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Abstract—We consider a distributed stochastic optimization
problem in networks with finite number of nodes. Each node
adjusts its action to optimize the global utility of the network,
which is defined as the sum of local utilities of all nodes. Gradient
descent method is a common technique to solve the optimization
problem, while the computation of the gradient may require
much information exchange. In this paper, we consider that
each node can only have a noisy numerical observation of its
local utility, of which the closed-form expression is not available.
This assumption is quite realistic, especially when the system is
too complicated or constantly changing. Nodes may exchange
the observation of their local utilities to estimate the global
utility at each timeslot. We propose stochastic perturbation based
distributed algorithms under the assumptions whether each node
has collected local utilities of all or only part of the other nodes.
We use tools from stochastic approximation to prove that both
algorithms converge to the optimum. The convergence rate of the
algorithms is also derived. Although the proposed algorithms
can be applied to general optimization problems, we perform
simulations considering power control in wireless networks and
present numerical results to corroborate our claim.

Index Terms—optimization, stochastic approximation, conver-
gence analysis, distributed algorithms

I. INTRODUCTION

Distributed optimization is a fundamental problem in net-
works, which helps to improve the performance of the system
by maximizing some predefined objective function. Significant
amount of work have been done to solve the optimization
problems in various applications. For example, in power
control [2], [3], [4] and beamforming allocation [5], [6], [7],
[8] problems, transmitters need to control its transmission
power or beamforming in a smart manner, in order to maxi-
mize some performance metric of the wireless communication
systems, such as throughput or energy efficiency. In medium
access control problem [9], users set their individual channel
access probability to maximize their benefit. In wireless sensor
networks, sensor nodes collect information to serve a fusion
center, an interesting problem is to make each node indepen-
dently decide the quality of its report to maximize the average
quality of information gathered by the fusion center subject to
some power constraint [10], [11], note that a higher level of
quality requires higher power consumption.
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This paper considers an optimization problem in a dis-
tributed network where each node adjusts its own action
to maximize the global utility of the system, which is also
perturbed by a stochastic process, e.g., wireless channels. The
global utility is the sum of the local utilities of all nodes of
the network. Gradient descent method is the most common
technique to deal with optimization problems. In many sce-
narios in practice, however, the computation of gradient may
require too much information exchange between the nodes,
examples are provided in Section IV. Furthermore, there are
other contexts also where the utility function of each node does
not have a closed form expression or the expression is very
complex which makes it very hard to use in the optimization,
e.g., computation of the derivatives is very complicated or
not possible. In this paper, we consider therefore that a node
only has a noisy numerical observation of its utility function,
which is quite realistic when the system is complex and time-
varying. The nodes can only exchange the observation of
their local utilities so that each node can have the knowledge
of the whole network. However, a node may not receive
all the local utilities of the other nodes due to the network
topology or other practical issues, e.g., it is not possible to
exchange much signaling information. In this situation, a node
has to approximate the global utility with only incomplete
information of local utilities. We have also taken in account
such issue in this paper.

In summary, our problem is quite challenging due to the
following reasons: i) each node has only a numerical obser-
vation of its local utility at each time; ii) each node may have
incomplete information of the global utility of the network;
iii) the action of each node has an impact on the utilities of
the other nodes in the network; iv) the utility of each node is
also influenced by some stochastic process (e.g., time varying
channels in wireless networks) and the objective function is
the average global utility.

In this paper, we develop novel distributed algorithms to
optimize the global average utility of a network, where the
nodes can only exchange the numerical observation of their
local utility. Different versions of algorithms are proposed
depending on: i) whether the value of action is constrained or
unconstrained; ii) whether each node has the full knowledge
of local utilities of all the other nodes or only a part of the
utilities of other nodes. We have proved the convergence of
the algorithms in all situations, using stochastic approximation
tools. The convergence rate of different algorithms are also
derived, in order to show the convergence speed of the
proposed algorithms to the optimum from a quantitative point
of view and deeply investigate the impact of the parameters
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introduced by the algorithm. Our theoretical results are further
justified by simulations.

Some preliminary results of our work have been presented
in [1]. This extended version provides the complete proof of
all the results. Moreover, the constrained optimization problem
and the analysis of the convergence rate in this paper are not
considered at all in [1]. As we will see in Section VII, the
derivation of the convergence rate is especially challenging.

The rest of the paper is organized as follows. Section II dis-
cusses some related work and highlights our main contribution.
Section III describes the system model as well as some basic
assumptions. Section IV shows motivating examples to explain
the interest of our problem. Section V develops the initial ver-
sion of our distributed optimization algorithm using stochastic
perturbation (DOSP) and shows its convergence. Section VI
presents the first variant of the DOSP algorithm to deal with
the situation where a node has incomplete information of
the global utility of the network. Section V-D proposes the
second variant of the DOSP algorithm to solve the constrained
optimization problem. Section VII focuses on the analysis of
the convergence rate of the proposed algorithms. Section VIII
shows some numerical results as well as a comparison with
an alternative algorithm and Section IX concludes this paper.

II. RELATED WORK

Most of the prior work in the area of optimization consider
that the objective function has a well known and simple closed
form expression. Under this assumption, the optimization
problem can be performed using gradient ascent or descent
method [12]. This method can achieve a local optimum or
global optimum in some special cases (e.g. concavity of
the utility, etc.) of the optimization problem. A distributed
asynchronous stochastic gradient optimization algorithms is
presented in [13]. Incremental sub-gradient methods for non-
differentialable optimization are discussed in [14]. Interested
readers are referred to a survey by Bertsekas [15] on incremen-
tal gradient, sub-gradient, and proximal methods for convex
optimization. The use of gradient-based method supposes in
advance that the gradient can be computed or is available at
each node, which is not always possible as this would require
too much information exchanges. In our case, the computation
of the gradient is not possible at each node since only limited
control information can be exchanged in the network. This
problem is known as derivative-free optimization, see [16]
and the references therein. Our goal is then to develop an
algorithm that requires only the knowledge of a numerical
observation of the utility function. The obtained algorithm
should be distributed.

Distributed optimization has also been studied in the litera-
ture using game theoretic tools. However, most of the existing
work assume that a closed form expression of the payoff is
available. One can refer to [17], [18] and the references therein
for more details, while we do not consider non-cooperative
games in this paper.

Stochastic approximation (SA) [19], [20] is an efficient
method to solve the optimization problems in noisy environ-
ment. Typically, the action is updated as follows

ak+1 = ak + βkĝk. (1)

where ĝk represents an estimation of the gradient gk. An
important assumption is that the estimation error εk = ĝk−gk
is seen as a zero-mean random vector with finite variance, for
example, see [21]. If the step-size βk is properly chosen, then
ak can tend to its optimum point asymptotically. The challenge
of our work is how to propose such estimation of the gradient
only with the noisy numerical observation of the utilities.

Most of the previous work related to derivative-free op-
timization consider a control center that updates the entire
action vector during the algorithm, see [16] for more details.
However, in our distributed setting, each node is only able
to update its own action. Nevertheless, a stochastic approxi-
mation method using the simultaneous perturbation gradient
approximation (SPGA) [22] can be an option to solve our
distributed derivative-free optimization problem. The SPGA
algorithm was initially proposed to accelerate the convergence
speed of the centralized multi-variate optimization problem
with deterministic objective function. Two measurements of
the objective function are needed per update of the action.
The approximation of the partial derivative of an element i is
given by

ĝi,k =
f (ak + γk∆k)− f (ak − γk∆k)

2γk∆i,k
, (2)

where γk > 0 is vanishing and ∆k = [∆1,k, . . . ,∆N,k]
with each element ∆i,k zero mean and i.i.d. Two succes-
sive measurements of the objective function are required to
perform a single estimation of the gradient. The interest
of the SPGA method is that each variable can be updated
simultaneously and independently. Spall has also proposed an
one-measurement version of the SPGA algorithm in [23] with

ĝi,k =
f (ak + γk∆k)

2γk∆i,k
. (3)

Such algorithm also leads ak to converge, while with a de-
creased speed compared with the two-measurement SPGA. An
essential result is that the estimation of gradient using (2) or (3)
is unbiased if γk is vanishing, as long as the objective function
f is static. However, if the objective function is stochastic and
its observation is noisy, there would be an additional term of
stochastic noise in the numerator of (2) and (3), which may
seriously affect the performance of approximation when the
value γk is too small. As a consequence, the SPGA algorithm
cannot be used to solve our stochastic optimization problem.

The authors in [24] proposed a fully distributed Nash
equilibrium seeking algorithm which requires only a mea-
surement of the numerical value of the static utility function.
Their scheme is based on deterministic sine perturbation of
the payoff function in continuous time. In [25], the authors
extended the work in [24] to the case of discrete time and
stochastic state-dependent utility functions, convergence to a
close region of Nash equilibrium has been proved. However,
in a distributed setting, it is challenging to ensure that the
sine perturbation of different nodes satisfy the orthogonality
requirement, especially when the number of nodes is large.
Moreover, the continuous sine perturbation based algorithm
converges slowly in a discrete-time system. Stochastic pertur-
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bation based algorithm has been proposed in [26] to solve an
optimization problem, the algorithm is given by

ak+1 = ak + βvkf (ak + vk) , (4)

with vk the zero-mean stochastic perturbation. The behavior of
(4) has been analyzed in [26], however, under the assumption
that the objective function is static and quadratic. Our proposed
algorithm is different from (4) as we use the random per-
turbation with vanishing amplitude. In addition, the objective
function is stochastic with non-specified form in our setting,
which is much more challenging. Furthermore, we consider a
situation where nodes have to exchange their local utilities to
estimate the global utility and each node may have incomplete
information of the local utilities of other nodes.

III. SYSTEM MODEL

This section presents the problem formulation as well as
the basic assumptions. Throughout this paper, matrices and
vectors are in boldface upper-case letters and in in bold-face
lower-case letters respectively. Calligraphic font denotes set.
‖a‖ denotes the Euclidean norm of any vector a. In order to
lighten the notations, we use

F ′i (a) =
∂F

∂ai
(a) , F ′′i,j (a) =

∂2F

∂ai∂aj
(a) ,

and ∇F (a) = [F ′i (a) , . . . , F ′N (a)] in the rest of the paper.

