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Geometric Approach to b-Symbol Hamming
Weights of Cyclic Codes

Minjia Shi , Ferruh Özbudak , and Patrick Solé

Abstract— Symbol-pair codes were introduced by Cassuto and1

Blaum in 2010 to protect pair errors in symbol-pair read chan-2

nels. Recently Yaakobi, Bruck and Siegel (2016) generalized this3

notion to b-symbol codes in order to consider consecutive b errors4

for a prescribed integer b ≥ 2, and they gave constructions and5

decoding algorithms. Cyclic codes were considered by various6

authors as candidates for symbol-pair codes and they established7

minimum distance bounds on (certain) cyclic codes. In this paper8

we use algebraic curves over finite fields in order to obtain9

tight lower and upper bounds on b-symbol Hamming weights10

of arbitrary cyclic codes over Fq. Here b ≥ 2 is an arbitrary11

prescribed positive integer and Fq is an arbitrary finite field.12

We also present a stability theorem for an arbitrary cyclic code13

C of dimension k and length n: the b-symbol Hamming weight14

enumerator of C is the same as the k-symbol Hamming weight15

enumerator of C if k ≤ b ≤ n − 1. Moreover, we give improved16

tight lower and upper bounds on b-symbol Hamming weights of17

some cyclic codes related to irreducible cyclic codes. Throughout18

the paper the length n is coprime to q.19

Index Terms— Cyclic code, b-symbol error, algebraic curve,20

Weil-Serre bound, irreducible cyclic code.21

I. INTRODUCTION22

SYMBOL-PAIR codes were introduced by Cassuto23

and Blaum [2], [3] to combat symbol-pair errors in24

symbol-pair channels. This model was used to address chan-25

nels with high write resolution but low read resolution, so that26

individual symbols cannot be read off due to physical limita-27

tions. In this new model the errors are no longer individual28

symbol errors, but rather symbol-error pair errors, where in a29

symbol-pair error at least one of the symbols is erroneous.30

The seminal works [2]–[4] established relationships between31

the minimum Hamming distance of an error correcting code32
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and the minimum pair distance, constructed some codes for 33

pair distance and gave decoding algorithms. 34

The minimum pair distance of linear cyclic codes has been 35

studied by Cassuto and Blaum [3], Kai et al. [13], and recently 36

by Yaakobi et al. [19]. In particular, Yaakobi et al. obtained 37

an elegant result on the pair distance of binary cyclic codes 38

of dimension at least 2: d2(C) ≥ d1(C)+ �d1(C)
2 � � 3

2d1(C), 39

where d2(C) is the minimum pair distance of C and d1(C) is 40

the minimum (Hamming) distance of C. Moreover, in [19] 41

they considered the more general problem of consecutive 42

b-symbol errors instead of only 2-symbol errors for a pre- 43

scribed integer b ≥ 2. They generalized some results of b = 2 44

to the case of b ≥ 2. 45

Let Fq be an arbitrary finite field. In this paper we use alge- 46

braic curves over finite fields (equivalently algebraic function 47

fields over finite fields) in order to study lower and upper 48

bounds on an arbitrary cyclic code C over Fq of length n, 49

where b is a prefixed integer such that 2 ≤ b ≤ n − 1. Our 50

main contributions are: 51

• We obtain tight lower and upper bounds for b-symbol 52

Hamming weights of arbitrary cyclic codes. 53

• We give a stability theorem for b-symbol Hamming 54

weights: if C is an arbitrary cyclic code of length n 55

and dimension k, then for any integer b in the range 56

k ≤ b ≤ n−1 the b-symbol Hamming weight enumerator 57

of C is the same as the k-symbol Hamming weight 58

enumerator of C. 59

• We obtain improved lower and upper bounds for b-symbol 60

Hamming weights of some cyclic codes related to irre- 61

ducible cyclic codes. 62

We also find a connection between maximal and minimal 63

curves over finite fields and the lower and upper bounds of 64

b-symbol Hamming weights of arbitrary cyclic codes. Using 65

this connection and inspired by the important result d2(C) ≥ 66

3
2d1(C) of Yaakobi et al. [19, Theorem 1], we obtain further 67

inequalities between db+δ(C) and db(C) for some cyclic 68

codes C. 69

For any code C of length n over Fq, there is a canonical 70

code C(b) of length n over the alphabet Fb
q such that the 71

b-symbol Hamming weight enumerator of C is the same as 72

the Hamming weight enumerator of C. This follows naturally 73

from the definition by an explicit Fq-linear map πb. We could 74

not find this map in the literature and we explain it in 75

Section 2 below. 76

The rest of the paper is organized as follows: We give some 77

preliminaries and further notation in Section 2. We present a 78
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trace representation of C(b) in Section 3, that we use in our79

proofs. We specialize to a subclass of cyclic codes related to80

irreducible cyclic codes in Section 4. This allows us to present81

some of our methods in detail and we also get improved82

bounds on the b-symbol weights in this subclass. We give83

our results for arbitrary cyclic codes in Section 5. We also84

have an appendix providing background material on algebraic85

function fields that we use in Section 4 and 5. We conclude86

in Section 6.87

II. PRELIMINARIES88

We start by fixing a part of our notation:89

• Fq: finite field with q elements.90

• n ≥ 3: an integer with gcd(n, q) = 1.91

• 2 ≤ b ≤ n − 1: an integer.92

• For a finite set A, let |A| denote its cardinality.93

• C: an Fq-linear subspace of Fn
q . We assume that |C| > 194

omitting the trivial case. C is called a linear code of95

length n over Fq . We also refer C just as code throughout96

this paper. Elements of C are called codewords of C.97

• k = dimFq C.98

We present further notation and preliminaries in the follow-99

ing subsections.100

A. Hamming Weight, Hamming Distance and Hamming101

Weight Enumerator102

Let A be a nonempty finite set, which stands for the103

alphabet to be fixed. Throughout the paper A becomes Fq104

or Fb
q = Fq × · · · × Fq︸ ︷︷ ︸

b times

. Let α = (α1, . . . , αn) ∈ An and105

β = (β1, . . . , βn) ∈ An. The Hamming weight ||α|| of α is106

the nonnegative integer107

||α|| = |{1 ≤ i ≤ n : αi �= 0}|.108

The Hamming distance d(α, β) between α and β is the109

nonnegative integer110

d(α, β) = |{1 ≤ i ≤ n : αi �= βi}|.111

Let C ⊆ An be a subset with |C| ≥ 2. The minimum Hamming112

distance d(C) of C is the integer113

d(C) = min{d(α, β) : α, β ∈ C and α �= β}.114

If C is further closed under addition, then it is well known and115

easy to observe that116

d(C) = min{||α|| : α �= 0}.117

Assume that C ⊆ An is a subset which is closed under118

addition. For 0 ≤ i ≤ n, let Ai be the nonnegative integer119

Ai = |{α ∈ C : ||α|| = i}|.120

The polynomial A(Z) = A0+A1Z+· · ·+AnZn ∈ Z[Z] with121

these nonnegative integer coefficients is called the Hamming122

weight enumerator of C.123

B. b-Symbol Hamming Weight, b-Symbol Hamming Minimum 124

Distance and b-Symbol Hamming Weight Enumerator 125

Recall that b is an integer with 2 ≤ b ≤ n − 1. Let πb : 126

Fn
q → (

Fb
q

)n
the map 127

(α0, . . . , αi, . . . , αn−1) �→ ((α0, α1, . . . , αb−1), . . . , 128

(αi, αi+1, . . . , αi+b−1), . . . , 129

(αn−1, α0, . . . , αn+b−1)), 130

where the indices are modulo n. It is clear that πb is an 131

Fq-linear map. 132

Example 1: For q = 2, n = 4, b = 3 and α = 133

(0, 1, 1, 0, 0) ∈ F5
2 we have 134

π3(α) =
(
(0, 1, 1), (1, 1, 0), (1, 0, 0), (0, 0, 0), (0, 0, 1)

)
135

∈ (F2 × F2 × F2)
5 . 136

The Hamming weight of π3(α) over the alphabet A = F2× 137

F2 × F2 is 1 + 1 + 1 + 0 + 1 = 4 (see Subsection II-A). 138

Put A = Fq × · · · × Fq︸ ︷︷ ︸
b times

. Recall that C ⊆ Fn
q is a linear code 139

of length n over Fq . Let C(b) = πb(C) ⊆ An be the image of 140

C under the Fq-linear map πb. Note that C(b) is closed under 141

addition. Using the notation of Subsection II-A, the Hamming 142

weight minimum distance of C(b) and the Hamming weight 143

enumerator of C(b) are well defined. The Hamming weight 144

minimum distance of C(b) is called the b-symbol Hamming 145

minimum distance of C. The Hamming weight enumerator 146

of C(b) is called the b-symbol Hamming weight enumerator 147

of C. Similarly for a codeword c ∈ C, the Hamming weight 148

of πb(c) ∈ An is called the b-symbol Hamming weight of c. 149

We also denote C as C(1). 150

C. Cyclic Code of Length n Over Fq and Its Nonzero Set 151

We further fix and assume the following from now on 152

throughout the paper: 153

• r ≥ 2: an integer such that n | (qr − 1). 154

• γ ∈ F∗
qr : a primitive n-th root of 1. 155

• C: an arbitrary (if not stated otherwise) cyclic code of 156

length n over Fq . 157

The existence of r follows by the assumption that 158

gcd(n, q) = 1. 159

We need to introduce some basic facts on cyclic codes. 160

We refer, for example [15], for the details. It is possible 161

to identify an element (a0, a1, . . . , an−1) ∈ Fn
q with the 162

polynomial a0 + a1z + · · · + an−1z
n−1 ∈ Fq[z]. Let R be 163

the quotient ring of Fq[z] given by R = Fq[z]/ < zn − 1 >. 164

Using this identification, cyclic codes of length n over Fq are 165

exactly ideals of R. 166

Let I be the ideal of R corresponding to C. It is well known 167

that the ideals of R are principal. Hence there exists a uniquely 168

determined monic polynomial g(z) ∈ Fq[z] of smallest degree 169

such that g(z)+ < zn − 1 >∈ I . This polynomial is called 170

the generator polynomial of C. Recall that k is the dimension 171

of C over Fq . It is well known that deg g(z) = n − k and 172

g(z) | (zn − 1) in the polynomial ring Fq[z]. 173
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As n | (qr − 1), there is no repeated root of g(z) and g(z)174

splits into its linear factors over Fqr . Let S ⊆ {0, 1, . . . , n−1}175

be the subset such that the roots of g(z) are exactly {γi :176

i ∈ S}. Let S̃ be the complement, i.e. S̃ = {0, 1, . . . , n−1}\S.177

Let U ⊆ {0, 1, . . . , n−1} be the subset of cardinality k defined178

as U = {−j mod n : j ∈ S̃}. We call U the nonzero set of C.179

Example 2: Let q = 4, n = 21 and r = 3. Let γ ∈ F∗
43 be180

a primitive 21-th root of 1. We choose γ as a root of x6 +181

x5 + x4 + x2 + 1 ∈ F2[x]. Let182

g(z) =
(
z − γ9

) (
z − γ15

) (
z − γ18

) (
z − γ5

)
183 (

z − γ20
) (

z − γ17
) (

z − γ10
) (

z − γ19
)

