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A construction of minimal

linear codes from partial difference sets

Ran Tao, Tao Feng, Weicong Li∗

Abstract

In this paper, we study a class of linear codes defined by characteristic functions of certain subsets

of a finite field. We derive a sufficient and necessary condition for such a code to be a minimal linear

code by a character-theoretical approach. We obtain new three-weight or four-weight minimal linear

codes that do not satisfy the Ashikhmin-Barg condition by using partial difference sets. We show that

our construction yields minimal linear codes that do not arise from cutting vectorial blocking sets, and

also discuss their applications in secret sharing schemes.

Index Terms

Minimal linear code, Partial difference set, Strongly regular graph, Character sum.

I. INTRODUCTION

Let q be a prime power and Fq be the finite field with q elements. Let C be an [n, k] linear code

over Fq, that is, a k-dimensional subspace of Fn
q . The support of a codeword c = (c1, c2, . . . , cn) ∈

C is defined by supp(c) = {1 ≤ i ≤ n : ci 6= 0}. The Hamming weight of a codeword c is

wt(c) := |supp(c)|, the size of supp(c). For any two codewords u, v ∈ C, we say that v covers

u and write u � v if supp(u) ⊆ supp(v). Clearly, au � v for all a ∈ Fq if u � v. A codeword

c ∈ C is called minimal if c covers only the codewords λc with λ ∈ Fq, and no other codewords

in C. The linear code C is called minimal if every codeword c ∈ C is minimal.

As a special type of linear codes, minimal linear codes have many applications in sharing

schemes [7], [18], [19], [26] and secure two-party computation [8].

One useful and easy criterion was given by Ashikhmin and Barg [1] for a linear code C to

be minimal, which is referred to as AB condition in the literature [3].

Lemma 1: [1] Let C be a linear code over Fq. Set ωmin and ωmax to be the minimum and

maximum nonzero weights of the code C respectively. Then C is minimal if

ωmin

ωmax

>
q − 1

q
. (1)

This condition is sufficient but not necessary for linear codes to be minimal. A sufficient and

necessary condition was given by Heng et al. in [14]:

Lemma 2: [14] A linear code C ⊆ Fn
q over Fq is minimal if and only if

∑

a∈F∗

q

wt(c′ + ac) 6= (q − 1)wt(c′)− wt(c).

Ran Tao and Tao Feng are with the School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, Zhejiang P.R.

China, (e-mail: {rant,tfeng}@zju.edu.cn). Weicong Li is with the Department of Mathematics, Southern University of Science

and Technology, ShenZhen 518055, Guangdong P.R. China, (e-mail: liwc3@sustech.edu.cn).
∗ Corresponding author: Weicong Li

http://arxiv.org/abs/2008.12998v2


2

for any two Fq-linearly independent codewords c, c′ of C.

In [14], the authors applied Lemma 2 to construct minimal ternary linear codes that do not

satisfy the AB condition. Up to now, many minimal linear codes not satisfying the AB condition

have been constructed. We summarize some known minimal linear codes in Table I below.

These minimal linear codes do not satisfy the AB condition when their parameters satisfy certain

conditions. For more constructions and information on minimal linear codes, please refer to [2],

[3], [9], [14], [20], [23]–[25], [27].

TABLE I

SOME KNOWN MINIMAL LINEAR CODES

[n, k] minimal distance d The numbers of weights Notes Approach References

[3m − 1, m+ 1]
∑k

j=1
2j
(

m
j

)

≤ m+ 2 m ≥ 5, 2 ≤ k ≤ ⌊(m− 1)/2⌋ Boolean functions [14]

[2m − 1, m+ 1]

min(s(2t − 1), 2m−1 − s) 3 or 4
m ≥ 6 even, t = m/2

Boolean functions [9]

s /∈ {1, 2t, 2t + 1}

2m−1 − 2m−s−1(s− 1)
s+ 3(s odd)

m ≥ 7 odd, s = (m+ 1)/2
s+ 2(s even)

∑k
j=1

(

m
j

)

≤ m+ 2 m ≥ 7, 2 ≤ k ≤ ⌊(m− 3)/2⌋

[pm − 1, m]
(p− 1)2pm−2

3

m > 2 p-ary functions
[24]

[pm − 1, m− 1]
2

[pm − 1, m] pm−1(p− 2)

[pm − 1, m+ 1] - 3 or 4 m = 2t, t ≥ 2 partial spreads

[pm − 1, m+ 1]

pm−s−1(p− 1)(s(p− 1) + 1) ≤ s+ 4 (p− 1)(ps−2 − s) > 1

Maiorana-McFarland functions [25]
a(pm−s − pm−s−1)(pk − 1) 6

k ≥ 2 and (k, p) 6= (2, 2)

s = 2k,2 ≤ a ≤ (p− 1)pk−2

[pm − 1, m+ 1] -
4 or 5 Theorem 3.8 Characteristic functions

[20]
6 or 7 Theorem 3.12 corresponding to subspaces

[qm − 1, m+ 1] - - - Cutting blocking sets [2], [3]

In [3], Bonini and Borello developed a method to construct minimal linear codes by using

cutting blocking set. An affine k-blocking set is a subset of an n-dimensional affine space

intersecting all (n− k)-dimensional affine subspaces. An affine 1-blocking set is also called an

affine blocking set. A vectorial k-blocking set is a subset of an n-dimensional affine space not

containing the origin and intersecting all (n−k)-dimensional affine subspaces through the origin.

A vectorial 1-blocking set is also called a vectorial blocking set. A vectorial (k, s)-blocking set

is a vectorial k-blocking set that does not contain an s-dimensional affine subspace through the

origin. A vectorial k-blocking set is cutting if its intersection with every (n − k)-dimensional

affine subspace through the origin is not contained in any other (n − k)-dimensional affine

subspace through the origin.

Lemma 3: [3, Theorem 4.6] Let f : Fm
q → Fq be a function that is not linear. If

1) V (f)∗ = {x ∈ Fm
q \ {0} : f(x) = 0} is an m-dimensional cutting vectorial (1, m − 1)-

blocking set in the affine space Fm
q ;

2) for every nonzero vector v, if exists x such that f(x) + v · x = 0 and f(x) is different

from 0,

then C(f) = {(uf(x) + v · x)
x∈Fm

q \{0} : u ∈ Fq, v ∈ Fm
q } is a [qm − 1, m + 1] minimal linear

codes over Fq.

Let m be a positive integer and F∗
qm be the multiplicative group of finite field Fqm . Take a

proper subset D of F∗
qm and define its characteristic function as

fD(x) =

{
1, if x ∈ D,

0, if x ∈ F∗
qm \D.
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We define a linear code

C(fD) =
{(
ufD(x) + TrFqm/Fq(vx)

)
x∈F∗

qm
: (u, v) ∈ V

}
, (2)

where TrFqm/Fq is the trace function from Fqm to Fq.

Here is a brief summary of the main results of this paper. We give a necessary and sufficient

condition on D such that the code C(fD) is minimal in Theorem 12. By taking D to be an

F∗
q-invariant partial difference set, we deduce sufficient conditions on the parameters of D such

that C(fD) is minimal in Theorem 15. We also show that if the parameters of D satisfy certain

conditions then the code C(fD) does not satisfy the AB condition. Our construction yields

minimal linear codes that do not arise from cutting vectorial blocking sets, cf. Examples 1, 2. In

the case D is an F∗
q-invariant partial difference set, we determine the weight distribution of C(fD).

In Section III-C, we show that each automorphism of the subset D induces an automorphism of

the code C(fD). In particular, we obtain a minimal linear code C(fD) with a large automorphism

group in some cases, which potentially has a fast decoding algorithm.