A. Problem formulation

Consider a network consisting of a finite set of nodes
N = {1, . . . , N}. Each node i is able to control its own
action ai,k at each discrete timeslot k, in order to maximize
the performance of the network. Introduce the action vector
ak = [a1,k, . . . , aN,k]

T which contains the action of all nodes
at timeslot k. Let Ai denote the feasible action set of node i,
i.e., ai,k ∈ Ai. Introduce A = A1 × . . . × AN . In general,
the performance of a network is not only determined by the
action of nodes, but also affected by the environment state,
e.g., channels. We assume that the environment state of the
entire network at any timeslot k is described by a matrix
Sk ∈ S , which is considered as an i.i.d. ergodic stochastic
process.

For any realization of a and S, we are interested in the
global utility f (a,S) of the network, which is defined as the
sum of the local utility function ui (a,S) of each node i, i.e.,

f (a,S) =
∑
i∈N

ui (a,S) .

The network performance is then characterized by the average
global utility

F (a) = ES (f (a,S)) .

In this work, we consider a challenging setting that nodes do
not have the knowledge of Sk nor the closed-form expression
of the utility functions. Each node i only has a numerical
estimation ũi,k of its local utility ui (ak,Sk) at each timeslot.
Assume that

ũi,k = ui (ak,Sk) + ηi,k, (5)

with ηi,k some additive noise. Nodes can communicate with
each other so that each node i can get a approximate value
f̃i,k of the global utility fi (ak,Sk).

As a summary, our aim is to propose some distributed
solution of the following problem{

maximize F (a) = ES (f (a,S)) ,

subject to ai ∈ Ai, ∀i ∈ N .
(6)

An application example is introduced in Section IV to high-
light the interest of this problem.

B. Basic assumptions

We present the basic assumptions considered in this paper in
order to guarantee the performance of our proposed algorithm.

Denote a∗ as the solution of the problem (6). Since the
existence of a∗ can be ensured by the concavity of the
objective function F (a), we have the following assumption.

• A1. (properties of objective function) Both F ′i (a) and
F ′′i,j (a) exist continuously. There exists a∗ ∈ A such that
F ′i (a∗) = 0 and F ′′i,i (a∗) < 0, ∀i ∈ N . The objective
function is strictly concave, i.e.,

(a− a∗)T · ∇F (a) ≤ 0, ∀a ∈ A. (7)

Besides, for any i ∈ N and j ∈ N , there exists a constant
α1 ∈ R+ such that ∣∣F ′′i,j (a)

∣∣ ≤ α1. (8)

We have some further assumptions on the local utility func-
tions, which will be useful in our analysis.

• A2. (properties of local utility function) For any i ∈ N ,
the function a 7−→ ui (a,S) is Lipschitz with Lipschitz
constant LS, i.e.,

‖ui (a,S)− ui (ã,S)‖ ≤ LS ‖a− ã‖ . (9)

Besides, ES (ui (a,S)) < ∞, ∀i ∈ N , so that F (a) is
also bounded.

From A2, we can easily deduce that a 7−→ f (a,S) is also
Lipschitz with Lipschitz constant NLS, since

‖f (a,S)− f (ã,S)‖ =

∥∥∥∥∥∑
i∈N

(ui (a,S)− ui (ã,S))

∥∥∥∥∥
≤
∑
i∈N
‖ui (a,S)− ui (ã,S)‖ ≤ NLS ‖a− ã‖ . (10)

In the end, we consider a common assumption on the noise
term ηi,k introduced in (5).

• A3. (properties of additive noise) The noise ηi,k is zero-
mean, uncorrelated, and has bounded variance, i.e., for
any i ∈ N , we have E (ηi,k) = 0, E

(
η2i,k

)
= α4 < ∞,

and E (ηi,kηj,k) = 0 if i 6= j.
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Figure 1. (I) A D2D network with N transmitter-receiver pairs; (II) Downlink
multi-cell network, each eNB (or base station) may serve multiple UEs (users).

IV. MOTIVATING EXAMPLES

This section provides some examples and shows the limit
of the classical gradient-based methods.

We consider the power allocation problem in a general
network with N transmitter-receiver links. A link here can be
seen as a node in our system model as presented in Section III.
For example,

• in a D2D network with N transmitter-receiver pairs,
each transmitter communicates with its associated re-
ceiver and different links interfere among each other, see
Figure 1 (I).

• in a multi-cell network, each base station may serve
multiple users. We focus on the downlink, i.e., a user
is seen as its receiver and its associated base station is
seen as a transmitter, see Figure 1 (II).

In both models, the action ai,k is in fact the transmission power
of transmitter i at timeslot k, of which the value cannot exceed
the maximum transmission power amax. Thus we have Ai =
[0, amax], ∀i ∈ N . The environment state matrix Sk represents
the time-varying channel state of the network. More precisely,
Sk = [sij,k]i∈N ,j∈N , in which each element sij,k denotes
the the channel gain between transmitter i and receiver j at
timeslot k.

The utility function can be various depending on different
applications, e.g., throughput and energy efficiency [27].

In our first example, the local utility of each node i is given
by

ui (ak,Sk) = ω log (1 + ri,k)− κai,k, (11)

where ω, κ ∈ R+, κai,k represents the energy cost of trans-
mission, and ri,k denotes the bit rate given by

ri,k = log (1 + SINRi,k) with SINRi,k =
ai,ksii,k

σ2 +
∑
j 6=i aj,ksij,k

.

(12)
Note that the maximization of log-function of the bit rate is
of type proportional fairness, which is used to ensure fairness
among the nodes in the network. With the above notations,

the global utility function can be written as

f (1) (ak,Sk) = −κ
∑
i∈N

ai,k

+ ω
∑
i∈N

log

(
1 + log

(
1 +

ai,ksii,k
σ2 +

∑
j 6=i aj,ksji,k

))
. (13)

It is straightforward to show that f (1) (ak,Sk) is concave with
respect to ak, hence the existence of the optimum a∗ can be
guaranteed.

In order to maximize the average global utility
ESk

(
f (1) (ak,Sk)

)
, one may apply the classical stochastic

approximation method described by (1). An essential step is
that, each transmitter or receiver should be able to calculate
the partial derivative, i.e.,

ĝi,k =
∂f (1)

∂ai,k
=

ωSINRi,k
(1 + ri,k) ai,k

− κ

−
∑
n∈N

ωSINR2n,k
(1 + rn,k) (1 + SINRn,k)

sni,k
an,ksnn,k

. (14)

From (14), we find that the direct calculation of the partial
derivative is complicated and nodes should exchange much
information: Each node i should know the values of SINRn,k,
the cross-channel gain sni,k, as well as an,ksnn,k of all nodes
n ∈ N . Moreover, in the situation where the channel is time-
varying, it is not realistic for any receiver n to estimate the
direct-channel gain snn,k and all the cross-channel gain snj,k,
∀j ∈ N \ {n}.

We consider the sum-rate maximization problem as a second
example, i.e., to maximize yk =

∑
i∈N ri,k. The challenge

come from the fact that yk is not concave with respect to ai,k
if the rate ri,k is given by (12). For this reason, we have to
consider the approximation of ri,k and some variable change to
make the objective function concave, which is a well known
problem [28]. It is common to use change of variable (i.e.,
consider eai,k as the transmission power instead of ai,k) and
consider the approximation ri,k ≈ log (SINRi,k) [28], so that
the global utility function is written as

f (2)(ak,Sk)=ω
∑
i∈N

log

(
sii,keai,k

σ2 +
∑
j 6=i sji,keaj,k

)
− κ

∑
i∈N

eai,k .

(15)

It is straightforward to show the concavity of f (2). Similar to
(14), we evaluate

ĝi,k =
∂f (2)

∂ai,k

= ω − ω
∑
n∈N

sin,keai,k

σ2 +
∑
j 6=n δj,ksjn,keaj,k

− κ
∑
i∈N

eai,k ,

(16)

of which the calculation also requires much information, such
as the cross-channel gain sin,k ∀n ∈ N \ {i}, and all
the interference estimated by each receiver. All the channel
information has to be estimated and exchanged by each active
node, which is a huge burden for the network.

The two examples clearly shows the limit of the classical
methods and motivates us to propose some novel solution
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where low informational exchange are required. In this paper,
we consider that the nodes can only exchange their numerical
approximation of local utilities. It is worth mentioning that
the information exchange in our setting is much less than the
gradient based method. We present our distributed optimiza-
tion algorithms as well as their performance, in the situations
where each node has the complete or incomplete knowledge of
the local utilities of the other nodes, respectively. It is worth
mentioning that, apart from the examples presented in this
section, the solution proposed in this paper can also be applied
to other type of problems such beamforming, coordinated
multipoint (CoMP) [29], and so on.

V. DISTRIBUTED OPTIMIZATION ALGORITHM USING
STOCHASTIC PERTURBATION

This section presents a first version of our distributed
optimization algorithm. We assume that each node is always
able to collect the numerical estimation of local utilities from
all the other nodes. In this situation, each node can evaluate the
numerical value of the global utility function at each iteration
(or timeslot) k by applying

f̃ (a,Sk) =
∑
i∈N

ũi,k =
∑
i∈N

(ui (a,Sk) + ηi,k)

= f (a,Sk) +
∑
i∈N

ηi,k, (17)

since each node knows the complete information of ũi,k for
any i ∈ N . We first consider an unconstrained optimization
problem, i.e., A = RN , in Section V-A. The constrained
optimization problem with Ai = [ai,min, ai,max], ∀i ∈ N is
then presented in Section V-D.

A. Algorithm

The distributed optimization algorithm using stochastic per-
turbation (DOSP) is presented in Algorithm 1.