184 (
z − γ13

) (
z − γ7

)
.185

It turn out that g(z) ∈ F4[z]. Namely we have186

g(z) = z10 + δz9 + δz8 + δ2 z7 + z6 + δz5 (1)187

+δ2 z4 + z2 + δz + δ2,188

where δ ∈ F4 with δ2 + δ + 1 = 0. It is clear that g(z) |189

(z21 − 1) over F4. Let C be the cyclic code of length 21 over190

F4 generated by g(z). Under notation above we have191

S = {5, 7, 9, 10, 13, 15, 17, 18, 19, 20},
S̃ = {0, 1, 2, 3, 4, 6, 8, 11, 12, 14, 16}192

and hence the nonzero set U of C is given by193

U = {0, 5, 7, 9, 10, 13, 15, 17, 18, 19, 20}.194

We also fix the following from now on throughout the paper:195

• U ⊆ {0, 1, . . . , n − 1}: the nonzero set of C.196

Note that U and C determine each other uniquely.197

D. Trace Representation of a Cyclic Code198

In this subsection we present a trace representation of C.199

We use well known methods, see for example, [16, Chapter 9]200

and the references therein.201

The cyclic group Gal(Fqr/Fq) is generated by the Frobe-202

nius automorphism x �→ xq . There is an action of203

Gal(Fqr/Fq) on {0, 1, . . . , n−1}. The action of the Frobenius204

automorphism is given as follows: u ∈ {0, 1, . . . , n−1} �→ uq205

mod n ∈ {0, 1, . . . , n − 1}. For any integer u ∈ {0, 1, . . . ,206

n − 1}, the orbit {ui mod n ∈ {0, 1, . . . , n − 1} : 0 ≤ i ≤207

r−1} of u under this action is called the q-cyclotomic coset of208

u modulo n. A subset A ⊆ {0, 1, . . . , n−1} is called closed if209

u ∈ A implies that uq mod n ∈ A. A closed set is a disjoint210

union of q-cyclotomic cosets modulo n.211

Recall that U is the nonzero set of the cyclic code C. It is212

well known that U is a closed set and hence hence U is a213

disjoint union of q-cyclotomic cosets modulo n. Note that the214

disjoint decomposition of U into its disjoint subsets, which215

are q-cyclotomic cosets modulo n, is uniquely determined. Let216

U0 be a subset of U such that there is exactly one element217

in U0 for each q-cyclotomic coset modulo n in this disjoint218

decomposition of U . Note that U0 is not uniquely determined219

in general. We call that U0 is a basic nonzero set of C.220

We further fix the following from now on throughout the221

paper:222

• Tr : Fqr → Fq: the trace map defined as x �→ x + xq + 223

· · · + xqr−1
. 224

Note that Tr is a surjective and Fq-linear map. 225

For U0 = {u1, u2, . . . , uρ}, let P (U0) denote the Fqr -linear 226

subspace of Fqr [x] defined as 227

P (U0) = {a1x
u1 + · · · + aρx

uρ : a1, . . . , aρ ∈ Fqr}. 228

For f(x) ∈ P (U0), we use the short notation Tr(f(x)) for the 229

n-tuple 230

Tr(f(x)) =
(
Tr(f(γ0)), · · · , Tr(f(γn−1)

) ∈ Fn
q . 231

It is well known that we have a trace representation for C 232

given by 233

C = {Tr(f(x)) : f ∈ P (U0)}, 234

where we are free to choose an arbitrary basic nonzero set U0 235

of C. Namely, a generic element c = (c0, c1, . . . , cn−1) of C 236

is given by 237

c = Tr(f(x)) ∈ Fn
q and f ∈ P (U0). 238

Hence for f ∈ P (U0), we also use the notation c(f) to donate 239

the codeword 240

c(f) =
(
Tr(f(1)), Tr(f(γ)), . . . , Tr(f(γn−1))

)
241

of C. 242

Example 3: Let q = 4, n = 21 and r = 3. We keep the 243

notation of Example 2. Hence γ ∈ F∗
43 is a primitive 21-th 244

root of 1 as in Example 2. 245

All 4-cyclotomic cosets modulo 21 are as follows: 246

0 = {0}, 1 = {1, 4, 16}, 2 = {2, 8, 11}, 247

3 = {3, 12, 6}, 5 = {5, 20, 17}, 7 = {7}, 248

9 = {9, 15, 18}, 10 = {10, 19, 13}, 14 = {14}. 249

Let C be the cyclic code of length 21 over F4 defined in 250

Example 2. We observe that the nonzero set U of C is a 251

disjoint union of 4-cyclotomic cosets modulo 21 given by 252

U = {0} � {5, 10, 17} � {7} � {9, 15, 18} (2) 253

�{10, 19, 13}, 254

where � indicates that the subsets {0}, . . . , {10, 19, 13} are 255

pairwise disjoint. Hence a basic nonzero set U0 of C is 256

U0 = {0, 5, 7, 9, 10}. 257

For an arbitrary codeword c = (c0, c1, . . . , c20) of C ⊆ F21
4 , 258

there exists f(x) ∈ P (U0) = {a0 + a5x
5 + a7x

7 + a9x
9 + 259

a10x
10 : a0, a5, a7, a9, a10 ∈ F43} such that c = c(f). Namely 260

there exist a0, a5, a7, a9, a10 ∈ F43 such that 261

ci = Tr
(
a0 + a5γ

5i + a7γ
7i + a9γ

9 i + a10γ
10 i

)
262

for 0 ≤ i ≤ 20, where Tr is the trace map from F43 onto F4. 263
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III. TRACE REPRESENTATIONS OF C(b)
264

Note that the b-symbol Hamming weights of codewords265

of C are defined in terms of the Hamming weights of the266

codewords of C(b) over the alphabets Fb
q . We refer to Subsec-267

tion II-B for a definition of the code C(b).268

In this section we present a trace representation of C(b),269

where C is an arbitrary cyclic code over Fq of length coprime270

to q. This section is one of the contributions of this paper as271

we could not find such an approach for the b-symbol Hamming272

weights of codewords of C in the literature.273

First we need a definition.274

Definition III.1: For any integer 0 ≤ t ≤ n − 1 and f ∈275

P (U0), let f (t) denote the polynomial in P (U0) given by276

f (t)(x) = f(γtx).277

We give our trace representation in the next theorem.278

We will use this representation in our proofs.279

Theorem III.2: Let C be an arbitrary cyclic code over Fq280

of length coprime to q. Let 2 ≤ b ≤ n − 1 be an integer. For281

the code C(b) of length n over the alphabet Fb
q we have282

C(b) =
{(

Tr(f(γ)), · · · , Tr(f (b−1)(γ))
)

: f ∈ P (U0)
}

.283

A generic element (β0, . . . , βn−1) of C(b) is given by284

βi =
(
Tr(f(γi)), Tr(f (1)(γi)), . . . , Tr(f (b−1)(γi))

)
∈ Fb

q285

f ∈ P (U0), 0 ≤ i ≤ n − 1.286

Proof: Let f ∈ P (U0) and c(f) ∈ C be the corresponding287

codeword of the cyclic code C. We have288

c(f) = (c0, c1, . . . , cn−1) (3)289

=
(
Tr(f(γ0)), Tr(f(γ1)), . . . , Tr(f(γn−1))

)
.290

Let c(b)(f) = πb (c(f)) be the corresponding codeword of291

C(b). Putting c(b)(f) = (β0, β1, . . . , βn−1) we obtain that292

βi = (ci, ci+1, . . . , ci+b−1) ∈ Fb
q, where293

ci+� = Tr
(
f(γi+�)

)
(4)294

for 0 ≤ � ≤ b − 1 and 0 ≤ i ≤ n − 1. It follows from295

Definition III.1 that f (�)(x) = f
(
γ�x

)
for 0 ≤ � ≤ b − 1.296

Hence we have that297

f (�)(γi) = f(γ�γi) = f(γi+�) (5)298

for 0 ≤ � ≤ b− 1, and 0 ≤ i ≤ n− 1. Combining (4) and (5)299

we complete the proof.300

Example 4: Let q = 4, n = 21 and r = 3. Let C be the301

cyclic code of length 21 over F4 considered in Examples 2302

and 3. We keep the notation of Examples 2 and 3. In particular303

γ ∈ F∗
43 is a primitive 21-th root of 1. Put b = 3.304

For an arbitrary element (β0, β1, . . . , β20) of C(3) ∈305

(F4 × F4 × F4)
21, there exist a0, a5, a7, a9, a10 ∈ F43 such306

that307

βi =

(
Tr

(
a0 + a5γ

5i + a7γ
7i + a9γ

9i + a10γ
10i

)
,308

Tr
(
a0 + a5γ

5+5i + a7γ
7+7i + a9γ

9+9i + a10γ
10+10i

)
,309

Tr
(
a0 + a5γ

10+5i + a7γ
14+7i + a9γ

18+9i + a10γ
20+10i

))
310

for 0 ≤ i ≤ 20.311

IV. b-SYMBOL WEIGHTS FOR SOME CYCLIC CODES 312

Throughout this section we assume that C is a cyclic code 313

of length n dividing qr − 1 whose nonzero set is exactly one 314

q-cyclotomic coset U in Z/nZ. If U = {0}, then C is a 315

repetition code and any b-symbol Hamming weight of any 316

nonzero codeword c of C is n for any 1 ≤ b ≤ n − 1. Hence 317

we further assume that there exists an integer 1 ≤ u ≤ n − 1 318

such that u ∈ U . 319

There is a close connection of the codes of this section to 320

irreducible cyclic codes. We explain this connection explicitly 321

after Theorem IV.3 below. It is well known that it is a 322

notoriously difficult open problem to determine the weight 323

distribution of irreducible cyclic codes in general (see, for 324

example, [5]). 325

First we present a useful stability theorem. We start with 326

some notation. 327

For 1 ≤ t ≤ n− 1, let V (t) = Span
Fq
{1, γu, . . . , γ(t−1)u}. 328

Note that on the difference of consecutive dimensions we have 329(
dimFq V (t + 1) − dimFq V (t)

) ∈ {0, 1} for all t. (6) 330

The following definition is useful. 331

Definition IV.1: Let μ be the largest positive integer t such 332

that dimFq V (t) = t. 333

The next lemma gives an alternative definition of μ and 334

it shows that μ is independent from the choice of primitive 335

n-th root of unity and from the choice of u ∈ U . 336

Lemma IV.2: Under notation above, for μ given in Defin- 337

ition IV.1 we have μ = dimFq Fq(γu), where Fq(γu) is the 338

smallest finite field extension of Fq containing γu. 339

Proof: It follows from (6) and Definition IV.1 that μ is 340

the smallest positive integer t satisfying 341

γu(t+i) ∈ Span
Fq
{1, γu, . . . , γu(t−1)}, 342

for all integers i ≥ 0. Equivalently μ is the smallest positive 343

integer t such that Fq[γu] ∈ Span
Fq
{1, γu, . . . , γu(t−1)}. 344

This means that Fq(γu) = Fq[γu] = Span
Fq
{1, γu, . . . , 345

γu(t−1)}. 346

Corollary 1: Under notation above, for μ given in Defini- 347

tion IV.1 the following equivalent characterizations hold: 348

• μ = dimFq Fq(γu). 349

• μ = dimFq C. 350

• μ is the multiplicative order of q modulo n
gcd(n,u) . 351

• μ is the size of the q-cyclotomic coset U (containing u) 352

in Z/nZ. 353

Proof: The multiplicative order of γu is n
gcd(n,u) . Hence 354

we have that dimFq Fq(γu) = μ if and only if μ is the smallest 355

integer r such that n
gcd(n,u) divides qr − 1. In particular this 356

means that μ is the multiplicative order of q modulo n
gcd(n,u) . 357

Let U be the nonzero set of C. It follows from the definition 358

of the nonzero set (see Subsection II-C) that dimFq C is the 359

size of U . Note that U is the q-cyclotomic coset containing 360

u in Z/nZ as the nonzero set of C consists of exactly one 361

q-cyclotomic coset by assumption in this section. The size of 362

U is the smallest integer r such that qru ≡ u mod n. This 363

means that the size of U is the smallest integer r such that 364

n
gcd(n,u) divides qr − 1. Combining the arguments above we 365

complete the proof. 366
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First we present our stability theorem in the special case367

of this section. Basically it says that the b-symbol Hamming368

weight enumerators of C are the same for all b-symbol369

Hamming weights if b ≥ dimFq(C). There exists a nonempty370

stability region always except the trivial case that dimFq C =371

n − 1. We generalize the next result to arbitrary cyclic codes372

in Theorem V.2 below, whose proof is more involved.373

Theorem IV.3: Assume that gcd(n, q) = 1. Let C be a374

cyclic code of length n such that its nonzero set is exactly one375

q-cyclotomic coset U of Z/nZ. Assume that U �= {0} and let376

u ∈ U . Let k = dimFq C. For any integer b in the interval377

k ≤ b ≤ n− 1, the b-symbol Hamming weight enumerator of378

C is the same as the k-symbol Hamming weight enumerator379

of C.380

Proof: Let f(x) = axu ∈ Fqr [x] \ {0} be an arbitrary381

nonzero polynomial in P ({u}). Let c(k)(f) ∈ C(k) and382

c(b)(f) ∈ C(b) be the corresponding codewords, where we383

refer to Theorem III.2 for the explicit descriptions of the384

codewords. Note that385

c(b)(f) =
(
Tr(f(γ)), Tr(f (1)(γ)), · · · , Tr(f (b)(γ))

