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Abstract

We address the arbitrarily varying channel (AVC) with colored Gaussian noise. The work consists of three parts. First, we
study the general discrete AVC with fixed parameters, where the channel depends on two state sequences, one arbitrary and the
other fixed and known. This model can be viewed as a combination of the AVC and the time-varying channel. We determine both
the deterministic code capacity and the random code capacity. Super-additivity is demonstrated, showing that the deterministic
code capacity can be strictly larger than the weighted sum of the parametric capacities.

In the second part, we consider the arbitrarily varying Gaussian product channel (AVGPC). Hughes and Narayan characterized
the random code capacity through min-max optimization leading to a “double” water filling solution. Here, we establish the
deterministic code capacity and also discuss the game-theoretic meaning and the connection between double water filling and
Nash equilibrium. As in the case of the standard Gaussian AVC, the deterministic code capacity is discontinuous in the input
constraint, and depends on which of the input or state constraint is higher. As opposed to Shannon’s classic water filling solution,
it is observed that deterministic coding using independent scalar codes is suboptimal for the AVGPC.

Finally, we establish the capacity of the AVC with colored Gaussian noise, where double water filling is performed in the
frequency domain. The analysis relies on our preceding results, on the AVC with fixed parameters and the AVGPC.

Index Terms

Arbitrarily varying channel, water filling, colored Gaussian noise, time varying channel, Gaussian product channel, determin-
istic code, random code.

I. INTRODUCTION

A channel with colored Gaussian noise was first studied by Shannon [94], introducing the water filling optimal power

allocation. This channel is the spectral counterpart of the Gaussian product channel (see e.g. [27, Section 9.5]). Those results

led to useful algorithms for DSL and OFDM systems, and were generalized to multiple-input multiple output (MIMO) wireless

communication systems as well (see e.g. [99, 38, 12, 11, 93, 41]). Furthermore, for some networks, water filling is performed

in multiple stages [26, 111, 113, 114, 71, 105]. A limit formula for the capacity of the general time-varying channel (TVC)

is given in [102] (see also [29, 47, 3, 33, 10, 76, 87, 112]). Another relevant setting is that of a finite-state channel, where

the state evolves as a Markov chain [110, 74, 14, 73, 46, 100, 98]. In practice, there is often uncertainty regarding channel

statistics, due to a variety of causes such as fading in wireless communication [95, 92, 1, 80, 42, 25, 59, 57], memory faults

in storage [68, 51, 69, 66], malicious attacks on identification systems [45, 62], and cyber-physical warfare [97, 72, 104]. The

arbitrarily varying channel (AVC) is an appropriate model to describe such a situation [16, 73].

Blackwell et al. [16] determined the random code capacity of the general AVC, i.e. the capacity achieved with shared

randomness between the encoder and the decoder. It was also demonstrated in [16] that the random code capacity is not

necessarily achievable using deterministic codes. A well-known result by Ahlswede [5] is the dichotomy property of the

AVC, i.e. the deterministic code capacity, also referred to as ‘capacity’, either equals the random code capacity or else, it

is zero. Subsequently, Ericson [37] and Csiszár and Narayan [30] have established a simple single-letter condition, namely

non-symmetrizability, which is both necessary and sufficient for the capacity to be positive. Schaefer et al. [91] demonstrated

the super-additivity phenomenon, i.e. when the capacity of a product of orthogonal AVCs is strictly larger than the sum of

the capacities of the components. Csiszár and Narayan [31, 30] also considered the AVC when input and state constraints are

imposed on the user and the jammer, respectively, due to their power limitations. Not only the constrained setting provokes

serious technical difficulties analytically, but also, as shown in [30], constraints have a significant effect on the behavior of the

capacity. Specifically, it is shown in [30] that dichotomy in the sense of [5] no longer holds when state constraints are imposed

on the jammer. That is, the deterministic code capacity of the general AVC can be lower than the random code capacity, and

yet non-zero.

The Gaussian AVC is specified by the relation Y = X + S + Z, where X and Y are the input and output sequences,

respectively; S is a state sequence of unknown joint distribution FS, not necessarily independent nor stationary; and the noise
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sequence Z is i.i.d. ∼ N (0, σ2). The state sequence can be thought of as if generated by an adversary, or a jammer, who

randomizes the channel states arbitrarily in an attempt to disrupt communication. It is also possible for S to be a deterministic

unknown state sequence. It is assumed that the user and the jammer have power limitations, and are subject to input and

state constraints, 1
n

∑n
i=1X

2
i ≤ Ω and 1

n

∑n
i=1 S

2
i ≤ Λ, respectively, where n is the transmission length. In [60], Hughes and

Narayan showed that the random code capacity is given by C
⋆

1 = 1
2 log(1 +

Ω
σ2+Λ). Subsequently, Csiszár and Narayan [32]

showed that the deterministic code capacity is given by

C1 =

{
C
⋆

1 if Λ < Ω ,

0 if Λ ≥ Ω .
(1)

It is noted in [32] that this result is not a straightforward consequence of the elegant Elimination Technique [5], used by

Ahlswede to establish dichotomy for the AVC without constraints. Hosseinigoki and Kosut [57] determined the capacity in

multiple side information scenarios for the Gaussian AVC with fast fading. Hughes and Narayan [61] determined the random

code capacity of the arbitrarily varying Gaussian product channel (AVGPC), and showed that it is obtained as a “double” water

filling solution to an optimization min-max problem, maximizing over input power allocation and minimizing over state power

allocation. In the solution, the jammer performs water filling first, attempting to whiten the overall noise as much as possible,

and then the user performs water filling taking into account the total interference power, contributed by both the channel noise

and the jamming signal [61]. The Gaussian AVC is also considered in [4, 101, 70, 88, 90, 56, 59].

Extensive research has been conducted on other AVC models as well, of which we name a few. Recently, the arbitrarily

varying wiretap channel has been extensively studied, as e.g. in [77, 17, 9, 18, 19, 78, 48, 2], including input and state

constraints in [13, 64, 40]. The capacity region of the arbitrarily varying multiple access channel (MAC) with and without

constraints is characterized in [85, 63, 7, 8]; capacity bounds for the arbitrarily varying broadcast channel are derived in

[63, 52]; and for the arbitrarily varying relay channel in [83, 81]. Additional results on arbitrarily varying multi-user channels

and constraints are derived e.g. in [108, 24, 50, 106, 84, 65]. Transmission of an arbitrarily varying Wyner-Ziv source over a

Gel’fand-Pinsker channel is considered in [109, 107], and related problems were recently presented in [24, 22, 21]. Various

Gaussian AVC networks are studied e.g. in [89, 49, 23, 54, 55, 82, 83, 85, 58].

In this paper, we address the AVC with colored Gaussian noise. The body of this manuscript consists of three parts, of

which the first and the second can also be viewed as milestones on our path to the main result. First, we study the general

discrete AVC with fixed parameters. This model is a combination of the TVC and the AVC, as the channel depends on two

state sequences, one arbitrary and the other fixed. We determine both the deterministic code capacity and the random code

capacity. Deterministic code super-additivity is demonstrated, showing that the capacity can be strictly larger than the weighted

sum of the parametric capacities. In the second part of this paper, we establish the deterministic code capacity of the AVGPC,

where there is white Gaussian noise and no parameters. We also give observations and discuss the game-theoretic interpretation

of Hughes and Narayan’s random code characterization [61], and the connection between the double water filling solution and

the idea of Nash equilibrium in game theory. We further examine the connection between the AVGPC and the product MAC

[26, 71] (without a state), pointing out the similarities and differences between the models, results, and interpretation. As in

the case of the standard Gaussian AVC, the deterministic code capacity is discontinuous in the input constraint, and depends

on which of the input or state constraint is higher. As opposed to Shannon’s classic water filling solution [94], it is observed

that deterministic coding using independent scalar codes is suboptimal for the AVGPC. Finally, we establish the capacity of

the AVC with colored Gaussian noise, where double water filling is performed in the frequency domain.

While the results on the AVC with fixed parameters and on the AVGPC stand in their own right, they also play a key role

in our proof of the main capacity theorem for the AVC with colored Gaussian noise. In the random code analysis for the AVC

with fixed parameters, we modify Ahlswede’s Robustification Technique (RT) [6]. Essentially, the RT uses a reliable code for

the compound channel to construct a random code for the AVC applying random permutations to the codeword symbols. A

straightforward application of Ahlswede’s RT does not work here, since the user cannot apply permutations to the parameter

sequence. Hence, we give a modified RT which is restricted to permutations that do not affect the parameter sequence, i.e.

such that the parameter sequence is an eigenvector of all of our permutation matrices. The second part of the paper builds

on identifying the symmetrizing jamming strategies and minimal symmetrizability costs for the AVGPC. At last, we use the

results on the AVC with fixed parameters and the AVGPC in our proof of the capacity theorem for the AVC with colored

Gaussian noise. By orthogonalization of the noise covariance, the AVC with colored Gaussian noise is transformed into an

AVC with fixed parameters, which are determined by the spectral representation of the noise covariance matrix. This in turn

yields double water-filling optimization in analogy to the AVGPC.

II. CHANNELS WITH FIXED PARAMETERS

In this section we consider the AVC with fixed parameters. The results in this section will be used to analyze the AVC with

colored Gaussian noise.
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A. Notation

We use the following notation. Calligraphic letters X ,S, T ,Y, ... are used for finite sets. Lowercase letters x, s, t, y, . . . stand

for constants and values of random variables, and uppercase letters X,S, T, Y, . . . stand for random variables. The distribution

of a random variable X is specified by a probability mass function (pmf) PX(x) = p(x) over a finite set X . The set of all pmfs

over X is denoted by P(X ). The set of all probability kernels p(x|t) is denoted by P(X|T ). We use xj = (x1, x2, . . . , xj) to

denote a sequence of letters from X . A random sequence Xn and its distribution PXn(xn) = p(xn) are defined accordingly.

For a pair of integers i and j, 1 ≤ i ≤ j, we define the discrete interval [i : j] = {i, i+ 1, . . . , j}.
The type P̂xn of a given sequence xn is defined as the empirical distribution P̂xn(a) = N(a|xn)/n for a ∈ X , where N(a|xn)

is the number of occurrences of the symbol a in the sequence xn. A type class is denoted by T n(P̂ ) = {xn : P̂xn = P̂}.
Similarly, define the joint type P̂xn,yn(a, b) = N(a, b|xn, yn)/n for a ∈ X , b ∈ Y , where N(a, b|xn, yn) is the number

of occurrences of the symbol pair (a, b) in the sequence (xi, yi)
n
i=1. Then, a conditional type is defined as P̂xn|yn(a, b) =

P̂xn,yn(a, b)/P̂yn(b). Furthermore, we define the δ-typical set A(n)
δ (p) with respect to a distribution p(x) by

A(n)
δ (p) ,

{
xn ∈ Xn : ∀ a ∈ X ,

∣∣∣p(a)− P̂xn(a)
∣∣∣ ≤ δ if p(a) > 0, and

P̂xn(a) = 0 if p(a) = 0
}
. (2)

The distribution of a real random variable Z ∈ R is represented by a cumulative distribution function (cdf) FZ(z) =
Pr (Z ≤ z) over the real line, or alternatively, the probability density function (pdf) fZ(z), when it exists. The notation

z = (z1, z2, . . . , zn) is used when it is understood from the context that the length of the sequence is n, and the ℓ2-norm of z

is denoted by ‖z‖. The trace of a matrix A ∈ Rm×n is denoted by tr(A).

B. Channel Description

A state-dependent discrete memoryless channel (DMC) with parameters (X × S × T ,WY |X,S,T ,Y) consists of finite input

alphabet X , state alphabet S, parameters alphabet T , output alphabet Y , and a conditional pmf WY |X,S,T over Y . The channel

is without feedback, and it is memoryless when conditioned on the state and parameter sequences, i.e.

WY n|Xn,Sn,Tn(yn|xn, sn, tn) =
n∏

i=1

WY |X,S,T (yi|xi, si, ti) . (3)

The AVC with fixed parameters is a DMC WY |X,S,T where the parameter sequence is fixed, while the state sequence has

an unknown distribution, not necessarily independent nor stationary. That is, the parameter is sequence is given by

T n = θn , (4)

where θ1, θ2, . . . is a given sequence of letters from T , known to the encoder, decoder, and jammer. Whereas, the state sequence

Sn ∼ q(sn|θn) with an unknown joint pmf q(sn|θn) over Sn. In particular, q(sn|θn) could give mass 1 to some state sequence

sn. The AVC with fixed parameters is denoted by W = {WY |X,S,T , θ
∞}, where θ∞ is a short notation for the sequence

(θi)
∞
i=1.

The compound channel with fixed parameters is used as a tool in the analysis. Different models of compound channels are

described in the literature [29]. Here, the compound channel with fixed parameters is a DMC WY |X,S,T where the state has

a conditional product distribution q(s|t) that is not known in exact, but rather belongs to a family of conditional distributions

Q, with Q ⊆ P(S|T ). That is,

Sn ∼
n∏

i=1

q(si|θi) (5)

with an unknown conditional pmf q(s|t) ∈ Q. We note that this differs from the classical definition of the compound channel,

as in [29], where the state is fixed throughout the transmission.

Remark 1. Note that the special case of a channel WY |X,S,T=t, with a constant parameter θi = t for i = 1, 2, . . ., reduces to

the standard state-dependent DMC. Thereby, the AVC Wt = {WY |X,S,T=t} with a constant parameter can be regarded as the

traditional AVC, as introduced by Blackwell et al. [16]. On the other hand, the special case of a channel WY |X,S,T =WY |X,T ,

which does not depend on the state S, reduces to a TVC [102].

Remark 2. The AVC with colored Gaussian noise does not fit the description above. Nevertheless, the fixed parameters model

is a crucial tool for our final goal, i.e. to determine the capacity of the AVC with colored Gaussian noise.
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C. Coding

We introduce some preliminary definitions.

Definition 1 (Code). A (2nR, n) code for the AVC W with fixed parameters consists of the following; a message set [1 : 2nR],
where 2nR is assumed to be an integer, an encoding function f : [1 : 2nR]×T n → Xn, and a decoding function g : Yn×T n →
[1 : 2nR].

Given a message m ∈ [1 : 2nR] and and a parameter sequence θn, the encoder transmits the codeword xn = f(m, θn).
The decoder receives the channel output yn, and finds an estimate of the message m̂ = g(yn, θn). We denote the code by

C = (f(·, ·), g(·, ·)).
We proceed now to coding schemes when using stochastic-encoder stochastic-decoder pairs with common randomness.

Definition 2 (Random code). A (2nR, n) random code for the AVCW with fixed parameters consists of a collection of (2nR, n)
codes {Cγ = (fγ , gγ)}γ∈Γ, along with a probability distribution µ(γ) over the code collection Γ. We denote such a code by

C Γ = (µ,Γ, {Cγ}γ∈Γ).

D. Input and State Constraints

Next, we consider input constraints and state constraint, imposed on the encoder and the jammer, respectively. We note that

the constraints specifications are known to both the user and the jammer in this model. Let φ : X → [0,∞), k = 1, 2, and

l : S → [0,∞) be some given bounded functions, and define

φn(xn) =
1

n

n∑

i=1

φ(xi) , (6)

ln(sn) =
1

n

n∑

i=1

l(si) . (7)

Let Ω > 0 and Λ > 0. Below, we specify the input constraint Ω and state constraint Λ, corresponding to the functions φn(xn)
and ln(sn), respectively. It is assumed that for some a ∈ X and b ∈ S, φ(a) = l(b) = 0.

As the parameter sequence θ∞ ≡ (θi)
∞
i=1 is fixed and known to the encoder, the decoder and the jammer, the input and state

constraints below are specified for a particular sequence. Given an input constraint Ω, the encoding function needs to satisfy

φn(f(m, θn)) ≤ Ω , for all m ∈ [1 : 2nR] . (8)

That is, the input sequence satisfies φn(Xn) ≤ Ω with probability 1.

Moving to the state constraint Λ, we have different definitions for the AVC and for the compound channel. The compound

channel has a constraint on average, where the state sequence satisfies Eql
n(Sn) ≤ Λ, while the AVC has an almost-surely

constraint, ln(Sn) ≤ Λ with probability (w.p.) 1. Explicitly, we say that a compound channel is under a state constraint Λ if

Q ⊆ PΛ(S|θ∞), where

PΛ(S|θ∞) ,

∞⋂

n=1

{
q(s|t) :

1

n

n∑

i=1

∑

s∈S
q(s|θi)l(s) ≤ Λ

}
. (9)

As for the AVC W , it is now assumed that the joint distribution of the state sequence is limited to q(sn|θn) ∈ PΛ(Sn|θn),
where

PΛ(Sn|θn) , {q(sn|θn) ∈ P(Sn|T n) : q(sn|θn) = 0 if ln(sn) > Λ } . (10)

This includes the case of a deterministic unknown state sequence, i.e. when q gives probablity 1 to a particular sn ∈ Sn with

ln(sn) ≤ Λ.

E. Capacity Under Constraints

We move to the definition of an achievable rate and the capacity of the AVC W with fixed parameters under input and state

constraints. Codes over the AVC W with fixed parameters are defined as in Definition 1, with the additional constraint (8) on

the codebook.

Define the conditional probability of error of a code C given a state sequence sn ∈ Sn by

P (n)
e (C |sn, θn) , 1

2nR

2nR∑

m=1

∑

yn:g(yn,θn) 6=m

WY n|Xn,Sn,Tn(yn|f(m, θn), sn, θn) . (11a)
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Now, define the average probability of error of C for some distribution q(sn|θn) ∈ P(Sn),

P (n)
e (q, θn,C ) ,

∑

sn∈Sn

q(sn|θn)P (n)
e (C |sn, θn) . (11b)

Definition 3 (Achievable rate and capacity under constraints). A code C = (f, g) is a called a (2nR, n, ε) code for the AVC

W with fixed parameters under input constraint Ω and state constraint Λ, when (8) is satisfied and

P (n)
e (q, θn,C ) ≤ ε , for all q ∈ PΛ(Sn|θn) , (12)

or, equivalently, P
(n)
e (C |sn, θn) ≤ ε for all sn ∈ Sn with ln(sn) ≤ Λ.

We say that a rate R ≥ 0 is achievable under constraints if for every ε > 0 and sufficiently large n, there exists a (2nR, n, ε)
code for the AVC W with fixed parameters under input constraint Ω and state constraint Λ. The operational capacity is defined

as the supremum of achievable rates, and it is denoted by C(W). We use the term ‘capacity’ referring to this operational

meaning, and in some places we call it the deterministic code capacity in order to emphasize that achievability is measured

with respect to deterministic codes.

Analogously to the deterministic case, a (2nR, n, ε) random code C Γ satisfies the requirements
∑

γ

µ(γ)φn(f(m, θn)) ≤ Ω , for all m ∈ [1 : 2nR] , (13a)

and

P (n)
e (q,C Γ) ,

∑

γ∈Γ

µ(γ)P (n)
e (q, θn,Cγ) ≤ ε , for all q ∈ PΛ(Sn|θn) . (13b)

The capacity region achieved by random codes is then denoted by C⋆(W), and it is referred to as the random code capacity.