This paper is organized as follows. In Section II, we present some preliminary results on

polynomials, characters, strongly regular graphs and partial difference sets. In Section III, we give

our construction of minimal linear codes from partial difference sets and study their properties.

In Section IV, we present the applications of our minimal linear codes in secret sharing schemes.

Finally, we conclude this paper in Section V.

II. PRELIMINARIES

Throughout this paper, let q be a prime power and m be a positive integer. Let Fq and Fqm

be the finite fields with q elements and qm elements respectively. Let F∗
q (resp. F∗

qm) be the

multiplicative group of nonzero elements of Fq (resp. Fqm). For any subset S of Fqm , we write

〈S〉 for the Fq-linear subspace spanned by S, and we say that S is F∗
q-invariant if λs ∈ S for

each λ ∈ F∗
q and s ∈ S. For an extension field E of the finite field F with finite degree [E : F],

we use TrE/F to denote the trace function from E to F.

A. Some basic facts on finite fields

Let G be a finite abelian group of order n. A character φ of (G,+) is a group homomorphism

φ : G → C×, where C× is the multiplicative group of nonzero complex numbers. The trivial

character φ0 of G is defined by φ0(g) = 1 for all g ∈ G. The set Ĝ of characters of G forms an

abelian group with identity φ0, which is isomorphic to G, cf. [15, Chapter 5]. The group Ĝ is

called the character group of G.

An additive character ψ of Fq is a character of the additive group (Fq,+). For each a ∈ Fq,

we can define an additive character ψa of Fq via

ψa(x) = ζ
TrFq/Fp (ax)
p ,

where ζp = e
2πi
p is a primitive p-th root of unity. The character ψ1 is called the canonical additive

character, which we denote by ψ. The character group of (Fq,+) is given by (̂Fq,+) = {ψa :
a ∈ Fq}. For an extension Fqm of Fq, its canonical additive character Ψ can be obtained from

ψ, i.e.,

Ψ(x) = ψ(TrFqm/Fq(x)).
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The character group of (Fqm,+) is given by ̂(Fqm ,+) = {Ψa : a ∈ Fqm}, where Ψa(x) = Ψ(ax)
for all x ∈ Fqm . There is an important property about the additive characters, cf. [15]:

∑

λ∈Fq

Ψ(λx) =
∑

λ∈Fq

ψ(λTrFqm/Fq(x)) =

{
q, if TrFqm/Fq(x) = 0,

0, otherwise.
(3)

For each a ∈ Fqm and a subset A ⊆ Fqm , we define

Ψa(A) :=
∑

x∈A
Ψ(ax). (4)

We regard Fqm as an Fq-linear vector space of dimension m. For each a ∈ F∗
qm , we define

L(a) := {x ∈ Fqm : TrFqm/Fq(xa) = 0},
which is an Fq-linear subspace of Fqm of dimension m− 1. For a subset S of F∗

qm , we define

L(S) := {x ∈ Fqm : TrFqm/Fq(xs) = 0 for all s ∈ S}. (5)

Since L(S) is the intersection of the L(s)’s with s ∈ S, it is also an Fq-linear subspace of Fqm .

Lemma 4: Let L be as defined in Eqn. (5). Let V1 be an Fq-linear subspace of Fqm and U1

be a subset of V1. Then 〈U1〉 = V1 if and only if L(U1) ⊆ L(V1), where 〈U1〉 is the Fq-linear

subspace spanned by U1.

Proof: For any subset S ⊆ Fqm , it is routine to check that L(〈S〉) = L(S) and L(L(S)) =
〈S〉 by comparing their dimensions. Therefore, V1 ⊆ 〈U1〉 if and only if L(U1) = L(〈U1〉) ⊆
L(V1), and the claim follows.

Lemma 5: Let a ∈ Fqm and A ⊆ Fqm . Then A ⊆ L(a) if and only if Ψλa(A) = |A|
for all λ ∈ Fq, where Ψλa(A) is defined in Eqn. (4). In particular, if A is F∗

q-invariant, then

L(A) = {a ∈ Fqm : Ψa(A) = |A|}.
Proof: Suppose that A ⊆ L(a). Then TrFqm/Fq(xa) = 0 for all x ∈ A, and thus Ψλa(x) =

ψ
(
λTrFqm/Fq(ax)

)
= 1 for all x ∈ A and λ ∈ Fq. It follows that Ψλa(A) = |A| for all λ ∈ Fq

by definition of Ψλa(A) as in Eqn. (4). Conversely, suppose that Ψλa(A) = |A| for all λ ∈ Fq,

we compute that

q|A| =
∑

λ∈Fq

Ψλa(A) =
∑

x∈A

∑

λ∈Fq

Ψ(λax)

=
∑

x∈A

∑

λ∈Fq

ψ
(
λTrFqm/Fq(ax)

)
.

By Eqn. (3), we deduce that TrFqm/Fq(ax) = 0 for all x ∈ A, i.e., A ⊆ L(a). In the case A is

F∗
q-invariant, we have Ψλa(A) = Ψa(λA) = Ψa(A) for any λ ∈ F∗

q . In addition, it is obvious

that Ψ0(A) = |A|. It follows that

L(A) = {a ∈ Fqm : TrFqm/Fq(xa) = 0 for all x ∈ A}
= {a ∈ Fqm : A ⊆ L(a)}
= {a ∈ Fqm : Ψa(A) = |A|}.

This completes the proof.

A polynomial f(X) ∈ Fqm[X ] is called a permutation polynomial if the associated function

f : a 7→ f(a) from Fqm to itself is a permutation. A polynomial of the form f(X) =
∑n

i=0 aiX
qi
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with ai ∈ Fqm is called a q-polynomial over Fqm . It is called reduced if n ≤ m−1. There is a one

to one correspondence between the reduced q-polynomials over Fqm and Fq-linear transformations

of Fqm , cf. [15]. Let f(X) =
∑m−1

i=0 aiX
qi be a reduced q-polynomial over Fqm . The trace dual of

f(X) is the (unique) reduced q-polynomial f̃(X) such that TrFqm/Fq(f(x)y) = TrFqm/Fq(f̃(y)x)
for all x, y ∈ Fqm . A direct computation shows that

f̃(X) =
m−1∑

i=0

aq
i

m−iX
qi. (6)

B. Strongly regular graphs and partial difference sets

A strongly regular graph (srg) (v, k, λ, µ) is a simple and undirected graph Γ, neither complete

nor edgeless, that has the following properties:

1) It is a k-regular graph of order v.

2) Every two adjacent vertices have λ common neighbors.

3) Every two nonadjacent vertices have µ common neighbors.

An eigenvalue is called restricted if it has an eigenvector perpendicular to the all-one vector, cf.

[5]. The following result is well known.

Lemma 6: [13, Section 10.2] Let Γ be an srg (v, k, λ, µ) with restricted eigenvalues θ1 and

θ2, where θ1 > 0 > θ2. Then

θ1 =
(λ− µ) +

√
(λ− µ)2 + 4(k − µ)

2
,

θ2 =
(λ− µ)−

√
(λ− µ)2 + 4(k − µ)

2

with multiplicities

m1 =
1

2

(
(v − 1)− 2k + (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

)
,

m2 =
1

2

(
(v − 1) +

2k + (v − 1)(λ− µ)√
(λ− µ)2 + 4(k − µ)

)

respectively.