Algorithm 1 DOSP Algorithm for each node i
1) Initialize k = 0 and set the action ai,0 randomly.
2) Generate a random variable Φi,k, perform action ai,k +

γkΦi,k.
3) Estimate ũi,k, exchange its value with the other nodes

and calculate f̃ (ak + γkΦk,Sk) =
∑
j∈N ũi,k.

4) Update ai,k+1 according to equation (18).
5) k = k + 1, go to 2.

At each iteration k, an arbitrary reference node i updates
its action by applying

ai,k+1 = ai,k + βkΦi,kf̃ (ak + γkΦk,Sk) , (18)

in which βk and γk are vanishing step-sizes, Φi,k is randomly
generated by each node i and Φk = [Φ1,k, . . . ,ΦN,k]. Recall
that the approximation f̃ of the global utility is calculated
by each node using (17), of which the value depends on the
actual action performed by each node âi,k = ai,k+γkΦi,k and
the environment state matrix Sk. Note that âi,k is very close
to ai,k when k is large as γk is vanishing. An example is

presented in Section V-B to describe in detail the application
of Algorithm 1 in practice.

Obviously, (18) can be written in the general form (1), in
which

ĝi,k = Φi,kf̃ (ak + γkΦk,Sk) . (19)

As we will discuss in Section V-C, ĝi,k can be an asymptoti-
cally unbiased estimation of the partial derivative ∂F/∂ai and
ak can converge to a∗, under the condition that the parameters
βk, γk, and Φk are properly chosen. We state in what follows
the desirable properties of these parameters.
• A4. (properties of step-sizes) Both βk and γk take real

positive values with limk→∞ βk = limk→∞ γk = 0,
besides,

∞∑
k=1

βkγk =∞,
∞∑
k=1

β2
k <∞.

• A5. (properties of random perturbation) The elements of
Φk are i.i.d. with E (Φi,kΦj,k) = 0, ∀i 6= j. There exist
α2 > 0 and α3 > 0 such that

E
(
Φ2
i,k

)
= α2, |Φi,k| ≤ α3.

The conditions on the parameters can be easily achieved. We
show in Example 1 a common setting of these parameters,
which are also used to obtain the simulation results to be
presented in Section VIII.

Example 1. An easiest choice of the probability distribution
of Φi,k is the symmetrical Bernoulli distribution with Φi,k ∈
{−1, 1} and P (Φi,k = 1) = P (Φi,k = −1) = 0.5, ∀i, k. We
can verify the conditions in A5 with α2 = α3 = 1.

Let βk = β0 (k + 1)
−ν1 and γk = γ0 (k + 1)

−ν2 with the
constants β0, γ0, ν1, ν2 ∈ R+, so that both βk and γk are
vanishing. Since

∑∞
k=1 β

2
k converges if ν1 > 0.5;

∑∞
k=1 βkγk

diverges if ν1 + ν2 ≤ 1. Clearly, there exist pairs of ν1 and ν2
to make βk and γk satisfy the conditions in A4.

Remark 1. The proposed algorithm has similar shape com-
pared with the other existed methods proposed in [26], [24],
[25]. The difference between our solution and the sine per-
turbation based method [24], [25] is that, we use a random
vector Φk instead of some deterministic sine functions as
the perturbation term. Comparing (4) and (18), we can see
that the amplitude of random perturbation is vanishing in our
algorithm, which is not the case in the algorithm presented in
[26].

B. Application example

This section presents the application of Algorithm 1 to
perform resource allocation in a D2D network, in order
to highlight the interest of our solution. We focus on the
requirement arisen by Algorithm 1, in terms of computation,
memory and informational exchange.

Figure 2 briefly shows the algorithm procedure during one
iteration. Recall that âi,k denotes the actual value of the action
set by transmitter i at iteration k. In order to update âi,k, each
transmitter i needs to
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Figure 2. (I) At iteration k, each transmitter i transmits to its associated
receiver with transmission power âi,k; (II) Each receiver i sends the approx-
imate local utility ũi,k to its transmitter, every transmitter can receive and
decode this feedback information.

• independently and randomly generate a scalar Φi,k under
the condition A5;

• use a pre-defined vanishing sequence γk which is com-
mon for each link;

• independently update ai,k by applying (18), more details
will be provided soon.

Then âi,k is given by âi,k = ai,k + γkΦi,k.
Each transmitter i transmits to its associated receiver with

the transmission power of value âi,k. The associated receiver i
should be able to approximate the numerical value of its local
utility ũi,k and send this value to transmitter i as a feedback.
All the transmitters can evaluate f̃ (âk) using (17) under the
assumption that every transmitter is able to receive and decode
the feedback from all the receivers.

Then iteration k + 1 starts, each transmitter i needs to
update its power allocation strategy, what is required is listed
as follows:
• use a pre-defined vanishing sequence βk;
• reuse of the local random value Φi,k, which was gener-

ated by transmitter i at iteration k. It means that the value
of Φi,k should be saved temporarily

• use the numerical value of f̃k (âk), which has been
explained already.

Each transmitter can then update ai,k+1 independently using
(18).

In the following step, each transmitter updates âi,k+1 in the
same way as the previous iteration, i.e., âi,k+1 = ai,k+1 +
γk+1Φi,k+1, with Φi,k+1 a newly generated pseudo-random
value.

We can see that Algorithm 1 can be easily applied in
a network of multiple links: the algorithm itself has low
complexity and each receiver only needs to feedback one
quantity (ũi,k) per iteration to perform the algorithm.

C. Convergence results
This section investigates the asymptotic behavior of Algo-

rithm 1. For any integer k ≥ 0, we consider the divergence

dk = ‖ak − a∗‖2 (20)

to describe the difference between the actual action ak and
the optimal action a∗. Our aim is to show that dk → 0 almost
surely as k →∞.

In order to explain the reason behind the update rule (18),
we rewrite it in the generalized Robbins-Monro form [20], i.e.,

ak+1 = ak + βkĝk

= ak + βk (α2γk∇F (ak) + gk − α2γk∇F (ak) + ĝk − gk)

= ak + α2βkγk

(
∇F (ak) + bk +

ek
α2γk

)
, (21)

where gk represents the expected value of ĝk with respect to
all the stochastic terms (including Φ, S, and η) for a given
ak, i.e.,

gk = ES,Φ,η (ĝk) , (22)

note that we prefer to highlight the stochastic terms in (22),
an alternative way is to write (22) as gk = E (ĝk | ak); bk
denotes the estimation bias between gk and the actual gradient
of the average objective function F , i.e.,

bk =
gk
α2γk

−∇F (ak) ; (23)

and ek can be seen as the stochastic noise, which is the
difference between the value of a single realization of ĝk and
its average gk as defined in (22), i.e.,

ek = ĝk − gk. (24)

Remark 2. The analysis presented in this work is challenging
and different from the existed results. An explicit difference
comes from the unique feature of the algorithm itself as
discussed in Remark 1: we are using a different method
to estimate the gradient. Besides, the objective function is
stochastic with general form in our problem, while it is
considered as static in [22], [23] and it is assumed to be static
and quadratic in [26].

To perform the analysis of convergence, we have to inves-
tigate the properties of bk and ek.

Lemma 1. If all the conditions in A1-A5 are satisfied, then

‖bk‖ ≤ γkN
5
2
α3
3α1

2α2
= O (γk) , (25)

which implies that ‖bk‖ → 0 as k →∞.

Proof: See Appendix A.
Lemma 1 implies that ĝk defined in Algorithm 1 is a

reasonable estimator of the gradient with vanishing bias.

Lemma 2. If all the conditions in A1-A5 are satisfied and
‖ak‖ < ∞ almost surely, then for any constant ρ > 0, we
have

lim
K→∞

P

 sup
K′≥K

∥∥∥∥∥∥
K′∑
k=K

βkek

∥∥∥∥∥∥ ≥ ρ
 = 0, ∀ρ > 0. (26)

Proof: See Appendix B.
Based on the results in Lemma 1 and in Lemma 2, we can

build conditions under which ak → a∗ almost surely.

Theorem 1. If all the conditions in A1-A5 are satisfied and
‖ak‖ < ∞ almost surely, then ak → a∗ as k → ∞ almost
surely by applying Algorithm 1.

Proof: See Appendix C.
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D. Distributed optimization under constraints

In this section, we consider the constrained optimization
problem, in which the action of each node takes value from
an interval, i.e., Ai = [ai,min, ai,max], ∀i ∈ N . We assume
that a∗ is not on the boundary of the feasible set A, i.e.,
a∗i ∈ (ai,min, ai,max), ∀i ∈ N . For example, in the power
allocation problem, ai,k presents the transmission power of
transmitter i, which should be positive and not larger than a
maximum value.

Recall that the actually performed action by nodes is âk =
ak + γkΦk. At each iteration, we need to ensure that âi,k ∈
[ai,min, ai,max]. A direct solution is to introduce a projection
to the algorithm, i.e., (18) turns to

ak+1 = Proj (ak + βkĝk) , (27)

in which for any i ∈ N ,

ai,k+1 = min {max {ai,k + βkĝi,k, ai,min + α3γk+1} ,
ai,max − α3γk+1} . (28)

As |Φi,k| ≤ α3 by A5, (28) leads to ai,k+1 + γk+1 |Φi,k+1| ∈
[ai,min, ai,max].

Remark 3. In order to write (28) into the form similar
to (21), one has to re-define the bias term bi,k and the
stochastic noise ei,k because of the operator Proj. Therefore,
it is not straightforward to deduce of the convergence of the
constrained optimization algorithm from the results presented
in Section V-C.

Theorem 2. In the constrained optimization problem where
Ai = [ai,min, ai,max] and a∗i ∈ (ai,min, ai,max), ∀i ∈ N , by
applying the projection (27), we have ak → a∗ as k → ∞
almost surely under the assumptions A1-A5.

Proof: See Appendix D.