The definitions above are naturally extended to the compound channel with fixed parameters, under input constraints Ω and

state constraint Λ, by limiting the requirements (8), (12) and (13) to conditionally memoryless state distributions q ∈ Q. The

respective deterministic code capacity C(WQ) and random code capacity C⋆(WQ) are defined accordingly.

III. MAIN RESULTS – CHANNELS WITH FIXED PARAMETERS

In this section, we establish the random code capacity of the AVC with fixed parameters. To this end, we first give an

auxiliary result on the compound channel.

A. The Compound Channel with Fixed Parameters

We begin with the capacity theorem for the compound channel WQ = {WY |X,S,T ,Q, θ∞}. This is an auxiliary result,

obtained by a simple extension of [29, Exercise 6.8]. A similar result appears in [74] as well. Given a parameter squence θn

of a fixed length, define

Cn(WQ) = max
p(x|t) : Eφ(X)≤Ω

inf
q(s|t)∈Q

Iq(X ;Y |T ) , (14)

with (T, S,X) ∼ PT (t)p(x|t)q(s|t), where PT is the type of the parameter sequence θn.

Lemma 1. The capacity of the compound channel WQ with fixed parameters, under input constraint Ω and state constraint Λ,

is given by

C(WQ) = lim inf
n→∞

Cn(WQ) , (15)

and it is identical to the random code capacity, i.e. C⋆(WQ) = C(WQ).

The proof of Lemma 1 is given in Appendix A.

B. The AVC with Fixed Parameters – Random Code Capacity

We determine the random code capacity of the AVC with fixed parameters, W = {WY |X,S,T , θ
∞}, under input constraint

Ω and state constraint Λ. The random code derivation is based on our result on the compound channel with fixed parameters

and a variation of Ahlswede’s Robustification Technique (RT). Define

C
⋆

n(W) ,Cn(WQ)
∣∣∣
Q=PΛ(S|θ∞)

. (16)

We begin with a lemma, based on Ahlswede’s RT [6] (see also [82, Lemma 9]). We modify it here to include the parameter

sequence θn and the constraint on the family of conditional state distributions q(s|t).
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Lemma 2 (Modified RT). Let h : Sn × T n → [0, 1] be a given function. If, for some fixed αn ∈ (0, 1), and for all

qn(sn|θn) =∏n
i=1 q(si|θi), with q ∈ PΛ(S|θ∞),

∑

sn∈Sn

qn(sn|θn)h(sn, θn) ≤ αn , (17)

then,

1

|Π(θn)|
∑

π∈Π(θn)

h(πsn, θn) ≤ βn , for all sn ∈ Sn such that ln(sn) ≤ Λ , (18)

where Π(θn) is the set of all n-tuple permutations π : Sn → Sn such that πθn = θn, and βn = (n+ 1)|S||T |αn.

Originally, Ahlswede’s RT is stated so that (17) holds for any q(s) ∈ P(S), without state constraint (see [6]), and without

conditioning on the parameter sequence θn. We give the proof of Lemma 2 in Appendix B. Next, we give our random code

capacity theorem.

Theorem 3. The random code capacity of the AVC W with fixed parameters, under input constraint Ω and state constraint Λ,

is given by

C
⋆(W) = lim inf

n→∞
C
⋆

n(W) . (19)

The proof of Theorem 3 is given in Appendix C. The proof is based on our extension of Ahlswede’s RT above. Essentially,

we use a reliable code for the compound channel to construct a random code for the AVC by applying random permutations

to the codeword symbols. However, here, we only use permutations that do not affect the parameter sequence θn. The result

above plays a central role in the proof of the capacity theorem in Section V, where the AVC with colored Gaussian noise is

considered.

We also give an equivalent formulation in terms of the random code capacity of the traditional AVC. As mentioned in

Remark 1, the case of an AVC {WY |X,S,T=t} with a constant parameter θi = t reduces to the traditional AVC under input

and state constraints. For this channel, Csiszár and Narayan [31] showed that the random code capacity is given by

C
⋆

t (Ω,Λ) , min
q(s) : El(S)≤Λ

max
p(x) : Eφ(X)≤Ω

Iq(X ;Y |T = t) = max
p(x) : Eφ(X)≤Ω

min
q(s) : El(S)≤Λ

Iq(X ;Y |T = t) (20)

where the last equality is due to the minimax theorem [96]. Then, define

R
⋆

n(W) , min
λ1,...,λn :

1
n

∑n
i=1 λi≤Λ

max
ω1,...,ωn :

1
n

∑n
i=1 ωi≤Ω

1

n

n∑

i=1

C
⋆

θi(ωi, λi) , (21)

Lemma 4.

R
⋆

n(W) = C
⋆

n(W) . (22)

The proof of Lemma 4 is given in Appendix D. Theorem 3 and Lemma 4 yield the following consequence.

Corollary 5. The random code capacity of the AVC W with fixed parameters, under input constraint Ω and state constraint

Λ, is given by

C
⋆(W) = lim inf

n→∞
R
⋆

n(W) . (23)

The corollary will also be useful in our analysis of the AVC with colored Gaussian noise.

C. The AVC with Fixed Parameters – Deterministic Code Capacity

We move to the deterministic code capacity of the AVC with fixed parameters,W = {WY |X,S,T , θ
∞}, under input constraint

Ω and state constraint Λ.

1) Capacity Theorem: Before we state the capacity theorem, we give a few definitions. We begin with symmetrizability of

a channel without parameters.

Definition 4 (see [30]). A state-dependent DMC VY |X,S is said to be symmetrizable if for some conditional distribution J(s|x),
∑

s∈S
VY |X,S(y|x1, s)J(s|x2) =

∑

s∈S
VY |X,S(y|x2, s)J(s|x1) ,

∀x1, x2 ∈ X , y ∈ Y . (24)

Equivalently, the channel Ṽ (y|x1, x2) =
∑

s∈S VY |X,S(y|x1, s)J(s|x2) is symmetric, i.e. Ṽ (y|x1, x2) = Ṽ (y|x2, x1), for all

x1, x2 ∈ X and y ∈ Y . We say that such a J : X → S symmetrizes VY |X,S .
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Intuitively, symmetrizability identifies a poor channel, where the jammer can impinge the communication scheme by

randomizing the state sequence Sn according to Jn(sn|xn2 ) =
∏n

i=1 J(si|x2,i), for some codeword xn2 . Suppose that the

transmitted codeword is xn1 . The codeword xn2 can be thought of as an impostor sent by the jammer. Now, since the “average

channel” Ṽ is symmetric with respect to xn1 and xn2 , the two codewords appear to the receiver as equally likely. Indeed, by

[37], if the AVC {VY |X,S} without parameters and free of constraints is symmetrizable, then its capacity is zero.

We will assume that either the channels WY |X,S(·|·, ·, θi) are all symmetrizable, or the number of non-symmetrizable channels

grows linearly with n. That is,

either |I(n)| = 0 or |I(n)| = Ω(n) , (25a)

where

I(n) =
{
i ∈ [1 : n] : WY |X,S(·|·, ·, θi) is non-symmetrizable

}
. (25b)

The asymptotic notation f(n) = Ω(n) means that there exist n0 > 0 and 0 < α ≤ 1 such that f(n) ≥ αn for all n ≥ n0. An

intuitive explanantion for this assumption is given in Remark 3 below. Next, we define a symmetrizability cost and threshold

for the AVC with fixed parameters. For every n and p(x|t) with

1

n

n∑

i=1

p(x|θi)φ(x) ≤ Ω , (26)

define the minimal symmetrizability cost by

Λ̃n(p) , min
1

n

n∑

i=1

∑

x∈X

∑

s∈S
p(x|θi)Jθi(s|x)l(s) = min

∑

t∈T

∑

x∈X

∑

s∈S
PT (t)p(x|tJt(s|x)l(s) , (27)

where the minimization is over the conditional distributions Jt(s|x) that symmetrize WY |X,S,T (·|·, ·, t), for t ∈ T (see

Definition 4). We use the convention that a minimum value over an empty set is +∞. Note that the last equality in (27)

holds since PT is defined as the type of the parameter sequence θn, hence averaging over time is the same as averaging

according to PT . In addition, define the symmetrizability threshold

L∗
n , max

p(x|t) : 1
n

∑n
i=1 p(x|θi)φ(x)≤Ω

Λ̃n(p) . (28)

Intuitively, Λ̃n(p) is the minimal average state cost which the jammer has to pay to symmetrize the channel at each time

instance, for a given conditional input distribution p(x|t). If this minimal state cost violates the state constraint Λ, then the

jammer is prohibited from symmetrizing the channel. Indeed, we will show that if there exists an input distribution p(x|t) with
1
n

∑n
i=1 p(x|θi)φ(x) ≤ Ω and Λ̃n(p) > Λ for large n, then the deterministic code capacity is positive. The symmetrizability

threshold L∗
n is the worst symmetrizability cost from the jammer’s perspective.

Our capacity result is stated below. Let

Cn(W) ,





min
q(s|t) : Eql(S)≤Λ

max
p(x|t) : Eφ(X)≤Ω ,

Λ̃n(p)≥Λ

Iq(X ;Y |T ) if L∗
n > Λ ,

0 if L∗
n ≤ Λ

, (29)

with (T, S,X) ∼ PT (t)p(x|t)q(s|t), where PT is the type of the parameter sequence θn with a fixed length n.

Theorem 6. Assume that L∗
n 6= Λ for sufficiently large n and that (25) holds. The capacity of an AVCW with fixed parameters,

under input constraint Ω and state constraint Λ, is given by

C(W) = lim inf
n→∞

Cn(W) . (30)

In particular, if the channels WY |X,S,T (·|·, ·, t), t ∈ T , are non-symmetrizable, then C(W) = C⋆(W) = lim inf
n→∞

C
⋆

n(W). That

is, the deterministic code capacity coincides with the random code capacity.

The proof of Theorem 6 is given in Appendix G. The theorem will also play a central role in the proof of the capacity

theorem in Section V.

Remark 3. Observe that the second part of the theorem implies that for the case where there are no constraints, i.e. Ω = φmax

and Λ = lmax, non-symmetrizability is a sufficient condition for positive capacity. Specfically, according to the definition of

Λ̃n(p), L
∗
n in (27)-(28), if some of the channels WY |X,S,T (·|·, ·, θi) are non-symmetrizable, then the symmetrizability threshold

is L∗
n =∞, hence the capacity is positive. Intuitively, if the number of such channels is constant, i.e. |I(n)| = c for all n, it

seems that this assignment of L∗
n does not make sense, since the user cannot achieve positive rates by coding over a negligible

fraction of the block. Yet, our assumption in (25) excludes this scenario. In particular, if |I(n)| is non-zero, then we assume

that |I(n)| grows linealy in n, in which case positive rates can be achieved by coding over the part of the block that lies
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within I(n). Furthermore, without constraints, we may replace the linear growth assumption with a poly-logarithmic one, i.e.

|I(n)| = Ω((log n)a), with a > 1. Indeed, based on Ahlswede’s elimination technique [5], the random code capacity can

be achieved with a code collection of polynomial size, |Γ| = n2. Therefore, without state constraints, the random element

γ ∈ Γ can be reliably sent to the receiver over the sub-block I(n), at rate ρn = log |Γ|
(logn)a = 2(logn)−(a−1), which tends to

zero as n→∞, hence the decrease in the overall rate is negligible as well. We deduce that if |I(n)| = Ω((log n)a), then the

deterministic code capacity of the AVC with fixed parameters without constraints is the same as the random code capacity, i.e.

C(W) = C
⋆(W) = lim inf

n→∞
min
q(s|t)

max
p(x|t)

Iq(X ;Y |T ) . (31)

Remark 4. Even in the case where there are no parameters, the boundary case where L∗
n = Λ is an open problem. Although,

for the traditional AVC, it is conjectured in [30] that the capacity is zero in this case. Similarly, we conjecture that the capacity

of the AVC with fixed parameters is given by C(W) = lim inf
n→∞

Cn(W) for all values of {L∗
n}n≥1, provided that (25) holds.

There are special cases where we know that this holds, given in the corollary below. The corollary is based on the remark

following Theorem 3 in [30].

Corollary 7. Let W be an AVC with fixed parameters such that all channels WY |X,S,T (·|·, ·, t), t ∈ T , are symmetrizable. If

the minimum in (27) is attained by a 0-1 law, for every n and p(x|t) with 1
n

∑n
i=1 p(x|θi)φ(x) ≤ Ω, then

C(W) = lim inf
n→∞

Cn(W) . (32)

The proof of Corollary 7 is given in Appendix H. In particular, we note that the condition of 0-1 law in Corollary 7 holds

when the output Y is a deterministic function of X , S, and T . As opposed to Theorem 6, the statement in Corollary 7 holds

for all values of {L∗
n}n≥1.

2) Decoding Rule: We specify the decoding rule and state the corresponding properties, which are used in the analysis. To

specify the decoding rule, we define the decoding sets D(m) ⊆ Yn × T n, for m ∈ [1 : 2nR], such that g(yn, θn) = m iff

(yn, θn) ∈ D(m).

Definition 5 (Decoder). Given the codebook {f(m, θn)}m∈[1:2nR], declare that (yn, θn) ∈ D(m) if there exists sn ∈ Sn with

ln(sn) ≤ Λ such that the following hold.

1) For (T,X, S, Y ) that is distributed according to the joint type P̂θn,f(m,θn),sn,yn , we have that

D(PT,X,S,Y ||PT × PX|T × PS|T ×WY |X,S,T ) ≤ η . (33)

2) For every m̃ 6= m such that for some s̃n ∈ Sn with ln(s̃n) ≤ Λ,

D(PT,X̃,S̃,Y ||PT × PX̃|T × PS̃|T ×WY |X,S,T ) ≤ η , (34)

where (T, X̃, S̃, Y ) ∼ P̂θn,f(m̃,θn),s̃n,yn , we have that

I(X,Y ; X̃ |S, T ) ≤ η . (35)

We note that in Definition 5, the variables T,X, X̃, S, S̃, Y are dummy random variables, distributed according to the joint

type of (θn, f(m, θn), f(m̃, θn), sn, s̃n, yn), where f(m, θn) is a “tested” codeword, f(m̃, θn) is a competing codeword, sn is a

“tested” state sequence, s̃n is a competing state sequence, and yn is the received sequence. None of the sequences are random

here. We may have that the conditional type PY |X,S,T differs from the actual channel WY |X,S,T . Therefore, the divergences

and mutual informations in Definition 5 could be positive.

For the definition above to be proper, the decoding sets need to be disjoint, as stated in the following lemma.

Lemma 8 (Decoding Disambiguity). Suppose that in each codebook, all codewords have the same conditional type, i.e.

P̂f(m,θn)|θn = p for all m ∈ [1 : 2nR]. Assume (25) holds, that for some δ0, δ1 > 0, PT (t) ≥ δ0, p(x|t) ≥ δ1, ∀x ∈ X , t ∈ T ,

and also

Λ̃n(p) > Λ . (36)

Then, for sufficiently small η > 0,

D(m) ∩D(m̃) = ∅ , for all m 6= m̃ . (37)

The proof of Lemma 8 is given in Appendix E.
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3) Codebook Generation: We now extend Csiszár and Narayan’s lemma for the codebook generation [30].

Lemma 9 (Codebooks Generation). For every ε > 0, sufficiently large n, rate R ≥ ε and conditional type p(x|t), there exist

a set of codewords {xn(m, θn)}m∈[1:2nR] of conditional type p, such that for every an ∈ Xn and sn ∈ Sn with ln(sn) ≤ Λ,

and every joint type PT,X,X̃,S with PX|T = PX̃|T = p, the following hold.

|{m̃ : (θn, an, xn(m̃, θn), sn) ∈ T n(PT,X,X̃,S)}| ≤ 2
n
(
[R−I(X̃;X,S|T )]

+
+ε

)

, (38)

|{m : (θn, xn(m, θn), sn) ∈ T n(PT,X,S)}| ≤ 2n(R− ε
2 ) , if I(X ;S|T ) > ε , (39)

and

|{m : (θn, xn(m, θn), xn(m̃, θn), sn) ∈ T n(PT,X,X̃,S) , for some m̃ 6= m}|
≤ 2n(R− ε

2 ) , if I(X ; X̃, S|T )−
[
R− I(X̃ ;S|T )

]
+
> ε . (40)

The proof of Lemma 9 is given in Appendix F.

D. Super-Additivity

We also give an equivalent formulation with a sum over i ∈ [1 : n]. Here, as opposed to the previous section, the formula

cannot be expressed in terms of the capacities of the constant-parameter AVCs {WY |X,S,T=θi}. Considering the AVC without

constraints, Schaefer et al. [91] showed that the capacity of any product AVC that is composed of a symmetrizable channel

and a non-symmetrizable channel is larger than the sum of the individual capacities (see Theorem 6 in [91]). Similarly, we

give an example at the end of this section where the capacity of the AVC with fixed parameters is larger than the weighted

sum of the capacities of the constant-parameter AVCs {WY |X,S,T=θi}. This phenomenon can be viewed as an instance of the

super-additivity property in [91].

We begin with constant-parameter definitions, i.e. for a fixed T = t. For every input distribution p(x) with Eφ(X) ≤ Ω,

define the constant-parameter minimal symmetrizability cost by

Λ̃(p, t) , min
∑

x∈X

∑

s∈S
p(x)J(s|x)l(s) , (41)

where the minimization is over the distributions J(s|x) that symmetrize WY |X,S,T (·|·, ·, t), where t ∈ T is fixed (see

Definition 4). Then, we can write the minimal symmetrizability cost defined in (27) as

Λ̃n(p(·|·)) =
1

n

n∑

i=1

Λ̃(p(·|θi), θi) . (42)

Let

Rn(W) ,





min
λ1,...,λn :

1
n

∑n
i=1 λi≤Λ

max
ω1,...,ωn,λ̃1,...λ̃n :

1
n

∑n
i=1 ωi≤Ω , 1

n

∑n
i=1 λ̃i≥Λ

1
n

n∑
i=1

Cθi(ωi, λ̃i, λi) if L∗
n > Λ ,

0 if L∗
n ≤ Λ

, (43)

where

Ct(Ω,∆,Λ) , min
q(s) : Eql(S)≤Λ

max
p(x) : Eφ(X)≤Ω ,

Λ̃(p,t)≥∆

Iq(X ;Y |T = t) (44)

We note that based on Csiszár and Narayan’s result in [30], the capacity of the constant-parameter AVC {WY |X,S,T=t} is

given by Ct(Ω,∆,Λ) with ∆ = Λ.

Lemma 10.

Rn(W) = Cn(W) . (45)

The proof of Lemma 10 is given in Appendix I. Theorem 6, Corollary 7, and Lemma 10 yield the following consequence.

Corollary 11. The deterministic code capacity of the AVC W with fixed parameters, under input constraint Ω and state

constraint Λ, is given by

C(W) = lim inf
n→∞

Rn(W) , if L∗
n 6= Λ for sufficiently large n and (25) holds. . (46)
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Furthermore, if the minimum in (41) is attained by a 0-1 law, for every p(x) with Eφ(X) ≤ Ω, and for all t ∈ T , then

C(W) = lim inf
n→∞

Rn(W) , (47)

for all values of {Ln}n≥1.