Let G be an (additive) abelian group of order v, and let D be a subset of G such that 0 /∈ D and

−D = D, where −D = {−d : d ∈ D}. The Cayley graph Γ = Cay(G,D) with the connection

set D is the graph whose vertices are the elements of G such that x ∼ y if and only if x−y ∈ D
for any x, y ∈ G. In the case that Cay(G,D) is an srg (v, k, λ, µ), the connection set D is called

a partial difference set (PDS for short) with parameters (v, k, λ, µ). For Γ = Cay(G,D) with

G abelian, {φ(D) :=
∑

d∈D φ(d), φ ∈ Ĝ} consists of all the eigenvalues of Γ, where Ĝ is the

character group of G. For a PDS D with parameters (v, k, λ, µ), we have k = φ0(D) = |D|,
where φ0 is the trivial character of G. Please refer to the survey [17] for more details on PDS.

An srg (v, k, λ, µ) is of Latin square type (resp. negative Latin square type) if there exist

positive integers n, r such that

(v, k, λ, µ) = (n2, r(n− ǫ), ǫn + r2 − 3ǫr, r2 − ǫr)
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where ǫ = 1 (resp. ǫ = −1). Correspondingly, a PDS D is called a Latin square type (resp.

negative Latin square type) PDS if the srg Cay(G,D) is of the corresponding type.

In [6], the authors gave a construction of partial difference sets from cyclotomy, which we

describe now. Set q = pe with p prime. Let m be a positive integer such that 2 divides em and

γ be a fixed primitive element of Fqm . For a proper divisor N of qm − 1, we define the N-th

cyclotomic classes of Fqm as Ci = {γjN+i : 0 ≤ j ≤ qm−1
N

− 1}, where 0 ≤ i ≤ N − 1. The set

C0 is a subgroup of F∗
qm of index N , and Ci = γiC0 for 0 ≤ i ≤ N − 1.

Lemma 7: [6] Take notation as above and suppose that N is a proper divisor of qm − 1 such

that N 6= 1 and pℓ1 ≡ −1(mod N) for some positive integer ℓ1. Choose ℓ1 minimal and write

em = 2ℓ1t. Take a proper subset J ⊂ ZN of size u. If q is odd, we further assume that N | qm−1
2

and J + qm−1
2

≡ J(mod N). Set

D = DJ =
⋃

j∈J
Cj.

Then the graph Cay(Fqm , D) is strongly regular with eigenvalues

k = |D| = qm − 1

N
u, with multiplicity 1;

θ1 =
u

N
(−1 + (−1)t

√
qm), with multiplicity qm − 1− k;

θ2 = θ1 + (−1)t+1√qm, with multiplicity k.

To be specific, for i = 0, 1, . . . , N − 1, we have

Ψ(γiD) =





θ2, if εt = 1, i ∈ −J(mod N) or

εt = −1, i ∈ −J +N/2(mod N),

θ1, otherwise,

where ε =

{
−1, if N is even and pℓ1+1

N
is odd,

1, otherwise.
The graph Cay(Fqm , D) is of Latin square type (resp. negative Latin square type) if t is odd

(resp. even).

The following lemma is an easy consequence of the fact that F∗
q is the subgroup of F∗

qm

consisting of all nonzero qm−1
q−1

-th powers.

Lemma 8: Take notation as above, and let D = DJ =
⋃

j∈J Cj be as defined in Lemma 7. Then

D is F∗
q-invariant if and only if the set J is invariant under the map ρ : j → j + qm−1

q−1
(mod N).

III. MINIMAL LINEAR CODES FROM PARTIAL DIFFERENCE SETS

Set V = Fq × Fqm , and view it as a vector space of dimension m + 1 over Fq. Let B be a

bilinear form on V such that

B((u, v), (x, y)) = ux+ TrFqm/Fq(vy) (7)

for (u, v), (x, y) ∈ V . For (a, b) ∈ V , the perp of (a, b) is defined by (a, b)⊥ = {(x, y) ∈ V :
B((a, b), (x, y)) = 0}. Correspondingly for any subset S of V , we have

S⊥ = {(x, y) ∈ V : B((a, b), (x, y)) = 0, ∀ (a, b) ∈ S}.
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Take a subset M of V , we can construct a linear code from M as follows:

C(M) := {c(u, v) = (B((u, v), (ai, bi)))1≤i≤n : (u, v) ∈ V }, (8)

where M = {(a1, b1), (a2, b2), . . . , (an, bn)} is called the defining set of C(M).
Let C(fD) be the linear code as defined in Eqn. (2). It is clear that

C(fD) = {(B((u, v), (fD(x), x)))x∈F∗

qm
: (u, v) ∈ V }.

By the definition of B as in Eqn. (7), the code C(fD) can be constructed from the defining set.

We define the following subset of V :

MD := {(1, r) : r ∈ D} ∪ {(0, r) : r ∈ D}, (9)

where D = F∗
qm \ D. It is easy to check that C(fD) = C(MD). The dimension of C(fD)

(i.e., C(MD)) has been determined if fD is not linear.

Lemma 9: [3] Let D be a proper subset of F∗
qm such that the characteristic function fD is not

linear. Then the linear code C(fD) defined in Eqn. (2) has length qm − 1 and dimension m+ 1
over Fq.

Lemma 10: Let D be a proper F∗
q-invariant subset of F∗

qm and fD be the characteristic function

defined in Eqn. (2). If q > 2, then fD is not linear.

Proof: Suppose that fD is linear, i.e., fD(x+ y) = fD(x) + fD(y) for any x, y ∈ F∗
qm . We

take any x ∈ D and choose λ ∈ Fq such that λ 6∈ {0,−1}. Since D is F∗
q-invariant, both λx

and (λ+ 1)x are in D. We deduce from fD((λ+ 1)x) = fD(λx) + fD(x) that 1 + 1 = 1 in Fq,

which is impossible. This completes the proof.

A. A sufficient and necessary condition for C(MD) to be minimal

For a subset D of F∗
qm , set D = F∗

qm \D. Let L(S) be defined in Eqn. (5) for a subset S of

F∗
qm . For y ∈ Fq, z ∈ F∗

qm , define

Dz := {x ∈ D : TrFqm/Fq(xz) = 0}, (10)

D(y,z) := {x ∈ D : TrFqm/Fq(xz) = −y}, (11)

P(y,z) := L
(
D(y,z)D

(−1)
(y,z) ∪Dz

)
, (12)

where D(y,z)D
(−1)
(y,z) = {di − dj : di, dj ∈ D(y,z)}.

Recall that for a subset S of Fqm , 〈S〉 is an Fq-linear subspace spanned by S. We can apply

Theorem 3.2 and Theorem 3.3 of [16] to get the following theorem directly. Here we briefly

repeat the proof in our language.

Theorem 11: Take notation as above. Suppose that D is a subset of F∗
qm and MD is defined

in Eqn. (9). Let C(MD) be a linear code defined as in Eqn. (8) with the defining set MD. For

each (y, z) ∈ V with (y, z) 6= (0, 0), the codeword c(y, z) ∈ C(MD) is minimal if and only if

〈(y, z)⊥∩MD〉 = (y, z)⊥. In particular, C(MD) is minimal if and only if 〈(y, z)⊥∩MD〉 = (y, z)⊥

for all (y, z) ∈ V \ {(0, 0)}.

Proof: For any two codewords c(y1, z1), c(y2, z2) ∈ C(MD), we have that c(y1, z1) �
c(y2, z2), i.e., supp(c(y1, z1)) ⊆ supp(c(y2, z2)), if and only if (y2, z2)

⊥ ∩MD ⊆ (y1, z1)
⊥ ∩MD

by the definition of C(MD) in Eqn. (8).
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Suppose that (y, z) ∈ V \ {(0, 0)} with 〈(y, z)⊥ ∩MD〉 = (y, z)⊥, we show that c(y, z) is

minimal. Take (y1, z1) ∈ V with c(y1, z1) � c(y, z), we have

(y, z)⊥ = 〈(y, z)⊥ ∩MD〉 ⊆ 〈(y1, z1)⊥ ∩MD〉 ⊆ (y1, z1)
⊥.