VI. OPTIMIZATION ALGORITHM WITH INCOMPLETE
INFORMATION OF UTILITIES OF OTHER NODES

A limit of Algorithm 1 is that each node is required to know
the local utility of all the other nodes. Such issue is significant
as there are many nodes in the network. It is thus important to
consider a more realistic situation where a node only has has
the knowledge of the local utilities of a subset Ii,k of nodes,
with Ii,k ⊆ N \ {i}. Throughout this section, we have the
following assumption:

• A6). at any iteration k, an arbitrary node i knows the
utility ũj,k of another node j with a constant probability
p ∈ (0, 1], i.e., the elements contained in the set Ii,k is
random, for any j 6= i, we have

P (j ∈ Ii,k) = p, P (j /∈ Ii,k) = 1− p. (29)

Notice that we do not assume any specified network topology
and each node i has a different and independent set Ii,k.

We propose a modified algorithm and then show its asymp-
totic performance. The algorithm is described in Algorithm 2.

The main difference between Algorithm 1 and Algorithm 2
comes from the approximation of the objective function, i.e.,

f̃
(I)
i (a,Sk, Ii,k)

=

{
ũi,k + N−1

|Ii,k|
∑
j∈Ii,k ũj,k, if |Ii,k| 6= 0,

0, if |Ii,k| = 0.
(30)

Similar to (18), the algorithm is given by

ai,k+1 = ai,k + βkĝ
(I)
i,k = ai,k + βkΦi,kf̃

(I)
i (a,Sk, Ii,k)

(31)

The basic idea is to consider (N − 1)
∑
j∈Ii,k ũj,k/ |Ii,k| as a

surrogate function of
∑
j∈N\{i} ũj,k, in the case where the set

Ii,k is non-empty. Otherwise, node i does not know any utility
of the other nodes, it then cannot estimate the global utility
of the system. As a result, node i keeps its previous action,
i.e., ai,k+1 = ai,k. Note that different users may have different
knowledge of the global utility as Ii,k is independent for each
node i. For example, node i may know ũj,k of a different
node j, whereas node j may not know ũi,k.

Algorithm 2 DOSP algorithm for each node i with incomplete
information of the utilities of other nodes

1) Initialize k = 0 and set the action ai,0 randomly.
2) Generate a random variable Φi,k, perform action ai,k +

γkΦi,k.
3) Estimate ũi,k, exchange its value with the other nodes

and calculate f̃ (I)
i using (30) based on the collected local

utilities.
4) Update ai,k+1 according to equation (31).
5) k = k + 1, go to 2.

Due to the additional random term Ii,k, the convergence
analysis of Algorithm 2 is more complicated than that of
Algorithm 1. We start with Lemma 3, which is useful for
the analysis in what follows

Lemma 3. The expected value of f̃ (I)
i (a,Sk, Ii,k) over all

possible sets Ii,k is proportional to f̃ (a,Sk), i.e.,

EIi,k
(
f̃
(I)
i (a,Sk, Ii,k)

)
= (1− (1− p)N )f̃ (a,Sk) . (32)

Proof: See Appendix E.
To simplify the notation, introduce

q = P (|Ii,k| 6= 0) = 1− (1− p)N . (33)

Similar to (21), we rewrite (31) as

ai,k+1 = ai,k + α2qβkγk

(
F ′i (ak) + b

(I)
i,k +

e
(I)
i,k

α2qγk

)
(34)

with

b
(I)
i,k =

ES,Φ,η,Ii,k

(
ĝ
(I)
i,k

)
α2qγk

− F ′i (ak) , (35)

e
(I)
i,k = ĝ

(I)
i,k − ES,Φ,η,Ii,k

(
ĝ
(I)
k

)
. (36)

We need to investigate the property of b(I)
i,k and e(I)

i,k in order
to show the convergence of Algorithm 2. The proof is more
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complicated because of the additional random term Ii,k in
both b

(I)
i,k and e

(I)
i,k compared with bi,k and ei,k discussed in

Section V.

Theorem 3. In the situation where nodes do not have the
access to all the other nodes’ local utilities and the objective
function is approximated by applying (30), then we still have
ak → a∗ as k → ∞ almost surely by applying Algorithm 2,
as long as the assumptions A1-A6 hold and ‖ak‖ <∞ almost
surely.

Proof: See Appendix F.

Remark 4. Although the asymptotic convergence still holds,
the convergence speed is reduced if the information of the
objective function is incomplete. By comparing (21) and (34),
we can see that the equivalent step size is decreased by q times.
Moreover, the variance of the stochastic noise e(I)

i,k is higher,
as the randomness is more significant when we use n < N
random symbols to represent the average of N symbols. More
discussion related to the convergence rate will be provided in
Section VII.

VII. CONVERGENCE RATE

In this section, we study the average convergence rate
of the proposed algorithm in order to investigate how fast
the proposed algorithms converge to the optimum from a
quantitative point of view. The analysis also provides a detailed
guideline of setting the parameters βk and γk which determine
the convergence rate. We start with the analysis considering
general forms of βk and γk. A widely used example is then
considered afterwards.

A. General analysis

As a common setting in the analysis of the convergence
rate [30], we have an additional assumption on the concavity
of the objective function in this section, i.e.,

• A7. F (a) is strongly concave, there exists α5 > 0 such
that

(a− a∗)T ∇F (ak) ≤ −α5 ‖a− a∗‖22 , ∀a ∈ A.
(37)

In this section, we are interested in the evolution of the average
divergence Dk = E(‖ak − a∗‖22). In order to distinguish
the two versions of algorithms with complete and incomplete
information of local utilities, we use D(C)

k and D(I)
k to denote

the divergence resulted by Algorithm 1 and Algorithm 2,
respectively.

An essential step of the analysis of the convergence rate
is to investigate the relation of the divergence between two
successive iterations.

Denote M (C) and M (I) as the upper bounds of E(‖ĝk‖
2
2)

and of E(
∥∥∥ĝ(I)k ∥∥∥2

2
) in Algorithm 1 and Algorithm 2 respec-

tively. Our result is stated in Lemma (4).

Lemma 4. Assume that A7 holds, for any k ≥ 1, D(C)
k resulted

by Algorithm 1 is such that

D
(C)
k+1 ≤ (1− 2α2α5βkγk)D

(C)
k

+N
5
2α1α

3
3βkγ

2
k

√
D

(C)
k +M (C)β2

k, (38)

Similarly, D(I)
k resulted by Algorithm 2 is such that

D
(I)
k+1 ≤ (1− 2α2α5qβkγk)D

(I)
k

+N
5
2α1α

3
3qβkγ

2
k

√
D

(I)
k +M (I)β2

k. (39)

Proof: See Appendix G.
We can see that both (38) and (39) can be written in the

simplified general form

Dk+1 ≤ (1−Aβkγk)Dk +Bβkγ
2
k

√
Dk + Cβ2

k, (40)

with positive constants

A(C) = 2α2α5, B
(C) = N

5
2α1α

3
3, C

(C) = M (C) (41)

in (38) and

A(I) = 2qα2α5, B
(I) = qN

5
2α1α

3
3, C

(I) = M (I) (42)

in (39).

Remark 5. In the constrained optimization problem, we can
obtain the same result as Lemma 4 directly from (68), for
any k ≥ Kc. In fact, the unconstrained optimization problem
can be seen as a special case of the constrained optimization
problem with ai,min = −∞, ai,max = +∞, and Kc = 0. For
this reason, we consider the general problem with Kc taken
into account, in the rest of this section.

Introduce
K0 = arg min

k≥Kc,βkγk<1/A

k,

which implies that 1−Aβkγk > 0 and k ≥ Kc as k ≥ K0.
Lemma 4 provides us the relation between Dk+1 and Dk.

Our next goal is to search a vanishing upper bound of Dk

using (40). In other words, we aim to search a sequence
UK0 , . . . , Uk, . . . such that

Uk+1 ≤ Uk and Dk ≤ Uk, ∀k ≥ K0.

This type of analysis is usually performed by induction:
consider a given expression of Uk and assume that Dk ≤ Uk,
one needs to show that Dk+1 ≤ Uk+1 by applying (40).

An important issue is then the proper choice of the form of
the upper bound Uk. Note that there exists only one step-
size βk in the classical stochastic approximation algorithm
described by (1), it is relatively simple to determine the form of
Uk with a further setting βk = β0k

−1, see [30]. Our problem
is much more complicated as we use two step-sizes βk and
γk with general form under Assumption A4. The following
lemma presents an important property of Uk.

Lemma 5. If there exists a decreasing sequence
UK0

, . . . , Uk, . . . such that Dk+1 ≤ Uk+1 can be deduced
from Dk ≤ Uk and (40), then ,

Uk ≥

 B

2A
γk +

√(
B

2A

)2

γ2k +
C

A

βk
γk

2

. (43)
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Proof: See Appendix H.
Note that the lower bound of Uk is vanishing as γk →

0 and βk/γk → 0. Such bound means that, using induction
by developing (40), the convergence rate of Dk cannot be
better than the decreasing speed of γ2k and of βk/γk. After
the verification of the existence of bounded constant ϑ or %
such that Dk ≤ ϑ2γ2k or Dk ≤ %2γk/βk, we obtain the final
results stated as follows.

Theorem 4. Define the following parameters:

χk =
1−

(
γk+1

γk

)2
βkγk

, ε1 = max
k≥K0

χk, ε2 = max
k≥K0

βk
γ3k
, (44)

$k =
1− βk+1γ

−1
k+1

βkγ
−1
k

βkγk
, ε3 = max

k≥K0

$k, ε4 = max
k≥K0

√
γ3k
βk

(45)

If χk < A for any k ≥ K0, then

Dk ≤ ϑ2γ2k, ∀k ≥ K0, (46)

with

ϑ ≥ max

{√
DK0

γK0

,
B +

√
B2 + 4Cε2 (A− ε1)

2 (A− ε1)

}
, (47)

If $k < A for any k ≥ K0, then

Dk ≤ %2
βk
γk
, ∀k ≥ K0, (48)

with

% ≥ max


√
DK0

γK0

βK0

,
Bε4 +

√
(Bε4)

2
+ 4C (A− ε3)

2 (A− ε3)

 .