The corollary will also be useful in our analysis of the AVC with colored Gaussian noise.

Example 1. Consider the arbitrarily varying binary symmetric channel (BSC) with fixed parameters,

Y = X + S + ZT mod 2 (48)

with X = S = T = {0, 1}, where Zt ∼ Bernoulli(εt), for t = 0, 1, ε0 < ε1 <
1
2 . Consider a parameter sequence with an

empirical distribution PT (0) = PT (1) =
1
2 , say θ2i = 0 and θ2i−1 = 1 for i = 1, 2, . . .. Suppose that the user and the jammer

are subject to input constraint Ω and state constraint Λ, respectively, with Hamming weight cost functions, i.e. φ(x) = x and

l(s) = s.
For the constant-parameter AVC, we have by Definition 4 that WY |X,S,T=t is symmetrized by any symmetric distribution,

i.e. with J(s|1) = 1− J(s|0). Denoting ζ = J(1|1) = 1− J(1|0), we have that

Λ̃(PX , t) = min
0≤ζ≤1

[(1− ζ)PX(0) + ζPX(1)] = min(PX(0), PX(1)) . (49)

Based on the analysis by Csiszár and Narayan [30, Example 1], the capacity of the constant-parameter AVC under input

constraint ω and state constraint λ is given by

C̃t(ω, λ) =





0 if ω < λ < 1
2

h(ω ∗ λ ∗ εt)− h(ω ∗ λ ∗ εt) if λ < ω < 1
2

1− h(ω ∗ λ ∗ εt) if λ < 1
2 ≤ ω

0 if λ ≥ 1
2

(50)

where h(x) = −x log x− (1 − x) log x is the binary entropy function and a ∗ b = (1− a)b + a(1− b).
Suppose that

ε0 =
1

4
, ε1 =

5

12
, Ω =

5

16
, Λ =

1

4
. (51)

For those values, we have that

L∗
n = max

PX|T : 1
2E(X|T=0)+ 1

2E(X|T=1)≤Ω

[
1

2
PX|T (1|0) +

1

2
PX|T (1|1)

]
= Ω =

5

16
. (52)

Thus, by Corollary 11, the capacity is given by

C(W) = h(
5

16
∗ 7

16
)− h( 7

16
) =

1

2
(h(ω0 ∗ λ0 ∗ ε0)− h(λ0 ∗ ε0)) +

1

2
(h(ω1 ∗ λ1 ∗ ε1)− h(λ1 ∗ ε1)) (53)

with ω0 = ω1 = 5
16 , λ0 = 3

8 and λ1 = 1
8 . Whereas, using two separate codes for WY |X,S,T=0 and WY |X,S,T=1 independently,

the rate achieved is

1

2
C̃0(ω0, λ0) +

1

2
C̃1(ω1, λ1) = 0 +

1

2
(h(ω1 ∗ λ1 ∗ ε1)− h(λ1 ∗ ε1)) < C(W) . (54)

This can be viewed as an instance of the more general phenomenon of super-additivity, that holds for any product AVC which

is composed of a symmetrizable AVC and a non-symmetrizable AVC [91, Theorem 6].

E. Example: Channel with Fadings

To illustrate our results, we give another example.

Example 2. Consider an arbitrarily varying fading channel,

Yi = θiXi + Si + Zi , (55)

with a Gaussian noise sequence Zn that is i.i.d. ∼ N (0, σ2), where θ1, θ2, . . . is a sequence of fixed fading coefficients.

Recently, Hosseinigoki and Kosut [57] considered this channel with a random memoryless sequence of fading coefficients. Yet,

we assume that the fading coefficients are fixed, and belong to a finite set T . Intuitively, the jammer would like to confuse the

decoder by sending a state sequence that simulates the sequence θnXn ≡ (θiXi)
n
i=1. Indeed, as seen below, the deterministic

code capacity is positive only if there exists an input distribution such that 1
n

∑n
i=1 θ

2
iEX

2
i > Λ, in which case the jammer

cannot simulate θnXn without violating the state constraint.
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Although we previously assumed that the alphabets are finite, our results can be extended to the continuous case as well,

using standard discretization techniques [15, 5] [36, Section 3.4.1]. By Theorem 3, the random code capacity is given by

C
⋆(W) = lim inf

n→∞
C
⋆

n(W) . (56)

Then, we show that

C
⋆

n(W) = min
λ(t) : Eλ(T )≤Λ

max
ω(t) : Eω(T )≤Ω

E

[
1

2
log

(
1 +

T 2ω(T )

λ(T ) + σ2

)]
, (57)

with expectation over T ∼ PT , where PT is the type of the sequence θn.

As for the deterministic code capacity, we show that the minimum in (27) is attained by a 0-1 law that gives probability 1
to s = θ2i x, hence we can determine the capacity using Corollary 7. We show that the minimal symmetrizability cost is given

by

Λ̃n(FX|T ) =
1

n

n∑

i=1

θ2iE[X
2|T = θi] = E(T 2X2) , (58)

and deduce that the capacity of the AVC with fixed fading coeffients is given by

C(W) = lim inf
n→∞

Cn(W) , (59)

with

Cn(W) ,





min
λ(t) : Eλ(T )≤Λ

max
ω(t) : Eω(T )≤Ω ,

E(T 2ω(T ))≥Λ

E

[
1
2 log

(
1 + T 2ω(T )

λ(T )+σ2

)]
if max

ω(t) : Eω(T )≤Ω
E(T 2ω(T )) > Λ ,

0 if max
ω(t) : Eω(T )≤Ω

E(T 2ω(T )) ≤ Λ

. (60)

The derivation is given in Appendix J. We note that the last expression has the same form as the capacity formula established

by Hosseinigoki and Kosut [57] for a random memoryless sequence of fading coefficients.

Next, we extend the result above to continuous fading coefficients, where T = [−t0, t0] ⊂ R. First, we observe that the

formulas above can also be written as

C
⋆

n(W) = min
λ1,...,λn :

1
n

∑n
i=1 λi≤Λ

max
ω1,...,ωn :

1
n

∑n
i=1 ωi≤Ω

1

n

n∑

i=1

1

2
log

(
1 +

θ2i ωi

λi + σ2

)
, (61)

and

Cn(W) =





min
λ1,...,λn :

1
n

∑n
i=1 λi≤Λ

max
ω1,...,ωn :

1
n

∑n
i=1 ωi≤Ω ,

1
n

∑n
i=1 θ2

iωi≥Λ

1
n

n∑
i=1

1
2 log

(
1 +

θ2
iωi

λi+σ2

)
if max

ω1,...,ωn :
1
n

∑n
i=1 ωi≤Ω

1
n

n∑
i=1

θ2i ωi > Λ ,

0 otherwise.

(62)

This follows from the same considerations as in the proofs of Lemma 4 and Lemma 10. Now, if the fading coefficients are

continuous, then one may perform the discretization procedure in [36, Section 3.4.1]. Hence, the deterministic and random

code capacities in the continuous case are also given by the limit infimum of the formulas (61) and (62), respectively.

IV. THE ARBITRARILY VARYING GAUSSIAN PRODUCT CHANNEL

From this point on, we consider Gaussian AVCs, without parameters. In this section, we consider the Gaussian product

channel. Our results on the AVC with colored Gaussian noise, in the next section, are based on the capacity theorems of the

AVC with fixed parameters, in the previous section, and on the analysis in the current section.

A. Channel Description

The state-dependent Gaussian product channel consists of a set of d parallel channels,

Yj = Xj + Sj + Zj , j ∈ [1 : d] , (63)

where j is the channel index, d is the dimension (number of channels), and Zd is a Gaussian vector with zero mean and

covariance matrix KZ . Let Xj = (Xj,i)
n
i=1, Sj = (Sj,i)

n
i=1 and Zj = (Zj,i)

n
i=1 denote the input, state and noise sequences

associated with the jth channel, respectively, where i ∈ [1 : n] is the time index, and let Xd = (Xj)
d
j=1, Sd = (Sj)

d
j=1 and

Zd = (Zj)
d
j=1. The corresponding output of the product channel is the vector sequence Yd = Xd + Sd + Zd.

The Gaussian arbitrarily varying product channel (AVGPC) is a state-dependent Gaussian product channel with d state

sequences (S1, . . . ,Sd) of unknown distribution, not necessarily independent nor stationary. That is, (S1, . . . ,Sd) ∼ FS1,...,Sd
,
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where FS1,...,Sd
is an unknown joint cumulative distribution function (cdf) over Rnd. In particular, FS1,...,Sd

could give

probability mass 1 to a particular sequence of state vectors (s1, . . . , sd) ∈ R
nd. The channel is subject to input constraint

Ω > 0 and state constraint Λ > 0,

d∑

j=1

‖Xj‖2 ≤ nΩ w.p. 1 ,

d∑

j=1

‖Sj‖2 ≤ nΛ w.p. 1 . (64)

B. Coding

We introduce preliminary definitions for the AVGPC.

Definition 6 (Code). A (2nR, n) code for the AVGPC consists of the following; a message set [1 : 2nR], where it is assumed

throughout that 2nR is an integer, a sequence of d encoding functions fj : [1 : 2nR]→ Rn, for j ∈ [1 : d], such that

d∑

j=1

‖fj(m)‖2 ≤ nΩ , for m ∈ [1 : 2nR] , (65)

and a decoding function g : Rnd → [1 : 2nR]. Given a message m ∈ [1 : 2nR], the encoder transmits xj = fj(m), for

j ∈ [1 : d]. The codeword is then given by xd = fd(m) , (f1(m), f2(m), . . . , fd(m)). The decoder receives the channel

outputs yd = (y1, . . . ,yd), and finds an estimate of the message m̂ = g(yd). We denote the code by C =
(
fd, g

)
.

Define the conditional probability of error of a code C given the sequence sd = (s1, . . . , sd) by

P
(n)

e|sd(C ) ,
1

2nR

2nR∑

m=1

∫

yd∈Rnd : g(yd) 6=m

dyd · fYd|m,sd(y
d) , (66)

where fYd|m,sd(y
d) =

∏n
i=1 fZd(ydi − fdi (m)− sdi ), with

fZd(zd) =
1√

(2π)d|KZ |
e−

1
2 z

dK−1
Z (zd)T . (67)

A code C = (fd, g) is called a (2nR, n, ε) code for the AVGPC if

P
(n)

e|sd(C ) ≤ ε , for all sd ∈ R
nd with

d∑

j=1

‖sj‖2 ≤ nΛ . (68)

We say that a rate R is achievable if for every ε > 0 and sufficiently large n, there exists a (2nR, n, ε) code for the AVGPC.

The operational capacity is defined as the supremum of all achievable rates, and it is denoted by C(KZ). We use the term

‘capacity’ referring to this operational meaning, and in some places we call it the deterministic code capacity to emphasize

that achievability is measured with respect to deterministic codes.

We proceed now to coding schemes when using stochastic-encoder stochastic-decoder pairs with common randomness.

Definition 7 (Random code). A (2nR, n) random code for the AVGPC consists of a collection of (2nR, n) codes {Cγ =
(fdγ , gγ)}γ∈Γ, along with a pmf µ(γ) over the code collection Γ. We denote such a code by C

Γ = (µ,Γ, {Cγ}γ∈Γ). Analogously

to the deterministic case, a (2nR, n, ε) random code for the AVGPC satisfies

∑

γ∈Γ

µ(γ)
d∑

j=1

‖fγ,j(m)‖2 ≤ nΩ , for all m ∈ [1 : 2nR] , (69)

and

P
(n)

e|sd(C
Γ) ,

∑

γ∈Γ

µ(γ)P
(n)

e|sd(Cγ) ≤ ε for all sd ∈ R
nd with

d∑

j=1

‖sj‖2 ≤ nΛ . (70)

The capacity achieved by random codes is denoted by C⋆(KZ), and it is referred to as the random code capacity.
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C. Related Work

Consider the AVGPC with parallel Gaussian channels, where the covariance matrix of the additive noise is

Σ = diag{σ2
1 , . . . , σ

2
d} , (71)

i.e. Z1, . . . , Zd are independent and Zj ∼ N (0, σ2
j ). Denote the random code capacity of the AVGPC with parallel channels

by C⋆(Σ). Hughes and Narayan [61] have shown that the solution for the random code capacity is given by “double” water

filling, where the jammer performs water filling first, attempting to whiten the overall noise as much as possible, and then the

user performs water filling taking into account the total noise power, which is contributed by both the channel and the jammer.

The formal definitions are given below. Let

N∗
j =

[
β − σ2

j

]
+
, j ∈ [1 : d] (72)

with [t]+ = max{0, t}, where β ≥ 0 is chosen to satisfy

d∑

j=1

[
β − σ2

j

]
+
= Λ . (73)

Next, let

P ∗
j =

[
α− (N∗

j + σ2
j )
]
+
, j ∈ [1 : d] , (74)

where α ≥ 0 is chosen to satisfy

d∑

j=1

[
α− (N∗

j + σ2
j )
]
+
= Ω . (75)

We can now define Hughes and Narayan’s capacity formula [61],

C
⋆(Σ) ,

d∑

j=1

1

2
log

(
1 +

P ∗
j

N∗
j + σ2

j

)
. (76)

Theorem 12 (see [61]). The random code capacity of the AVGPC is given by

C
⋆(Σ) = C

⋆(Σ) . (77)

D. Observations on The Water Filling Game

We give further observations on the results by Hughes and Narayan [61], which will be useful in the sequel.

1) Game Theoretic Interpretation: By [61, Theorem 3], the random code capacity is the solution of the following optimization

problem,

minmax
d∑

j=1

1

2
log

(
1 +

Pj

Nj + σ2

)
, (78)

where the minimization is over the simplex Fstate = {(N1, . . . , Nd) :
∑d

j=1Nj ≤ Λ}, and the maximization is over the

simplex Finput = {(P1, . . . , Pd) :
∑d

j=1 Pj ≤ Ω}.
The optimization problem is thus interpreted as a two-player zero-sum simultaneous game, played by the user and the

jammer, where Finput and Fstate are the respective action sets. The payoff function v : Finput ×Fstate → R is defined such that,

given a profile (P1, . . . , Pd, N1, . . . , Nd),

v(P1, . . . , Pd, N1, . . . , Nd) ,
d∑

j=1

1

2
log

(
1 +

Pj

Nj + σ2

)
. (79)

We have defined a game with pure strategies, i.e. the players’ actions are deterministic. In the communication model, the optimal

coding and jamming scheme are random in general, yet the capacity can be achieved with deterministic power allocations, as

in the game.

The optimal power allocation has a water filling analogy (see e.g. [27, Section 9.4]), where the jammer pours water of volume

Λ to a vessel, and then the encoder pours more water of volume Ω. The shape of the bottom of the vessel is determined by the

noise variances σ2
1 , . . . ,σ

2
d. The jammer brings the water level to β, and then the encoder brings the water level to α. Water

filling for the AVGPC is illustrated in Figure 1, for Ω = 13, Λ = 8, d = 10, (σ2
j )

10
j=1 = (5, 8, 3, 1.5, 2.5, 1.8, 3.2, 9, 4.5, 5.5). The

light shade “fluid” is the jammer’s water filling and the dark shade “fluid” is the transmitter’s. The resulting “water levels” are
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Fig. 1. Water filling for the AVGPC, for Ω = 13, Λ = 8, d = 10, (σ2

j )
10

j=1
= (5, 8, 3, 1.5, 2.5, 1.8, 3.2, 9, 4.5, 5.5). The light shade “fluid” is

the jammer’s water filling and the dark shade “fluid” is the transmitter’s. The resulting “water levels” are β = 4 and α = 6, hence (N∗

j )
10

j=1
=

(0, 0, 1, 2.5, 1.5, 2.2, 0.8, 0, 0, 0) and (P ∗

j )
10

j=1
= (1, 0, 2, 2, 2, 2, 2, 1.5, 0.5).

β = 4 and α = 6. Then, substituting into (72) and (74) yields the power allocations (N∗
j )

10
j=1 = (0, 0, 1, 2.5, 1.5, 2.2, 0.8, 0, 0, 0)

for the jammer and (P ∗
j )

10
j=1 = (1, 0, 2, 2, 2, 2, 2, 1.5, 0.5) for the transmitter.

One can easily prove the following properties of the random code capacity characterization.

Lemma 13. The quantities defined by (72)-(76) satisfy

1) α > β 2) N∗
j > 0 ⇒ P ∗

j > 0 ∀ j ∈ [1 : d]

3) P ∗
j +N∗

j + σ2
j = max(α, σ2

j ) 4) C⋆(Σ) =
∑d

j=1
1
2 log

max(α,σ2
j )

max(β,σ2
j )
.

(80)

For completeness, we give the proof of Lemma 13 is given in Appendix K. Based on the water filling analogy of the power

allocation above, part 1 of Lemma 13 is natural, since β is interpreted as the water level after the jammer pours his share,

and α is interpreted as the water level after the user pours additional water after that (see Figure 1). Part 3 and part 4 are not

surprising either since, as can be seen in Figure 1, the variance of the combined interference (Zj +Sj) is max(β, σ2
j ) and the

variance of the channel output Yj is max(α, σ2
j ).

Observe that an equivalent statement of part 2 is the following. If the user discards a channel, i.e. assigns P ∗
j = 0 to the jth

channel, then the jammer does not invest power in this channel either, i.e. N∗
j = 0. This claim is also intuitive, and from a

game theoretic perspective, it is an aspect of the jammer’s rationality, as explained below. As mentioned above the optimization

problem is interpreted as a two-player zero-sum simultaneous game between the user and the jammer. The value of such a

game is attained by a pair of strategies which forms a Nash equilibrium [103] (see also [79][75, Theorem 3.1.4]). That is, if

the user and the jammer were to agree to use the power allocation strategies (P ∗
j )

d
j=1 and (N∗

j )
d
j=1, then neither player could

profit by deviating from his original strategy, provided that the other player respects the agreement. Now, suppose that for

some j ∈ [1 : d], P ∗
j = 0 and N∗

j > 0. Then, the jammer is wasting energy, and can surely profit from diverging this energy

to some other channel j′ with P ∗
j′ > 0. Thus, such strategy profile is irrational and cannot be a Nash equilibrium.

For a general AVC, a coding scheme which assumes that the jammer is using his optimal strategy would typically fail. The

code needs to be robust standing against any state sequence that satisfies the state constraint. For example, consider a scalar

Gaussian AVC [60], specified by Y = X+S+Z, under input constraint ‖X‖2 ≤ nΩ and state constraint ‖S‖2 ≤ nΛ, where

the noise sequence Z is i.i.d. ∼ N (0, σ2). Suppose that the receiver is using joint typicality decoding for a Gaussian channel

Y = X+V, where V is i.i.d. ∼ N (0,Λ+ σ2) (see [27, Section 9.1]), corresponding to the optimal jamming strategy. Then,

the jammer can fail the decoder by selecting a state sequence such that ‖S‖2 = nΛ
2 , for instance. As a result, there is a high

probability that the square norm of the output sequence is below n(Λ + σ2 − δ), for small δ > 0, in which case the decoder

cannot establish joint typicality and declares an error. The same principle holds in our problem. The user cannot assume that

the jammer is using his optimal power allocation, and a reliable code must be robust standing against any power allocation of

the jammer.