)
.386

Putting c(b)(f) =
(
c
(b)
0 (f), c(b)

1 (f), . . . , c(b)
n−1(f)

)
∈ (

Fb
q

)n
,387

for the symbols of c(b)(f) in the alphabet Fb
q we observe that388

c
(b)
i (f) =

�
Tr(aηui), Tr(ηuaηui), · · · , Tr(η(b−1)uaηui)

�
. (7)389

Similarly for the symbols of c(k)(f) in the alphabet Fμ
q we390

observe that391

c
(k)
i (f) =

�
Tr(aηui), Tr(ηuaηui), · · · , Tr(η(k−1)uaηui)

�
. (8)392

Using Corollary 1 we get393

Q := SpanFq{1, γu, . . . , γ(k−1)u}394

= Span
Fq
{1, γu, . . . , γ(b−1)u}395

Hence if α ∈ Fqr , then396

0 = Tr(α) = Tr(ηuα) = · · · = Tr(η(k−1)uα) (9)397

⇐⇒ 0 = Tr(α) = Tr(ηuα) = · · · = Tr(η(b−1)uα).398

Using (7) and (8) this implies that c
(k)
i (f) contributes to the399

Hamming weight of the codeword c(k)(f) of length n over the400

alphabet Fk
q if and only if c

(b)
i (f) contributes to the Hamming401

weight of the codeword c(b)(f) of length n over the alphabet402

Fb
q. Therefore the values of the Hamming weights (defined403

over their respective alphabets) of c(k)(f) and c(b)(f) are the404

same. This completes the proof.405

Remark 1: We note that Theorem IV.3 (and hence The-406

orem V.2 below) has useful engineering consequences in407

applications. For example it implies that increasing b for408

b-symbol for error correcting does give any further advantage409

if b ≥ k for these codes.410

Now we explain the connection of the codes of this section411

to irreducible cyclic codes. Let m = gcd(u, n) and put412

n̄ = n/m. Note that γui = γu(i+n̄) for i ≥ 0 as γun̄ =413

γn u
m = 1. For a codeword c = (c0, c1, . . . , cn−1) ∈ C and414

a codeword c(b) = (c(b)
0 , c

(b)
1 , . . . , c

(b)
n−1) ∈ C(b), let c̄ ∈ Fn̄

q415

and c̄(b) ∈ (Fq)
n̄ be the corresponding elements defined as 416

the shortenings 417

c̄ = (c0, c1, . . . , cn̄−1)andc̄(b) = (c(b)
0 , c

(b)
1 , . . . , c

(b)
n̄−1) (10) 418

to the first n̄ symbols. Let C̄ ⊆ Fn̄
q and C̄(b) ⊆ (

Fb
q

)n̄
be the 419

codes defined as 420

C̄ = {c̄ : c ∈ C} and C̄(b) = {c̄(b) : c(b) ∈ C(b)}. (11) 421

Using the fact that γui = γu(i+n̄) for i ≥ 0 we observe 422

πb(C̄) = C̄(b). Moreover, between the Hamming weights of 423

c, c̄, c(b) and c̄(b) we have the relations 424

wH(c̄) =
1
m

wH(c) and wH(c̄(b)) =
1
m

wH(c(b)). (12) 425

Let δ = γu ∈ F∗
qr , which is a primitive n̄-th root of 1. 426

We observe that C̄ is the irreducible cyclic code of length 427

n̄ over Fq having the trace representation 428

C̄ = {(Tr(aδ0), Tr(aδ1), . . . , Tr(aδn̄−1)
)

: a ∈ Fqr}. 429

These arguments show that C is obtained from C̄ via m times 430

replication so that 431

C =
{
(c̄, c̄, . . . , c̄) : c̄ ∈ C̄

}
. 432

Next we study b-symbol Hamming weights of C for 433

b ∈ {1, 2, . . . , dimFq C}, which determine the whole b-symbol 434

Hamming weights profile of all integers 1 ≤ b ≤ n − 1 435

as proved in Theorem IV.3. Recall that 1-symbol Hamming 436

weight corresponds to the usual Hamming weight. First we 437

consider the case of length n = qr − 1. 438

Theorem IV.4: Assume that gcd(n, q) = 1. Let C be a cyclic 439

code of length n = qr − 1 such that its nonzero set is exactly 440

one q-cyclotomic coset U of Z/nZ. Assume that U �= {0} 441

and let u ∈ U . Let k = dimFq C. Put N = gcd(u, qr − 1) 442

and N1 = gcd
(

qr−1
q−1 , N

)
. Let c ∈ C be an arbitrary nonzero 443

codeword. For 1 ≤ b ≤ k, let wb(c) denote the b-symbol 444

Hamming weight of c. If N1 = 1, then we have 445

wb(c) = (qb − 1)qr−b. 446

If N1 > 1, then we have 447⌈
N(qb − 1)

qb−1

⌈
qr − ⌊

(N1 − 1)qr/2
⌋

qN

⌉⌉
(13) 448

≤ wb(c) ≤
⌊

N(qb − 1)
qb−1

⌊
qr +

⌊
(N1 − 1)qr/2

⌋
qN

⌋⌋
. 449

Proof: Let f(x) = axu ∈ Fqr [x] \ {0} be an arbitrary 450

nonzero polynomial in P ({u}). Let c(b)(f) ∈ C(b) be the 451

corresponding codeword. 452

We use some methods of [12] and further techniques in this 453

proof. We refer to Appendix A for notation and background on 454

algebraic function fields. In Appendix A we provide necessary 455

background on algebraic function fields in order to make the 456

paper self-contained. 457

As b ≤ k, it follows from Definition IV.1 and Corollary 1 458

that dimFq V (b) = b. Let W = {α ∈ Fqr : Tr(α) = 459

Tr(γuα) = · · · = Tr(γ(b−1)uα) = 0}. As dimFq V (b) = 460

b, W is an Fq-linear subspace of codimension b in Fqr . 461
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Let A(T ) ∈ Fqr [T ] be the monic q-additive polynomial of462

degree qb which splits in Fqr and which satisfies W =463

{A(y) : y ∈ Fqr}. For some properties, including existence464

and uniqueness of A(T ), we refer to [9] and [12, Section 3].465

Let F be the algebraic function field corresponding to466

the codeword c(b)(f) given by F = Fqr (x, y) such that467

A(y) = axu. Let V ⊆ Fqr be the subset consisting of468

the roots of A(T ). Note that V is an Fq-linear subspace of469

dimension b. Let P ⊆ V \ {0} be a subset such that each470

one dimensional Fq-linear subspace of V contains exactly one471

nonzero element in V . Then |P | = (qb − 1)/(q − 1) and let472

P = {δ1, . . . , δ(qb−1)/(q−1)} be an enumeration of P .473

Let j be an integer in the range 1 ≤ j ≤ (qb − 1)/(q − 1).474

Let c(δjf) ∈ C be the codeword corresponding to δjaxu. Let475

Fj be the algebraic function field corresponding to c(δjf)476

given by Fj = Fqr (x, yj) such that yq
j − yj = δjaxu.477

It is not difficult to observe that F is the compositum of478

F1, F2, . . . , F(qb−1)/(q−1), that is to say the smallest extension479

field containing all F1, F2, . . . , F(qb−1)/(q−1).480

There exists exactly one rational place of F at infinity,481

which is the rational place of F over the rational place of482

the rational function field Fqr (x) corresponding to the pole483

of (x). Let N (aff)(F ) denote the number of affine rational484

places of F .485

Consider the i-th symbol c
(b)
i (f) = (Tr(f(γi)),486

Tr(γuf(γi)), . . . , Tr(γ(b−1)uf(γi)) ∈ F b�
q ) of the codeword487

c(b)(f) for 0 ≤ i ≤ n − 1. This symbol contributes to the488

Hamming weight wH(c(b)(f)) of c(b)(f) if and only if there489

are qb distinct rational places of the covering F/Fqr (x) over490

the place of the rational function field Fqr (x) corresponding491

to the zero of (x − γi). Also there exist exactly qb distinct492

rational places of the covering F/Fqr (x) over the place of the493

rational function field Fqr (x) corresponding to the zero of (x).494

Hence we get that495 (
n − wH(c(b)(f))

)
qb + qb = N (aff)(F ).496

This is equivalent to497

wH(c(b)(f)) = qr − N (aff)(F )
qb

. (14)498

Recall that j is an integer in the range 1 ≤ j ≤ (qb −499

1)/(q−1). Again there exists exactly one rational place of Fj500

at infinity. Let N (aff)(Fj) denote the number of affine rational501

places of Fj . For the Hamming weight wH(c(δjf)) of c(δjf)502

using similar arguments we also get that503

wH(c(δjf)) = qr − N (aff)(Fj)
q

. (15)504

Let S and Sj be the integers defined via505

N (aff)(F ) = qr−S and N (aff)(Fj) = qr − Sj. (16)506

It follows from [6, Corollary 6.7] (see also [10, Proposi-507

tion 3.6] and [17, Lemma 2.4 and (3)]) that508

S =
(qr−1)/(q−1)∑

j=1

Sj . (17)509

Here we use the fact that A(T ) is a q-additive polynomial 510

splitting in Fqr . Using (14), (15) and (16) yields 511

V := qr − N (aff)(F ) 512

=
(qr−1)/(q−1)∑

j=1

(
qr − N (aff)(Fj)