(49)

Proof: See Appendix I.
For general forms of βk and γk, Theorem 4 provides two

upper bounds of the average divergence D(C)
k and D

(I)
k . The

conditions that χk < A and $k < A can be checked easily
considering any fixed βk and γk. In the situation where both
conditions are satisfied, we have

Dk ≤ min

{
ϑ2γ2k, %

2 βk
γk

}
, ∀k ≥ K0.

From Theorem 4, we can see that the decreasing order of
D

(C)
k and D(I)

k mainly depend on the step-sizes βk and γk, the
incompleteness factor q only has the influence on the constant
terms ϑ and %, which are functions of the parameters A, B,
and C defined in (41) and (42). The results of convergence rate
are useful to properly choose the parameters of the algorithm.
Intuitively, we need to make γ2k or βk/γk decrease as fast as
possible, having the constant ε1, ε2, ε3, and ε4 as small as
possible.

B. A special case

In this section, we consider an example as mentioned in
Example 1:

βk = β0 (k + 1)
−ν1 and γk = γ0 (k + 1)

−ν2 . (50)

Recall that 0.5 < ν1 < 1 and 0 < ν2 ≤ 1 − ν1 in order to
meet the conditions in A4.

Theorem 5. Consider βk and γk with given forms (50), if
β0γ0 ≥ max {2ν2, ν1 − ν2} /A, then there exists Ω < ∞,
such that

Dk ≤ Ω (k + 1)
−min{2ν2,ν1−ν2} , ∀k ≥ K0. (51)

Proof: See Appendix J.
We can see the explicit impact of each parameter on the

upper bound of the convergence rate from Theorem 5. It is
easy to show that

max {2ν2, ν1 − ν2} ≤ 0.5

with the equality holds when ν1 = 0.75 and ν2 = 0.25, which
corresponds to the best choice of ν1 and ν2 to optimize the
decreasing order of the upper bound of Dk. Theorem 5 also
provides a sufficient condition on the parameters that should
be satisfied in order to ensure the validation of the convergence
rate.

In what follows, we present a toy example to verify Theo-
rem 5.

Example 2. Consider N = 2 and a simple quadratic function
f (a,S) = −s1a21−s2a22+a1a2+a1+a2 with a1, a2 ∈ [0, 3].
Both s1 and s2 are realizations of a uniform distributed random
variable S which takes value from an interval [0.5, 1.5]. Taking
the average, the objective function is

F (a) = −a21 − a22 + a1a2 + a1 + a2.

It is straightforward to get that F (a) takes its maximum value
when a1 = a2 = 1. We can also deduce that F is strongly
concave with α5 = 1 in (37). We set the perturbation Φk

as introduced in Example 1, with α2 = 1. Thus we have
A = 2α2α5 = 2 by (41). Let βk = β0 (k + 1)

−0.75 and γk =
(k + 1)

−0.25.
By setting β0 ∈ {0.23, 0.28, 0.5}, we can verify the impor-

tance of the condition β0γ0 ≥ 0.25 = max {2ν2, ν1 − ν2} /A
as presented in Theorem 5. Figure 3 shows the comparison
results between the divergence Dk averaged by 1000 sim-
ulations and the bound Ω (k + 1)

−0.5 from (51). Note that
we are mainly interested in the asymptotic decreasing order
of Dk, thus we set the constant term Ω = 2 mainly to
facilitate the visual comparison of different curves. We find
that the curves of Dk decrease not-less-slowly than the bound
as β0 ∈ {0.28, 0.5}. When β0 = 0.23 < 0.25, the convergence
rate cannot be guaranteed, which further justify our claim in
Theorem 5.

Now we fix the values of β0 and γ0 and consider
(ν1, ν2) ∈ {(0.55, 0.15) , (0.7, 0.15) , (0.5, 0.2) , (0.65, 0.35)}.
Notice that all the four pairs of (ν1, ν2) lead to the
same decreasing order of the upper bound (51), as
min {2ν2, ν1 − ν2} = 0.3. The curves of Dk (averaged
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by 2000 simulations) are compared with the upper bound
Ω (k + 1)

−0.3 in Figure 4. Clearly, when the number of
iterations is large enough, all the curves decrease with the
same speed or even faster, compared with the bound.
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Figure 3. Comparison of the theoretical upper bound 2 (k + 1)−0.5 with the
evolution of the average divergence Dk (by 2000 simulations) using βk =
β0 (k + 1)0.75 and γk = (k + 1)0.25, with β0 ∈ {0.23, 0.28, 0.5}.
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Figure 4. Comparison of the theoretical upper bound 2 (k + 1)−0.3 with
the evolution of the average divergence Dk (by 2000 simulations) us-
ing βk = 0.4 · (k + 1)ν1 and γk = (k + 1)ν2 , with (ν1, ν2) ∈
{(0.55, 0.15) , (0.7, 0.15) , (0.5, 0.2) , (0.65, 0.35)}

VIII. SIMULATION RESULTS

In this section, we apply our algorithm to a power control
problem as introduced in Section IV in order to have some
numerical results. We consider (13) as the local utility function
of each node. The time varying channel hij between node i
(transmitter) and node j (receiver) is generated using a Gaus-
sian distribution with variance σ2

ii = 1 and σ2
ij = 0.1, ∀i 6= j.

Notice that the channel gain is sij = |hij |2. Besides, we set
σ2 = 0.2, ω = 20 and κ = 1.

A. Simulations with 4 nodes

In this section, we consider N = 4 nodes. In all the simu-
lations (applying different algorithms), the step size follows
βk = 2.5k−0.75, and the initial values of a0,i (∀i ∈ N )
are generated uniformly in the interval (0, 20]. In both Algo-
rithm 1 and Algorithm 2, γk = 12k−0.25 and Φi,k follows

the symmetrical Bernoulli distribution, i.e., P (Φi,k = 1) =
P (Φi,k = −1) = 0.5, ∀k, i.

We first compare our proposed algorithm with the sine
perturbation based algorithm in [25], considering the situation
in which every node has access to all the other nodes’ local
utilities. The sine perturbation based algorithm has a similar
shape as our stochastic perturbation algorithm, with the pertur-
bation term Φi,k replaced by a sine function λi sin (Ωitk + φi)

where tk =
∑k
k′=1 βk′ , Ωi 6= Ωi′ and Ωi′+Ωi 6= Ωi′′ ∀i, i′, i′′.

In the simulation, we set Ω1 = 63, Ω2 = 70, Ω3 = 56,
Ω4 = 49, λi = 1.5 and φi = 0, ∀i ∈ N . Notice that this
algorithm is not easy to implement in practice as it is hard
to choose all the parameters properly, especially when |N | is
large.

Furthermore, in order to show the efficiency of our algo-
rithm, we simulate also an ideal algorithm using the exact
gradient calculated by (14) which is costly to be obtained in
practice as discussed in Section IV.

We have performed 500 independent simulations to obtain
the average results shown in Figures 5 and 6. Figure 5
represents the utility function f (a,S) /N as a function of
number of iterations. We find that our algorithm converges
faster than the reference algorithm proposed in [25] 1. Figure
6 shows the evolution of the power (action) of the four nodes.
Notice that the four curves representing the action of each
node are close in average in each sub-figure, since we consider
the model with symmetric parameters. We find the oscillation
of the power (action) is more significant by applying the
reference algorithm.
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Figure 5. Evolution of the utility function, average results by 500 simulations

Now we consider the situation where each node has incom-
plete collection of local utilities. We perform 100 independent
simulation with p ∈ {1, 0.5, 0.25, 0.1}. Recall that p defined
in (29) represents the level of incompleteness. The results are
shown in Figure 7. We can see that the convergence speed
decreases as the value of p goes smaller. Such influence is not
significant even if p = 0.5, i.e., a node has only 50% chance
to know the local utility of another user, which reduces a lot
the information exchange in the network. As the value of p
is very small, i.e., p = 0.1, same trend of convergence can
be observed, although the algorithm converges slowly. On the

1The reference algorithm is quite sensitive to the parameters, the presented
results are the best that we have found so far.
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Figure 6. Evolution of power (action) of 4 nodes, average results by 500
simulations

figure, we show the results obtained after up to 104 iterations
only, which explains why for p = 0.1 the algorithm has not
converged yet to the optimal solution.
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Figure 7. Evolution of Dk/N , average results by 100 simulations, with
p ∈ {1, 0.5, 0.25, 0.1}.

B. Simulations with 10 nodes

In this section, we consider a more challenging case with
N = 10. We choose βk = 2 (k + 1)

−0.75 and γk =
12 (k + 1)

−0.25. The results are presented in Figure 8 with
p ∈ {1, 0.5, 0.25, 0.1}, note that we have also plotted a line
representing the optimum value of the average utility function.
The shape of the curves in Figure 8 is similar to those in
Figure 7. The algorithm converges slower as the number of
nodes increases, yet the influence of the incompleteness of
the received local utilities is less important.

IX. CONCLUSION

In this paper we have a challenging distributed optimization
problems, under the assumption that only a numerical value of
the stochastic state-dependent local utility function of the node
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Figure 8. Evolution of Dk/N , average results by 100 simulations,with p ∈
{1, 0.5, 0.25, 0.1}.

is available at each time and nodes need to exchange their local
values to optimize the total utilities of the network. We have
developed fully distributed algorithms that converge to the
optimum, in the situations where each node has the knowledge
of all or only a part of the local utilities of the others.
The convergence of our algorithms is examined by studying
our algorithm using stochastic approximation technique. The
convergence rate of the algorithms are derived. Numerical
results are also provided for illustration.

APPENDIX

A. Proof of Lemma 1

In this proof, we mainly need to find the relation between
gk (the expected estimation of gradient) and ∇F (ak) (the
actual gradient of the objective function), so that the upper
bound of ‖bk‖ can be derived.

From the definition of gk, we have

gk = ES,Φ,η

(
Φk

(
f (ak + γkΦk,Sk) +

∑
i∈N

ηi,k

))
= EΦ (ΦkES (f (ak + γkΦk,Sk)))

= EΦ (ΦkF (ak + γkΦk)) , (52)

recall that the additive noise ηi,k is zero mean and F is the
expected value of f by definition.