2) Multiple Access Channel Analogy: Water filling in two (or more) stages appears in other settings in the literature, e.g.

[26, 71, 111, 113]. Consider a Gaussian product multiple access channel (MAC), where Yj = X1,j +X2,j + Zj , j ∈ [1 : d],

under the input constraints
∥∥Xd

1

∥∥2 ≤ nΩ and
∥∥Xd

2

∥∥2 ≤ nΛ. This can be viewed as a different variation of the AVGPC where

a second transmitter replaces the jammer. By [26], a corner point of the capacity region can be achieved by applying water

filling to the total power in the first step, and then to the power of User 2 in the second step. Specifically, by [26, Section
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III.B.], the optimal power allocations (P ∗
j )

d
j=1 and (N∗

j )
d
j=1, for Encoder 1 and Encoder 2, respectively, which achieve a corner

point of the capacity region, satisfy

P ∗
j +N∗

j =
[
α− σ2

j

]
+
, j ∈ [1 : d] , (81)

such that
∑d

j=1(P
∗
j +N∗

j ) = Ω + Λ, and

N∗
j =

[
β − σ2

j

]
+
, j ∈ [1 : d] , (82)

such that
∑d

j=1N
∗
j = Λ. Following part 3 of Lemma 13, it can be seen that the strategy above is equivalent to (72)-(75).

The total power allocation in (81) seems natural in order to maximize the sum rate. Though, our presentation in (72)-(75)

is intuitive for the Gaussian product MAC as well. Indeed, using successive cancellation decoding, the receiver estimates the

transmission of User 1 while treating the transmission of User 2 as noise, and then subtracts the estimated sequence from

the received sequence to decode the transmission of User 2. Hence, decoding for User 1 is analogous to the decoder in our

problem. Nevertheless, in the next section, we show that the deterministic code capacity in our adversarial problem has a

different behavior.

Another water filling game is described by Lai and El Gamal in [71], who considered the flat fading MAC Y = h1X1+h2X2+
Z with selfish users, where the fading coefficients are continuous random variables, distributed according to (h1, h2) ∼ µ.

Suppose that the users are subject to average input constraints, Eµ ‖X1‖2 ≤ nΩ and Eµ ‖X2‖2 ≤ nΛ. As shown in [71], a

maximum sum-rate point on the capacity region boundary is achieved if the users perform water filling treating each other’s

transmission as noise. It is further shown that opportunistic communication is optimal, where User 1 only transmits if his water

level times fading coefficient is at least as high as that of User 2, and vice versa. That is, the power allocations of the users

are given by

P ∗
h1,h2

=

{[
β1 − σ2/h1

]
+

if β1h1 ≥ β2h2 ,
0 otherwise

,

N∗
h1,h2

=

{[
β2 − σ2

j /h2
]
+

if β1h1 ≤ β2h2 ,
0 otherwise

, (83)

where β1 and β2 are chosen such that EP ∗
h1,h2

= Ω and EN∗
h1,h2

= Λ. This threshold operation resembles the result in the

next section, on the deterministic code capacity of the AVGPC, except that the phase transition of the AVGPC depends only

on the “water volumes” Ω and Λ (see Subsection IV-F).

E. Results

We give our result on the AVGPC with parallel Gaussian channels, where the covariance matrix of the additive noise is

Σ = diag{σ2
1 , . . . , σ

2
d}, i.e. Z1, . . . , Zd are independent and Zj ∼ N (0, σ2

j ). The deterministic code capacity of the AVGPC

with parallel channels is denoted by C(Σ).
We establish the capacity of the AVGPC. Based on Csiszár and Narayan’s result in [30], the deterministic code capacity

of an AVC under input and state constraints is given in terms of channel symmetrizability and the minimal state cost for

the jammer to symmetrize the channel (see also [73] [82, Definition 5 and Theorem 5]). By [30, Definition 2], a AVGPC is

symmetrized by a conditional pdf ϕ(sd|xd) if
∫ ∞

−∞
· · ·
∫ ∞

−∞
ϕ(sd|xd2)fZd(yd − xd1 − sd)dsd =

∫ ∞

−∞
· · ·
∫ ∞

−∞
ϕ(sd|xd1)fZd(yd − xd2 − sd)dsd , ∀xd1, xd2, yd ∈ R

d , (84)

where fZd(zd) =
∏d

j=1
1√
2πσ2

j

e−z2
j/2σ

2
j . In particular, observe that (84) holds for ϕ(sd|xd) = δ(sd − xd), where δ(·) is

the Dirac delta function. In other words, the channel is symmetrized by a distribution ϕ(sd|xd) which gives probability 1 to

Sd = xd. For the AVGPC, the minimal state cost for the jammer to symmetrize the channel, for an input distribution fXd , is

given by

Λ̃(FXd) = min

∫ ∞

−∞
· · ·
∫ ∞

−∞
fXd(xd)ϕ(sd|xd)

∥∥sd
∥∥2 dsddxd , (85)

where the minimization is over all conditional pdfs ϕ(sd|xd) that symmetrize the channel, that is, satisfy (84). The following

lemma states that the minimal state cost for symmetrizability is the same as the input power. The lemma will be used in the

achievability proof of the capacity theorem.

Lemma 14. For a zero mean Gaussian vector Xd ∼ N (0,KX),

Λ̃(FXd) = tr(KX) . (86)
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The proof of Lemma 14 is given in Appendix L. The proof builds on our observation that (84) holds if and only if

ϕ(sd|xd) = ϕ(sd − xd|0). This in turn leads to the conclusion that the minimum in (85) is attained by ϕxd(sd) = δ(sd − xd).
Moving to the capacity theorem, define

C(Σ) =

{
C
⋆(Σ) if Ω > Λ,

0 otherwise.
(87)

Theorem 15. The deterministic code capacity of the AVGPC is given by

C(Σ) = C(Σ) . (88)

The proof of Theorem 15 is given in Appendix M. Considering the scalar case, Csiszár and Narayan showed the direct part

by providing a coding scheme for the Gaussian AVC [32]. While the receiver in their coding scheme uses simple minimum-

distance decoding, the analysis is fairly complicated. Here, on the other hand, we treat the AVGPC using a much simpler

approach. To prove direct part, we consider the optimization problem based on the capacity formula of the general AVC under

input and state constraints, which is given in terms of symmetrizing state distributions. We use Lemma 14 to show that if

Ω > Λ, then the transmitter’s water filling strategy in (74) guarantees that Λ̃(Fxd) > Λ. Intuitively, this means that the jammer

cannot symmetrize the channel without violating the state constraint. In this scenario, the random code capacity can be achieved

with deterministic codes as well.

F. Discussion

We give a couple of remarks on our result in Theorem 15. As in the case of the Gaussian scalar AVC [32], the capacity is

disconinuous in the input constraint, and has a phase transition behavior, depending on whether Ω > Λ or Ω ≤ Λ. We give

an intuitive explanation below. For the classic Gaussian AVC, reliable communication requires the power of the transmitted

signal to be higher than the power of the jamming signal, otherwise the jammer can confuse the receiver by making the state

sequence S “look like” the input sequence X [32]. At a first glance at our problem, one might have expected that the input

power Pj of the jth channel also needs to be higher than the jamming power Nj , in order for the output Yj to be useful.

This is not the case. Since the decoder has the vector of outputs (Y1, . . . ,Yd), even if Sj looks like Xj , the receiver could

still gain information from Yj as the other outputs may “break the symmetry”.

Based on Shannon’s classic water filling result [94], the capacity of the Gaussian product channel, Yj = Xj+Vj , j ∈ [1 : d],
can be achieved by combining d independent encoder-decoder pairs, where the jth pair is associated with a capacity achieving

code for the scalar Gaussian channel under input constraint P ∗
j . However, based on Csiszár and Narayan’s result on the Gaussian

single AVC [32], the capacity of the jth AVC, Yj = Xj+Sj+Zj , is zero under input constraint P ∗
j and state constraint N∗

j for

P ∗
j ≤ N∗

j . This means that, in contrast to the Shannon’s Gaussian product channel [94], using d independent encoder-decoder

pairs over the AVGPC is suboptimal in general. This can be viewed as a constrained version of the super-additivity phenomenon

in [91].

V. MAIN RESULTS – AVC WITH COLORED GAUSSIAN NOISE

- - /2 0 /2
0

0.5

1

1.5

2

Z
(

)

Fig. 2. Water filling in the frequency domain for the AVC with colored Gaussian noise. The curve depicts the power spectral density ΨZ (ω) of the noise
process Zn. The red dashed line indicates the “water level” β which corresponds to the jammer’s water filling, and the blue dotted line indicates the “water
level” α which corresponds to the transmitter’s water filling.
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We consider an AVC with colored Gaussian noise, i.e.

Y = X+ Z+ S , (89)

where Z is a zero mean stationary Gaussian process, with power spectral density ΨZ(ω). Assume that the power spectral

density is bounded and integrable. We denote the random code capacity and the deterministic code capacity of this channel

by C
⋆(ΨZ) and C(ΨZ), respectively.

We show that the optimal power allocations of the user and the jammer are given by “double” water filling in the frequency

domain. Define

b∗(ω) = [β −ΨZ(ω)]+ , −π ≤ ω ≤ π , (90)

where β ≥ 0 is chosen to satisfy

1

2π

∫ π

−π

[β −ΨZ(ω)]+ dω = Λ . (91)

Next, define

a∗(ω) = [α− (b∗(ω) + ΨZ(ω))]+ , −π ≤ ω ≤ π , (92)

where α ≥ 0 is chosen to satisfy

1

2π

∫ π

−π

[α− (b∗(ω) + ΨZ(ω))]+ dω = Ω . (93)

Now, let

C
⋆(ΨZ) ,

1

2π

∫ π

−π

1

2
log

(
1 +

a∗(ω)

b∗(ω) + ΨZ(ω)

)
dω . (94)

Theorem 16. The random code capacity of the AVC with colored Gaussian noise is given by

C
⋆(ΨZ) = C

⋆(ΨZ) , (95)

and the deterministic code capacity is given by

C(ΨZ) =

{
C
⋆(ΨZ) if Ω > Λ ,

0 otherwise .
(96)

The proof of Theorem 16 is given in Appendix N, combining our previous results on the AVC with fixed parameters and

the AVGPC. Despite the common belief that the characterization for a channel with colored Gaussian noise easily follows

from the results for the product channel setting, the analysis is more involved. While standard orthogonalization transforms

the channel into an equivalent one with statistically independent noise instances, the noise in the transformed channel is not

necessarily white. As the noise variance may change over time, we observe that the transformed channel is in fact an AVC with

fixed parameters which represent the sequence of noise variances. Using Corollary 5 and Corollary 11, we obtain deterministic

and random capacity formulas that are analogous to those of the AVGPC, and use Toeplitz matrix properties to express the

formulas as integrals in the frequency domain.

The optimal power allocation has a water filling analogy in the frequency domain (see e.g. [27, Section 9.5]), where the

jammer pours water of volume Λ on top of the power spectral density ΨZ(ω), and then the encoder pours more water of

volume Ω. The jammer brings the water level to β, and then the encoder brings the water level to α. The process is illustrated

in Figure 2.

APPENDIX A

PROOF OF THEOREM 1

Consider the compound channel WQ with fixed parameters under input constraint Ω and state constraint Λ.
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A. Achievability Proof

To show achievability, we construct a code based on conditional typicality decoding with respect to a channel state type,

which is “close” to one of the state distributions in Q.

Denote the type of the parameter sequence by PT = P̂θn . Define a set Q̂n of conditional state types,

Q̂n =
{
P̂sn|θn : (θn, sn) ∈ A(n)

δ1
(PT × q) , for some q ∈ Q

}
, (97)

with (PT × q)(t, s) = PT (t)q(s|t), and

δ1 ,
δ

2 · |S| , (98)

where δ > 0 is arbitrarily small. In words, Q̂n is the set of conditional types q′(s|t), given a parameter sequence θn, such that the

joint type is δ1-close to PT (t)q(s|t), for some conditional state distribution q(s|t) in Q. We note that the sets Q and Q̂n could

be disjoint, since Q is not limited to conditional empirical distributions. Nevertheless, for a fixed δ > 0 and sufficiently large n,

every q ∈ Q can be approximated by some q′ ∈ Q̂n. Indeed, for sufficiently large n, there exists a joint type P ′
T (t)q

′(s|t) such

that |P ′
T (t)q

′(s|t) − PT (t)q(s|t)| ≤ δ1/|S|, hence |P ′
T (t) − PT (t)| ≤ δ1 and |PT (t)q

′(s|t) − PT (t)q(s|t)| ≤ δ1q
′(s|t) ≤ δ1.

Now, a code is constructed as follows.

Codebook Generation: Fix PX|T such that Eφ(X) ≤ Ω− ε, where

Eφ(X) =
∑

t∈T
PT (t)E(φ(X)|T = t) =

1

n

n∑

i=1

∑

x∈X
PX|T (x|θi)φ(x) . (99)

Generate 2nR independent sequences at random, xn(m, θn) ∼∏n
i=1 PX|T (xi|θi), for m ∈ [1 : 2nR].

Encoding: To send a message m, if φn(xn(m, θn)) ≤ Ω, transmit xn(m, θn). Otherwise, transmit an idle sequence xn =
(a, a, . . . , a) with φ(a) = 0.

Decoding: Find a unique m̂ ∈ [1 : 2nR] for which there exists q ∈ Q̂n such that (θn, xn(m̂, θn), yn) ∈ A(n)
δ (PTP

q
X,Y |T ),

where

P q
X,Y |T (x, y|t) = PX|T (x|t)

∑

s∈S
q(s|t)WY |X,S,T (y|x, s, t) . (100)

If there is none, or more than one such m̂, declare an error. We note that using the set of types Q̂n instead of the original set

of state distributions Q alleviates the analysis, since Q is not necessarily finite nor countable.

Analysis of Probability of Error: Assume without loss of generality that the user sent M = 1. By the union of events bound,

we have that Pr
(
M̂ 6= 1

)
≤ Pr (E1) + Pr (E2 | Ec1) + Pr (E3 | Ec1), where

E1 ={(θn, Xn(1, θn)) /∈ A(n)
δ (PTPX|T )} ,

E2 ={(θn, Xn(1, θn), Y n) /∈ A(n)
δ (PTPX|TP

q′

Y |X,T ) for all q′ ∈ Q̂n } ,
E3 ={(θn, Xn(m, θn), Y n) ∈ A(n)

δ (PTPX|TP
q′

Y |X,T ) for some m 6= 1, q′ ∈ Q̂n } . (101)

The first term tends to zero exponentially by the law of large numbers and Chernoff’s bound (see e.g. [67, Theorem 1.2]).

Now, suppose that the event Ec1 occurs. Then, for sufficiently small δ, we have that φn(Xn(1, θn)) ≤ Ω, since Eφ(X) ≤ Ω−ε.
Hence, Xn(1, θn) is the channel input.

Next, we claim that the second error event implies that (θn, Xn(1, θn), Y n) /∈ A(n)
δ/2 (PTPX|TP

q
Y |X,T ), where q(s|t)

is the actual state distribution chosen by the jammer. Assume to the contrary that E2 holds, but (θn, Xn(1, θn), Y n) ∈
A(n)

δ/2 (PTPX|TP
q
Y |X,T ). For sufficiently large n, there exists a conditional type q′ ∈ Q̂n that approximates q in the sense that

|PT (t)q
′(s|t)− PT (t)q(s|t)| ≤ δ1 for all s ∈ S and t ∈ T , hence

|PT (t)P
q′

Y |X,T (y|x, t)− PT (t)P
q
Y |X,T (y|x, t)| ≤ |S| · δ1 =

δ

2
, (102)
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for all x ∈ X , t ∈ T , y ∈ Y (see (98)-(100)). To show δ-typicality with respect to q′(s|t), we observe that

|P̂θn,Xn(1,θn),Y n(t, x, y)− PT (t)PX|T (x|t)P q′

Y |X,T (y|x, t)|

=
∣∣∣P̂θn,Xn(1,θn),Y n(t, x, y)− PT (t)PX|T (x|t)P q

Y |X,T (y|x, t) + PT (t)PX|T (x|t)P q
Y |X,T (y|x, t)

− PT (t)PX|T (x|t)P q′

Y |X,T (y|x, t)
∣∣∣

≤|P̂θn,Xn(1,θn),Y n(t, x, y)− PT (t)PX|T (x|t)P q
Y |X,T (y|x, t)|

+ |PT (t)PX|T (x|t)P q
Y |X,T (y|x, t)− PT (t)PX|T (x|t)P q′

Y |X,T (y|x, t)|

≤δ
2
+
δ

2
PX|T (x|t) ≤ δ , (103)

where the first inequality is due to the triangle inequality, and the second inequality follows from (102) and the assumption

that (θn, Xn(1, θn), Y n) ∈ A(n)
δ/2 (PTPX|TP

q
Y |X,T ). It follows that (θn, Xn(1, θn), Y n) ∈ A(n)

δ (PTPX|TP
q′

Y |X,T ), and E2 does

not hold. Thus,

Pr (E2 | Ec1) ≤Pr
(
(θn, Xn(1, θn), Y n) /∈ A(n)

δ/2 (PTPX|TP
q
Y |X,T )

)
. (104)

This tends to zero exponentially as n→∞ by the law of large numbers and Chernoff’s bound (see e.g. [67, Theorem 1.2]).

Moving to the third error event, as the number of type classes in Sn is bounded by (n+ 1)|S|, we have that

Pr (E3 | Ec1) ≤ (n+ 1)|S| · sup
q′∈Q̂n

Pr
(
(θn, Xn(m, θn), Y n) ∈ A(n)

δ (PTPX|TP
q
Y |X,T ) for some m 6= 1

)
. (105)

For every m 6= 1, Xn(m, θn) is independent of Y n, hence

Pr
(
(θn, Xn(m), Y n) ∈ A(n)

δ (PTPX|TP
q
Y |X,T )

)

=
∑

xn∈Xn

PXn|Tn(xn|θn)
∑

yn : (θn,xn,yn)∈A(n)
δ (PTPX|TP q′

Y |X,T
)

P q
Y n|Tn(y

n|θn) . (106)

Let (θn, xn, yn) ∈ A(n)
δ (PTPX|TP

q′

Y |X,T ). Then, (θn, yn) ∈ A(n)
δ2

(PTP
q′

Y |T ) with δ2 , |X | · δ. By Lemmas 2.6-2.7 in [29],

P q
Y n|Tn(y

n|θn) = 2−n(H(P̂ynt |θn )+D(P̂yn|θn ||PY |T )) ≤ 2−nH(P̂yn|θn ) ≤ 2−n(Hq′ (Y |T )−ε1(δ)) , (107)

where ε1(δ)→ 0 as δ → 0. Therefore, by (105)−(107),

Pr (E2) ≤ (n+ 1)|S| · sup
q′∈Q̂n

2nR

∑

xn∈Xn

PXn|Tn(xn|θn) · |{yn : (θn, xn, yn) ∈ A(n)
δ (PTPX|TP

q′

Y |X,T )}| · 2
−n(Hq′ (Y |T )−ε1(δ))

≤ sup
q′∈Q̂n

(n+ 1)|S|2−n[Iq′ (X;Y |T )−R−ε2(δ)] , (108)

with ε2(δ)→ 0 as δ → 0, where the last inequality is due to [29, Lemma 2.13]. The RHS of (108) tends to zero exponentially as

n→∞, provided that R < Iq′(X ;Y |T )− ε2(δ). The probability of error, averaged over the class of codebooks, exponentially

decays to zero as n → ∞. Therefore, there must exist a (2nR, n, e−an) deterministic code, for a sufficiently large n. This

completes the proof of the direct part.