If (y1, z1) 6= (0, 0), then dim(y, z)⊥ = dim(y1, z1)
⊥ and so (y, z)⊥ = (y1, z1)

⊥. If (y1, z1) =
(0, 0), then c(y1, z1) = 0. Hence c(y1, z1) = µc(y, z) for some µ ∈ Fq.

Conversely, we assume that c(y, z) is minimal for some (y, z) ∈ V \ {(0, 0)}. Suppose to

the contrary that 〈(y, z)⊥ ∩MD〉 6= (y, z)⊥. Then we have dim〈(y, z)⊥ ∩MD〉 < dim(y, z)⊥,

i.e., dim〈(y, z)〉 < dim〈(y, z)⊥ ∩MD〉⊥. Thus, there exists (y1, z1) ∈ 〈(y, z)⊥ ∩MD〉⊥ such that

(y1, z1) is linearly independent with (y, z). It follows that (y, z)⊥ ∩MD ⊆ (y1, z1)
⊥ ∩MD, that

is, c(y1, z1) � c(y, z), which is a contradiction to the minimality of c(y, z). Therefore, we must

have 〈(y, z)⊥ ∩MD〉 = (y, z)⊥ as desired if c(y, z) is minimal.

The last claim now follows by the fact that a code is minimal if and only if all codewords of

this code are minimal.

Theorem 12: Take notation as in Theorem 11. Then C(MD) is a minimal linear code if and

only if the following two conditions hold:

1) The set D spans Fqm over Fq, i.e., 〈D〉 = Fqm.
2) For any y ∈ Fq and z ∈ F∗

qm , D(y,z) 6= ∅ and P(y,z) ⊆ 〈z〉, where D(y,z) and P(y,z) are

defined in Eqn. (11) and Eqn. (12) respectively.

Proof: For each codeword c(y, z) ∈ C(MD) with (y, z) ∈ V \ {(0, 0)}, it is minimal if and

only if 〈(y, z)⊥ ∩MD〉 = (y, z)⊥ by Theorem 11. We split the proof into two cases according

as z = 0 or not.

Case 1: In the case y ∈ F∗
q and z = 0, we compute that

(y, 0)⊥ = {(u, v) ∈ V : uy + TrFqm/Fq(v · 0) = 0} = {(0, v) : v ∈ Fqm}.
It follows that (y, 0)⊥ ∩MD = {(0, v) : v ∈ D}. Thus, the codeword c(y, 0) is minimal if and

only if 〈(y, 0)⊥ ∩MD〉 = (y, 0)⊥, i.e., D spans Fqm over Fq.

Case 2: In the case (y, z) ∈ V with z 6= 0, we have (y, z)⊥ = {(u, v) ∈ V : uy+TrFqm/Fq(vz) =
0}. Since (y, z)⊥ is Fq-linear and of dimension m, it has the following decomposition:

(y, z)⊥ = 〈(1, v0)〉 ⊕ 〈{(0, v) : v ∈ L(z)}〉, (13)

where v0 ∈ Fqm satisfies that y + TrFm
q /Fq(v0z) = 0. In addition, it is clear that

(y, z)⊥ ∩MD = {(1, r) : r ∈ D(y,z)} ∪ {(0, r) : r ∈ Dz}. (14)

We claim that 〈(y, z)⊥ ∩MD〉 = (y, z)⊥ if and only if D(y,z) 6= ∅ and 〈D(y,z)D
(−1)
(y,z) ∪Dz〉 =

L(z). Suppose that 〈(y, z)⊥∩MD〉 = (y, z)⊥. Then we have D(y,z) 6= ∅, otherwise (y, z)⊥∩MD =
{(0, r) : r ∈ Dz} and (1, v0) /∈ 〈(y, z)⊥ ∩ MD〉, which contradicts to the decomposition of

(y, z)⊥ as in Eqn. (13). For each d0 ∈ D(y,z), we have (1, v0)− (1, d0) = (0, v0−d0) ∈ 〈{(0, v) :
v ∈ L(z)}〉 since TrFqm/Fq(z(v0 − d0)) = −y + y = 0. Replacing v0 by d0 if necessary, the

decomposition (13) can be replaced as

(y, z)⊥ = 〈(1, d0)〉 ⊕ 〈{(0, v) : v ∈ L(z)}〉. (15)

Since (1, d0) ∈ (y, z)⊥ ∩MD, then 〈(y, z)⊥ ∩MD〉 = (y, z)⊥ if and only if

〈{(0, di − d0) : di ∈ D(y,z)} ∪ {(0, d) : d ∈ Dz}〉 = 〈{(0, v) : v ∈ L(z)}〉.
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This holds for all d0 in D(y,z), so we deduce that 〈D(y,z)D
(−1)
(y,z)∪Dz〉 = L(z). Conversely, suppose

that D(y,z) 6= ∅ and 〈D(y,z)D
(−1)
(y,z) ∪Dz〉 = L(z), we take d0 ∈ D(y,z). By above arguments, we

replace v0 by d0 in Eqn. (13) and then get the decomposition (15). By the condition that (1, d0) ∈
(y, z)⊥∩MD, Eqns. (14), (15) and 〈D(y,z)D

(−1)
(y,z)∪Dz〉 = L(z), we have 〈(y, z)⊥∩MD〉 = (y, z)⊥.

This proves the claim.

We now show that 〈D(y,z)D
(−1)
(y,z) ∪ Dz〉 = L(z) if and only if P(y,z) ⊆ 〈z〉. Note that

D(y,z)D
(−1)
(y,z) ∪ Dz is a subset of L(z). By applying Lemma 4 to U1 = D(y,z)D

(−1)
(y,z) ∪ Dz and

V1 = L(z), we deduce that 〈D(y,z)D
(−1)
(y,z) ∪ Dz〉 = L(z) if and only if L(D(y,z)D

(−1)
(y,z) ∪ Dz) ⊆

L(L(z)). The claim follows from the definition of P(y,z) in Eqn. (12) and L(L(z)) = 〈z〉.
To sum up, we complete this proof by combining above two cases.

Suppose that D ⊆ F∗
qm is F∗

q-invariant. It is straightforward to check that D,Dz and D0,z are

also F∗
q-invariant for all z ∈ F∗

qm . By applying Lemma 5 to Eqn. (12), we have

P(y,z) = L
(
D(y,z)D

(−1)
(y,z)

)
∩ L

(
Dz

)

= {a ∈ Fqm : Ψa(Dz) = |Dz|, Ψaλ

(
D(y,z)D

(−1)
(y,z)

)
= |D(y,z)|2, ∀λ ∈ F∗

q}.
Since

Ψaλ

(
D(y,z)D

(−1)
(y,z)

)
= Ψaλ

(
D(y,z)

)
Ψaλ

(
D(y,z)

)
= |Ψaλ

(
D(y,z)

)
|2,

we deduce that

P(y,z) = {a ∈ Fqm : Ψa(Dz) = |Dz|, |Ψaλ

(
D(y,z)

)
| = |D(y,z)|, ∀λ ∈ F∗

q}. (16)

Based on the above arguments and Theorem 12, we have the following corollary.

Corollary 13: Take notation as in Theorem 12 and set D ⊆ F∗
qm to be F∗

q-invariant. Then

C(MD) is a minimal linear code if and only if the following two conditions hold:

1) The set D spans Fqm over Fq, i.e., 〈D〉 = Fqm.
2) For any y ∈ Fq and z ∈ F∗

qm , D(y,z) 6= ∅ and P(y,z) ⊆ 〈z〉, where D(y,z) and P(y,z) are

defined in Eqn. (11) and Eqn. (16) respectively.