Based on Taylor’s theorem and mean-valued theorem, there
exists ãk locating between ak and ak + ckΦk such that

F (ak + γkΦk) = F (ak) +
∑
j∈N

γkΦj,tF
′
j (ak)

+
∑

j1,j2∈N

γ2k
2

Φj1,kΦj2,kF
′′
j1,j2 (ãk) . (53)
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Benefit from the properties of Φk (A4), we have, ∀i ∈ N ,

gi,k = F (ak)EΦ (Φi,k) + γk
∑
j∈N

F ′j (ak)EΦ (Φi,kΦj,k)

+
∑

j1,j2∈N

γ2k
2
EΦ

(
Φi,kΦj1,kΦj2,kF

′′
j1,j2 (ãk)

)
= α2γk (F ′i (ak) + bi,k) , (54)

from (52) and (53), with

bi,k =
∑

j1,j2∈N

γk
2α2

EΦ

(
Φi,kΦj1,kΦj2,kF

′′
j1,j2 (ãk)

)
.

From assumptions A2 and A4, |bi,k| can be upper bounded by

|bi,k| ≤
∑

j1,j2∈N

γk
2α2

EΦ

(
|Φi,k| · |Φj1,k| · |Φj2,k| ·

∣∣F ′′j1,j2 (ãk)
∣∣)

≤
∑

j1,j2∈N

γk
2α2

EΦ

(
α3
3α1

)
= γkN

2α
3
3α1

2α2
, (55)

then we can get (25). Thus ‖bk‖ → 0 as γk is vanishing,
which concludes the proof.

B. Proof of Lemma 2
The proof of Lemma 2 is mainly by the application of

Doob’s martingale inequality [31].
We first need to show that the sequence{∑K′

k=K βkek

}
K′≥K

is martingale, which is straightforward

as ĝk and ĝk′ are independent if k 6= k′ and

ES,Φ,η (ek) = ES,Φ,η (ĝk − ES,Φ,η (ĝk)) = 0.

Then, by Doob’s martingale inequality, for any positive con-
stant ρ, we have

P

 sup
K′≥K

∥∥∥∥∥∥
K′∑
k=K

βkek

∥∥∥∥∥∥ ≥ ρ


≤ 1

ρ2
ES,Φ,η


∥∥∥∥∥∥
K′∑
k=K

βkek

∥∥∥∥∥∥
2


=
1

ρ2
ES,Φ,η

 K′∑
k=K

K′∑
k′=K

βkβk′e
T
k · ek′


(a)
=

1

ρ2
ES,Φ,η

 K′∑
k=K

‖βkek‖2


≤ 1

ρ2

∞∑
k=K

ES,Φ,η

(
β2
k ‖ĝk − ES,Φ,η (ĝk)‖2

)
=

1

ρ2

∞∑
k=K

β2
k

(
ES,Φ,η

(
‖ĝk‖

2
)
− ‖ES,Φ,η (ĝk)‖2

)
≤ 1

ρ2

∞∑
k=K

β2
kES,Φ,η

(
‖ĝk‖

2
)

(b)

≤ M

ρ2

∞∑
k=K

β2
k (56)

where (a) holds as E
(
eTk · ek′

)
= 0 for any k 6= k′ and (b) is

by Lemma 6 as stated and proved in the end of this section.
Since limK→∞

∑∞
k=K β

2
k = 0 by Assumption A4 and M is

bounded, we have M
ρ2

∑∞
k=K β

2
k vanishing for any bounded

constant ρ. Therefore, the probability that
∥∥∥∑K′

k=K βkek

∥∥∥ ≥ ρ
is also vanishing, which concludes the proof.

Lemma 6. If all the conditions in A1-A5 are satisfied and
‖ak‖ <∞ almost surely, then there exists a bounded constant
M > 0, such that ES,Φ,η

(
‖ĝk‖

2
)
< M almost surely.

Proof: For any i ∈ N , we evaluate

ES,Φ,η

(
ĝ2i,k
)

= ES,Φ,η


Φi,kf (ak + γkΦk,Sk) + Φi,k

∑
j∈N

ηj,k

2


(a)
= ES,Φ

(
(Φi,kf (ak + γkΦk,Sk))

2
)

+Nα2α4

(b)

≤ α2
3ES,Φ

(
(f (ak + γkΦk,Sk))

2
)

+Nα2α4

(c)

≤ α2
3ES,Φ

(
(‖f (0,Sk)‖+NLSk‖ak + γkΦk‖)2

)
+Nα2α4

(d)

≤ 2α2
3ES

(
µ2

Sk
+N2L2

Sk

(
‖ak‖+ γkN

1
2α3

)2)
+Nα2α4

(e)
= 2α2

3

(
µ+N2L

(
‖ak‖+ γkN

1
2α3

)2)
+Nα2α4

<∞ (57)

where (a) is due to EΦ,η

((
Φi,k

∑
j∈N ηj,k

)2)
= Nα2α4

and (b) is by Assumption A4. From (10), we have

‖f (a,S)‖−‖f (0,S)‖ ≤ ‖f (a,S)− f (0,S)‖ ≤ NLS ‖a‖ ,

so ‖f (a,S)‖ ≤ ‖f (0,S)‖+NLS ‖a‖, (c) can be obtained.
We denote µSk = ‖f (0,Sk)‖ in (d) and the inequality is
because of (x+y)/2 ≤

√
(x2 + y2) /2, ∀x, y ∈ R. In (e), we

introduce µ = ES

(
µ2

Sk

)
and L = ES

(
L2

Sk

)
.

Based on (57), we see that E
(
‖ĝk‖

2
)

=
∑
i∈N E

(
ĝ2i,k

)
is also bounded, which concludes the proof.

C. Proof of Theorem 1

In this proof, we start with the evolution of the divergence
dk as defined in (20), then we show that dk should be
vanishing almost surely by applying Lemma 1 and Lemma 2.

By definition, we have

dk+1 = ‖ak+1 − a∗‖2 = ‖ak + βkĝk − a∗‖
2

= dk + β2
k ‖ĝk‖

2
+ 2βk (ak − a∗)T · ĝk. (58)

We sum both sides of (58) to obtain

dK+1 = d0 +

K∑
k=0

(
β2
k ‖ĝk‖

2
+ 2βk (ak − a∗)T · ĝk

)
. (59)



13

Consider (21), we can rewrite (59) as

dK+1 = d0 +

K∑
k=0

β2
k ‖ĝk‖

2
+ 2

K∑
k=0

βk (ak − a∗)T · ek

+ 2α2

K∑
k=0

βkγk (ak − a∗)T · (∇F (ak) + bk) . (60)

As stated in Lemma 2, we have limK→∞

∥∥∥∑K
k=0 βkek

∥∥∥ <
∞ (a.s.), besides ‖ak − a∗‖ <∞ a.s., thus

lim
K→∞

∥∥∥∥∥
K∑
k=0

βk (ak − a∗)T · ek

∥∥∥∥∥ <∞, a.s. (61)

From Lemma 6, we have ‖ĝk‖
2
<∞ almost surely. Then, by

A5, the following holds almost surely as well,

lim
K→∞

K∑
k=0

β2
k ‖ĝk‖

2
<∞. (62)

From the above equations (60)-(62), we conclude that there
exists W <∞ such that dK+1 ≤W + zK , with

zK = 2α2

K∑
k=0

βkγk (ak − a∗)T · (∇F (ak) + bk) . (63)

Since dK+1 ≥ 0 by definition, we have zK > −∞.
Recheck (55), we can say that for an arbitrary small positive

value εb, there exists Kb such that,

‖∇F (ak) + bk‖ ≥ (1− εb) ‖∇F (ak)‖ , ∀k ≥ Kb, (64)

which also implies that (ak − a∗)T · (∇F (ak) + bk) ≤ 0,
∀k ≥ Kb, by the concavity of F in (7). Therefore 0 ≤
dK+1 < ∞ for any large K and limK→∞ dK+1 = d exists.
The following steps of the proof is similar to the classical
proof in [32].

Assume that: H1) d > 0, i.e., ak does not converge to a∗,
then for any εh > 0, there exists Kh such that

(ak − a∗)T · ∇F (ak) < −εh, ∀k ≥ Kh. (65)

From (63) and (64), we get that ∀k ≥ Km = max {Kh,Kb},

(ak − a∗)T · (∇F (ak) + bk) < −εh (1− εb) , (66)

which leads to

lim
K→∞

K∑
k=Km

βkγk (ak − a∗)T · (∇F (ak) + bk)

< −εh (1− εb) lim
K→∞

K∑
k=Km

βkγk < −∞, (67)

as
∑
βkγk diverges by assumption A4.

We find that zK < −∞ and dK+1 < −∞. However
dK+1 should be positive by definition. Therefore, the hypoth-
esis H1 cannot be true, there should be limk→∞ dk = 0,
limk→∞∇F (ak) = 0, and limk→∞ ak = a∗ almost surely,
which concludes the proof.

D. Proof of Theorem 2
We learn first the property of the projection (28) in order

to find an efficient way to simplify the proof. Otherwise, as
stated in Remark 3, the proof can be complicated.

Define Ci,k = [ai,min + α3γk, ai,max − α3γk] for any i ∈
N and Ck = C1,k×. . .×CN,k. Obviously, Proj (ak + βkĝk) ∈
Ck+1 by (28). Since γk is a decreasing sequence, we find that
Ck ⊆ Ck+1. Furthermore, we have limk→∞ Ck = [0, amax]

N

as limk→∞ γk = 0. Hence, there exists Kc ∈ N, such that
a∗ ∈ Ck+1 for any k ≥ Kc. It is straightforward to prove that

‖Proj (ak + βkĝk)− a∗‖ ≤ ‖ak + βkĝk − a∗‖ , ∀k ≥ Kc,

meaning that the projection makes ak+1 closer to a∗ in the
Euclidean space when ak+1 ∈ Ck+1 and a∗ ∈ Ck+1.