B. Converse Proof

Since the deterministic code capacity is always bounded by the random code capacity, we consider a sequence of (2nR, n, αn)
random codes, where αn → 0 as n → ∞. Then, let Xn = fn

γ (M, θn) be the channel input sequence, and Y n be the

corresponding output sequence, where γ ∈ Γ is the random element shared between the encoders and the decoder. For every

q ∈ Q, we have by Fano’s inequality that Hq(M |Y n, T n = θn, γ) ≤ nεn, hence

nR =H(M |T n = θn, γ) = Iq(M ;Y n|T n = θn, γ) +H(M |Y n, T n = θn, γ)

≤Iq(M,γ;Y n|T n = θn) + nεn = Iq(M,γ,Xn;Y n|T n = θn) + nεn

=Iq(X
n;Y n|T n = θn) + nεn , (109)
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where εn → 0 as n → ∞. The third equality holds since Xn is a deterministic function of (M,γ, θn), and the last equality

since (M,γ) (Xn, T n) Y n form a Markov chain. It follows that

R− εn ≤
1

n

n∑

i=1

Iq(Xi;Yi|Ti = θi) = Iq(X ;Y |T,K) ≤ Iq(X,K;Y |T ) (110)

for all q ∈ Q, with X ≡ XK , Y ≡ YK , T ≡ TK = θK , where the random variable K is uniformly distributed over [1 : n],
and εn → 0 as n→∞. Observe that the random variable T is distributed according to

PT (t) = Pr (θK = t) =
∑

i : θi=t

Pr (K = i) =
1

n
·N(t|θn) = P̂θn(t) , (111)

where N(t|θn) is the number of occurrences of the symbol t ∈ T in the sequence θn. Since K (T,X) Y form a Markov

chain, we have that

R− εn ≤ inf
q∈Q

Iq(K,X ;Y |T ) = inf
q∈Q

Iq(X ;Y |T ) . (112)

APPENDIX B

PROOF OF LEMMA 2

We state the proof of our modified version of Ahlswede’s RT [6]. The proof follows the lines of [6, Subsection IV-B], which

we modify here to include a constraint on the family of state distributions q(s) and the parameter sequence θn. Let s̃ n ∈ Sn
such that ln(s̃ n) ≤ Λ. Denote the conditional type of s̃ n ∈ Sn given θn by q̂(s|t). Observe that q̂ ∈ PΛ(S|θ∞) (see (9)),

since 1
n

∑n
i=1

∑
s∈S q(s|θi)l(s) = ln(s̃ n).

Given a permutation π ∈ Π(θn),
∑

sn∈Sn

qn(sn|θn)h(sn, θn) =
∑

sn∈Sn

qn(πsn|θn)h(πsn, θn) =
∑

sn∈Sn

qn(πsn|πθn)h(πsn, πθn) =
∑

sn∈Sn

qn(sn|θn)h(πsn, πθn) ,

(113)

where the first equality holds since π is a bijection, the second equality holds since πθn = θn for every π ∈ Π(θn), and the

last equality holds due to the product form of the conditional distribution qn(sn|tn) =∏n
i=1 q(si|ti). Hence, taking q = q̂,

∑

sn∈Sn

q̂ n(sn|θn)h(sn, θn) = 1

|Π(θn)|
∑

π∈Π(θn)

∑

sn∈Sn

q̂ n(sn|θn)h(πsn, πθn) , (114)

and by (17),

∑

sn∈Sn

q̂ n(sn|θn)


 1

|Π(θn)|
∑

π∈Π(θn)

h(πsn, πθn)


 ≤ αn . (115)

Thus,

∑

sn : P̂sn|θn=q̂

q̂ n(sn|θn)


 1

|Π(θn)|
∑

π∈Π(θn)

h(πsn, πθn)


 ≤ αn . (116)

As the expression in the square brackets is identical for all sequences sn of conditional type q̂, we have that

 1

|Π(θn)|
∑

π∈Π(θn)

h(πs̃ n, πθn)


 ·

∑

sn : P̂sn|θn=q̂

q̂ n(sn|θn) ≤ αn . (117)

The second sum is the probability of the conditional type class of q̂, hence

∑

sn : P̂sn|θn=q̂

q̂ n(sn|θn) ≥ 1

(n+ 1)|S||T | , (118)

by [27, Theorem 11.1.4]. The proof follows from (117) and (118).

APPENDIX C

PROOF OF THEOREM 3

Consider the AVC W with fixed parameters under input constraint Ω and state constraint Λ.
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A. Achievability Proof

To prove the random code capacity theorem for the AVC with fixed parameters, we use our result on the compound channel

along with our modified Robustification Technique (RT), i.e. Lemma 2.

Let R < C
⋆ . At first, we consider the compound channel under input constraint Ω, with Q = PΛ(S|θ∞). According to

Lemma 1, for some δ > 0 and sufficiently large n, there exists a (2nR, n) code C = (f(m, θn), g(yn, θn)) for the compound

channel WPΛ(S|θ∞) with fixed parameters such that

φn(f(m, θn)) ≤ Ω , for all m ∈ [1 : 2nR] , (119)

and

P (n)
e (q, θn,C ) =

∑

sn∈Sn

q(sn|θn)P (n)
e (C |sn, θn) ≤ e−2δn , (120)

for all product state distributions q(sn|θn) =∏n
i=1 q(si|θi), with q ∈ PΛ(S|θ∞).

Therefore, by Lemma 2, taking h0(s
n, θn) = P

(n)
e (C |sn, θn) and αn = e−2δn, we have that for a sufficiently large n,

1

|Π(θn)|
∑

π∈Π(θn)

P (n)
e (C |πsn, θn) ≤ (n+ 1)|S|e−2δn ≤ e−δn , (121)

for all sn ∈ Sn with ln(sn) ≤ Λ, where the sum is over the set of all n-tuple permutations such that πθn = θn.

On the other hand, for every π ∈ Π(θn),

P (n)
e (C |πsn, θn) (a)

=
1

2nR

2nR∑

m=1

∑

yn:g(yn,θn) 6=m

WY n|Xn,Sn,Tn(yn|f(m, θn), πsn, θn)

(b)
=

1

2nR

2nR∑

m=1

∑

yn:g(πyn,θn) 6=m

WY n|Xn,Sn,Tn(πyn|f(m, θn), πsn, θn)

(c)
=

1

2nR

2nR∑

m=1

∑

yn:g(πyn,θn) 6=m

WY n|Xn,Sn,Tn(yn|π−1f(m, θn), sn, π−1θn) , (122)

where (a) is obtained by plugging πsn in (11a); in (b) we substitue πyn instead of yn; and (c) holds because the channel is

memoryless. Since πθn = θn for every π ∈ Π(θn), it follows that

P (n)
e (C |πsn, θn) = 1

2nR

2nR∑

m=1

∑

yn:g(πyn,θn) 6=m

WY n|Xn,Sn,Tn(yn|π−1f(m, θn), sn, θn) . (123)

Then, consider the (2nR, n) random code C Π(θn), specified by

fn
π (m, θ

n) = π−1f(m, θn) , gπ(y
n, θn) = g(πyn, θn) , (124)

with a uniform distribution µ(π) = 1
|Π(θn)| for π ∈ Π(θn). As the inputs cost is additive (see (6)), the permutation does

not affect the costs of the codewords, hence the random code satisfies the input constraint Ω. From (123), we see that

P
(n)
e (C Π(θn)|sn, θn) =∑π∈Π(θn) µ(π) · P

(n)
e (C |πsn, θn), for all sn ∈ Sn with ln(sn) ≤ Λ. Therefore, together with (121),

we have that the probability of error of the random code CΠ(θn) is bounded by P
(n)
e (q, θn,C Π(θn)) ≤ e−δn, for every

q(sn|θn) ∈ PΛ(Sn|θn). It follows that C Π(θn) is a (2nR, n, e−δn) random code for the AVC W with fixed parameters under

input constraint Ω and state constraint Λ.

B. Converse Proof

Assume to the contrary that there exists an achievable rate pair

R > C(WQ)
∣∣
Q=PΛ−δ(S|θ∞)

, (125)

using random codes over the AVC W under input constraint Ω and state constraint Λ, where δ > 0 is arbitrarily small. That

is, for every ε > 0 and sufficiently large n, there exists a (2nR, n) random code C Γ = (µ,Γ, {Cγ}γ∈Γ) for the AVC W , such

that
∑

γ∈Γ µ(γ)φ
n(fγ(m, θ

n)) ≤ Ω, and

P (n)
e (q, θn,C Γ) ≤ ε , (126)

for all m ∈ [1 : 2nR] and q(sn|θn) ∈ PΛ(Sn|θn). In particular, for distributions q(·|θn) that give mass 1 to some sequence

sn ∈ Sn with ln(sn) ≤ Λ, we have that P
(n)
e (C Γ|sn, θn) ≤ ε.
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Consider using the random code C Γ over the compound channel WPΛ−δ(S) with fixed parameters under input constraint

Ω. Let q(s|t) ∈ PΛ−δ(S) be a given state distribution. Then, define a sequence of conditionally independent random variables

S1, . . . , Sn ∼ q(s|t). Letting qn(sn|θn) ,∏n
i=1 q(si|θi), the probability of error is bounded by

P (n)
e (q, θn,C Γ) ≤

∑

sn : ln(sn)≤Λ

qn(sn|θn)P (n)
e (C Γ|sn, θn) + Pr

(
ln(S

n
) > Λ

)
. (127)

The first sum is bounded by (126), and the second term vanishes by the law of large numbers, since q ∈ PΛ−δ(S|θ∞). It

follows that the random code C Γ achieves a rate R as in (125) over the compound channel WPΛ−δ(S) with fixed parameters

under input constraint Ω, for an arbitrarily small δ > 0, in contradiction to Lemma 1. We deduce that the assumption is false,

and C⋆(W) ≤ C(WQ)
∣∣
Q=PΛ(S|θ∞)

= C
⋆

n(W).

APPENDIX D

PROOF OF LEMMA 4

To prove that R⋆n(W) = C
⋆

n(W), we begin with the property in the lemma below.

Lemma 17. Let ω∗
i , λ∗i , i ∈ [1 : n], be the parameters that achieve the saddle point in (21), i.e.

R
⋆

n(W) =
1

n

n∑

i=1

Cθi(ω
∗
i , λ

∗
i ) . (128)

Then, for every i, j ∈ [1 : n] such that θi = θj , we have that ω∗
i = ω∗

j and λ∗i = λ∗j .

Proof of Lemma 17. For every i ∈ [1 : n], let pi, qi denote input and state distributions such that Eφ(Xi) ≤ ω∗
i , El(Si) ≤ λ∗i

for Xi ∼ pi, Si ∼ qi. Now, suppose that θi = θj = t, and define

p′(x) =
1

2
[pi(x) + pj(x)] , q

′(s) =
1

2
[qi(s) + qj(s)] . (129)

Then, Eφ(X ′) = 1
2 [Eφ(Xi) +Eφ(Xj)] and El(S′) = 1

2 [El(Si) +El(Sj)] for X ′ ∼ p′, S′ ∼ q′. Furthermore, since the mutual

information is concave-∩ in the input distribution and convex-∪ in the state distribution, we have that

1

2
[Iq′ (Xi;Yi|Ti = t) + Iq′ (Xj ;Yj |Tj = t)] ≤ Iq′ (X ′;Y ′|T ′ = t)

1

2

[
Iqi(X

′;Y ′|T ′ = t) + Iqj (X
′;Y ′|T = t)

]
≥ Iq(X ′;Y ′|T ′ = t) . (130)

Therefore, the saddle point distributions must satisfy pi = pj = p′ and qi = qj = q′, hence ω∗
i = ω∗

j and λ∗i = λ∗j .

Next, it can be inferred from Lemma 17 that

R
⋆

n(W) = min
(λt)t∈T :∑

t∈T PT (t)λt≤Λ

max
(ωt)t∈T :∑

t∈T PT (t)ωt≤Ω

∑

t∈T
PT (t)Ct(ωt, λt)

= min
(λt)t∈T , q(s|t) :
Eq [l(S)|T=t]≤λt∑

t∈T PT (t)λt≤Λ

max
(ωt)t∈T , p(x|t) :
E[φ(X)|T=t]≤ωt∑

t∈T PT (t)ωt≤Ω

Iq(X ;Y |T )

= min
q(s|t) : Eql(S)≤Λ

max
p(x|t) : Eφ(X)≤Ω

Iq(X ;Y |T ) = C
⋆

n(W) , (131)

where PT is the type of the parameter sequence θn. The second equality follows from the definition of C
⋆

t (ωt, λt) in (20),

using the minimax theorem [96] to switch between the order of the minimum and maximum. In the third line, we eliminate

the slack variables λi and ωi replacing Eql(Si) and Eφ(Xi), respectively. The last equality holds by the definition of C⋆n(W)
in (16).

APPENDIX E

PROOF OF LEMMA 8

Consider the AVC W with fixed parameters under input constraint Ω and state constraint Λ. Let θn be sequence of fixed

parameters for a given blocklength. Recall that T is a random variable that is distributed as the type of θn. We extend the

proof in [30]. First, we give an auxiliary lemma, which we also used in [85].

Lemma 18 (See [30] [85, Lemma 11] ). For every pair of conditional state distributions Q(s|x, t) and Q′(s|x, t) such that

max

{
∑

t,x,s

PT (t)p(x|t)Q(s|x, t)l(s) ,
∑

t,x,s

PT (t)p(x|t)Q′(s|x, t)l(s)
}
< Λ̃n(p) , (132)
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there exists ξ > 0 such that

max
x,x̃,y

∣∣∣
∑

t,s

PT (t)Q(s|x̃, t)WY |X,S,T (y|x, s, t)−
∑

t,s

PT (t)Q
′(s|x, t)WY |X,S,T (y|x̃, s, t)

∣∣∣ ≥ ξ . (133)

Proof of Lemma 18. Assume to the contrary that the LHS in (133) is zero, and define

QA(s|x, t) =
1

2
(Q(s|x, t) +Q′(s|x, t)) . (134)

Using the symmetry between Q and Q′, we have that

0 =max
x,x̃,y

∣∣∣
∑

t∈T

∑

s∈S
PT (t)Q(s|x̃, t)WY |X,S,T (y|x, s, t)−

∑

t∈T

∑

s∈S
PT (t)Q

′(s|x, t)WY |X,S,T (y|x̃, s, t)
∣∣∣

=
1

2
max
x,x̃,y

∣∣∣
∑

t∈Tn

∑

s∈S
PT (t)Q(s|x̃, t)WY |X,S,T (y|x, s, t)−

∑

t∈Tn

∑

s∈S
PT (t)Q

′(s|x, t)WY |X,S,T (y|x̃, s, t)
∣∣∣

+
1

2
max
x,x̃,y

∣∣∣
∑

t∈Tn

∑

s∈S
PT (t)Q

′(s|x̃, t)WY |X,S,T (y|x, s, t)−
∑

t∈Tn

∑

s∈S
PT (t)Q(s|x, t)WY |X,S,T (y|x̃, s, t)

∣∣∣

≥max
x,x̃,y

∣∣∣
∑

t∈Tn

∑

s∈S
PT (t)QA(s|x, t)WY |X,S,T (y|x̃, s, t)−

∑

t∈Tn

∑

s∈S
PT (t)QA(s|x̃, t)WY |X,S,T (y|x, s, t)

∣∣∣ . (135)

Since we have assumed that PT (t) > δ0 for all t ∈ T , it follows that
∑

s∈S
QA(s|x, t)WY |X,S,T (y|x̃, s, t) =

∑

s∈S
QA(s|x̃, t)WY |X,S,T (y|x, s, t) , (136)

for all t ∈ T , x, x̃ ∈ X and y ∈ Y . In other words, QA(·|·, t) symmetrizes the channel WY |X,S,T (·|·, ·, t) for all t ∈ T .

Therefore, by the definition of Λ̃n(p) in (27), we have that

∑

t,x,s

PT (t)p(x|t)QA(s|x, t)l(s) =
1

n

n∑

i=1

∑

x,s

p(x|θi)QA(s|x, θi)l(s) ≥Λ̃n(p) (137)

in contradiction to (132). The equality above holds because T is distributed as the type of the parameter sequence θn, hence

averaging over time is the same as averaging according to PT . It follows that the LHS of (133) must be positive. This completes

the proof of the auxiliary Lemma.

We move to the main part of the proof. To show that (37) holds for sufficiently small η, assume to the contrary that there

exists yn such that (yn, θn) is in D(m) ∩ D(m̃) 6= ∅. By the assumption in the lemma, the codewords {f(m, θn)}m∈[1:2nR]

have the same conditional type. In particular, PX̃|T = PX|T = p.