B. Minimal linear codes arising from partial difference sets

In this subsection, we use F∗
q-invariant partial difference sets to construct minimal linear codes.

Suppose that D ⊆ F∗
qm is F∗

q-invariant. Let ψ and Ψ be the canonical additive characters of Fq

and Fqm respectively. For a property X , define the Kronecker delta function [[X ]] as follows:

[[X ]] =

{
1, if the property X holds,

0, otherwise.

For any (y, z) ∈ V with z 6= 0, we compute the size of the set D(y,z):

|D(y,z)| =
∑

x∈D
[[TrFqm/Fq(xz) + y = 0]] =

1

q

∑

x∈D

∑

λ∈Fq

ψ(λ(TrFqm/Fq(xz) + y))

=
1

q


|D|+

∑

λ∈F∗

q

ψ(λy)Ψ(λzD)


 =

{
1
q
(|D| −Ψ(zD)) , if y 6= 0,

1
q
(|D|+ (q − 1)Ψ(zD)) , if y = 0.

(17)
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The last equality holds since D is F∗
q-invariant, and then Ψ(λzD) = Ψ(zD) for any λ ∈ F∗

q .

Lemma 14: Let D be an F∗
q-invariant subset of F∗

qm , and let P(y,z) be defined in Eqn. (16) for

any fixed (y, z) ∈ V with z ∈ F∗
qm . If there exists a ∈ P(y,z) such that a /∈ 〈z〉, then

|D| = qm +
∑

λ1∈Fq

Ψ ((λ1z + a)D)− (q − 1)Ψ(zD), (18)

|D(y,z)| =
1

q
|
∑

λ1∈Fq

ψ(λ1y)Ψ ((λ1z + a)D) |, (19)

where ψ and Ψ are the canonical additive characters of Fq and Fqm respectively.

Proof: By Eqn. (10) and the definition of D, we have

|Dz| = qm−1 − 1− |D(0,z)|. (20)

We further compute that

Ψ(aDz) =
∑

x∈F∗

qm

Ψ(ax)[[TrFqm/Fq(xz) = 0]]−
∑

x∈D
Ψ(ax)[[TrFqm/Fq(xz) = 0]]

=
1

q

∑

x∈F∗

qm

Ψ(ax)
∑

λ1∈Fq

ψ
(
λ1TrFqm/Fq(xz)

)
− 1

q

∑

x∈D
Ψ(ax)

∑

λ1∈Fq

ψ
(
λ1TrFqm/Fq(xz)

)

=
1

q

∑

λ1∈Fq

∑

x∈F∗

qm

Ψ ((a+ λ1z)x)−
1

q

∑

λ1∈Fq

Ψ ((a+ λ1z)D)

Since a /∈ 〈z〉, we have a + λ1z 6= 0 for all λ1 ∈ Fq. Thus, we have

1

q

∑

λ1∈Fq

∑

x∈F∗

qm

Ψ ((a + λ1z)x) = −1

and then

Ψ(aDz) = −1 − 1

q

∑

λ1∈Fq

Ψ ((a+ λ1z)D) . (21)

By Eqn. (16) and a ∈ P(y,z), we have Ψ(aDz) = |Dz|. Then we apply Eqns. (20) and (21) to

get

|D(0,z)| = qm−1 +
1

q

∑

λ1∈Fq

Ψ ((a+ λ1z)D) . (22)

Combining Eqn. (17) with Eqn. (22), we deduce that Eqn. (18) holds.

Since a ∈ P(y,z), we have |D(y,z)| = |Ψ(aλD(y,z))| for any λ ∈ F∗
q . Without loss of generality,

we set λ = 1. It follows that

|D(y,z)| = |Ψ(aD(y,z))| = |
∑

x∈D
Ψ(ax)[[TrFqm/Fq(xz) + y = 0]]|

= |1
q

∑

λ1∈Fq

∑

x∈D
Ψ(ax)ψ(λ1(TrFqm/Fq(zx) + y))|

=
1

q
|
∑

λ1∈Fq

ψ(λ1y)Ψ ((λ1z + a)D) |.
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To sum up, we have completed the proof.

With above preparations, we are now ready to give the construction of the minimal linear

codes from F∗
q-invariant partial difference sets.

Theorem 15: Let D ⊆ F∗
qm be an F∗

q-invariant partial difference set with parameters (qm, k, λ, µ).
Let θ1, θ2 be two restricted eigenvalues of Cay(Fqm, D) with θ1 > 0 > θ2, and let θ0 =
max{|θ1|, |θ2|}. Suppose that C(MD) is a linear code defined in Eqn. (8) with the defining set

MD given by Eqn. (9). Then C(MD) is minimal if the eigenvalues k, θ1 and θ2 of Cay(Fqm , D)
satisfy that:

1) k − θ2 6= qm;

2) k > θ1 and k > −(q − 1)θ2;

and one of the following conditions

3a) k < qm + qθ2 − (q − 1)θ1;

3b) k > max{qθ0 + θ1, qθ0 − (q − 1)θ2};

3c) qm−1 + θ2 − θ1 > θ0.

Proof: Recall Section II-B that k = Ψ0(D) = |D| and Ψa(D) ∈ {θ1, θ2} for any a ∈ F∗
qm .

Suppose that the conditions of the theorem hold. We take three steps to show that the two

conditions of Corollary 13 hold, from which we deduce that C(MD) is minimal.

Step 1: We claim that D spans Fqm over Fq. Assume to the contrary that 〈D〉 6= Fqm , i.e.,

L(D) 6= {0}. Note that D is F∗
q-invariant. For a ∈ L(D) \ {0}, we deduce from Lemma 5 that

|D| = Ψa(D) =
∑

x∈F∗

qm

Ψ(ax)−Ψ(aD) = −1−Ψ(aD).

Together with the fact that |D| = qm − 1 − |D| = qm − 1 − k, we have k − Ψ(aD) = qm.

Since k − θ1 < k < qm, then Ψ(aD) = θ2, which is a contradiction to the condition 1). Thus,

L(D) = {0}, i.e., D spans Fqm .

Step 2: We claim that |D(y,z)| > 0 for z ∈ F∗
qm . Since z 6= 0, then Ψ(zD) = θ1 or θ2. The claim

follows from Eqn. (17) and condition 2).

Step 3: We claim that P(y,z) ⊆ 〈z〉 for any y ∈ Fq, z ∈ F∗
qm , where P(y,z) is defined in Eqn.

(16). We prove by the way of contradiction. Suppose that there exists a ∈ P(y,z) \ 〈z〉 for some

fixed (y, z) ∈ V with z ∈ F∗
qm . We just need to show that none of these three conditions 3a),

3b), 3c) holds. Since a /∈ 〈z〉, we have λ1z + a 6= 0 for all λ1 ∈ Fq, and then Ψ ((λ1z + a)D)
equals θ1 or θ2. Set △ = 1

q

∑
λ1∈Fq

ψ(λ1y)Ψ ((λ1z + a)D). By Eqns. (18), (19) in Lemma 14

and the triangle inequality, we deduce that

|D| = qm +
∑

λ1∈Fq

Ψ ((λ1z + a)D)− (q − 1)Ψ(zD) ≥ qm + qθ2 − (q − 1)θ1, (23)

|D(y,z)| = |△| ≤ 1

q

∑

λ1∈Fq

|Ψ((λ1z + a)D)| ≤ θ0. (24)

By the inequality (23), the condition 3a) does not hold.