)
513

=
(qr−1)/(q−1)∑

j=1

(−(q − 1)qr
514

+qwH(c(δjf))) 515

= −qr+b + qr
516

+q

(qr−1)/(q−1)∑
j=1

wH(c(δjf)). 517

This implies that 518

wH(c(b)(f)) =
1

qb−1

(qb−1)/(q−1)∑
j=1

wH(c(δjf)). (18) 519

Recall that N = gcd(u, qr − 1). Put n̄ = qr−1
N and let c̄(δjf) 520

be the shortening of c(δjf) to the first n̄ symbols as in (10). 521

Similarly let C̄ be the shortening of the code C to the first n̄ 522

symbols as in (11). Note that C̄ is an irreducible cyclic code 523

of length n̄ over Fq with N = qr−1
n̄ . 524

Assume first that N1 = 1. Using [5, Theorem 15] we have 525

wH(c̄(δjf)) =
(q − 1)qr−1

N
(19) 526

for each 1 ≤ j ≤ qb−1
q−1 . Using (19) and (12) we obtain that 527

wH(c(δjf)) = (q − 1)qr−1 (20) 528

for each 1 ≤ j ≤ qb−1
q−1 . Combining (20) and (18) we conclude 529

that 530

wb(c(f)) = wH(c(b)(f)) =
qb − 1

qb−1
qr−1 =

�
qb − 1

�
qr−b

531

which completes the proof of the case that N1 = 1. 532

Assume next that N1 > 1. Using [5, Theorem 24] we have 533

(q − 1)
⌈

qr−�(N1−1)qr/2�
qN

⌉
≤ wH(c̄(δjf)) (21) 534

≤ (q − 1)

⌊
qr +

⌊
(N1 − 1)qr/2

⌋
qN

⌋
535

for each 1 ≤ j ≤ qb−1
q−1 . Using (21) and (12) we obtain that 536

N(q − 1)
⌈

qr−�(N1−1)qr/2�
qN

⌉
≤ wH(c(δjf)) (22) 537

≤ N(q − 1)

⌊
qr +

⌊
(N1 − 1)qr/2

⌋
qN

⌋
538

for each 1 ≤ j ≤ qb−1
q−1 . Combining (22) and (18) we 539

conclude that 540

N qb−1
qb−1

⌈
qr−�(N1−1)qr/2�

qN

⌉
≤ wb(c(f)) (23) 541

≤ N
qb − 1
qb−1

⌊
qr +

⌊
(N1 − 1)qr/2

⌋
qN

⌋
. 542
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As wb(C(f)) is an integer, taking the ceiling and the floor543

integer parts of both sides of (23) we complete the proof.544

Remark 2: Let u∗ be the largest positive divisor t of u545

such that gcd(t, q) = 1. The genus g(F ) of the function field546

F in the proof of Theorem IV.4 is g(F ) = (qb−1)(u∗−1)
2 .547

Hence Serre’s improvement on the Hasse-Weil bound [16,548

Theorem 5.3.1] yields549

|N (aff)(F )| ≤ qr +
(qb − 1)(u∗ − 1)

2
�2 qr/2�.550

For a nonzero codeword c ∈ C, using the arguments in the551

proof of Theorem IV.4 we arrive at the bounds552

qr − qr−b −
⌊

(qb − 1)(u∗ − 1)
⌊
2qr/2

⌋
2qb

⌋
553

≤ wb(c)554

≤ qr − qr−b +

⌊
(qb − 1)(u∗ − 1)

⌊
2qr/2

⌋
2qb

⌋
.555

The bounds of this remark are comparable to the bounds of556

Theorem IV.4. Nevertheless the bounds of Theorem IV.4 are557

better in general. We illustrate this in Example 5 below.558

It is important to observe that the methods of this remark559

is valuable in the following sense. If the assumption of560

Theorem IV.4 that the nonzero set of C is exactly one561

q-cyclotomic coset of Z/nZ does not hold, then we cannot562

use [5] as in the proof of Theorem IV.4. This corresponds563

to the general situation of arbitrary cyclic codes. We consider564

arbitrary cyclic codes in Section V, where we develop and use565

the methods similar to the methods of this remark.566

Example 5: We compare the bounds of Theorem IV.4 and567

Remark 2 in the following concrete cases.568

• Case q = 3, b = 2, r = 10, u = 11, n = qr − 1.569

Theorem IV.4: 50336 ≤ wb(c) ≤ 54648.
Remark 2: 50328 ≤ wb(c) ≤ 54648.

570

• Case q = 3, b = 2, r = 10, u = 61, n = qr − 1.571

Theorem IV.4: 39528 ≤ wb(c) ≤ 65392.
Remark 2: 39528 ≤ wb(c) ≤ 65448.

572

• Case q = 2, b = 2, r = 10, u = 11, n = qr − 1.573

Theorem IV.4: 528 ≤ wb(c) ≤ 1006.
Remark 2: 528 ≤ wb(c) ≤ 1008.

574

• Case q = 2, b = 2, r = 10, u = 31, n = qr − 1.575

Theorem IV.4: 93 ≤ wb(c) ≤ 1488.
Remark 2: 48 ≤ wb(c) ≤ 1488.

576

Using the methods in the proof of Theorem IV.4 and (12)577

we obtain our bounds for the general length n | (qr − 1) in578

the next corollary.579

Corollary 2: Assume that gcd(n, q) = 1. Let C be a cyclic580

code of length n | (qr − 1) such that its nonzero set is exactly581

one q-cyclotomic coset U of Z/nZ. Assume that U �= {0} and582

let u ∈ U . Let k = dimFq C. Put m = gcd(u, n), N = qr−1
n m583

and N1 = gcd
(

qr−1
q−1 , N

)
. Let c ∈ C be an arbitrary nonzero584

codeword. For 1 ≤ b ≤ k, let wb(c) denote the b-symbol 585

Hamming weight of c. If N1 = 1, then we have 586

wb(c) =
m

N
(qb − 1)qr−b. (24) 587

If N1 > 1, then we have 588⌈
m(qb − 1)

qb−1

⌈
qr − ⌊

(N1 − 1)qr/2
⌋

qN

⌉⌉
589

≤ wb(c) ≤
⌊

m(qb − 1)
qb−1

⌊
qr +

⌊
(N1 − 1)qr/2

⌋
qN

⌋⌋
. 590

Remark 3: If n = qr − 1, then m = N and Corollary 2 591

coincides with Theorem IV.4. 592

Remark 4: If m = 1 and b = 1, then Corollary 2 coincides 593

with [5, Theorem 24]. 594

Remark 5: Note that k ≤ r as the nonzero set of C consists 595

of only one q-cyclotomic coset of Z/nZ in Corollary 2. 596

Moreover if N1 = 1, then N | (q − 1). Hence the b-symbol 597

Hamming weight m
N (qb − 1)qr−b in (24) is an integer. 598

If N1 = 1, then using also Theorem IV.3 we determine 599

the b-symbol Hamming weight enumerator of C not only for 600

1 ≤ k ≤ b but for the full range 1 ≤ b ≤ n − 1 in this case. 601

Corollary 3: Keeping the notation and assumptions of 602

Corollary 2, assume further that N1 = 1. For integers b in 603

the interval 1 ≤ b ≤ n − 1, the b-symbol Hamming weight 604

enumerator of C is 605⎧⎪⎨
⎪⎩

1 + (qk − 1)Z
m(qb−1)qr−b

N if 1 ≤ b ≤ k,

1 + (qk − 1)Z
m(qk−1)(q−k)

N if k + 1 ≤ b ≤ n − 1.

606

Proof: Assume first that 1 ≤ b ≤ k, Then we have 607

wb(c) = m
N (qb − 1)qr−b using Corollary 2 for any nonzero 608

codeword c of C. For the zero codeword c = 0 of C it is 609

clear that wb(c) = 0. These imply that the b-symbol Hamming 610

weight enumerator of C is 611

1 + (qk − 1)Z
m(qb−1)qr−b

N . 612

In particular if b = k, then the b-symbol Hamming weight 613

enumerator of C is 614

1 + (qk − 1)Z
m(qk−1)qr−k

N . (25) 615

Using Theorem IV.3, the b-symbol Hamming weight enumer- 616

ator of C is exactly as in (25) if k + 1 ≤ b ≤ n − 1. 617

Further knowledge on the weight distribution of irreducible 618

cyclic codes combined with the methods of the proof of 619

Theorem IV.4 would immediately imply some improvements 620

on the general bound of Corollary 2. Note that there exists such 621

knowledge on the weight distribution on irreducible cyclic 622

codes only for some very special subcases. We present a 623

collection of such improvements on special subcases in the 624

next corollary. 625

Corollary 4: Keeping the notation and assumptions of 626

Corollary 2, we obtain improved bounds in the following 627

special subcases. Let q = ps, where p is the characteristic 628

of Fq. Recall that k = dimFq C. 629
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• Assume further that N1 = 2. We have:630 ⌈
m(qb − 1)(qr − qr/2)

qbN

⌉
631

≤ wb(c)632

≤
⌊

m(qb − 1)(qr + qr/2)
qbN

⌋
.633

• Assume further that N1 = 3, p ≡ 2 mod 3 and sk ≡ 0634

mod 4. We have:635

636 ⌈
m(qb − 1)(qr − qr/2)

qbN

⌉
637

≤ wb(c)638

≤
⌊

m(qb − 1)(qr + 2qr/2)
qbN

⌋
.639

• Assume further that N1 = 3, p ≡ 2 mod 3 and sk ≡ 2640

mod 4. We have:641

642 ⌈
m(qb − 1)(qr − 2qr/2)

qbN

⌉
643

≤ wb(c)644

≤
⌊

m(qb − 1)(qr + qr/2)
qbN

⌋
.645

• Assume further that N1 = 4 and p ≡ 3 mod 4. We have:646

647 ⌈
m(qb − 1)(qr − qr/2)

qbN

⌉
648

≤ wb(c)649

≤
⌊

m(qb − 1)(qr + 3qr/2)
qbN

⌋
.650

Proof: First we assume that N1 = 2. We use the651

methods in the proof of Theorem IV.4 and we keep its652

notation. In particular c(b) and c̄(b) denote the corresponding653

nonzero codewords as in the proof of Theorem IV.4. We have,654

as in (18), that655

wH(c(b)(f)) =
1

qb−1

(qb−1)/(q−1)∑
j=1

wH(c(δjf)). (26)656

Here δj for 1 ≤ j ≤ (qb − 1)/(q − 1) are chosen as in the657

proof of Theorem IV.4. Using (12) we also have658

wH(c̄(δjf)) =
1
m

wH(c(δjf)) (27)659

for 1 ≤ j ≤ qb−1)/(q−1). Using [5, Theorem 17] we further660

obtain661

662

(q − 1)(qr − qr/2)
qN

≤ wH(c̄(δjf)) (28)663

664

≤ (q − 1)(qr + qr/2)
qN

,665

Combining (26), (27) and (28) we conclude that 666

m(qb − 1)(qr − qr/2)
qbN

≤ wH(c̄c(δjf)) (29) 667

668

≤ (qb − 1)(qr + qr/2)
qbN

. 669

Taking the ceiling and floor integer parts of both sides of (29) 670

we complete the proof of the case N1 = 2. 671

Assume next that N1 = 3, p ≡ 2 mod 3 and sk ≡ 0 672

mod 4. In this case, using [5, Theorem 19] we obtain 673

(q − 1)(qr − qr/2)

qN
≤ wH(c̄(θjf)) ≤ (q − 1)(qr + 2qr/2)

qN
674

instead of (28) of the case N1 = 2. Using the same arguments 675

with this change we complete the proof of the current case. 676

Assume next that N1 = 3, p ≡ 2 mod 3 and sk ≡ 2 677

mod 4. In this case, using [5, Theorem 19] we obtain 678

(q − 1)(qr − 2qr/2)

qN
≤ wH(c̄(θjf)) ≤ (q − 1)(qr + qr/2)

qN
679

instead of (28) of the case N1 = 2. Using the same arguments 680

with this change we complete the proof of the current case. 681

Assume next that N1 = 3, p ≡ 2 mod 3 and sk ≡ 2 682

mod 4. In this case, using [5, Theorem 20] we obtain 683

(q − 1)(qr − qr/2)

qN
≤ wH(c̄(θjf)) ≤ (q − 1)(qr + 3qr/2)

qN
684

instead of (28) of the case N1 = 2. Using the same arguments 685

with this change we complete the proof of the current case. 686

Now we summarize and compare the bounds of this section. 687

Theorem IV.4 is a special subcase of Corollary 2 with n = 688

qr−1. In terms of the bounds, Corollary 3 is a special subcase 689

of Corollary 2 with N1 = 1. Corollary 4 improves Corollary 2 690

in some concrete cases only if N1 ∈ {2, 3, 4}. We present 691

some concrete examples illustrating also these improvements 692

below. 693

Example 6: We give concrete examples for the bounds of 694

Corollary 3 and Corollary 4. 695

• Case q = 2, b = 2, r = 12, u = 11, n = 1365. 696

Corollary 2: 993 ≤ wb(c) ≤ 1056.
Corollary 4: 1008 ≤ wb(c) ≤ 1056.