By Condition 1) of the decoding rule,

D(PT,X,S,Y ||PT × PX|T × PS|T ×WY |X,S,T )

=
∑

t,x,s,y

PT,X,S,Y (t, x, s, y) log
PT,X,S,Y (t, x, s, y)

PT (t)p(x|t)PS|T (s|t)WY |X,S,T (y|x, s, t)
≤ η , (138)

and by Condition 2) of the decoding rule,

I(X,Y ; X̃|S, T ) =
∑

t,x,x̃,s,y

PT,X,X̃,S,Y (t, x, x̃, s, y) log
PX̃|X,S,T,Y (x̃|x, s, t, y)

PX̃|S,T (x̃|s, t)
≤ η , (139)

where T,X, X̃, S, Y are distributed according to the joint type of θn, fn(m, θn), fn(m̃, θn), sn, and yn. Adding (138) and

(139) yields

∑

t,x,x̃,s,y

PT,X,X̃,S,Y (t, x, x̃, s, y) log
PT,X,X̃,S,Y (t, x, x̃, s, y)

PT (t)p(x|t)PX̃,S|T (x̃, s|t)WY |X,S,T (y|x, s, t)
≤ 2η . (140)

That is, D(PT,X,X̃,S,Y ||PT × p× p×PS|X̃,T ×WY |X,S,T ) ≤ 2η. Therefore, by the log-sum inequality (see e.g. [27, Theorem

2.7.1]),

D(PT,X,X̃,Y ||PT × p× p× VY |X,X̃,T )

≤D(PT,X,X̃,S,Y ||PT × p× p× PS|X̃,T ×WY |X,S,T ) ≤ 2η , (141)
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where VY |X,X̃,T (y|x, x̃, t) =
∑

s∈S WY |X,S,T (y|x, s, t)PS|X̃,T (s|x̃, t). Then, by Pinsker’s inequality (see e.g. [29, Problem

3.18]),
∑

t,x,x̃,y

|PT,X,X̃,Y (t, x, x̃, y)− PT (t)p(x|t)p(x̃|t)VY |X,X̃,T (y|x, x̃, t)| ≤ c
√
2η , (142)

where c > 0 is a constant. By the same arguments, (34) implies that
∑

t,x,x̃,y

|PT,X,X̃,Y (t, x, x̃, s)− PT (t)p(x|t)p(x̃|t)V ′
Y |X,X̃,T

(y|x, x̃, t)| ≤ c
√
2η , (143)

where V ′
Y |X,X̃,T

(y|x, x̃, t) =
∑

s∈S WY |X,S,T (y|x̃, s, t)PS̃|X,T (s|x, t). Now, observe that inserting the sum over t ∈ T into

the absolute value maintains the inequality, by the triangle inequality. Furthermore, since p(x|t) > δ1, for x ∈ X , t ∈ T , we

have that

max
x,x̃,y

∣∣∣
∑

t∈Tn

PT (t)VY |X,X̃,T (y|x, x̃, t) −
∑

t∈Tn

PT (t)V
′
Y |X,X̃,T

(y|x, x̃, t)
∣∣∣ ≤ 2c

√
2η

δ2
, (144)

Equivalently, the above can be expressed as

max
x,x̃,y

∣∣∣
∑

t,s

PT (t)PS|X̃,T (s|x̃, t)WY |X,S,T (y|x, s, t)−
∑

t,s

PT (t)PS̃|X,T (s|x, t)WY |X,S,T (y|x̃, s, t)
∣∣∣ ≤ 2c

√
2η

δ21
, (145)

Now, we show that the state distributions Q = PS|X̃,T and Q′ = PS̃|X,T satisfy the conditions of Lemma 18. Indeed,

max

{∑

t,x̃,s

PT (t)p(x̃|t)Q(s|x̃)l(s),
∑

tx,s

PT (t)p(x|t)Q′(s|x)l(s)
}

=max

{∑

t,x̃,s

PT (t)p(x̃|t)PS|X̃,T (s|x̃, t)l(s),
∑

t,x,s

PT (t)p(x|t)PS̃|X,T (s|x, t)l(s)
}

=max

{
∑

s

PS(s)l(s),
∑

s

PS̃(s)l(s)

}

=max {ln(sn), ln(s̃n)} ≤ Λ < Λ̃n(p) , (146)

where the last inequality is due to (36). Thus, there exists ξ > 0 such that (133) holds with Q = PS|X̃,T and Q′ = PS̃|X,T ,

which contradicts (145), if η is sufficiently small such that
2c

√
2η

δ2 < ξ.

APPENDIX F

PROOF OF LEMMA 9

Let Zn(m, θn), m ∈ [1 : 2nR], be statistically independent sequences, uniformly distributed over the conditional type class

T n(p). Fix an ∈ Xn and sn ∈ Sn, and consider a joint type PT,X,X̃,S , such that PX|T = PX̃|T = p. We intend to show that

{Zn(m, θn)} satisfy each of the desired properties with double exponential high probability (1 − e−2En), E > 0, implying

that there exists a deterministic codebook that satisfies (38)-(40) simultaneously. We begin with the following large deviations

result by Csisár and Narayan [30].

Lemma 19 (see [30, Lemma A1]). Let α, β ∈ [0, 1], and consider a sequence of random vectors Un(m), and functions

ϕm : Xnm → [0, 1], for m ∈ [1 : M]. If

E
(
ϕm(Un(1) . . . , Un(m))

∣∣Un(1) . . . , Un(m− 1)
)
≤ α a.s., for m ∈ [1 : M] , (147)

then

Pr

(
M∑

m=1

ϕm(Un(1) . . . , Un(m)) > Mβ

)
≤ exp{−M(β − α log e)} . (148)

To show that (38) holds, consider the indicator

ϕm(Zn(1, θn), . . . , Zn(m, θn)) =





1 if (θn, Zn(m, θn), Zn(m̃, θn), sn) ∈ T n(PT,X,X̃,S)

for some m̃ < m

0 otherwise

(149)

By standard type class considerations (see e.g. [67, Theorem 1.3]), we have that

E
[
ϕm(Zn(1, θn), . . . , Zn(m, θn))

∣∣Zn(1, θn), . . . , Zn(m− 1, θn)
]
≤2−n(I(X̃;T,X,S)− ε

4−R) ≤ 2−n(I(X̃;X,S|T )− ε
4−R) , (150)
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where the last inequality holds since I(X̃;T,X, S) ≥ I(X̃;X,S|T ).
Next, we use Lemma 19, and plug

M = 2nR , Un(m) = Zn(m, θn) ,

α = 2−n(I(X̃;X,S|T )− ε
4−R) , β = 2

n
(
[R−I(X̃;X,S|T )]

+
−R+ε

)

. (151)

For sufficiently large n, we have that M(β − α log e) ≥ 2nε/2. Hence, by Lemma 19,

Pr




2nR∑

m=1

ϕm(Zn(1, θn), . . . , Zn(2nR, θn)) > 2
n
(
[R−I(X̃;X,S|T )]

+
+ε

)

 ≤ e−2nε/2

. (152)

By the symmetry between m and m̃ in the derivation above, the double exponential decay of the probability in (152) implies

that there exists a codebook that satisfies (38).

Similarly, to show (39), we replace the indicator of the type PX,X̃,S|T in (149) by an indicator of the type PX̃,S|T , and

rewrite (150) with I(X̃;S|T ), to obtain

Pr
(
|{m̃ : (θn, Zn(m̃, θn), sn) ∈ T n(PT,X̃,S)}| > 2

n
(
[R−I(X̃;S|T )]

+
+ε1

))
< e−2nε1/2

, (153)

where ε1 > 0 is arbitrarily small. If I(X̃;S|T ) > ε and R ≥ ε, then choosing ε1 = ε
2 , we have that

[
R− I(X̃ ;S|T )

]
+
+ ε1 ≤ R−

ε

2
, (154)

hence,

Pr
(
|{m̃ : (θn, Zn(m̃, θn), sn) ∈ T n(PT,X̃,S)}| > 2n(R− ε

2 )
)
< e−2nε/4

. (155)

It remains to show that (40) holds. Assume that

I(X ; X̃, S|T )−
[
R− I(X̃;S|T )

]
+
> ε . (156)

Let Jm denote the set of indices m̃ < m such that (θn, Zn(m̃, θn), sn) ∈ T n(PT,X̃,S), provided that their number does not

exceed 2
n
(
[R−I(X̃;S|T )]

+
+ ε

8

)

; else, let Jm = ∅. Also, let

ψm(Zn(1, θn), . . . , Zn(m, θn)) =





1 if (θn, Zn(m, θn), Zn(m̃, θn), sn) ∈ T n(PT,X,X̃,S)

for some m̃ ∈ Jm ,

0 otherwise.

(157)

Then, choosing ε1 = ε
8 in (153) yields

Pr
( 2nR∑

m=1

ψm(Zn(1, θn), . . . , Zn(m, θn)) 6= |{m :

(θn, Zn(m, θn), Zn(m̃, θn), sn) ∈ T n(PT,X,X̃,S) for some m̃ < m}|
)
< e−2nε/16

. (158)

Therefore, instead of bounding the set of messages, it is sufficient to consider the sum
∑
ψm(Zn(1, θn), . . . , Zn(m, θn)).

Furthermore, by standard type class considerations (see e.g. [67, Theorem 1.3]), we have that

E
(
ψm(Zn(1, θn), . . . , Zn(m, θn))

∣∣Zn(1, θn), . . . , Zn(m− 1, θn)
)
≤ |Jm| · 2−n(I(X;X̃,S|T )− ε

8 )

≤2n
(
[R−I(X̃;S|T )]

+
−I(X;X̃,S|T )+ ε

4

)

< 2−3nε/4 , (159)

where the last inequality is due to (156). Thus, by Lemma 19,

Pr




2nR∑

m=1

ψm(Zn(1, θn), . . . , Zn(m, θn)) > 2n(R− ε
2 )


 < e−2

n(R− 3ε
4 ) ≤ e−2nε/4

, (160)

as we have assumed that R ≥ ε. Equations (158) and (160) imply that the property in (40) holds with double exponential

probability 1− e−2E1n

, where E1 > 0.
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APPENDIX G

PROOF OF THEOREM 6

A. Achievability Proof

Suppose that L∗
n > Λ for sufficiently large n. Let ε > 0 be chosen later, and let PX|T be a conditional type over X , for

which PX|T (x|t) > 0 ∀x ∈ X , t ∈ T , and Eφ(X) ≤ Ω, with

Λ̃n(PX|T ) >Λ . (161)

As explained below, we may assume without loss of generality that for some δ0 > 0 that does not depend on n, we have that

PT (t) > δ0 for all t ∈ T . Indeed, following our assumption in (25), the asymptotic capacity formula lim inf Cn(W) does not

change when we remove parameter values t ∈ T such that PT (t)→ 0. Hence, coding can be limited to the rest of the block

with negligible rate decrease, thus removing those parameters from consideration. Then, choose η > 0 to be sufficiently small

such that Lemma 8 guarantees that the decoder in Definition 5 is well defined. Now, Lemma 9 assures that there is a codebook

{xn(m, θn)}m∈[1:2nR] of conditional type p that satisfies (38)-(40). Consider the following coding scheme.

Encoding: To send m ∈ [1 : 2nR], transmit xn(m, θn).
Decoding: Find a unique message m̂ such that (yn, θn) belongs to D(m̂), as in Definition 5. If there is none, declare an

error. Lemma 8 guarantees that there cannot be two messages for which this holds.

Analysis of Probability of Error: Fix sn ∈ Sn with ln(sn) ≤ Λ, let q = PS|T denote the conditional type of sn given θn,

and let M denote the transmitted message. Consider the error events

E1 ={D(PT,X,S,Y ||PT × PX|T × PS|T ×WY |X,S) > η} (162)

E2 ={Condition 2) of the decoding rule is violated} (163)

and

F1 ={Iq(X ;S|T ) > ε} , (164)

F2 ={Iq(X ; X̃, S|T ) >
[
R− I(X̃;S|T )

]
+
+ ε , for some m̃ 6=M} , (165)

where (T,X, X̃, S) are dummy random variables, which are distributed as the joint type of (θn, xn(M, θn), xn(m̃, θn), sn).
By the union of events bound,

P (n)
e (C |sn, θn) ≤Pr (F1) + Pr (F2) + Pr (E1 ∩ Fc

1) + Pr (E2 ∩ Fc
2) , (166)

where the conditioning on Sn = sn and T n = θn is omitted for convenience of notation. Based on Lemma 9, the probabilities

of the events F1 and F2 tend to zero as n→∞, by (39) and (40), respectively.

Now, suppose that Condition 1) of the decoding rule is violated. Observe that the event E1 ∩ Fc
1 implies that

D(PT,X,S,Y ||PT,X,S ×WY |X,S,T )

=D(PT,X,S,Y ||PT × PX|T × PS|T ×WY |X,S,T )− I(X ;S|T ) > η − ε . (167)

Then, by standard large deviations considerations (see e.g. [27, pp. 362–364]),

Pr (E1 ∩ Fc
1) ≤ max

PT,X,S,Y : E1∩Fc
1 holds

2−n(D(PT,X,S,Y ||PT,X,S×WY |X,S,T )−ε)

<2−n(η−2ε) , (168)

which tends to zero as n→∞, for sufficiently small ε > 0, with ε < 1
2η.

Moving to Condition 2) of the decoding rule, let D2 denote the set of joint types PT,X,X̃,S such that

D(PT,X,S,Y ||PTPX|T × PS|T ×WY |X,S,T ) ≤ η , (169)

D(PX̃,S̃,Y ||PX̃1
× PS̃|T ×WY |X,S,T ) ≤ η , for some S̃ ∼ q̃(s|t) , (170)

Iq(X,Y ; X̃|S, T ) > η . (171)

Then, by standard type class considerations (see e.g. [67, Theorem 1.3]),

Pr (E2 ∩ Fc
2 |M = m) ≤

∑

P
T,X,X̃,S

∈D2 :

Fc
2 holds

|{m̃ : (θn, xn(m, θn), xn(m̃, θn), sn) ∈ T n(PT,X,X̃,S)}|

× 2−n(Iq(X̃;Y |X,S,T )−ε) , (172)
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for every given m ∈ [1 : 2nR]. Hence, by (38),

Pr (E2 ∩ Fc
2) ≤

∑

P
T,X,X̃,S

∈D2 :

Fc
2 holds

2
−n

(
Iq(X̃;Y |X,S,T )−[R−Iq(X̃;X,S|T )]

+
−2ε

)

. (173)

To further bound Pr (E2 ∩ Fc
2), consider the following cases. Suppose that R ≤ Iq(X̃ ;S|T ). Then, given Fc

2 , we have that

Iq(X ; X̃|S, T ) ≤ Iq(X ; X̃, S|T ) ≤ ε . (174)

By (171), it then follows that

Iq(X̃ ;Y |X,S, T ) =Iq(X̃ ;X,Y |S, T )− Iq(X̃;X |S, T )
≥η − ε . (175)

Returning to (173), we note that since the number of types is polynomial in n, the cardinality of the set of types D2 can be

bounded by 2nε, for sufficiently large n. Hence, by (173) and (175), we have that Pr (E2 ∩ Fc
2) ≤ 2−n(η−4ε), which tends to

zero as n→∞, for ε < 1
4η.

Otherwise, if R > Iq(X̃ ;S|T ), then given Fc
2 ,

R >Iq(X ; X̃, S|T ) + I(X̃ ;S|T )− ε
=Iq(X̃ ;X,S|T ) + I(X ;S|T )− ε
≥Iq(X̃ ;X,S|T )− ε . (176)

Thus,
[
R− Iq(X̃ ;X,S|T )

]
+
≤ R− Iq(X̃;X,S|T ) + ε . (177)

Hence, by (173) we have that

Pr (E2 ∩ Fc
2) ≤

∑

P
T,X,X̃,S

∈D2

Fc
2 holds

2−n(I(X̃;X,S,Y |T )−R−3ε)

≤
∑

P
T,X,X̃,S

∈D2 :

Fc
2 holds

2−n(Iq(X̃;Y |T )−R−3ε) . (178)

For PT,X,X̃,S ∈ D2, we have by (170) that PT,X̃,S̃,Y is arbitrarily close to some PT,X,S̃,Ỹ , where

PT,X,S̃,Ỹ (x, s, y) = PT (t)PX|T (x|t)q̃(s|t)WY |X,S,T (y|x, s, t) , (179)

if η > 0 is sufficiently small. In which case,

Iq(X̃ ;Y |T ) ≥ Iq̃(X ;Y |T )− δ , (180)

where δ > 0 is arbitrarily small. Therefore, provided that

R < min
q(s|t) : Eql(S)≤Λ

Iq(X ;Y |T )− δ − 5ε , (181)

we have that Pr (E2 ∩ Fc
2) ≤ 2−n(Iq(X̃;Y |T )−R−4ε) tends to zero as n→∞.

B. Converse Proof

We will use the following lemma, based on the observations of Ericson [37].

Lemma 20. Consider the AVC with fixed parameters free of state constraints, and let C = (f, g) be a (2nR, n) deterministic

code. Suppose that the channels WY |X,S,T (·|·, ·, θi) are symmetrizable for all i ∈ [1 : n], and let Jt(s|x), t ∈ T , be a set of

conditional state distributions that satisfy (24). If R > 0, then

P (n)
e (q̃, θn,C ) ≥ 1

4
, (182)

for

q̃(sn|θn) = 1

2nR

2nR∑

m=1

Jθn(sn|fn(m, θn)) , (183)
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where Jθn(sn|xn) =∏n
i=1 Jθi(si|xi).

For completeness, we give the proof below.

Proof of Lemma 20. Denote the codebook size by M = 2nR, and the codewords by xn(m, θn) = fn(m, θn).
Under the conditions of the lemma,

P (n)
e (q̃, θn,C ) =

∑

sn∈Sn

q(sn|θn) 1
M

M∑

m=1

∑

yn : g(yn,θn) 6=m

Wn(yn|xn(m, θn), sn, θn)

=
1

M2

2nR∑

m̃=1

∑

sn∈Sn

Jθn(sn|xn(m̃, θn))
M∑

m=1

∑

yn : g(yn,θn) 6=m

Wn(yn|xn(m, θn), sn, θn) (184)

where have defined Wn ≡ WY n|Xn,Sn,Tn for short notation. By switching between the summation indices m and m̃, we

obtain

P (n)
e (q̃, θn,C ) =

1

2M2

∑

m,m̃

∑

yn : g(yn,θn) 6=m

∑

sn∈Sn

Wn(yn|xn(m, θn), sn, θn)Jθn(sn|xn(m̃, θn))

+
1

2M2

∑

m,m̃

∑

yn : g(yn,θn) 6=m̃

∑

sn∈Sn

Wn(yn|xn(m̃, θn), sn, θn)Jθn(sn|xn(m, θn)) . (185)

Now, as the channel is memoryless,

∑

sn∈Sn

Wn(yn|xn(m̃, θn), sn, θn)Jθn(sn|xn(m, θn)) =
n∏

i=1

∑

si∈S
WYi|Xi,Si,Ti

(yi|xi(m̃, θn), si, θi)Jθi(si|xi(m, θn))

=
n∏

i=1

∑

si∈S
WYi|Xi,Si,Ti

(yi|xi(m, θn), si, θi)Jθi(si|xi(m̃, θn))

=
∑

sn∈Sn

Wn(yn|xn(m, θn), sn, θn)Jθn(sn|xn(m̃, θn)) , (186)

where the second equality is due to (24). Therefore,

P (n)
e (q̃, θn,C ) ≥ 1

2M2

∑

m̃ 6=m

∑

sn∈Sn

[ ∑

yn : g(yn,θn) 6=m

Wn(yn|xn(m, θn), sn, θn)Jθn(sn|xn(m̃, θn))

+
∑

yn : g(yn,θn) 6=m̃

Wn(yn|xn(m, θn), sn, θn)Jθn(sn|xn(m̃, θn))
]

≥ 1

2M2

∑

m̃ 6=m

∑

sn∈Sn

∑

yn∈Yn

Wn(yn|xn(m, θn), sn, θn)Jθn(sn|xn(m̃, θn))

=
M(M− 1)

2M2
=

1

2

(
1− 1

M

)
. (187)

Assuming the sum rate is positive, we have that M ≥ 2, hence P
(n)
e (q̃, θn,C ) ≥ 1

4 .

Now, we are in position to prove the converse part of Theorem 6. Consider a sequence of (2nR, n, αn) deterministic codes

Cn over the AVC with fixed parameters under input constraint Ω and state constraint Λ, where αn → 0 as n → ∞. In

particular, the conditional probability of error given a state sequence sn is bounded by

P (n)
e (Cn|sn, θn) ≤ αn , for sn ∈ Sn with ln(sn) ≤ Λ . (188)

Let Xn = f(M, θn) be the channel input sequence, and let Y n be the corresponding output.

Consider using the same code over the compound channel with fixed parameters, i.e. where the jammer selects a state sequence

at random according to a product distribution, S
n ∼∏n

i=1 q(si|θi), under the average state constraint 1
n

∑n
i=1 Eql(Si) ≤ Λ−δ.