Next consider Eqn. (17), we deduce that

|D| =
{
q|D(y,z)|+Ψ(zD), if y 6= 0,

q|D(y,z)| − (q − 1)Ψ(zD), if y = 0.
(25)
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We apply the inequality (24) to Eqn. (25) to deduce that

k ≤ qθ0 + θ1 or k ≤ qθ0 − (q − 1)θ2

according as y 6= 0 or y = 0. Thus, the condition 3b) does not hold.

By comparing Eqn. (25) and Eqn. (18), we have that

|D(y,z)| =
{
qm−1 + 1

q

∑
λ∈Fq

Ψ ((a+ λz)D)−Ψ(zD), if y 6= 0,

qm−1 + 1
q

∑
λ∈Fq

Ψ ((a+ λz)D) , if y = 0.
(26)

We apply the inequality (24) to Eqn. (26) to deduce that

qm−1 + θ2 − θ1 ≤ θ0 or qm−1 + θ2 ≤ θ0

according as y 6= 0 or y = 0. Then the condition 3c) does not hold. This proves the claim.

To sum up, we have established that the two conditions of Corollary 13 hold, and so C(MD)
is a minimal linear code. This completes the proof.

Remark 1: We now remark on 2) of Theorem 15. To make C(MD) minimal, it is necessary for

D to satisfy that |D(y,z)| ≥ 1 for any y ∈ Fq and z ∈ F∗
qm , cf. Corollary 13. Hence the condition

2) of Theorem 15 is necessary for C(MD) to be minimal. In particular, since |D(y,z)| ≥ 0, it

suffices to verify that k 6= θ1 and k 6= −(q − 1)θ2 for 2) in Theorem 15.

Theorem 16: Take the same notation as in Theorem 15. Let m1 and m2 be the corresponding

multiplicities of two restricted eigenvalues θ1 and θ2 respectively. Then the weight distribution

of C(MD) is listed in Table II.

TABLE II

WEIGHT DISTRIBUTION OF C(MD) WITH F∗

q -INVARIANT PDS D

Weight Frequency

0 1

k q − 1

qm − qm−1 qm − 1

qm − qm−1 + θ1 m1(q − 1)

qm − qm−1 + θ2 m2(q − 1)

Proof: For each u ∈ Fq, v ∈ Fqm , we denote the weight of c(u, v) as ωu,v. By Eqns. (8)

and (9), we compute that

ωu,v =(qm − 1)− |{x ∈ D : u+ TrFqm/Fq(vx) = 0}| − |{x ∈ D : TrFqm/Fq(vx) = 0}|.

Case 1. If u = v = 0, then ω0,0 = (qm − 1)− (|D|+ |D|) = 0, and it has frequency 1.

Case 2. If u 6= 0 and v = 0, then

ωu,0 = (qm − 1)− |D| = |D| = k,

and it has frequency q − 1.

Case 3. If u = 0 and v 6= 0, then

ω0,v = (qm − 1)− |{x ∈ F∗
qm : TrFqm/Fq(vx) = 0}|

= (qm − 1)− (qm−1 − 1) = qm − qm−1,
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and it has frequency qm − 1.

Case 4. If u 6= 0 and v 6= 0, we compute that

ωu,v = (qm − 1)− |D(u,v)| − ((qm−1 − 1)− |D(0,v)|)

= (qm − qm−1)− 1

q
(|D| −Ψ(vD)) +

1

q
(|D|+ (q − 1)Ψ(vD))

= qm − qm−1 +Ψ(vD),

where Ψ is the canonical additive character of Fqm . Here we used Eqn. (17) in the second

equality. Recall that two restricted eigenvalues θ1 and θ2 of Cay(Fqm, D) have multiplicities m1

and m2 respectively, which have been determined in Lemma 6. By the description of srgs in

Section II-B, we have Ψ(vD) = θ1 or θ2 with multiplicity m1 or m2 respectively, where v ∈ F∗
qm .

Since ωu,v is independent with the first coordinate u, we deduce that

ωu,v =

{
qm − qm−1 + θ1, with frequency m1(q − 1),

qm − qm−1 + θ2, with frequency m2(q − 1),
where u ∈ F∗

q , v ∈ F∗
qm .

To sum up, we have determined the weight distribution of C(MD), which is as list in Table

II.

Corollary 17: Take the same notation as in Theorem 15, and assume that C(MD) is minimal.

If k ∈ {qm − qm−1, qm − qm−1 + θ1, q
m − qm−1 + θ2}, then C(MD) is a three-weight code;

otherwise, C(MD) is a four-weight code.

Proof: We first show that qm − qm−1 + θ2 6= 0. Take z ∈ F∗
qm such that Ψ(zD) = θ2. By

Eqn. (17), we deduce that k = q|D(y,z)| + θ2 for all y ∈ F∗
q . By Remark 1, the condition 2) of

Theorem 15 is necessary for C(MD) to be minimal, then we have k > −(q − 1)θ2. We thus

deduce that −θ2 < |D(y,z)| for each y ∈ F∗
q . By Eqn. (11), we have |D(y,z)| ≤ qm−1. Since

qm − qm−1 ≥ qm−1, it follows that qm − qm−1 + θ2 6= 0 as desired.

By Table II, we deduce that C(MD) has exactly three nonzero weights if and only if k ∈
{qm − qm−1, qm − qm−1 + θ1, q

m − qm−1 + θ2}. This completes the proof.

Corollary 18: Suppose that the conditions 1), 2) and at least one of 3a), 3b), 3c) in Theorem

15 hold. If k ≤ (q − 1)2qm−2 and the characteristic function fD of the set D is not linear, then

C(MD) is a [qm − 1, m+ 1] minimal linear code that does not satisfy the AB condition.

Proof: In the beginning of this section, we have shown that C(MD) = C(fD), where C(fD)
is defined in Eqn. (2). By Lemma 9 and Theorem 15, C(fD) is a minimal [qm − 1, m + 1]
linear code under our assumptions. Let ωmin and ωmax be the minimal and maximal nonzero

weights of the code C(MD) respectively. Since k ≤ (q− 1)2qm−2 < qm − qm−1, we deduce that

ωmin ≤ k < qm − qm−1 ≤ ωmax by Theorem 16. It follows that ωmin

ωmax
≤ k

qm−qm−1 ≤ q−1
q

. This

completes the proof.

In the sequel, we focus on partial difference sets of Latin square and negative Latin square

type.

Theorem 19: Let q = pe with p prime and Fqm be the finite field with qm elements such that

m ≥ 4, (m, q) 6= (4, 2) and 2 divides em. Suppose that D ( F∗
qm is an F∗

q-invariant partial

difference set with parameters

(qm, r(
√
qm − ǫ), ǫ

√
qm + r2 − 3ǫr, r2 − ǫr),

which is of Latin square type (resp. negative Latin square type) when ǫ = 1 (resp. ǫ = −1). Let

C(MD) be the associated linear code as in Eqn. (8). The code C(MD) is minimal if one of the

following conditions holds:
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1) ǫ = 1, r 6= √
qm and r > 1;

2) ǫ = −1, r 6= √
qm − 1 and r > (q−1)

√
qm√

qm+q
.

Proof: By Lemma 6, the eigenvalues of Cay(Fqm , D) are as follows:

k = r(
√
qm − ǫ),

θ1 =
1

2

(
ǫ
√
qm − 2ǫr +

√
qm
)
,

θ2 =
1

2

(
ǫ
√
qm − 2ǫr −√

qm
)
.

(27)

Recall that we set θ0 = max{|θ1|, |θ2|}. In this case, we have

θ0 =
1

2

(
|√qm − 2r|+√

qm
)
. (28)

We now show that the three conditions 1), 2) and 3c) in Theorem 15 are satisfied under our

assumptions.