697

• Case q = 2, b = 2, r = 10, u = 5, n = 341. 698

Corollary 2: 240 ≤ wb(c) ≤ 271.
Corollary 4: 240 ≤ wb(c) ≤ 264.

699

• Case q = 3, b = 2, r = 8, u = 7, n = 1640. 700

Corollary 2: 1406 ≤ wb(c) ≤ 1512.
Corollary 4: 1440 ≤ wb(c) ≤ 1512.

701

• Case q = 9, b = 3, r = 8, u = 47, n = 10761680. 702

Corollary 2: 10742009 ≤ wb(c) ≤ 10751832.
Corollary 4: 10745280 ≤ wb(c) ≤ 10751832.

703

• Case q = 2, b = 2, r = 16, u = 17, n = 3855. 704

Corollary 2: 2712 ≤ wb(c) ≤ 3072. 705

Corollary 4 does not work in this case as N1 = 17 in 706

this case. 707
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Remark 6: As we consider cyclic and hence linear codes708

throughout this paper, our lower and upper bounds on the709

b-symbol Hamming weights of nonzero codewords mean710

lower and upper bounds on the b-symbol Hamming distances711

between distinct codewords. Hence our bounds throughout this712

paper also correspond to lower and upper bounds on b-symbol713

Hamming distance of the codes we consider.714

V. b-SYMBOL WEIGHTS FOR ARBITRARY CYCLIC CODES715

Throughout this section we assume that C is a cyclic code of716

length n dividing qr − 1. Let U be the nonzero set of C and717

let U1, . . . , Uρ be the distinct q-cyclotomic cosets of Z/nZ718

included in U . Note that U = U1 � U2 · · · � Uρ and ρ ≥ 1,719

where � indicates that the sets U1, . . . , Uρ in the union are720

pairwise disjoint. As in Section IV we assume that U �= {0}721

in order to avoid the trivial case. Choose uj ∈ Uj and put722

kj = |Uj | for 1 ≤ j ≤ ρ. Note that for the Fq-dimension k of723

C we have k = k1 + · · · + kρ.724

We first generalize our stability theorem (see Theorem IV.3)725

to arbitrary cyclic codes. Recall that γ ∈ F∗
qr is a primitive726

n-th root of 1. We introduce some notation. For 0 ≤ t ≤ n−1,727

let vt be the vector in Fρ
qr defined as728

vt =
[
γtu1 , γtu2 , . . . , γtuρ

]
. (30)729

For 1 ≤ t ≤ n − 1, let V (t) ⊆ Fρ
qr be the Fq-linear subspace730

defined as731

V (t) = Span
Fq

{v0,v1, . . . ,vt−1} .732

The following lemma is useful.733

Lemma V.1: Under the above notation, we have734

dimFq V (t) =
{

t if 1 ≤ t ≤ k − 1,
k if k ≤ t ≤ n − 1.735

Moreover, {v0, . . . ,vt−1} is an Fq-basis of V (t) if 1 ≤ t ≤736

k − 1. Also {v0, . . . , ,vk−1} is an Fq-basis of V (t) if k ≤737

t ≤ n − 1.738

Proof: Recall that Fq(γuj ) denotes the smallest finite739

field extension over Fq containing γuj . For the index of this740

extension we have [Fq(γuj ) : Fq] = kj . Let mj(x) ∈ Fq[x]741

be the minimal polynomial of γj over Fq . It is clear that742

deg mj(x) = kj and the set {m1(x), m2(x), . . . , mρ(x)}743

consists of irreducible polynomials over Fq and the elements744

of this set are pairwise distinct.745

We first show that dimFq V (k) = k. Assume the contrary,746

and let e0, e1, . . . , ek−1 ∈ Fq such that747

e0v0 + e1v1 + · · · + ek−1vk−1 = 0. (31)748

Let 1 ≤ j ≤ ρ. Considering the j-th coordinates of the both749

sides of (31) we get750

e0 + e1γ
uj + · · · + ek−1γ

(k−1)uj = 0. (32)751

Let h(x) = e0 + e1 x + · · · + ek−1x
k−1 ∈ Fq[x], which is a752

nonzero polynomial of degree at most k − 1. It follows from753

(32) that γuj is a root of h(x). Hence we conclude that754

h(γuj ) = 0 for each 1 ≤ j ≤ ρ.755

As mj(x) is the minimal polynomial of γuj over Fq and 756

h(x) ∈ Fq[x] we obtain that 757

mj(x) | h(x) for each 1 ≤ j ≤ ρ. 758

Recall that {m1(x), m2(x), . . . , mρ(x)} consists of irre- 759

ducible polynomials over Fq and that the elements of this 760

set are pairwise distinct. These arguments yield that the 761

polynomial
∏ρ

j=1 mj(x) divides h(x) and hence 762

deg h(x) ≥
ρ∑

i=1

deg mj(x) =
ρ∑

j=1

kj = k. 763

This is a contradiction as h(x) is a nonzero polynomial of 764

degree at most k − 1. 765

It is clear that V (t − 1) ⊆ V (t) and 766

0 ≤ dimFq V (t) − dimFq V (t − 1) ≤ 1 (33) 767

for each 2 ≤ t ≤ n−1. Moreover, V (1) = Span
Fq
{[1, . . . , 1]} 768

and hence dimFq V (1) = 1. Combining (33), and the facts 769

dimFq V (1) = 1, dimFq V (k) = k we conclude that 770

dimFq V (t) = t for each integer t in the range 1 ≤ t ≤ k. 771

Moreover, these also imply that 772

{v0,v1, . . . ,vt} 773

is a basis of V (t) for each integer t in the range 1 ≤ t ≤ k. 774

It remains to prove that V (k + i) ⊆ V (k) for 1 ≤ i ≤ 775

n− k − 1. We prove this by induction on i. First we consider 776

the induction step i = 1. Let m(x) = m1(x)m2(x) · · ·mρ(x), 777

which is a monic polynomial of degree k. Considering the 778

coefficients of m(x) let 779

m(x) = xk + ek−1x
k−1 + · · · + e1x + e0, 780

where ek−1, . . . , e1, e0 ∈ Fq . As m(γuj ) = 0 for each 1 ≤ 781

j ≤ ρ, the arguments above in this proof imply that 782

vk + ek−1vk−1 + · · · + e1v1 + e0v0 = 0. 783

This shows that vk ∈ V (k) and hence V (k + 1) ⊆ V (k). 784

Assume the induction hypothesis that V (k + i) ⊆ V (k). Let 785

h(x) = xim(x), which is a monic polynomial of degree k+ i. 786

Considering the coefficients of h(x) let 787

k(x) = xk+i + ek+i−1x
k+i−1 + · · · + e1x + e0, 788

where ek+i−1, . . . , e1, e0 ∈ Fq . Similarly we obtain that 789

vk+i + eki−1vki−1 + · · · + e1v1 + e0v0 = 0. 790

This yields vk+i ∈ V (k+i) and hence V (k+i+1) ⊆ V (k+i). 791

This completes the proof. 792

Next we present our stability theorem for arbitrary cyclic 793

codes. Again it says, but now for arbitrary cyclic codes, that 794

the b-symbol Hamming weight enumerators of C are the 795

same (and hence stable) for all b-symbol Hamming weights 796

if b ≥ dimFq(C) (see also Theorem IV.3). There exists a 797

nonempty stability region for b except the trivial case that 798

dimFq C = n − 1. 799

Theorem V.2: Assume that gcd(n, q) = 1. Let C be an 800

arbitrary cyclic code of length n and U be its nonzero set 801

in Z/nZ. Assume that U �= {0}. Let k = dimFq C. For any 802
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integer b in the interval k ≤ b ≤ n−1, the b-symbol Hamming803

weight enumerator of C is the same as the k-symbol Hamming804

weight enumerator of C.805

Proof: We use the notation fixed in this section so that806

{u1, u2, . . . , uρ} is a basic nonzero set of C. Let f(x) =807

a1x
u1 + a2 xu2 + · · · + aρx

uρ ∈ Fqr [x] \ {0} be an arbitrary808

nonzero polynomial in P ({u1, u2, . . . , uρ}). Let c(k)(f) ∈809

C(k) and c(b)(f) ∈ C(b) be the corresponding codewords.810

Note that811

c(b)(f) =
(
Tr(f(γ)), Tr(f (1)(γ)), · · · , Tr(f (b)(γ))

)
,812

where f (t)(x) is defined in Definition III.1. Namely we have813

f (t)(x) = ηtu1a1 xu1 + ηtu2a2 xu2 + · · · + ηtuρaρxuρ . (34)814

Let i be an integer in the range 0 ≤ i ≤ n−1. Let c
(b)
i (f) ∈ Fb

q815

be the i-th symbol of the codeword c(b)(f) ∈ (
Fb

q

)n
so that816

c(b)(f) =
(
c
(b)
0 (f), c(b)

1 (f), . . . , c(b)
n−1(f)