Here, there is no state constraint with probability 1, as the jammer may select a sequence S
n

with ln(S
n
) > Λ. Yet, the

probability of error is bounded by

P (n)
e (q, θn,Cn) ≤

∑

sn : ln(sn)≤Λ

qn(sn|θn)P (n)
e (C Γ|sn, θn) + Pr

(
ln(S

n
) > Λ

)
. (189)
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The first sum is bounded by (188), and the second term vanishes by the law of large numbers, since q ∈ PΛ−δ(S|θ∞). It

follows that the code sequence of the constrained AVC achieves the same rate R over the compound channel WY |X,S,T . As

in Appendix A, Fano’s inequality implies that for every jamming strategy qn(sn|θn),
R ≤ min

q(s|t) : Eql(S)≤Λ
Iq(X ;Y |T ) + εn , (190)

with X , XK , T ≡ θK , Y , YK , where K is uniformly distributed over [1 : n]. Hence, T is distributed according to the

type of the parameter sequence θn (see (111)).

Returning to the original AVC, suppose that L∗
n > Λ. It remains to show that R > 0 implies that Λ̃n(PX|T ) ≥ Λ. If the

channels WY |X,S,T (·|·, ·, θi) is non-symmetrizable for some i ∈ [1 : n], then Λ̃n(PX|T ) = +∞, and there is nothing to show.

Hence, consider the case where WY |X,S,T (·|·, ·, θi) are symmetrizable for all i ∈ [1 : n]. Assume to the contrary that R > 0

and Λ̃n(PX|T ) < Λ. Hence, there exist conditional state distributions Jθi(s|x) that symmetrize WY |X,S,T (·|·, ·, θi), such that

Λ̃n(PX|T ) =
1

n

n∑

i=1

∑

x,s

PX|T (x|θi)Jθi(s|x)l(s) < Λ . (191)

Now, consider the following jamming strategy. First, the jammer selects a codeword X̃n from the codebook uniformly at

random. Then, the jammer selects a sequence S̃n at random, according to the conditional distribution

Pr
(
S̃n = sn | X̃ = xn

)
= Jθn(sn|xn) ,

n∏

i=1

Jθi(si|xi) . (192)

At last, if ln(S̃n) ≤ Λ, the jammer chooses the state sequence to be Sn = S̃n. Otherwise, the jammer chooses Sn to be some

sequence of zero cost. Such jamming strategy satisfies the state constraint Λ with probability 1.

To contradict our assumption that Λ̃(PX|T ) < Λ, we first show that Eln(S̃n) = Λ̃(PX|T ). Observe that for every xn ∈ Xn,

E

(
ln(S̃n)|X̃n = xn

)
=
1

n

n∑

i=1

∑

s∈S
l(s)Jθi(s|xi) . (193)

Since X̃n is distributed as Xn, we obtain

E ln(S̃n) =
∑

s∈S
l(s) · 1

n

n∑

i=1

EJθi(s|Xi) =
1

n

n∑

i=1

∑

x,s

PX|T (x|θi)Jθi(s|x)l(s) = Λ̃n(PX|T ) < Λ . (194)

Thus, by Chebyshev’s inequality we have that for sufficiently large n,

Pr
(
ln(S̃n) > Λ

)
≤ δ0 , (195)

where δ0 > 0 is arbitrarily small. Now, on the one hand, the probability of error is bounded by

P (n)
e (q, θn,Cn) ≥Pr

(
g(Y n, θn) 6=M, ln(S̃n) ≤ Λ

)

=
∑

sn : ln(sn)≤Λ

q̃(sn|θn)P (n)
e (Cn|sn, θn) , (196)

where q̃(sn|θn) is as defined in (183). On the other hand, the sequence S̃n can be thought of as the state sequence of an AVC

without a state constraint, hence, by Lemma 20,

1

4
≤P (n)

e (q̃, θn,Cn) ≤
∑

sn : ln(sn)≤Λ

q̃(sn|θn)P (n)
e (Cn|sn, θn) + Pr

(
ln(S̃n) > Λ

)

≤
∑

sn : ln(sn)≤Λ

q̃(sn|θn)P (n)
e (Cn|sn, θn) + δ0 . (197)

Thus, by (196)-(197), the probability of error is bounded by P
(n)
e (q, θn,Cn) ≥ 1

4 − δ0. As this cannot be the case for a code

with vanishing probability of error, we deduce that the assumption is false, i.e. R > 0 implies that Λ̃n(PX|T ) ≥ Λ.

If L∗
n < Λ, then Λ̃n(PX|T ) < Λ for all PX|T with Eφ(X) ≤ Ω, and a positive rate cannot be achieved. This completes the

converse proof.
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PROOF OF COROLLARY 7

Assume that the AVC W with fixed parameters satisfies the conditions of Corollary 7. Looking into the converse proof

above, the following addition suffices. We show that for every code Cn as in the converse proof above, Λ̃n(PX|T ) = Λ implies

that R = 0. Since there is only a polynomial number of types, we may consider PX|T (x|t) to be the conditional type of

fn(m, θn) given θn, for all m ∈ [1 : 2nR] (see [29, Problem 6.19]).

Suppose that Λ̃n(PX|T ) = Λ, assume to the contrary that R > 0, and let Ji(s|x) be distributions that achieve the minimum

in (27), i.e.

Λ̃n(p) =
1

n

n∑

i=1

∑

x,s

PX|T (x|θi)Ji(s|x)l(s) = Λ . (198)

Based on the condition of the corollary, we may assume that Ji(s|x) is a 0-1 law, i.e.

Ji(s|x) =
{
1 if s = Gi(x),

0 otherwise
, (199)

for some deterministic function Gi : X → S.

Recall that we have defined X = XK , Y = YK in the converse proof, where K is a uniformly distributed variable over

[1 : n]. Thus, by (198),

El(GK(X)) =
1

n

n∑

i=1

∑

x,s

p(x|θi)Ji(s|x)l(s) = Λ . (200)

Now, consider the following jamming strategy. First, the jammer selects a codeword X̃n from the codebook uniformly at

random. Then, given X̃n = xn, the jammer chooses the state sequence Sn = (Gi(xi))
n
i=1. Observe that

ln(Sn) =
1

n

n∑

i=1

l(Gi(xi)) = El(GK(X)) = Λ , (201)

where the last equality is due to (200). Thus, the state sequence satisfies the state constraint. Now, observe that the jamming

strategy Sn =
(
G(X̃i)

)n
i=1

is equivalent to Sn ∼ q̃(sn|θn) as in (183). Thus, by Lemma 20, we have that P
(n)
e (q̃,Cn) ≥ 1

4 ,

hence a positive rate cannot be achieved.

APPENDIX I

PROOF OF LEMMA 10

Suppose that L∗
n > Λ. The proof is similar to that of Lemma 4. We begin with the property in the lemma below.

Lemma 21. Let ω∗
i , λ∗i , λ̃∗i , i ∈ [1 : n], be the parameters that achieve the saddle point in (43), i.e.

Rn(W) =
1

n

n∑

i=1

Cθi(ω
∗
i , λ

∗
i , λ̃

∗
i ) . (202)

Then, for every i, j ∈ [1 : n] such that θi = θj , we have that ω∗
i = ω∗

j , λ̃∗i = λ̃∗j , and λ∗i = λ∗j .

Proof of Lemma 21. For every i ∈ [1 : n], let pi, qi denote input and state distributions such that Eφ(Xi) ≤ ω∗
i , Λ̃θi(pi) ≥ λ̃∗i ,

El(Si) ≤ λ∗i for Xi ∼ pi, Si ∼ qi. Now, suppose that θi = θj = t, and define

p′(x) =
1

2
[pi(x) + pj(x)] , q

′(s) =
1

2
[qi(s) + qj(s)] . (203)

Then, Eφ(X ′) = 1
2 [Eφ(Xi) +Eφ(Xj)], Λt(p

′) = 1
2 [Λt(pi) +Λt(pj)], and El(S′) = 1

2 [El(Si) +El(Sj)] for X ′ ∼ p′, S′ ∼ q′.
Furthermore, since the mutual information is concave-∩ in the input distribution and convex-∪ in the state distribution, we

have that

1

2
[Iq′ (Xi;Yi|Ti = t) + Iq′ (Xj ;Yj |Tj = t)] ≤ Iq′ (X ′;Y ′|T ′ = t)

1

2

[
Iqi(X

′;Y ′|T ′ = t) + Iqj (X
′;Y ′|T = t)

]
≥ Iq(X ′;Y ′|T ′ = t) . (204)

Therefore, the saddle point distributions must satisfy pi = pj = p′ and qi = qj = q′, hence ω∗
i = ω∗

j , λ̃∗i = λ̃∗j , and

λ∗i = λ∗j .
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Next, it can be inferred from Lemma 21 that

Rn(W) = min
(λt)t∈T :∑

t∈T

PT (t)λt≤Λ

max
(ωt)t∈T ,(λ̃t)t∈T :∑
t∈T

PT (t)ωt≤Ω

∑
t∈T

PT (t)λ̃t≥Λ

∑

t∈T
PT (t)Ct(ωt, λt)

= min
(λt)t∈T , q(s|t) :
Eq [l(S)|T=t]≤λt∑
t∈T

PT (t)λt≤Λ

max
(ωt)t∈T , (λ̃t)t∈T , p(x|t) :
E[φ(X)|T=t]≤ωt,Λ̃(p,t)≥λ̃t∑

t∈T

PT (t)ωt≤Ω ,
∑
t∈T

PT (t)λ̃t≥Λ

Iq(X ;Y |T )

= min
q(s|t) : Eql(S)≤Λ

max
p(x|t) : Eφ(X)≤Ω ,

Λ̃n(p)≥Λ

Iq(X ;Y |T ) = Cn(W) , (205)

where PT is the type of the parameter sequence θn. The second equality follows from the definition of Ct(ωt, λt, λ̃d) in (44),

using the minimax theorem [96] to switch between the order of the minimum and maximum. In the third line, we eliminate the

slack variables λi, ωi, and λ̃i, replacing Eq l(Si), Eφ(Xi), and Λ̃(p, θi), respectively. The last equality holds by the definition

of Cn(W) in (29).

APPENDIX J

ANALYSIS OF EXAMPLE 2

Consider the fading AVC in Example 2. To show the direct part with random codes, set the conditional input distribution

X ∼ N (0, ω(t)) given T = t in (21). Then, for every t ∈ T ,

Iq(X ;Y |T = t) ≥ 1

2
log

(
1 +

t2ω(t)

λ′(t) + σ2

)
, (206)

where we have denoted λ′(t) , E(S2|T = t). The last inequality holds since Gaussian noise is known to be the worst additive

noise under variance constraint [34, Lemma II.2]. The direct part follows. As for the converse part, consider a jamming scheme

where the state is drawn according to the conditional distribution S ∼ N (0, λ(t)) given T = t. Then, the proof follows from

Shannon’s classic result on the Gaussian channel Y = tX + V with V ∼ N (0, λ(t) + σ2).
We move to the deterministic code capacity. By Definition 4, the constant-parameter channel WY |X,S,T=t is symmetrized

by a conditional pdf ϕ(s|x) if
∫ ∞

−∞
ϕ(s|x2)fZ(y − tx1 − s)ds =

∫ ∞

−∞
ϕ(s|x1)fZ(y − tx2 − s)ds , ∀x1, x2, y ∈ R , (207)

where fZ(z) =
1√

2πσ2
e−z2/2σ2

. Equivalently, the constant-parameter channel is symmetrized by ϕx(s) ≡ ϕ(s|x) if

∫ ∞

−∞
ϕ0(s)fZ(y − tx− s)ds =

∫ ∞

−∞
ϕx(s)fZ(y − s)ds , (208)

for all x, y ∈ R. By substituting z = y − tx− s in the LHS, and z̄ = y − s in the RHS, we have
∫ ∞

−∞
ϕ0(y − tx− z)fZ(z)dz =

∫ ∞

−∞
ϕx(y − z̄)fZ(z̄)dz̄ . (209)

For every x ∈ R, define the random variable S(x) ∼ ϕx. We note that the RHS is the convolution of the pdfs of the random

variables Z and S(x), while the LHS is the convolution of the pdfs of the random variables Z and S(0) + x. This is not

surprising since the channel output Y is a sum of independent random variables, and thus the pdf of Y is a convolution of

pdfs. It follows that ϕ0(y− tx) = ϕx(y), and by plugging s instead of y, we have that ϕx symmetrizes the constant-parameter

channel WY |X,S,T=t if and only if

ϕx(s) = ϕ0(s− tx) . (210)

Then, the corresponding state cost satisfies
∫ ∞

−∞

∫ ∞

−∞
fX|T (x|t)ϕx(s)s

2 dx ds =

∫ ∞

−∞

∫ ∞

−∞
fX|T (x|t)ϕ0(s− tx)s2 ds dx

=

∫ ∞

−∞

∫ ∞

−∞
fX|T (x|t)ϕ0(a)(a+ tx)2 da dx

=

∫ ∞

−∞

[∫ ∞

−∞
(tx + a)2fX|T (x|t) dx

]
ϕ0(a) da (211)
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where the second equality follows by the integral substitution of a = s − tx. Observe that the bracketed integral can be

expressed as
∫ ∞

−∞
(tx + a)2fX|T (x|t) dx = E[(tX + a)2|T = t] = t2E[X2|T = t] + a2 . (212)

Thus, by (211),
∫ ∞

−∞

∫ ∞

−∞
fX|T (x|t)ϕx(s)s

2 dx ds =t2E[X2|T = t] +

∫ ∞

−∞
a2ϕ0(a) da

≥t2E[X2|T = t] . (213)

Note that the last inequality holds for any ϕx which symmetrizes the channel, and in particular for ϕ̂x(s) = δ(s− tx), where

δ(·) is the Dirac delta function. In addition, since ϕ̂0 gives probability 1 to S = 0, we have that (213) holds with equality for

ϕ̂x, and thus,

Λ̃(FX|T ) =
1

n

n∑

i=1

t2E[X2|T = t] =
∑

t∈T
PT (t)t

2
E[X2|T = t] = E(T 2ω(T )) , (214)

with ω(t) ≡ E[X2|T = t]. Hence,

L∗
n = max

ω(t) : Eω(T )≤Ω
E(T 2ω(T )) . (215)

Having shown that the minimum in (27) is attained by a 0-1 law, we have by Corollary 7 that the capacity of the fading

AVC is C(W) = lim inf Cn(W), with

Cn(W) =





min
FS|T : ES2≤Λ

max
FX|T : EX2≤Ω ,

E(T 2X2)≥Λ

Iq(X ;Y |T ) if max
ω(t) : Eω(T )≤Ω

E(T 2ω(T )) > Λ ,

0 if max
ω(t) : Eω(T )≤Ω

E(T 2ω(T )) ≤ Λ

. (216)

To show the direct part, we only need to consider the case where max
ω(t) : Eω(T )≤Ω

E(T 2ω(T )) > Λ. Then, set the conditional

input distribution X ∼ N (0, ω(t)) given T = t in (216). As in the direct part with random codes,

Iq(X ;Y |T = t) ≥ 1

2
log

(
1 +

t2ω(t)

λ′(t) + σ2

)
, (217)

with λ′(t) , E(S2|T = t), since Gaussian noise is the worst additive noise under variance constraint [34, Lemma II.2]. The

direct part follows. As for the converse part, for the conditional distribution S ∼ N (0, λ(t)) given T = t, we have that

Iq(X ;Y |T = t) ≤ 1

2
log

(
1 +

t2ω′(t)

λ(t) + σ2

)
, (218)

with ω′(t) , E(X2|T = t), since the Gaussian distribution maximizes the differential entropy. The proof follows.

APPENDIX K

PROOF OF LEMMA 13

Part 1

Since
∑d

j′=1 P
∗
j′ = Ω > 0, there must be some j ∈ [1 : d] such that P ∗

j = α − (N∗
j + σ2

j ) > 0, thus α > N∗
j + σ2

j . If

N∗
j = 0, then it follows that β ≤ σ2

j , hence

α > N∗
j + σ2

j = σ2
j ≥ β . (219)

Otherwise, N∗
j = β − σ2

j > 0, thus by the assumption P ∗
j > 0, we have that

0 < P ∗
j = α− (N∗

j + σ2
j ) = α− β . (220)

Part 2

Assume to the contrary that N∗
j = β − σ2

j > 0 and P ∗
j = 0. The assumption P ∗

j = 0 implies that α ≤ N∗
j + σ2

j = β, in

contradiction to part 1 of the Lemma. Hence, the assumption is false, and N∗
j > 0 implies that P ∗

j > 0.
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Part 3 and Part 4

By the definition of N∗
j in (72), we have that N∗

j + σ2
j = max(β, σ2

j ) for all j ∈ [1 : d]. Thus,

P ∗
j +N∗

j + σ2
j =max(β, σ2

j ) +
[
α−max(β, σ2

j )
]
+
= max(α, β, σ2

j ) = max(α, σ2
j ) , (221)

where the last equality is due to part 1. Part 4 immediately follows.

APPENDIX L

PROOF OF LEMMA 14

Let Xd be a zero mean random vector with the covariance matrix KX . Observe that by (84), the AVGPC is symmetrized

by a conditional pdf ϕxd(sd) = ϕ(sd|xd) if
∫ ∞

−∞
· · ·
∫ ∞

−∞
ϕ0(s

d)fZd(yd − xd − sd)dsd =

∫ ∞

−∞
· · ·
∫ ∞

−∞
ϕxd(sd)fZd(yd − sd)dsd , (222)

for all xd, yd ∈ Rd. By substituting zd = yd − xd − sd in the LHS, and z̄d = yd − sd in the RHS, this is equivalent to
∫ ∞

−∞
· · ·
∫ ∞

−∞
ϕ0(y

d − xd − zd)fZd(zd)dzd =

∫ ∞

−∞
· · ·
∫ ∞

−∞
ϕxd(yd − z̄d)fZd(z̄d)dz̄d . (223)

For every xd ∈ R
d, define the random vector S

d
(xd) ∼ ϕxd . We note that the RHS is the convolution of the pdfs of the

random vectors Zd and S
d
(xd), while the LHS is the convolution of the pdfs of the random vectors Zd and S

d
(0)+ xd. This

is not surprising since the channel output Y d is a sum of independent random vectors, and thus the pdf of Y d is a convolution

of pdfs. It follows that ϕ0(y
d − xd) = ϕxd(yd), and by plugging sd instead of yd, we have that ϕxd symmetrizes the AVGPC

if and only if

ϕxd(sd) = ϕ0(s
d − xd) . (224)

Then, the corresponding state cost satisfies
∫ ∞

−∞
· · ·
∫ ∞

−∞
fXd(xd)ϕxd(sd)

∥∥sd
∥∥2 dxd dsd

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
fXd(xd)ϕ0(s

d − xd)
∥∥sd
∥∥2 dsd dxd

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
fXd(xd)ϕ0(a

d)
∥∥ad + xd

∥∥2 dad dxd

=

∫ ∞

−∞
· · ·
∫ ∞

−∞

[∫ ∞

−∞
· · ·
∫ ∞

−∞

∥∥xd + ad
∥∥2 fXd(xd) dxd

]
ϕ0(a

d) dad (225)

where the second equality follows by the integral substitution of ad = sd − xd. Observe that the bracketed integral can be

expressed as
∫ ∞

−∞
· · ·
∫ ∞

−∞

∥∥xd + ad
∥∥2 fXd(xd) dxd = E

∥∥Xd + ad
∥∥2 = tr(KX) +

∥∥ad
∥∥2 . (226)

Thus, by (225),
∫ ∞

−∞
· · ·
∫ ∞

−∞
fXd(xd)ϕxd(sd)

∥∥sd
∥∥2 dxd dsd

=tr(KX) +

∫ ∞

−∞
· · ·
∫ ∞

−∞

∥∥ad
∥∥2 ϕ0(a

d) dad

≥tr(KX) . (227)

Note that the last inequality holds for any ϕxd which symmetrizes the channel. Now, observe that (224) holds for ϕ̂xd(sd) =
δ(sd − xd), where δ(·) is the Dirac delta function, hence ϕ̂xd symmetrizes the channel. In addition, since ϕ̂0 gives probability

1 to Sd = 0, we have that (227) holds with equality for ϕ̂xd , and thus, Λ̃(FXd) = tr(KX).