Step 1: We first show that k − θ2 6= qm holds. We compute that

k − θ2 − qm = r
√
qm +

1

2
(1− ǫ)

√
qm − qm

=
√
qm
(
r +

1

2
(1− ǫ)−√

qm
)
.

It is routine to check that it is nonzero under each of the two conditions.

Step 2: We next show that k > θ1 and k > −(q − 1)θ2. We compute that

k − θ1 =

(
r − 1

2
ǫ− 1

2

)√
qm =

{
(r − 1)

√
qm, when ǫ = 1,

r
√
qm, when ǫ = −1.

and

k + (q − 1)θ2 = r(
√
qm − ǫ) +

q − 1

2
(ǫ
√
qm − 2ǫr −√

qm)

=

{
r(
√
qm − q), when ǫ = 1,

r(
√
qm + q)−√

qm(q − 1), when ǫ = −1.

It is routine to check that both are positive under our assumptions.

Step 3: Finally, we show that qm−1+θ2−θ1−θ0 > 0. By Eqn. (27), we deduce that θ1−θ2 =
√
qm.

Together with Eqn. (28), we have

qm−1 + θ2 − θ1 − θ0 = qm−1 −√
qm − 1

2
(|√qm − 2r|+√

qm)

=

{
qm−1 − 2

√
qm + r, if

√
qm ≥ 2r;

qm−1 −√
qm − r, otherwise.

Since D is a proper subset of F∗
qm , we have 0 < k < qm − 1 and so 0 < r <

√
qm + ǫ. It

follows from m ≥ 4 that qm−1 − 2
√
qm + r > 0. Since r <

√
qm + ǫ ≤ √

qm + 1, we have
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qm−1−√
qm−r > qm−1−2

√
qm−1 > 0 by the assumption that (m, q) 6= (4, 2). This establishes

3c) of Theorem 15.

To sum up, we have proved that the conditions 1), 2) and 3c) in Theorem 15 hold under our

assumptions, and so C(MD) is minimal by Theorem 15.

Theorem 20: Let q = pe with p prime, and let Fqm be a finite field with qm elements such that

m ≥ 4, (m, q) 6= (4, 2) and 2 divides em. Take the same notation as in Lemma 7 and take a proper

subset J ⊂ ZN of size u. If q is odd, we further assume that N | qm−1
2

and J+ qm−1
2

= J(mod N).
Let D =

⋃
j∈J Cj and C(MD) be the associated linear code defined in Eqn. (8) with MD as

given by Eqn. (9). The code C(MD) is a minimal linear code if J is invariant under the map

ρ : j → j + qm−1
q−1

(mod N) and one of the following conditions holds:

1) t is odd, u 6=
√
qmN√
qm+1

and u > N√
qm+1

;

2) t is even and u > (q−1)
√
qmN

(
√
qm+q)(

√
qm−1)

.

Proof: By Lemma 7, the strongly regular Cayley graph Cay(Fqm , D) has parameters

(qm, r(
√
qm − ǫ), ǫ

√
qm + r2 − 3ǫr, r2 − ǫr),

where ǫ = (−1)t+1 and r = u
N
(
√
qm + ǫ). It is of Latin square type (resp. negative Latin

square type) when t is odd (resp. t is even). Since J is invariant under ρ, we deduce that D is

F∗
q-invariant by Lemma 8. Then the desired result follows from Theorem 19.

Remark 2: We consider the special case where m is even and t is odd in Theorem 20. In

this case,
√
qm = pℓ1t ≡ −1(mod N), so we have N |(√qm + 1). It follows that N | qm−1

q−1
, since

qm−1
q−1

=
√
qm−1
q−1

· (√qm + 1). We deduce that any subset J of ZN is trivially invariant under

the map ρ : j → j + qm−1
q−1

(mod N). It follows from Lemma 8 that D is F∗
q-invariant. If q is

odd, then the conditions N | qm−1
2

and J + qm−1
2

≡ J(mod N) in the theorem also hold trivially.

Therefore, the requirements on the set J in Theorem 20 reduce to |J | 6=
√
qmN√
qm+1

and |J | > N√
qm+1

in this case. Since N |(√qm + 1), we have N√
qm+1

≤ 1, and so the condition |J | > N√
qm+1

holds

if |J | > 1. Therefore, there are lots of minimal linear codes arising from this construction.

The authors [3] proposed a useful way to construct minimal linear codes from cutting vectorial

(1, m− 1)-blocking sets in Lemma 3. But the condition 1) of this lemma is not necessary for a

linear code to be minimal. The following example obtained from Theorem 20 shows that there

exists a minimal linear code C(fD) such that D is not a cutting vectorial blocking set.

The next two examples show that the construction in Theorem 20 is not covered by the cutting

vectorial blocking set approach.

Example 1: Let p = 2, e = 2, q = pe = 4, m = 4. Set γ to be a primitive element of F44 .

Take ℓ1 = 2 and N = pℓ1 +1, then Ci = {γjN+i : 0 ≤ j ≤ qm−1
N

−1} for 0 ≤ i ≤ N −1. We set

J = ZN \{0} and D = DJ =
⋃

j∈J Cj . We have D = C0. Let C(MD) be a linear code defined in

Eqn. (8) with MD defined by Eqn. (9). We compute that N = pℓ1+1 = 5 and t = em/(2ℓ1) = 2.

Since N divides qm−1
q−1

, we deduce from Lemma 7 and Lemma 8 that D is an F∗
q-invariant partial

difference set. The function fD is not linear by Lemma 10. It is routine to compute that u = 4 >
(q−1)

√
qmN

(
√
qm+q)(

√
qm−1)

, k = 204, θ1 = 12 and θ2 = −4. By Theorem 20, C(MD) is a [255, 5] minimal

linear code. It is easy to check that qm−qm−1+θ1 = k. The code C(MD) is a three-weight code

by Corollary 17. Now consider the two affine hyperplanes H1 = {x ∈ F44 : TrF
44

/F4
(x) = 0} and

H2 = {x ∈ F44 : TrF
44

/F4
(γ7x) = 0} through the origin. We compute that D∩H1 = {1, γ170, γ85}
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and D ∩H2 = {1, γ170, γ85, γ190, γ20, γ105, γ145, γ230, γ60, γ180, γ10, γ95, γ45, γ130, γ215}. Observe

that D ∩H1 ⊆ D ∩H2 and so D is not a cutting vectorial (1, 3)-blocking set.

There are plenty of constructions of F∗
q-invariant PDS. In Table III, we list five specific

examples taken from Table 1 of [22]. For more constructions, please refer to [10]–[12], [17],

[21], [22].

Example 2: Let N be a proper divisor of qm−1. Let γ be a fixed primitive element of Fqm and

D = {γiN : 0 ≤ i ≤ qm−1
N

− 1}. We consider each example in Table III. It is easy to check that

N | qm−1
q−1

in each case, and thus D is F∗
q-invariant by Lemma 8. It follows that the characteristic

function fD is not linear by Lemma 10. We can verify that the conditions 1), 2), 3a) in Theorem

15 hold and so C(MD) is a [qm − 1, m + 1] minimal linear code in each case. We verify that

k ≤ (q−1)2qm−2 and k /∈ {qm−qm−1, qm−qm−1+θ1, q
m−qm−1+θ2} in each case, so C(MD)

has four nonzero weights and violates the AB condition by Corollary 17 and Corollary 18.

By [22], we have D = {γ11i : 0 ≤ i ≤ 35−1
11

− 1} in the first line of Table III, where γ is

a fixed primitive element of F35 . Set D := F∗
qm \D, which is F∗

3-invariant. The eigenvalues of

Cay(Fqm , D) are k = 220, θ1 = 4, θ2 = −5. The function fD is not linear by Lemma 10. We

verify that the conditions 1), 2), 3b) of Theorem 15 hold for D. Hence, C(MD) is a [35 − 1, 6]
minimal linear code. We check that k /∈ {qm−qm−1, qm−qm−1+θ1, q

m−qm−1+θ2}, and then

deduce that C(MD) has four nonzero weights from Corollary 17. We have checked by Magma

[4] that D is not a cutting vectorial (1, 4)-blocking set, so the code C(MD) does not arise from

Lemma 3.

