if (173) holds
for every β̄ ∈ [0, 1] and γ̄ = 0, i.e., if

f(β0, γ0)− f(β̄, 0) ≥ (β0 − β̄)∇βf(β0, γ0)

+ γ0∇γf(β0, γ0). (174)

Let θ ≥ σ > 0, n ≥ 1. Let t0 be the value such that
β(γ0, t0) = β0 and let t̄ satisfy β(0, t̄) = β̄, for β(γ, t) defined
in (119). Using (118) and the derivatives (150) and (151) from
Appendix A, we obtain the identities

f(β0, γ0)− f(β̄, 0) = Qn
2

(
√
nγ0

σ

δ
,
t0
σ

)
−Qn

2

(
0,
t̄

σ

)
,

(175)

∇βf(β0, γ0) = − θ
n

σn
e

1
2 (nγ0

δ −t
2
0( 1
σ2− 1

θ2
)), (176)

∇γf(β0, γ0) = − n

2δ

(
t0δ

σ2√nγ0

)n
2

e
− 1

2

(
nγ0

σ2

δ2
+
t20
σ2

)

× In
2

(
√
nγ0

t0
δ

)
. (177)

As β(γ0, t0) = β0 and β(0, t̄) = β̄, using (119), it follows
that

β0 − β̄ = Qn
2

(
0,
t̄

θ

)
−Qn

2

(
√
nγ0

θ

δ
,
t0
θ

)
. (178)

Then, substituting (175) and (178) in (174), reorganizing
terms, it yields

Qn
2

(
√
nγ0

σ

δ
,
t0
σ

)
+∇βf(β0, γ0)Qn

2

(
√
nγ0

θ

δ
,
t0
θ

)
− γ0∇γf(β0, γ0) ≥ h(t̄),

(179)

where h(t) is given by

h(t) , Qn
2

(
0,
t

σ

)
+∇βf(β0, γ0)Qn

2

(
0,
t

θ

)
. (180)

The interval β̄ ∈ [0, 1] corresponds to t̄ ≥ 0. We maximize
(180) over t = t̄ ≥ 0 and we only verify the condition (179)
for this maximum value.
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Fig. 12: Level curves of det∇2f(β, γ) for n = 6, σ2 = 1,
θ2 = 2. The region where det∇2f(β, γ) < 0 is shaded in
gray. The bold line corresponds to the points where β = 1−
Qn

2

(√
nγθ/δ, t0/θ

)
as described in Lemma 4.

To this end, we find the derivative of (180) with respect to t,
we identify the resulting expression with zero and solve for t.
Using (136) and (157) it follows that

∂

∂b
Qm (0, b) = −b

2m−1

2m−1

e−
b2

2

Γ(m)
(181)

and therefore
∂

∂t
h(t)

= − 1

σ

(t/σ)n−1

2
n
2−1

e−
t2

2σ2

Γ(n/2)
− ∇βf(β0, γ0)

θ

(t/θ)n−1

2
n
2−1

e−
t2

2θ2

Γ(n/2)
(182)

= − tn−1

σn2
n
2−1

e−
t2

2σ2

Γ(n/2)
+

tn−1

σn2
n
2−1

e−
t2

2θ2

Γ(n/2)
e

1
2 (nγ0

δ −t
2
0( 1
σ2− 1

θ2
))

(183)

where in the second step we used (176). Identifying (183) with
zero, we obtain the root t = 0 and (after some algebra)

t2 = t20 − nγ
σ2θ2

δ2
. (184)

By evaluating the second derivative of (180), we verify that
(184) corresponds to a maximum of h(t). Therefore, we
conclude that the RHS of (179) is maximized for

t̄? =
√(

t20 − nγσ2θ2/δ2
)

+
(185)

where the threshold (a)+ = max(0, a) follows from the
constraint t̄ ≥ 0.

Using (176), (177) and (185) in (179) we obtain the desired
characterization for the region of interest. For the statement of
the result in Lemma 4, we select the smallest t0 that fulfills
(179) (which satisfies the condition with equality) and we
simplify the notation by using (β, γ) instead of (β0, γ0).

We emphasize that the condition for Lemma 4 derived in
this appendix does not correspond to the region where f(β, γ)

is locally convex, but it precisely characterizes the region
where f(β, γ) = f(β, γ). Figure 12 shows the difference
between these two regions for a given set of parameters: the
shaded area shows the points where f(β, γ) is locally non-
convex, while the bold line corresponds to the lower-boundary
of the region where f(β, γ) = f(β, γ).
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