APPENDIX M

PROOF OF THEOREM 15

Consider the AVGPC under input constraint Ω and state constraint Λ.
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Achievability Proof

Assume that Ω > Λ. We show that C(Σ) ≥ C(Σ) = C
⋆(Σ). By [28, Theorem 3], if there exists an input distribution FXd

such that Λ̃(FXd) > Λ, then the capacity is given by

C(Σ) = max
F

Xd :
∑d

j=1 Pj≤Ω

Λ̃(F
xd )≥Λ

min
F

Sd :
∑

d
j=1 Nj≤Λ

I(Xd;Y d) , (228)

where Pj = EX2
j and Nj = ES2

j .

Consider the input distribution FXd of a Gaussian vector Xd ∼ N (0,KX), where the covariance matrix is given by

KX = diag(P ∗
1 , . . . , P

∗
d ). By Lemma 14, we have that

Λ̃(FXd) = tr(KX) =

d∑

j=1

P ∗
j = Ω. (229)

Having assumed that Ω > Λ, it follows that Λ̃(FXd) > Λ, hence (228) applies. Then, setting Xd ∼ N (0,KX) yields

C(Σ) ≥ min
F

Sd :
∑

d
j=1 Nj≤Λ

I(Xd;Y d) (230)

≥ min
F

Sd :
∑

d
j=1 Nj≤Λ

d∑

j=1

I(Xj ;Yj) (231)

≥ min
F

Sd :
∑

d
j=1 Nj≤Λ

d∑

j=1

1

2
log

(
1 +

P ∗
j

Nj + σ2
j

)
, (232)

where the second inequality holds as X1, . . . , Xd are independent and since conditioning reduces entropy, and the last inequality

holds since Gaussian noise is known to be the worst additive noise under variance constraint [34, Lemma II.2].

From this point, we use the considerations given in [61]. To prove the direct part, it remains to show that the assignment of

Nj = N∗
j , for j ∈ [1 : d], is optimal in the RHS of (232), where N∗

j are as defined in (72)-(73). An assignment of N1, . . . , Nd

is optimal if and only if it satisfies the KKT optimality conditions [20, Section 5.5.3],

d∑

j′=1

Nj′ = Λ , Nj ≥ 0 , (233)

P ∗
j

(Nj + σ2
j ) · (Nj + σ2

j + P ∗
j )
≤ θ , (234)

(
θ −

P ∗
j

(Nj + σ2
j ) · (Nj + σ2

j + P ∗
j )

)
Nj = 0 , (235)

for j ∈ [1 : d], where θ > 0 is a Lagrange multiplier.

We claim that the conditions are met by

θ = θ∗ ,
α− β
αβ

, and Nj = N∗
j , for j ∈ [1 : d] . (236)

Condition (233) is met by the definition of N∗
j , j ∈ [1 : d], in (72)-(73). Let j ∈ [1 : d] be a given channel index. We consider

the following cases. Suppose that N∗
j = 0. Then, Condition (235) is clearly satisfied. Now, if P ∗

j = 0, then Condition (234)

is satisfied since α > β by part 1 of Lemma 13. Otherwise, 0 < P ∗
j = α− (N∗

j + σ2
j ) = α− σ2

j , and then

P ∗
j

(Nj + σ2
j ) · (Nj + σ2

j + P ∗
j )

=
α− σ2

j

σ2
jα

≤ α− β
αβ

= θ∗ , (237)

where the last inequality holds since N∗
j = 0 only if β ≤ σ2

j . Thus, Condition (234) is satisfied.

Next, suppose that N∗
j > 0, hence N∗

j +σ
2
j = β. By part 2 of Lemma 13, this implies that P ∗

j > 0, i.e. P ∗
j = α−(N∗

j +σ
2
j ) =

α− β. Thus,

P ∗
j

(Nj + σ2
j ) · (Nj + σ2

j + P ∗
j )

=
α− β
β · α = θ∗ , (238)

and thus Condition (234) is satisfied with equality, and Condition (235) is satisfied as well.

As the KKT conditions are satisfied under (236), we deduce that the assignment of Nj = N∗
j , j ∈ [1 : d], minimizes the

RHS of (232). Together with (232), this implies that C(Σ) ≥ C
⋆(Σ) for Ω > Λ.
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Converse Proof

We use a similar technique as in [32] (see also [37, 16]). In general, the deterministic code capacity is bounded by the

random code capacity, hence C(Σ) ≤ C
⋆(Σ) = C

⋆(Σ), by Theorem 12. It remains to show that if Ω ≤ Λ, then the capacity is

zero. Suppose that Ω ≤ Λ, and assume to the contrary that there exists an achievable rate R > 0. Then, there exists a sequence

of (2nR, n, εn) codes Cn = (fd, g) for the AVGPC such that εn → 0 as n→∞, where the size of the message set is at least

2, i.e. M , 2nR ≥ 2.

Consider a jammer who chooses the state sequence from the codebook uniformly at random, i.e. Sd = fd(M ′), where M ′

is uniformly distributed over [1 : M]. This choice meets the state constraint, since the square norm of the state sequence is∥∥Sd
∥∥2 ≤ Ω ≤ Λ. The average probability of error is then bounded by

P (n)
e (FSd ,C ) =

1

M2

M∑

m=1

M∑

m′=1

∫

De(m,m′)

fZd(zd)dzd , (239)

where fZd(zd) =
∏d

j=1
1

(2πσ2
j )

n/2 e
−‖zj‖2/2σ2

j , and

De(m,m
′) = {zd : g(fd(m) + fd(m′) + zd) 6= m} . (240)

By interchanging the summation variables m and m′, we now have that

P (n)
e (FSd ,C ) =

1

2M2

∑

m,m′

∫

De(m,m′)

fZd(zd)dzd +
1

2M2

∑

m,m′

∫

De(m′,m)

fZd(zd)dzd

≥ 1

2M2

∑

m,m′ : m 6=m′

∫

De(m,m′)∪De(m,m′)

fZd(zd)dzd . (241)

Next, observe that for m 6= m′, De(m,m
′) ∪ De(m,m

′) = Rnd, and thus the probability of error is lower bounded by

P (n)
e (FSd ,C ) ≥ M(M− 1)

2M2
≥ 1

4
, (242)

where the last inequality holds since M ≥ 2. Hence, the assumption is false and a positive rate cannot be achieved when

Ω ≤ Λ. This completes the proof of the converse part.

APPENDIX N

PROOF OF THEOREM 16

Consider the AVC with colored Gaussian noise. First, we show that the problem can be transformed into that of an AVC

with fixed parameters. Then, we derive a limit expression for the random code capacity, and prove the capacity characterization

in Theorem 16 using the Toeplitz matrix properties in the auxiliary lemma below. To derive the deterministic code capacity,

we use similar symmetrizability and optimization arguments as in our proofs for the Gaussian product channel.

Lemma 22. [35, Section 2.3] (see also [43, 53] [39, Section 8.5]) Let ΨZ(ω) be the power spectral density of a zero mean

stationary process {Zi}∞i=1. Assume that ΨZ : [−π, π] → [0, ν] is bounded and integrable, for some ν > 0, and denote the

auto-correlation function by

rZ(ℓ) =
1

2π

∫ π

−π

ΨZ(ω)e
jω dω , ℓ = 0, 1, 2, . . . (243)

with j =
√
−1. For a sequence Z of length n, let σ2

1 , . . . , σ
2
n denote the eigenvalues of the n×n covariance matrix KZ , where

KZ(i, j) = rZ(|i−j|) for i, j ∈ [1 : n]. Then, for every real, monotone non-increasing, and bounded functionG : [0, ν]→ [0, η],

lim
n→∞

1

n

∞∑

i=1

G(σ2
i ) =

1

2π

∫ π

−π

G(ΨZ(ω)) dω (244)

if the integral exists.

A. Transformation to AVC with Fixed Parameters

Let KZ denote the n× n covariance matrix of the noise sequence Z. Consider the eigen decomposition of the covariance

matrix KZ , and denote the eigenvector and eigenvaule matrices by Q and Σ, respectively, i.e.

KZ = QΣQT , where QQT = I and Σ = diag{σ2
1 , . . . , σ

2
n} . (245)

We claim that the capacity of the AVC with colored Gaussian noise is the same as the capacity of the following AVC,

Y′ = X′ + Z′ + S′ , (246)
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where X′ = QTX, Z′ = QTZ, and S′ = QTS. Since Q is a unitary matrix, i.e. Q−1 = QT , the input and state constraints

remain the same, as ‖X′‖2 = (X′)TX′ = XTQQTX = XTX = ‖X‖2 ≤ nΩ, and similarly, ‖S′‖2 = ‖S‖2 ≤ nΛ.

Furthermore, the noise covariance matrix is now

KZ′ = QTKZQ = Σ = diag{σ2
1 , . . . , σ

2
n} . (247)

This transformation can be thought of as a linear system, which is not time invariant. Hence, the noise of the transformed

channel is a Gaussian process, but it is non-stationary. Thereby, the input-output relation above specifies a time varying channel,

{FY1,...,Yn|X1,...,Xn,S1,...,Sn
}∞n=1. From operational perspective, if there exists a (2nR, n, ε) code C = (f , g) for the original

AVC with colored Gaussian noise, then the code C ′ = (f ′, g′), given by f ′(m) = QT f(m) and g′(y′) = g(Qy′), is a (2nR, n, ε)
code for the transformed AVC in (246). Similarly, if there exists a (2nR, n, ε) code C ′ = (f ′, g′) for the transformed AVC,

then the code C = (f , g), given by f(m) = Qf ′(m) and g(y) = g′(QTy), is a (2nR, n, ε) code for the original AVC. Thus,

the original AVC and the transformed AVC have the same operational capacity.

Therefore, we can assume without loss of generality that the noise sequence has independent components Zi ∼ N (0, σ2
i ),

i ∈ [1 : n]. Assume, at first, that σ2
i ∈ T for i ∈ [1 : n], with some set T of finite size, which does not grow with n, and that

σ2
i > δ, where δ > 0 is arbitrarily small. Hence, observe that the channel in (246) is equivalent to a channel WY ′′|X′′,S′′,T ′′

with fixed parameters, specified by

Y ′′ = X ′′ + S′′ + Z ′′
t , where Z ′′

t ∼ N (0, t2) (248)

with the parameter sequence σ1, σ2, . . .. It is left to determine the random code capacity and deterministic code capacity of the

Gaussian AVC with fixed parameters in (248). Although we previously assumed in Sections II and III that the input, state, and

output alphabets are finite, our results can be extended to the continuous case as well, using standard discretization techniques

[15, 5] [36, Section 3.4.1].

Now, consider the double water filling allocation,

b∗i =
[
β′ − σ2

i

]
+
, (249)

a∗i =
[
α′ − (b∗i + σ2

i )
]
+
, (250)

for i ∈ [1 : n], where β′ > 0 and α′ > 0 are chosen to satisfy 1
n

∑n
i=1

[
β′ − σ2

i

]
+
= Λ and 1

n

∑n
i=1

[
α′ − (b∗i + σ2

i )
]
+
= Ω,

respectively. Define

C
⋆

n(KZ) ,
1

2n

n∑

i=1

log

(
1 +

a∗i
b∗i + σ2

i

)
. (251)

B. Random Code Capacity

Now that we have shown that the problem reduces to that of an AVC with fixed parameters, we have by Corollary 5 that

the random code capacity is given by

C
⋆(ΨZ) = lim inf

n→∞
max

P1,...,Pn :
1
n

∑n
i=1 Pi≤Ω

min
N1,...,Nn :

1
n

∑n
i=1 Ni≤Λ

1

n

n∑

i=1

C
⋆

σi
(Pi, Ni) , (252)

where C
⋆

σ(P,N) is the random code capacity of the traditional AVC under input constraint P and state constraint N . Hughes

and Narayan [60] showed that the random code capacity of such a channel, where the noise sequence is i.i.d. ∼ N (0, σ2), is

given by

C
⋆

σ(P,N) =
1

2
log

(
1 +

P

N + σ2

)
. (253)

Hence, for the AVC with colored Gaussian noise,

C
⋆(ΨZ) = lim inf

n→∞
min

N1,...,Nn :
1
n

∑n
i=1 Ni≤Λ

max
P1,...,Pn :

1
n

∑n
i=1 Pi≤Ω

1

2n

n∑

i=1

log

(
1 +

Pi

Ni + σ2
i

)
. (254)

Next, observe that this is the same min-max optimization as for the AVGPC in (78), due to [61], with d ← n, Ω ← (nΩ),
Λ← (nΛ). Therefore, by Theorem 12 [61] and (254),

C
⋆(ΨZ) = lim inf

n→∞
C
⋆

n(KZ) . (255)
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Given a bounded power spectral density ΨZ : [−π, π]→ [0, ν], define a function G : [0, ν]→ [0, η] by

G(x) =
1

2
log

(
1 +

[
α′ − [β′ + x]+

]
+

[β′ − x]+ + x

)
=





1
2 log

(
α′

β′

)
if x < β′

1
2 log

(
α′

x

)
if β′ ≤ x < α′

0 if x ≥ α′

(256)

and observe that

C
⋆

n(KZ) =
1

n

n∑

i=1

G(σ2
i ) . (257)

As G(x) is non-increasing and bounded by η = 1
2 log[1 + Ω/δ], we have by Lemma 22 that

lim inf
n→∞

C
⋆

n(KZ) =
1

2π

∫ π

−π

G(ΨZ(ω)) dω . (258)

Observing that the function defined in (256) is also continuous, while ΨZ(ω) is bounded and integrable, it follows that the

integral exists [86, Theorem 6.11]. Plugging (256) into the RHS of (258), we obtain

lim inf
n→∞

C
⋆

n(KZ) =
1

2π

∫ π

−π

1

2
log

(
1 +

[
α− [β +ΨZ(ω)]+

]
+

[β −ΨZ(ω)]+ +ΨZ(ω)

)
dω (259)

where β and α satisfy (91) and (93), respectively. Since the covariance matrix of the stationary noise process is Toeplitz

(see e.g. [43]), the density of eigenvalues on the real line tends to the power spectral density [44]. Given that the power

spectral density is bounded and integrable, we have that the sequence of eigenvalues σ2
1 , σ

2
2 , . . . is summable [43, Theorem

4.2], and thus, bounded as well. Hence, we can remove the assumption that the set of noise variances has finite cardinality,

by quantization of the variances. The random code characterization now follows from (255) and (259).

C. Deterministic Code Capacity

Moving to the deterministic code capacity, observe that for a constant-parameter Gaussian AVC, where the noise sequence

is i.i.d. ∼ N (0, σ2), we have that Λ̃(FX , σ) = EX2, by Lemma 14, taking d = 1. Therefore, for the Gaussian AVC with a

parameter sequence σ2
1 , . . . , σ

2
n,

L∗
n = max

FX|T : 1
n

∑
n
i=1 E[X2|T=σi]≤Ω

1

n

n∑

i=1

Λ̃(FX|T=σi
, σi) = max

FX|T : 1
n

∑
n
i=1 E[X2|T=σi]≤Ω

1

n

n∑

i=1

E[X2
i |T = σi] = Ω , (260)

where the first equality holds by the definition of L∗
n in (28) and by (42). It can further be seen from the proof of Lemma 14

in Appendix L that the Gaussian channel Y = X + S + Zσ is symmetrized by a distribution ϕ(s|x) that gives probability 1
to S = x, and that the minimum in the formula of Λ̃(FX , σ) in (41) is attained with this distribution.

Therefore, by Corollary 11, the capacity of the AVC with colored Gaussian noise is given by the limit inferior of

Rn(W) =





min
N1,...,Nn :

1
n

∑n
i=1 Ni≤Λ

max
P1,...,Pn,λ̃1,...λ̃n :

1
n

∑n
i=1 Pi≤Ω , 1

n

∑n
i=1 λ̃i≥Λ

1
n

n∑
i=1

Cσi(Pi, λ̃i, Ni) if L∗
n > Λ ,

0 if L∗
n ≤ Λ

(261)

where

Cσ(P,∆, N) = min
FS′′ : ES′′2≤N

max
FX′′ : EX′′2≤P ,

Λ̃σ(FX′′ ,σ)≥∆

Iq(X
′′;Y ′′|T ′′ = σ) . (262)

Consider the direct part. Suppose that Ω > Λ, hence L∗
n > Λ (see (260)), and set Pi = λ̃i = a∗i for i ∈ [1 : n]. This choice

of parameters satisfies the optimization constraints in (261), as
∑n

i=1 Pi = Ω, and also
∑n

i=1 λ̃i = Ω > Λ. Therefore,

Rn(W) ≥ min
N1,...,Nn :

1
n

∑n
i=1 Ni≤Λ

1

n

n∑

i=1

Cσi(a
∗
i , a

∗
i , λi) = min

N1,...,Nn,FS′′n :

ES′′2
i ≤Ni ,

1
n

∑n
i=1 Ni≤Λ

1

n

n∑

i=1

Iq(X
′′
i ;Y

′′
i |T ′′

i = σi) ,

≥ min
N1,...,Nn :

∑n
i=1 Ni≤nΛ

1

n

n∑

i=1

1

2
log

(
1 +

a∗i
Ni + σ2

i

)
(263)

where the the last inequality holds since Gaussian noise is known to be the worst additive noise under variance constraint [34,

Lemma II.2]. Next, observe that this is the same minimization as in (232), in the proof of the direct part for the AVGPC, with
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d← n, Ω← (nΩ), Λ← (nΛ) (see proof of Theorem 15 in Appendix M). Therefore, the minimum is attained with Ni = b∗i ,

and the RHS of (255) is achievable with deterministic codes as well, provided that Ω > Λ.

The converse part is straightforward. Since the deterministic code capacity is always bounded by the random code capacity,

we have that C(ΨZ) ≤ C⋆(ΨZ) = C
⋆(ΨZ). If Ω ≤ Λ, then L∗

n ≤ Λ by (260), hence C(KZ) = lim inf Rn(W) = 0 by the

second part of Corollary 11.
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