TABLE III

SOME EXAMPLES OF PDS D’S AND THE EIGENVALUES OF Cay(Fqm , D)

No. q m N k θ1 θ2

1 3 5 11 22 4 -5

2 5 9 19 102796 296 -329

3 3 12 35 15184 118 -125

4 7 9 37 1090638 584 -1817

5 11 7 43 453190 650 -681

C. The automorphism group of C(MD)

Let D be a proper F∗
q-invariant subset of Fqm . An automorphism of D is a bijective Fq-linear

transformation g of Fqm that preserves the set D, i.e., {g(x) : x ∈ D} = D. We write Aut(D)
for the set of all automorphisms of D. For each g ∈ Aut(D) and c(u, v) ∈ C(MD), we define

c(u, v)g :=
(
ufD(g(x)) + TrFqm/Fq(vg(x))

)
x∈F∗

qm
.

Since g ∈ Aut(D), we have fD(g(x)) = fD(x) for each x ∈ F∗
qm . Recall that g can be regarded

as a reduced q-polynomial over Fqm , cf. Section II-A. Take g̃ to be the trace dual of g. It follows

that c(u, v)g = c(u, g̃(v)). It is easy to check that g̃ is also a bijective Fq-linear transformation

of Fqm . Thus, g induces an automorphism of the code C(MD).
In the case |Aut(D)| is large, the resulting code C(MD) will also have a large automorphism

group. It is thus possible that C(MD) will have a fast decoding algorithm in such case. The
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following is an example where D has a large automorphism group and the associated code

C(MD) is minimal.

Example 3: Let Q : Fm
q → Fq be a nondegenerate quadratic form with m ≥ 4 even, q = ph

and (m, q) 6= (4, 2). By Theorem 2.6 of [17], D = {x ∈ Fm
q \ {0} : Q(x) = 0} is a PDS with

parameters (qm, r(
√
qm − ǫ), ǫ

√
qm + r2 − 3ǫr, r2 − ǫr). If Q defines a hyperbolic quadric, then

ǫ = 1, r = qm/2−1+1 and D is a PDS of Latin square type. In this case, the automorphism group

of D is ΓO+(m, q) with order 2hqm(m−2)/4(q−1)Π
m/2
i=1 (q

2i−1); if Q defines an elliptic quadric,

then ǫ = −1, r = qm/2−1 − 1 and D is a PDS of negative Latin square type. In this case, the

automorphism group of D is ΓO−(m, q) with order 2hqm(m−2)/4(q−1)(qm/2+1)Π
m/2−1
i=1 (q2i−1).

In both cases, the code C(MD) is minimal by Theorem 19.

IV. MINIMAL LINEAR CODES AND SECRET SHARING SCHEMES

In [18] and [19], Massey showed that minimal linear codes can be used to construct secret

sharing schemes. Later, Yuan and Ding [26] gave a more detailed description on the secret

sharing scheme based on a linear code, which we describe below. Let C be a [n, k, d; q] linear

code with generator matrix G = (g1, g2, . . . , gn). The secret s is an element of Fq. There are

n−1 participants P2, . . . , Pn and a trusted person as a dealer in this scheme. The dealer chooses

randomly a vector u ∈ Fk
q such that s = t1 = ug1, and compute the vector t = (t1, t2, . . . , tn) =

uG and then distribute each ti to participant Pi as share for each i ≥ 2. We call this scheme

as the secret sharing scheme based on C. In this scheme, the secret s = t1 = ug1, then a set of

shares {ti1 , ti2 , . . . , tiℓ} for 2 ≤ i1 < i2 < . . . < iℓ ≤ n determines this secret if and only if g1
is a linear combination of gi1 , gi2 , . . . , giℓ . Thus, a set of participants P = {Pi1, Pi2, . . . , Piℓ}
for 2 ≤ i1 < i2 < . . . < iℓ ≤ n determines the secret if and only if there exists a codeword

(1, 0, . . . , 0, ci1, 0, . . . , 0, ciℓ , 0, . . . , 0) in the dual code C⊥, cf. [26, Proposition 1] or [18].

A set of participants is called a minimal access set if all participants of the set can recover the

secret with their shares but any proper subset can not do so. Clearly, if C⊥ is a minimal linear

code, then there is a one to one correspondence between the set of minimal access sets and

the set of the codewords of C⊥ whose first coordinate is 1. A secret sharing scheme is called

democratic of degree t (t ≥ 1) if every group of t participants is in the same number of minimal

access sets.

In the sequel, we consider the secret sharing scheme based on C(MD)
⊥, where C(MD) is

the [qm − 1, m+ 1] minimal linear code obtained in Section III. Such a secret sharing scheme

has many interesting structures, cf. [26, Proposition 2]. Recall that C(MD) = C(fD) and the

codeword of C(MD) is given by c(u, v) = (H(xj))j=1,...,qm−1 for each (u, v) ∈ V , where H(x) =
ufD(x) + Trqm/q(vx) and x1, · · · , xqm−1 is an ordering of the elements of F∗

qm . Let Pi be the

participant corresponding to the coordinate labeled by xi, 2 ≤ i ≤ qm − 1. By the preceding

paragraph, the number of minimal access sets (i.e., the number of minimal codeword in C(MD)
with H(x1) = 1) is (qm+1 − qm)/(q − 1) = qm. The number of minimal access sets that the

participant Pi (i ≥ 2) lies in is

Nxi
= |{(u, v) ∈ V : H(x1) = 1, H(xi) 6= 0}|.

By basic computation of linear algebra, we get

Nxi
=

{
qm, if x1 ∈ D, xi ∈ {ax1 : a ∈ F∗

q},
qm − qm−1, otherwise.
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For instance, in the case that x1 ∈ D and xi ∈ {ax1 : a ∈ F∗
q} for some 2 ≤ i ≤ qm − 1, we

have Nxi
= |{(u, v) ∈ V : TrFqm/Fq(vx1) = 1}| = q ·qm−1 = qm. The computation is similar and

technical in other cases, so we omit the details. Actually, this result on Nxi
is coincide with the

Proposition 2 of [26], and the main step is to check in which case (fD(x1), x1) and (fD(xi), xi)
are Fq-linear dependent.

There are two possible types of schemes arising from C(MD)
⊥ according to the choice of x1.

If we take x1 ∈ D, then the corresponding participant Pi such that xi = ax1 for some a ∈ F∗
q

appears in every minimal access set, and such a participant is called dictatorial. Such a scheme

is useful in scenarios where the bosses must participate in every decision making. If we choose

x1 ∈ D, then in this scheme every participant Pi, 2 ≤ i ≤ qm − 1, lies in qm − qm−1 out of qm

minimal access sets. Such a scheme is democratic of degree at least 1.

V. CONCLUDING REMARKS

In this paper, we present a general construction of minimal linear codes from F∗
q-invariant

partial difference sets and studied their properties. Our construction yields many minimal linear

codes that do not satisfy the AB condition and some examples do not arise from the cutting

vectorial blocking set approach. We also show that an automorphism of the partial difference set

induces an automorphism of the associated minimal linear code. In the cases where the set has

a large automorphism group, the resulting code will also have a large automorphism group and

so potentially have a fast decoding algorithm. Finally, we consider the properties of the secret

sharing schemes based on the dual of our codes.
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