)
.817

Let y1 = a1γ
iu1 , y2 = a2γ

iu2 ,…, yρ = aργ
iuρ all in F∗

qr .818

Note that819

c
(b)
i (f) = (Tr (y1 + y2 + · · · + yρ) ,820

+Tr (γu1y1 + γu2y2 + · · · + γuρyρ) , · · · ,821

+Tr
(
γ(b−1)u1y1 + γ(b−1)u2y2 + · · ·822

+γ(b−1)uρyρ

)
).823

Similarly for the i-th symbol c
(k)
i (f) ∈ Fk

q of the codeword824

c(k)(f) ∈ (
Fk

q

)n
we have825

826

c
(k)
i (f) = (Tr (y1 + y2 + · · · + yρ) ,827

+Tr (γu1y1 + γu2y2 + · · · + γuρyρ) , · · · ,828

+Tr
(
γ(k−1)u1y1 + γ(k−1)u2y2 + · · ·829

+γ(k−1)uρyρ

)
)830

Hence c
(b)
i (f) does not contribute to the Hamming weight831

of the codeword c(b)(f) if and only if832

0 = Tr (y1 + y2 + · · · + yρ)833

= Tr (γu1y1 + γu2y2 + · · · + γuρyρ)834

...835

= Tr
(
γ(b−1)u1y1 + γ(b−1)u2y2 + · · · + γ(b−1)uρyρ

)
.836

(35)837

Similarly c
(k)
i (f) does not contribute to the Hamming weight838

of the codeword c(k)(f) if and only if839

0 = Tr (y1 + y2 + · · · + yρ)840

= Tr (γu1y1 + γu2y2 + · · · + γuρyρ)841

...842

= Tr
(
γ(k−1)u1y1 + γ(k−1)u2y2 + · · · + γ(k−1)uρyρ

)
.843

(36)844

We will prove the following claim at the end of this proof.845

Claim 1. The conditions in (35) and (36) are equivalent.846

Assume Claim 1 holds. The weight of the contribution of 847

the symbol c
(b)
i (f) to the codeword c(b)(f) is 0 or 1, which is 848

identified with the condition in (35). The same holds for the 849

symbol c
(k)
i (f) to the codeword c(k)(f) and the condition (36). 850

Using Claim 1 and running through all indices 0 ≤ i ≤ n− 1 851

we complete the proof. 852

Now we prove Claim 1. As k ≤ b it is clear that (35) 853

implies (36). Conversely assume that (36) holds. Let t be an 854

integer in the range k ≤ t ≤ b − 1. Note that 855[
γtu1 , γtu2 , . . . , γtuγ

]
= vt, 856

where vt is defined in (30). Using Lemma V.1 we obtain that 857

vt ∈ V (k) and hence there exist e0, e1, . . . , ek−1 ∈ Fq such 858

that 859

U :=
[
γtu1 , γtu2 , . . . , γtuγ

]
860

= e0 [1, 1, . . . , 1] 861

+e1 [γu1 , γu2 , . . . , γuγ ] 862

+ · · · 863

+ek−1

[
γ(k−1)u1 , γ(k−1)u2 , . . . , γ(k−1)uγ

]
. 864

Multiplying both sides with [y1, . . . , yρ] using the Euclidean 865

inner product in Fρ
qr we get 866

A := γtu1y1 + γtu2y2 + · · · + γtuγ yρ 867

= e0 (y1 + y2 + · · · + yρ) 868

+e1(γu1y1 + γu2y2 + · · · + γuρyρ) + · · · 869

+ek−1(γ(k−1)u1y1 + γ(k−1)u2y2+ · · · +γ(k−1)uρyρ). 870

Taking trace of both sides and noting e0, e1, . . . , ek−1 ∈ Fq 871

yield 872

Tr
(
γtu1y1 + γtu2y2 + · · · + γtuγ yρ

)
873

= e0Tr (y1 + y2 + · · · + yρ) 874

+e1Tr (γu1y1 + γu2y2 + · · · + γuρyρ) 875

... 876

+ek−1Tr
(
γ(k−1)u1y1 + · · · + γ(k−1)uρyρ

)
. (37) 877

As (36) holds by assumption, we have 878

0 = Tr (y1 + y2 + · · · + yρ) 879

= Tr (γu1y1 + γu2y2 + · · · + γuρyρ) 880

... 881

= Tr
(
γ(k−1)u1y1 + · · · + γ(k−1)uρyρ

)
. 882

for these terms in the right hand side of (37). Therefore 883

using (37) we conclude that 884

Tr
(
γtu1y1 + γtu2y2 + · · · + γtuγ yρ

)
= 0. 885

This conclusion holds for each integer t in the range k ≤ t ≤ 886

b − 1, which completes the proof of Claim 1. 887

Theorem V.2 implies that it is enough to study b-symbol 888

Hamming weights of an arbitrary cyclic code C of dimension 889

k only for 1 ≤ b ≤ k instead of the much larger integral 890

interval 1 ≤ b ≤ n − 1 in general. 891
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Next we present our bounds on b-symbol Hamming weights892

on arbitrary cyclic codes for 1 ≤ b ≤ k. We will need the893

following condition if q is not a prime.894

Condition V.3: Assume that gcd(n, q) = 1 and let 1 ≤ u ≤895

n − 1. Let ū be the q-cyclotomic coset of Z/nZ containing896

u, namely ū = {uqi mod n : 0 ≤ i ≤ n − 1}. Let S(u) be897

the subset of ū given by S(u) = {v ∈ ū : gcd(v, q) = 1}. If898

u �= 0, then we say that u satisfies Condition V.3 if both of899

the followings are satisfied:900

• S(u) is not empty.901

• u = min S(u).902

If u = 0, then we say that u satisfies Condition V.3.903

Remark 7: If q is a prime, then u satisfies Condition V.3904

if u is the smallest element in ū. Hence if q is a prime905

then Condition V.3 is satisfied automatically as we are free906

to choose any element from ū in considering C.907

Remark 8: If q is not a prime, then there may be some908

q-cyclotomic cosets which do not satisfy Condition V.3.909

However, there is a rich collection of nontrivial C such910

that Condition V.3 is satisfied and q is not prime so that911

we present our results for arbitrary q. Now we give some912

toy examples in order to illustrate why Condition V.3 is913

needed in some cases. Let q = 4, r = 2, n = qr − 1.914

The q-cyclotomic cosets {10} and {2, 8} have no element u915

such that u satisfies Condition V.3. For the q-cyclotomic coset916

Z1 = {1, 4}, the element u = 1 satisfies Condition V.3 and it917

is the smallest element of Z1 as in the case that q is a prime.918

However, for the q-cyclotomic coset Z2 = {6, 9}, the element919

u = 9 satisfies Condition V.3 but 9 is not the smallest element920

of Z2. This is different from the case that q is a prime (see921

Remark 7).922

Remark 9: In our proofs in the rest of this section we apply923

Hasse Weil bound to Artin-Schreier type curves924

A(y) = a1 xu1 + a2 xu2 + · · · + aρx
uρ , (38)925

over Fqr , where A(y) are certain additive polynomials. Con-926

dition V.3 guarantees that the curve in (38) is absolutely irre-927

ducible over Fqr . This is automatically satisfied by choosing928

the smallest choice of ui in each q-cyclotomic coset of C if q929

is a prime. If q is not a prime and Condition V.3 is not satisfied,930

then we need to consider further methods. For example,931

if the curve in (38) has irreducible components, then applying932

Hasse-Weil bound to all of the irreducible components gives933

similar bounds on the weight of the cyclic code. However, this934

would be very complicated depending on {u1, u2, . . . , uρ} as935

we need to consider all (a1, a2, . . . , aρ) ∈ Fρ
qr\{(0, 0, . . . , 0)}.936

There is a general method presented in [11] that uses involved937

symbolic computations and tools from algebra for studying all938

possible irreducible components in order to get such bounds939

on the weight of the cyclic code. If ρ = 1, then all these are940

simple and implicitly used in Remark 2.941

We first consider the case of length n = qr − 1 as we942

use methods from algebraic function fields (see also [18]).943

We extend our results to arbitrary length n | (qr − 1) in944

Remark 14 below.945

In the next theorem we present our bound in the case946

b ≤ min{k1, k2, . . . , , kρ}. Note that this case is much more947

general than the case of Section IV. Indeed it is possible, for 948

example, that k1 = k2 = . . . = kρ and ρ is a large positive 949

integer. 950

Theorem V.4: Let C be an arbitrary cyclic code of length 951

n = qr − 1 over Fq. Let U0 = {u1, u2, . . . , uρ} be a basic 952

nonzero set of C. Assume that U0 �= {0} and each element 953

of U0 satisfies Condition V.3. Put u∗ = max{u1, u2, . . . , uρ}. 954

Let γ ∈ F∗
qr be a primitive n-th root of 1. For 1 ≤ j ≤ ρ, let kj 955

be the index [Fq(γuj ) : Fq] of the field extension Fq(γuj )/Fq. 956

Let c ∈ C be an arbitrary nonzero codeword. For 1 ≤ b ≤ 957

min{k1, k2, . . . , kρ}, let wb(c) denote the b-symbol Hamming 958

weight of c. We have 959

960

qr − qr−b −
⌊

(qb − 1)(u∗ − 1)
⌊
2qr/2

⌋
2qb

⌋
961

≤ wb(c) 962

≤ qr − qr−b +

⌊
(qb − 1)(u∗ − 1)

⌊
2qr/2

⌋
2qb

⌋
. 963

Proof: Let f(x) = a1 xu1 + a2 xu2 + · · · + 964

aρx
uρ ∈ Fqr [x] \ {0} be an arbitrary nonzero polynomial in 965

P ({u1, . . . , uρ}). Let c(b)(f) ∈ C(b) be the corresponding 966

codeword. Recall that 967

f (t)(x) = ηtu1a1 xu1 + ηtu2a2 xu2 + · · · + ηtuρaρxuρ (39) 968

for 0 ≤ t ≤ b − 1, where f (0)(x) = f(x). Let L ⊆ Fqr [x] be 969

the Fq-linear subspace of polynomials defined as 970

L = Span
Fq
{f(x), f (1)(x), . . . , f (b−1)(x)}. 971

First we show that dimFq L = b. Indeed assume the contrary 972

that there exists (e0, e1, . . . , eb−1) ∈ Fn
q \ {[0, 0, . . . , 0]} such 973

that 974

e0 f(x) + e1 f (1)(x) + · · · + eb−1f
(b−1)(x) = 0. (40) 975

Note that the polynomial in the left hand side of (40) 976

has monomials with possibly nonzero coefficients only at 977

xu1 , xu2 , . . . , xuρ . As f(x) �= 0, there exists at least one 978

coefficient aj0 such that aj0 �= 0. Using (39), (40) and the 979

coefficient of the monomial xuj0 in the left hand side of (40) 980

we obtain that 981

e0 + e1γ
uj0 + e2γ

2 uj0 + · · · + γ(b−1)uj0 = 0. (41) 982

Let e(x) ∈ Fq[x] be the nonzero polynomial of degree at most 983

b − 1 such that 984

e(x) = e0 + e1 x + · · · + eb−1x
b−1. 985

Let mj0(x) ∈ Fq[x] be the minimal polynomial of γuj0 986

over Fq . Let kj0 = deg mj0(x). Note that b ≤ kj0 by the 987

assumption b ≤ min{k1, k2, . . . , bρ}. Using (41) we obtain 988

that e(γuj0 ) = 0 and hence mj0(x) | e(x). However, this is a 989

contradiction as deg e(x) ≤ b − 1 < kj0 . This completes the 990

proof of the statement that dimFq L = b. 991

For 0 ≤ � ≤ b − 1, let F� be the algebraic function field 992

F� = Fqr (x, y�) such that yq
� − y� = f(x). Let g(F�) denote 993

the genus of F�. Using Condition V.3 it follows from [16, 994

Proposition 3.2.8] that g(F�) ≤ (q−1)(u∗−1)
2 . 995
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Let F be the algebraic function field F =996

Fqr (x, y0, y1, . . . , yb−1), which is the compositum of the997

function fields F0, F1, . . . , Fb−1. Let g(F ) denote the genus998

of F . As dimFq L = b, it follows from [6, Corollary 6.7] (see999

also [10, Proposition 3.6] and [17, Lemma 2.4 and (3)]) that1000

g(F ) ≤ (qb − 1)(u∗ − 1)
2

. (42)1001

Let N (aff)(F ) denote the number of affine rational places of F .1002

As in the proof of Theorem IV.4, for the Hamming weight1003

wH(c(b)(f)) of c(b)(f) we have1004

wH(c(b)(f)) = qr − N (aff)(F )
qb

. (43)1005

Moreover, there is only one rational place of F at infinity.1006

Hence using (42) and Serre’s improvement on the Hasse-Weil1007

bound [16, Theorem 5.3.1] yields1008

|N (aff)(F )| ≤ qr +
(qb − 1)(u∗ − 1)