Re-consider the divergence as defined in (20), we have

dk+1 = ‖Proj (ak + βkĝk)− a∗‖2 .
≤ ‖ak + βkĝk − a∗‖

2
, ∀k ≥ Kc. (68)

from which we get

dK+1 ≤ dKc +

K∑
k=Kc

β2
k ‖ĝk‖

2
+ 2

K∑
k=Kc

βk (ak − a∗)T · ek

+ 2α2

K∑
k=Kc

βkγk (ak − a∗)T · (∇F (ak) + bk) , (69)

where bk and ek are the same as those defined in (23) and
(24). The results presented in Lemma 1 and in Lemma 2 are
valid as well.

Clearly, (69) has similar shape compared with (60). Using
similar steps in Appendix C, Theorem 2 can be proved.

E. Proof of Lemma 3
We start with the conditional expectation, based on (30), we

have

EIi,k
(
f̃
(I)
i (a,Sk, Ii,k)

∣∣ |Ii,k| = n
)

=

{
ũi,k + N−1

n EIi,k
(∑

j∈Ii,k ũj,k
∣∣ |Ii,k| = n

)
, if n 6= 0,

0, if n = 0.

(70)

Denote U (n)
i as a collection of all possible sets Ii,k such

that |Ii,k| = n, e.g., U (1)
i = {{1} , . . . , {i− 1} , {i+ 1} , . . .}.

Since each node has an equal probability to be involved in
Ii,k, the sets in U (n)

i are also equiprobable, i.e.,

P
(
Ii,k = I

∣∣ |Ii,k| = n
)

=
1(

N−1
n

) , ∀I ∈ U (n)
i ,

note that the cardinal of U (n)
i is

(
N−1
n

)
. We evaluate

EIi,k

 ∑
j∈Ii,k

ũj,k

∣∣∣∣ |Ii,k| = n


=

∑
I∈U(n)

i

1(
N−1
n

) ∑
j∈I

ũj,k =
1(

N−1
n

) n(N−1n )
N − 1

∑
j∈N\{i}

ũj,k

=
n

N − 1

∑
j∈N\{i}

ũj,k. (71)
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Combine (70) and (71), for any n ∈ {1, . . . , N − 1}, we have

EIi,k
(
f̃
(I)
i (a,Sk, Ii,k)

∣∣ |Ii,k| = n
)

= f̃ (a,Sk) . (72)

According to the basic rule of expectation,

E
(
f̃
(I)
i (a,Sk, Ii,k)

)
=

N−1∑
n=0

P (|Ii,k| = n)EIi,k
(
f̃
(I)
i (a,Sk, Ii,k)

∣∣ |Ii,k| = n
)

=

N−1∑
n=1

P (|Ii,k| = n) f̃ (a,Sk)

= (1− P (|Ii,k| = 0)) f̃ (a,Sk)

=
(
1− (1− p)N

)
f̃ (a,Sk) ,

which concludes the proof.

F. Proof of Theorem 3

As the analysis in Section V-C, we mainly need to check:

• C1) whether b(I)
i,k is vanishing;

• C2) whether
∑∞
k=1 βke

(I)
k converges.

The proof of these two statements are more complicated as
compared to Appendix A and Appendix B, since there is an
additional random term Ii,k in both b

(I)
i,k and e

(I)
i,k, compared

with bi,k and ei,k discussed in Section V. Then Theorem 3
can be proved in the end.

1) Proof of C1: We start with the bias term, by Lemma 3,
we have

ES,Φ,η,Ii,k

(
ĝ
(I)
i,k

)
= ES,Φ,η,Ii,k

(
Φi,kf̃

(I)
i (a,Sk, Ii,k)

)
= qES,Φ,η

(
Φi,kf̃ (a,Sk)

)
.

We then find that b(I)
i,k in this section is the same as bi,k defined

in (23), as

b
(I)
i,k =

qES,Φ,η

(
Φi,kf̃ (a,Sk)

)
qα2γk

− F ′i (ak)

= bi,k. (73)

Therefore, b(I)
i,k can be vanishing as γk is vanishing according

to Lemma 1, C1 is verified.
2) Proof of C2: The second step is to analyze the stochastic

noise to check C2. From the definition (36) , we have

ES,Φ,η,Ii,k

(
e
(I)
i,k

)
= ES,Φ,η,Ii,k

(
ĝ
(I)
i,k − ES,Φ,η,Ii,k

(
ĝ
(I)
i,k

))
= 0.

As Ii,k and Ii,k′ are independent for any k 6= k′, the
sequence

{∑K′

k=K γke
(I)
k

}
K′≥K

is martingale. By applying

Doob’s inequality, we have

P

 sup
K′≥K

∥∥∥∥∥∥
K′∑
k=K

βke
(I)
k

∥∥∥∥∥∥ ≥ ρ


≤ 1

ρ2
ES,Φ,η,Ii,k


∥∥∥∥∥∥
K′∑
k=K

βkek

∥∥∥∥∥∥
2


(a)

≤ 1

ρ2

∞∑
k=K

β2
k

∑
i∈N

ES,Φ,η,Ii,k

((
ĝ
(I)
i,k

)2)
, (74)

where (a) can be obtained using similar steps in (56). In order

to evaluate the average of
(
ĝ
(I)
i,k

)2
, we need to consider, for

any n ∈ {1, . . . , N − 1},

EIi,k
((

ĝ
(I)
i,k

)2 ∣∣ |Ii,k| = n

)

= Φ2
i,kEIi,k


ũi,k +

N − 1

n

∑
j∈Ii,k

ũj,k

2
∣∣∣∣∣∣∣ |Ii,k| = n


(a)

≤ α2
3 (n+ 1)

(
ũ2i,k +

(
N − 1

n

)2

·

EIi,k

 ∑
j∈Ii,k

ũ2j,k

∣∣∣∣∣∣ |Ii,k| = n


(b)
= α2

3 (n+ 1)

ũ2i,k +
N − 1

n

∑
j∈N\{i}

ũ2j,k


(c)

≤ α2
3

(n+ 1) ũ2i,k + 2 (N − 1)
∑

j∈N\{i}

ũ2j,k

 , (75)

where (a) is by Φ2
i,k ≤ α2

3 and
∑m
i=1 xi/m ≤

√∑m
i=1 x

2
i /m,

(b) can be proved using the same way as (71), and (c) is due
to 1 < (n+ 1) /n ≤ 2 as 1 ≤ n ≤ N − 1.

Since ĝ(I)
i,k = 0 as n = 0 by definition, we have

EIi,k
((

ĝ
(I)
i,k

)2)
=

N−1∑
n=1

P (|Ii,k| = n)EIi,k
((

ĝ
(I)
i,k

)2∣∣∣∣ |Ii,k| = n

)
≤ EIi,k (|Ii,k|)α2

3ũ
2
i,k+

P (|Ii,k| 6= 0) · α2
3

ũ2i,k + 2 (N − 1)
∑

j∈N\{i}

ũ2j,k


= α2

3

(p (N − 1) + q) ũ2i,k + 2 (N − 1) q
∑

j∈N\{i}

ũ2j,k

 ,

(76)

where EIi,k (|Ii,k|) = (N − 1) p and q = P (|Ii,k| 6= 0) is
defined in (33).
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We also need to find a upper bound of ES,Φ,η

(
ũ2i,k

)
for

any i ∈ N , the following steps are similar to (57),

ES,Φ,η

(
ũ2i,k

)
= ES,Φ,η

(
(ui (ak + γkΦk,Sk) + ηi,k)

2
)

= ES,Φ

(
(ui (ak + γkΦk,Sk))

2
)

+ α4

(a)

≤ ES,Φ

(
(‖ui (0,Sk)‖+ LSk ‖ak + γkΦk‖)2

)
+ α4

(b)

≤ 2ES

(
ι2Sk + L2

Sk

(
‖ak‖+

√
Nγkα3

)2)
+ α4

(c)
= 2

(
ι+ L

(
‖ak‖+

√
Nγkα3

)2)
+ α4 <∞ (77)

where: (a) is by (10); in (b), we introduce ιSk =
maxi∈N {‖ui (0,Sk)‖} < ∞ as an bounded upper bound
of ‖ui (0,Sk)‖; in (c), we denote ι = ES

(
ι2Sk
)

and L =
ES

(
L2

Sk

)
. Note that the upper bound (77) is valid for any

i ∈ N .
Based on (76) and (77), we evaluate

ES,Φ,η,Ii,k

((
ĝ
(I)
i,k

)2)
= ES,Φ,η

(
EIi,k

((
ĝ
(I)
i,k

)2))
≤ α2

3

(
2 (N − 1)

2
q + (N − 1) p+ q

)
·(

2

(
ι+ L

(
‖ak‖+

√
Nγkα3

)2)
+ α4

)
<∞. (78)

From (74) and (78), we can conclude that
∑∞
k=1 βke

(I)
k

converges almost surely.
3) Proof of convergence : Finally, we can show the conver-

gence of Algorithm 2. Consider the evolution of the divergence

d
(I)
k =

∥∥∥a(I)
k − a∗

∥∥∥2, we get

d
(I)
K+1 = d0 +

K∑
k=0

β2
k

∥∥∥ĝ(I)k ∥∥∥2 + 2

K∑
k=0

βk

(
a
(I)
k − a

∗
)T
· e(I)k

+ 2α2

K∑
k=0

βkγk

(
a
(I)
k − a

∗
)T
·
(
∇F

(
a
(I)
k

)
+ b

(I)
k

)
,

(79)

with the same shape as (60) and be obtained using the
same steps. The following proof is also similar to that in
Appendix C, as we have already shown that b(I)k and e(I)k have
similar properties as bk and ek.

G. Proof of Lemma 4
We investigate the relation between the two successive

average divergence. We mainly demonstrate (38), as the proof
of (39) is quite similar.

In Algorithm 1, we have

D
(C)
k+1 = E

(
‖ak+1 − a∗‖22

)
= E

(
‖ak + βkĝk − a∗‖

2
2

)
= D

(C)
k + β2

kE
(
‖ĝk‖

2
2

)
+ 2βkE

(
(ak − a∗)T ĝk

)
.