2
�2 qr/2�. (44)1009

Combining (43) and (44) we complete the proof.1010

Remark 10: There is a codeword of C such that the genus1011

bound (42) is tight. Indeed let f(x) = a1x
u1 +a2 xu2 + · · ·+1012

aρx
uρ ∈ Fqr [x]\{0} such that the coefficient a∗ corresponding1013

to xu∗
is nonzero. Then the genus bound in (42) becomes1014

equality. This always holds if ρ = 1 and we have equality1015

g(F ) = (qb−1)(u∗−1)
2 in Remark 2 instead of the inequality1016

in (42).1017

In the next remark we explain how Theorem V.4 generalizes1018

an important result of Yaakobi et. al., namely [19, Theorem 1],1019

to arbitrary b and arbitrary q for some cyclic codes.1020

First we recall that an algebraic function field F with full1021

constant field Fq is called a maximal function field if it attains1022

the upper bound of Hasse-Weil inequality. Namely if N(F )1023

denotes the rational places of F and g(F ) denotes the genus1024

of F , then F is a maximal function field if and only if1025

N(F ) = 1 + qr + 2g(F )qr/2.1026

It is a difficult open problem to characterize all maximal1027

function fields (see, for example, [8], [9], [16]).1028

For 1 ≤ b ≤ n−1, let db(C) denote the minimum b-symbol1029

Hamming weight wb(c) of codewords as c runs through all1030

nonzero elements of C. Note that db(C) is the b-symbol1031

Hamming minimum distance of C. Similarly let Db(C) denote1032

the maximum b-symbol Hamming weight wb(c) of codewords1033

as c runs through all nonzero elements of C.1034

Remark 11: For any fixed b, there are cyclic codes satisfying1035

the conditions of Theorem V.4 such that the lower bound on1036

wb(c) of Theorem V.4 is tight. For instance these codes can1037

be constructed using some maximal algebraic function fields1038

as follows. Note that there are various examples of algebraic1039

functions fields F = Fqr (x, y) of the form A(y) = f(x),1040

where A(y) is a given q-additive polynomial of degree qb
1041

splitting over Fqr and f(x) ∈ Fqr [x] is a suitable polynomial.1042

For example if we choose m and put r = 2m, then for1043

any divisor u | (qm + 1) we obtain a maximal function1044

field as a subcover of the Hermitian function field H =1045

Fq2m(x, y) given by yqm

+y = xqm+1
. We refer, for example,1046

to [1], [8], [9], for the details. Hence if u1, u2, . . . , uρ are 1047

chosen so that u∗ becomes a divisor of (qm + 1), then there 1048

is a codeword of C corresponding to a maximal function field 1049

of the form A(y) = a1x
u1 + a2x

u2 + · · · + aρx
uρ with full 1050

constant field Fqr for some coefficients a1, . . . , aρ ∈ Fqr , not 1051

all zero. This implies that the lower bound of Theorem V.4 is 1052

tight. 1053

For a given 1 ≤ b < min{k1, k2, . . . , kμ}, let C be a cyclic 1054

code such that the lower bound of Theorem V.4 is tight for b. 1055

Then for the minimum distance db(C) of C we have 1056

db(C) = qr − qr−b − qb − 1
qb

(u∗ − 1)qr/2. (45) 1057

For δ ≥ 1 and assume that b + δ ≤ min{k1, k2, . . . , kρ} and 1058

hence we are in the range for application of Theorem V.4. For 1059

(b+δ)-symbol minimum distance db+δ(C) using Theorem V.4 1060

we obtain 1061

db+δ(C) ≥ qr − qr−b−δ − (qb+δ − 1)

qb+δ
(u∗ − 1)qr/2. (46) 1062

Using (45) and (46) we obtain that 1063

db+δ(C) ≥ (qb+δ − 1)
(qb − 1)qδ

db(C). (47) 1064

For q = 2 and b = δ = 1, then the inequality in (47) 1065

coincides with [19, Theorem 1], which holds for arbitrary 1066

binary cyclic codes of dimension at least 2. We have many 1067

further inequalities in (47) for various values of b, δ and q. 1068

For q = 2 and some small values of b and δ, the inequality 1069

in (47) gives 1070

d2(C) ≥ 3

2
d1(C), d3(C) ≥ 7

4
d1(C), d3(C) ≥ 7

6
d2(C). 1071

Here if q = 2, and b = δ = 1, then we get the constant 3/2 1072

above, which corresponds to [19, Theorem 1]. For q = 3 and 1073

some small values of b and δ, the inequality in (47) gives 1074

d2(C) ≥ 4

3
d1(C), d3(C) ≥ 13

9
d1(C), d3(C) ≥ 13

12
d2(C). 1075

In the next corollary we show that if db(C) is tight for some 1076

1 < b ≤ min{k1, k2, . . . , kρ} in Theorem V.4, then all d�(C) 1077

are tight for 1 ≤ � ≤ b. Note that there exist C and b such 1078

that db(C) is tight (see Remark 11). 1079

Corollary 5: We keep the notation and assumptions of 1080

Theorem V.4. Assume that there exists an integer b such that 1081

1 < b ≤ min{k1, k2, . . . , kρ} such that 1082

db(C) = qr − qr−b − (qb − 1)(u∗ − 1)qr/2

qb
. 1083

Then for any integer 1 ≤ � ≤ b we have 1084

d�(C) = qr − qr−� − (q� − 1)(u∗ − 1)qr/2

q�
. 1085

Proof: It follows from the proof of Theorem V.4, there 1086

exists f(x) ∈ P ({u1, u2, . . . , uρ}) such that the function field 1087

F = Fqr (x, y0, y1, . . . , yb−1), where yq
i −yi = f (i)(x) for 1 ≤ 1088

i ≤ b−1, is a maximal function field. For 1 ≤ � ≤ b−1, let F� 1089

be the subfield of F defined as F� = Fqr (x, y0, y1, . . . , y�−1). 1090

It is well known that subcovers of maximal function fields are 1091

maximal as well [14]. Hence F� is a maximal function field (of 1092
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a different genus in general). The proof of Theorem V.2 (see1093

also Remark 11) implies that its bound on d�(C) is tight.1094

Remark 12: Note that in Corollary 5, if the equality on1095

db(C) holds for some 1 < b ≤ min{k1, . . . , kρ}, then all1096

equalities on the minimum distances d�(C) hold and these1097

values decrease as � decreases. However, in the other direction1098

there is a natural bound by Theorem V.2 and it is important1099

to assume that b + δ ≤ min{k1, . . . , kρ}. Indeed if the bound1100

of Theorem V.2 on db(C) is tight for an integer 1 ≤ b ≤1101

min{k1, k2, . . . , kρ}, then db+δ ≥ (qb+δ−1)
(qb−1)qδ db(C) if b + δ ≤1102

min{k1, k2, . . . , kρ}. However, it follows from Theorem V.21103

that db+δ+1(C) = db+δ(C) if b + δ ≥ k1 + k2 . . . + kρ.1104

We also recall that an algebraic function field F with full1105

constant field Fq is called a minimal function field if it attains1106

the lower bound of Hasse-Weil inequality. Namely if N(F )1107

denotes the rational places of F and g(F ) denotes the genus1108

of F , then F is a minimal function field if and only if1109

N(F ) = 1 + qr − 2g(F )qr/2.1110

Again characterization of all minimal function fields is a1111

difficult open problem and we have minimal functions fields in1112

the form of maximum function fields mentioned above. There-1113

fore considering minimal function fields instead of maximal1114

function fields we have analogous results of Remark 11 and1115

Corollary 5 on the maximum distances Db(C).1116

Remark 13: For any fixed b, there are cyclic codes satisfying1117

the conditions of Theorem V.4 such that the upper bound on1118

wb(c) of Theorem V.4 is tight. For existence we use similar1119

arguments as in Remark 11 and minimal algebraic function1120

fields instead of maximal algebraic function fields.1121

For a given 1 ≤ b < min{k1, k2, . . . , kμ}, let C be a cyclic1122

code such that the upper bound of Theorem V.4 is tight for b.1123

Then for the maximal distance Db(C) of C we have1124

Db(C) = qr − qr−b +
qb − 1

qb
(u∗ − 1)qr/2. (48)1125

For δ ≥ 1 and assume that b + δ ≤ min{k1, k2, · · · , kρ}. For1126

(b+δ)-symbol minimum distance db+δ(C) using Theorem V.41127

we obtain1128

Db+δ(C) ≤ qr − qr−b−δ +
(qb+δ − 1)

qb+δ
(u∗ − 1)qr/2. (49)1129

Using (48) and (49) yield1130

Db+δ(C) ≤ (qb+δ − 1)
(qb − 1)qδ

Db(C).1131

We present the next corollary on maximum distances, which1132

is an analog of Corollary 5. Its proof follows using similar1133

arguments together with minimal function fields instead of1134

maximal function fields. Note that it is also well known that1135

a subcover of a minimal function field is minimal [14].1136

Corollary 6: We keep the notation and assumptions of1137

Theorem V.4. Assume that there exists an integer b such that1138

1 < b ≤ min{k1, k2, . . . , kρ} such that1139

Db(C) = qr − qr−b +
(qb − 1)(u∗ − 1)qr/2

qb
.1140

Then for any integer 1 ≤ � ≤ b we have 1141

D�(C) = qr − qr−� +
(q� − 1)(u∗ − 1)qr/2

q�
. 1142

We can assume that 1143

k1 ≤ k2 ≤ · · · ≤ kρ (50) 1144

without loss of generality. It follows from Theorem V.2 that 1145

there is no need to consider b-symbol weights if k1 +k2 · · ·+ 1146

kρ < b ≤ n − 1. Hence there are exactly ρ + 1 regions given 1147

below to consider for the full b-symbol weight profile of C: 1148

Region 0: 1 ≤ b ≤ k1,
Region 1: k1 < b ≤ k2,

...
Region ρ − 1: kρ−1 < b ≤ kρ,
Region ρ: kρ < b ≤ k1 + k2 + · · · + kρ.