(80)

According to (57), we have shown that E
(
‖ĝk‖

2
2

)
< M (C)

almost surely, with M (C) a bounded constant. Meanwhile, we
evaluate

E
(

(ak − a∗)T ĝk
)

= α2γkE
(

(ak − a∗)T (∇F (ak) + bk)
)
,

(81)

which can be obtained by using (21) and E (ek) = 0. We have

(ak − a∗)T bk ≤
N∑
i=1

|ai,k − a∗i | |bi,k|

≤ N2α
3
3α1

2α2
γk

N∑
i=1

|ai,k − a∗i |

≤ N2α
3
3α1

2α2
γk

√√√√N

N∑
i=1

(ai,k − a∗i )
2

= N
5
2
α3
3α1

2α2
γk ‖ak − a∗‖2 . (82)

From (81), (82), and the strong concavity (37), we have

E
(

(ak − a∗)T ĝk
)

≤ α2γkE
(
−α5 ‖ak − a∗‖22 +N

5
2
α3
3α1

2α2
γk ‖ak − a∗‖2

)
= −α2α5γkE

(
‖ak − a∗‖22

)
+N

5
2
α3
3α1

2
γ2k

√
|E (‖ak − a∗‖2)|2

= −α2α5γkDk +
1

2
N

5
2α3

3α1γ
2
k

√
Dk. (83)

By combining (80), (83) and the fact that E
(
‖ĝk‖

2
2

)
≤

M (C), we can obtain (38).
We have the similar steps to prove (39) for Algorithm 2, the

main difference comes from the upper bound of E(
∥∥∥ĝ(I)k ∥∥∥2

2
)

and

E
(

(ak − a∗)T ĝ(I)k
)

= qα2γkE
(

(ak − a∗)T
(
∇F (ak) + b

(I)
k

))
≤ q

(
−α2α5γkDk +

1

2
N

5
2α3

3α1γ
2
k

√
Dk

)
, (84)

which is similar to (83) and the difference comes from the
presence of the parameter q in the generalized Robbins-Monro
form (34), note that b(I)k = bk as shown in (73).

H. Proof of Lemma 5
From (40) and Dk ≤ Uk, we get

Dk+1 ≤ (1−Aβkγk)Uk +Bβkγ
2
k

√
Uk + Cβ2

k,

because 1 − Aβkγk > 0 when k ≥ K0. In order to perform
the induction, we need to have

(1−Aβkγk)Uk +Bβkγ
2
k

√
Uk + Cβ2

k ≤ Uk+1 ≤ Uk,

which leads to

AγkUk −Bγ2k
√
Uk − Cβk ≥ 0. (85)

By solving (85), we obtain (43) as
√
Uk > 0.
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I. Proof of Theorem 4

We start with the proof of (46), which is realized by
induction.

It is straightforward to get DK0
≤ ϑ2γ2K0

according to the
definition of ϑ. We mainly needs to verify that Dk ≤ ϑ2γ2k
leads to Dk+1 ≤ ϑ2γ2k+1 for any k ≥ K0.

Suppose that Dk ≤ ϑ2γ2k , from (40), we have

Dk+1 ≤ (1−Aβkγk) γ2kϑ
2 +Bβkγ

3
kϑ+ Cβ2

k.

We then need to show that there exists ϑ ∈ R+, such that

(1−Aβkγk) γ2kϑ
2 +Bβkγ

3
kϑ+ Cβ2

k ≤ Uk+1

= ϑ2γ2k+1,

which can be written as

(χk −A)ϑ2 +Bϑ+ Cβkγ
−3
k ≤ 0, (86)

with χk =
1−

(
γk+1
γk

)2

βkγk
> 0 as defined in (44). By assumptions

presented in Theorem 4, χk−A < 0, we can deduce from the
inequality (86) that ϑ ≥ ϑk, with

ϑ ≥ ϑk =
B

2 (A− χk)
+

√(
B

2 (A− χk)

)2

+ C
βkγ

−3
k

A− χk
.

recall that both B and Cβkγ
−3
k are positive by definition.

Consider ε1 and ε2 as defined in (45), we have

2ϑk ≤
B

A− ε1
+

√(
B

A− ε1

)2

+
4Cε2
A− ε1

,

We can thus prove that Dk+1 ≤ ϑ2γ2k+1 with ϑ defined in
(47).

Then we turn to prove (48). Similar to the previous situation,
we have DK0

≤ %2 βK0

γK0
. For any k ≥ K0, if Dk ≤ %2 βkγk , then

Dk+1 ≤ (1−Aβkγk)
βk
γk
%2 +B (βkγk)

3
2 %+ Cβ2

k.

A sufficient condition to ensure Dk+1 ≤ %2 βk+1

γk+1
is that

(1−Aβkγk)
βk
γk
%2 +B (βkγk)

3
2 %+ Cβ2

k ≤
βk+1

γk+1
%2.

Thus % should satisfy( βk
γk
− βk+1

γk+1

β2
k

−A

)
%2 +Bβ

− 1
2

k γ
3
2

k %+ C ≤ 0

If βkγk −
βk+1

γk+1
< Aβ2

k, then the condition on % should be % ≥ %k
with

%k =
Bβ
− 1

2

k γ
3
2

k +

√(
Bβ
− 1

2

k γ
3
2

k

)2
+ 4C (A−$k)

2 (A−$k)
,

where $k = β−2k

(
βk
γk
− βk+1

γk+1

)
> 0 as defined in (45).

Consider ε3 and ε4 given in (45), we have

%k ≤
Bε4 +

√
(Bε4)

2
+ 4C (A− ε3)

2 (A− ε3)
,

then we can prove (49).

J. Proof of Theorem 5

From Theorem 4, we can see that the order of the conver-
gence rate mainly relies on ν1 and ν2, as γ2k ∝ (k + 1)

−2ν2

and βk
γk
∝ (k + 1)

−(ν1−ν2). However, before the conclusion,
we should still verify two points:
• i) whether the conditions ε1 < A and ε3 < A are satisfied;
• ii) whether the constant terms ϑ and % are bounded.

We start with an elementary and useful result.

Lemma 7. For any a, b, x ∈ (0, 1], we always have

g (x) = x−a
(

1− (1 + x)
−b
)
< b.

Besides, limx→0 g (x) = b as a = 1.

Proof: Since x−a ≤ x−1 for any x ∈ (0, 1] and a ∈ (0, 1],
we have g (x) ≤ x−1

(
1− (1 + x)

−b
)

= h (x). We calculate
the derivative of h (x), i.e.,

h′ (x) = x−2
(

((b+ 1)x+ 1) (1 + x)
−b−1 − 1

)
︸ ︷︷ ︸

=s(x)

.

Thus the monotonicity of h (x) depends on whether s(x) is
positive or negative. We further evaluate

s′(x) = −b (b+ 1)x (1 + x)
−b−2 ≤ 0,

as b > 0 and x > 0. Thus s (x) is a decreasing function of
x over (0, 1]. It is easy to get limx→0 s (x) = 0, hence, there
should be s (x) < 0 and h′ (x) < 0, ∀x ∈ (0, 1]. We have

h (x) < lim
x→0

h (x) =
1− (1 + x)

−b

x
= b,

which concludes the proof.
With the help of Lemma 7, we can easily verify ε1 < A

and ε3 < A.

Lemma 8. Consider βk and γk with given forms (50), there
always exist bounded β0 and γ0 to guarantee ε1 < A and
ε3 < A.

Proof: Consider (50), ε1 can be bounded

ε1 = max
k≥K0

1−
(

1 + 1
k+1

)−2ν2
β0γ0 (k + 1)

−ν1−ν2 ≤ max
x∈(0,1]

1− (1 + x)
−2ν2

β0γ0xν1+ν2

(a)
<

2ν2
β0γ0

, (87)

where (a) is obtained by the application of Lemma 7 with
a = ν1+ν2 and b = 2ν2. Therefore, we concludes that ε1 < A
if β0γ0 ≥ 2ν2/A. Similarly, we can show that ε3 < A if
β0γ0 ≥ (ν1 − ν2) /A, as

ε3 = max
k≥K0

1−
(

1 + 1
k+1

)−(ν1−ν2)
β0γ0 (k + 1)

−ν1−ν2 <
ν1 − ν2
β0γ0

. (88)

The remain work is to verify whether the constant term in
presence of the convergence rate can be bounded. Our main
result stated in Theorem 5 can be easily obtained.
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We start with the analysis of ε2 and ε4, i.e.,

ε2 = β0γ
−3
0 max

k≥K0

(1 + k)
−(ν1−3ν2)

=

{
β0γ
−3
0 (1 +K0)

−(ν1−3ν2) , if ν1 ≥ 3ν2,

∞, if ν1 < 3ν2,

and

ε4 = β
− 1

2
0 γ

3
2
0 max
k≥K0

(1 + k)
ν1−3ν2

2

=

{
β
− 1

2
0 γ

3
2
0 (1 +K0)

ν1−3ν2
2 , if ν1 ≤ 3ν2,

∞, if ν1 > 3ν2.

We can see that ε2 and ε4 cannot be bounded under the same
condition, unless ν1 = 3ν2.

When ν1 > 3ν2, ε2 is bounded, we can say that ϑ is also
bounded by its definition, as long as β0γ0 ≥ 2ν2/A (recall
Lemma 8). Meanwhile, % → ∞ as ε4 → ∞, which makes
the bound (48) loose. Therefore, there exists some bounded
constant Ω1, such that Dk ≤ Ω1 (k + 1)

−2ν2 .
When ν1 < 3ν2, ε4 is bounded whereas ε2 → ∞. Then

there exists Ω2 < ∞, such that Dk ≤ Ω2 (k + 1)
−(ν1−ν2) if

β0γ0 ≥ (ν1 − ν2) /A.
When ν1 = 3ν2, both ε2 and ε4 are bounded, the similar

result can be obtained, which concludes the proof.
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