(51) 1149

It follows from (50) that Region 0 corresponds to Theorem V.4. 1150

Next we consider the remaining ρ regions. We need the 1151

following notation in order to present our results for the 1152

remaining regions neatly. For integers b, u ∈ N , let L, U : 1153

N × N → N be the functions defined as 1154

L(b, u) = qr − qr−b −
⌊

(qb − 1)(u∗ − 1)
⌊
2qr/2

⌋
2qb

⌋
, 1155

and 1156

U(b, u) = qr − qr−b +

⌊
(qb − 1)(u∗ − 1)

⌊
2qr/2

⌋
2qb

⌋
. 1157

Note that the functions L and U depend also on q and r, which 1158

we consider to be fixed. Moreover, these functions correspond 1159

to the lower and upper bounds of Theorem V.4. It is easy 1160

to observe that as the second parameter u increases (and the 1161

first parameter b is fixed), L(b, u) is a decreasing function and 1162

U(b, u) is an increasing function. 1163

We are ready to present our bounds for Region 1 in the next 1164

theorem. 1165

Theorem V.5: We keep the notation and assumptions of 1166

Theorem V.4. We also assume that (50) holds without loss 1167

of generality. Recall that u∗ = max{u1, . . . , uρ} and wb(c) 1168

denotes b-symbol Hamming weight of a nonzero codeword c 1169

of C. If b is an integer in Region 1, i.e. k1 < b ≤ k2, then we 1170

have 1171

min {L(b, u∗), L(k1, u1)} 1172

≤ wb(c) 1173

≤ max {U(b, u∗), U(k1, u1)} 1174

Proof: Let f(x) be an arbitrary nonzero polynomial in 1175

P ({u1, u2, . . . , yρ}). Let f1(x) and g(x) be the uniquely 1176

determined polynomials in P ({u1, u2, . . . , yρ}) such that 1177

f1(x) = a1 xu1 , g(x) = a2x
u2 + · · · + aρx

uρ and f(x) = 1178

f1(x)+ g(x). At least one of the polynomials f1(x) and g(x) 1179

is nonzero. 1180

If g(x) �= 0, then, as b ≤ k2 = min{k2, k3, . . . , kρ}, 1181

we have 1182

dimFq Span{f(x), f (1)(x), . . . , f (b−1)(x)} = b. 1183
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Moreover, using the methods of the proof of Theorem V.4 we1184

obtain that1185

L(b, u∗) ≤ wb(c) ≤ U(b, u∗). (52)1186

If g(x) = 0 and f1(x) �= 0, then it follows from Theorem V.21187

that wb(c) = wk1 (c) as k1 < b. Using Theorem V.4 for k1,1188

we obtain that1189

L(k1, u1) ≤ wb(c) ≤ U(k1, u1). (53)1190

Combining (52) and (53) we complete the proof.1191

These methods apply for all regions in (51). It becomes1192

more complicated to state these bounds for Region j as j1193

increases. Next we consider Region 2.1194

Theorem V.6: We keep the notation and assumptions of1195

Theorem V.4. We also assume that (50) holds without loss1196

of generality. Recall that u∗ = max{u1, . . . , uρ} and wb(c)1197

denotes b-symbol Hamming weight of a nonzero codeword c1198

of C. Let b be an integer in Region 2, i.e. k2 < b ≤ k3. Our1199

bounds in this region is presented depending on two cases as1200

follows:1201

Case b ≤ k1 + k2: We have1202

min{L(b, u∗), L(b, max{u1, u2}), L(k2, u1), L(k1, u1)}1203

≤ wb(c) ≤1204

max{U(b, u∗), U(b, max{u1, u2}), U(k2, u1), U(k1, u1)}.1205

Case k1 + k2 < b: We have1206

min{L(b, u∗), L(k1 + k2, max{u1, u2}),1207

L(k2, u2), L(k1, u1)} ≤ wb(c) ≤ max{U(b, u∗),1208

U(k1 + k2, max{u1, u2}), U(k2, u2), U(k1, u1)}.1209

Proof: Let f1(x) = a1x
u1 , f2(x) = a2x

u2 and g(x) =1210

a3x
u3 + · · ·+aρx

uρ be the polynomials with coefficients from1211

Fqr so that their sum f(x) = f1(x) + f2(x) + g(x) is not the1212

zero polynomial.1213

If g(x) �= 0, then we have that dimFq Span1214

{f(x), f (1)(x), . . . , f (b−1)(x)} = b as b ≤ min{k3, . . . , kρ}.1215

Using Theorem V.4 we obtain that1216

L(b, u∗) ≤ wb(c) ≤ U(b, u∗). (54)1217

Assume that g(x) = 0 and b ≤ k1 + k2. If a2 �= 0, then using1218

Theorem V.2 and considering the subcases a1 �= 0 and a1 = 01219

we obtain1220

min{L(b, max{u1, u2}), L(k2, u2)}1221

≤ wb(c) ≤ max{U(b, max{u1, u2}), U(k2, u2)}. (55)1222

If a2 = 0, then a1 �= 0 and using Theorem V.2 we get1223

L(k1, u1) ≤ wb(c) ≤ U(k1, u1). (56)1224

Combining (54), (55) and (56) we complete the proof of the1225

case b ≤ k1 + k2.1226

Next we assume that g(x) = 0 and k1 + k2 < b. If a1 �= 01227

and a2 �= 0, then using Theorem V.2 we get1228

L(k1 + k2, max{u1, u2}) ≤ wb(c) (57)1229

≤ U(k1 + k2, max{u1, u2})1230

If a2 �= 0 and a1 = 0, then similarly we have 1231

L(k2, u2) ≤ wb(c) ≤ U(k2, u2). (58) 1232

Finally if a2 = 0 and a1 �= 0, then we have 1233

L(k1, u1) ≤ wb(c) ≤ U(k1, u1). (59) 1234

Combining (54), (57), (58) and (59) we complete the proof of 1235

the case b < k1 + k2. 1236

Example 7: Let q = 2, r = 12, n = 4095, ρ = 2, 1237

u1 = 3 and u2 = 5 under notation of Theorem V.6. Using 1238

Theorem V.6 we obtain that 1239

2880 ≤ w2(c) ≤ 3264, 1240

3360 ≤ w3(c) ≤ 3808, 1241

3600 ≤ w4(c) ≤ 4080. 1242

Theorems V.4, V.5 and V.6 present a method to obtain 1243

explicit formulas for the bounds on wb(c) for Region i with 1244

i ≥ 3 in (51). It is clear that presenting explicit formulas 1245

like in these theorems becomes more involved as the region 1246

number i increases. We refrain ourselves from presenting 1247

explicit formulas for Region i if 3 ≤ i ≤ ρ as they just use 1248

the same ideas and only become more complicated to state. 1249

Nevertheless the proofs of Theorems V.2, V.4, V.5 and V.6 give 1250

a method to derive lower and upper bounds on the b-symbol 1251

Hamming weights of arbitrary nonzero codewords of C using 1252

algebraic curves. Hence we solve this problem for all regions 1253

in (51) implicitly. For any practical situation, and Region i 1254

with 3 ≤ i ≤ ρ, the methods of this section would be enough 1255

to obtain explicit formulas as in Theorems V.4, V.5 and V.6. 1256

Next we extend all of our previous bounds in this section 1257

to cyclic codes of length n | (qr − 1). Let C be a cyclic code 1258

of length n | (qr − 1) over Fq . Let U0 = {u1, u2, . . . , uρ} be 1259

a basic nonzero set of C. Assume that U0 �= {0} and each 1260

element of U0 satisfies Condition V.3. Let N = qr−1
n . For 1261

integers 0 ≤ i and 0 ≤ u ≤ n − 1, it is easy to observe that 1262

uqi ≡ u mod n ⇐⇒ uNqi ≡ uN mod (qr − 1). (60) 1263

Let Û = {u1 N, u2 N, . . . , uρN}. Using (60) we get that 1264

Û0 is a basic nonzero set for a cyclic code Ĉ of length 1265

nN = qr − 1 over Fq. Moreover, each element of Û0 satisfies 1266

Condition V.3 for the length qr − 1. Let f(x) = a1x
u1 + 1267

a2x
u2 + · · · + aρx

uρ ∈ P (U0) be a nonzero polynomial. 1268

Let c(f) ∈ C be the codeword corresponding to f(x). Put 1269

f̂(x) = a1x
u1 N + a2x

u2 N + · · · + aρx
uρN ∈ P (Û0). Let 1270

ĉ(f̂) ∈ Ĉ be the codeword corresponding to f̂(x). As in 1271

the proof of Theorem IV.4 we conclude that for any integer 1272

1 ≤ b ≤ n − 1 we have 1273

wb(c(f)) =
1
N

wb(ĉ(f̂)), 1274

where wb(c) and wb(ĉ) denote the b-symbol Hamming weight 1275

of c(f) and ĉ(f̂), respectively. These arguments yield the 1276

following theorem, which generalizes Theorem V.4. 1277

Theorem V.7: Let n be a divisor of qr − 1. Let C be 1278

an arbitrary cyclic code of length n over Fq. Let U0 = 1279

{u1, u2, . . . , uρ} be a basic nonzero set of C. Assume that 1280

U0 �= {0} and each element of U0 satisfies Condition V.3. 1281
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Put N = qr−1
n and u∗ = max{u1, u2, . . . , uρ}. Let γ ∈ F∗

qr1282

be a primitive n-th of 1. For 1 ≤ j ≤ ρ let kj be the1283

index [Fq(γuj ) : Fq] of the field extension Fq(γuj )/Fq. Let1284

c ∈ C be an arbitrary nonzero codeword. For 1 ≤ b ≤1285

min{k1, k2, . . . , kρ}, let wb(c) denote the b-symbol Hamming1286

weight of c. We have1287

1
N

(
qr − qr−b −

⌊
(qb − 1)(u∗N − 1)

⌊
2qr/2

⌋
2qb

⌋)
1288

≤ wb(c) ≤1289

1
N

(
qr − qr−b +

⌊
(qb − 1)(u∗N − 1)

⌊
2qr/2

⌋
2qb

⌋)
.1290

In the following remark we explain how we obtain our1291

bounds for length n | (qr − 1) using our earlier bounds in1292

this section.1293

Remark 14: Note that the bounds of Theorem V.7 are1294

obtained from the bounds of Theorem V.4 after applying the1295

following two simple operations in order:1296

i) change u∗ to u∗N and get the numbers L� and U � in1297

place of the lower bound L and the upper bound U of1298

Theorem V.4,1299

ii) divide the numbers L� and U � obtained in step i) by N =1300

qr−1
n in order to get the lower and the upper bounds of1301

Theorem V.7.1302

This method applies to all our bounds in Theorems V.4, V.51303

and V.6 and we obtain explicit lower and upper bounds for1304

Regions 0, 1 and 2 in (51) for any n dividing qr −1. Also our1305

arguments after Theorem V.6 regarding the remaining regions,1306

Region i with 3 ≤ i ≤ ρ, hold for any length n dividing1307

qr−1. Therefore we implicitly solve the problem of obtaining1308

formulas on lower and upper bounds of b-symbol weights for1309

these regions if n is an arbitrary positive number dividing1310

qr − 1.1311

VI. CONCLUSION1312

Let C be an arbitrary cyclic code of length n over Fq with1313

gcd(n, q) = 1. Let b be an integer with 1 ≤ b ≤ n − 1.1314

We gave tight lower and upper bounds for b-symbol weights1315

of nonzero codewords of C using algebraic curves over finite1316

fields. We obtained a stability theorem for arbitrary cyclic1317

codes so that the weight enumerator of b-symbol Hamming1318

weights of C is the same as the weight enumerator of k-symbol1319

Hamming weight of C if k ≤ b ≤ n − 1. We improved our1320

lower and upper bounds on b-symbol weights of codewords1321

of general cyclic codes for some special subclasses of cyclic1322

codes.1323

There are still many open problems which require fur-1324

ther work in this subject. It is a natural open problem to1325

compute b-symbol Hamming weight enumerators of cyclic1326

codes. Construction of explicit classes of optimal cyclic1327

codes for prescribed b-symbol would also be interesting.1328

Moreover, generalizing our bounds to the repeated root case,1329

i.e. gcd(n, q) �= 1 is open.1330

APPENDIX1331

In this appendix we provide necessary background on1332

algebraic function fields in order to make the paper1333

self-contained. For further details we refer, for example, 1334

to [7], [16]. 1335

Let K be a finite field. An algebraic function field F over 1336

K is a finite extension of the rational function field K(x) such 1337

that any element of F that is algebraic over K is in K. Here 1338

K is called the constant field of F . If [F : K(x)] = m, then 1339

there exists a polynomial h(T ) = h0 + h1T + · · ·+ hmT m ∈ 1340

K(x)[T ] of degree m such that F = K(x, y) and the minimal 1341

polynomial of y over K(x) is h(T ). We also call F as an 1342

algebraic function field without mentioning K if it is clear 1343

that the constant field is K from the context. 1344

The simplest algebraic function field is F = K(x), where 1345

[F : K(x)] = 1. 1346

A valuation ring of F is a ring O ⊆ F such that 1347

i) K � O � F , and 1348

ii) for any z ∈ F\{0} we have that either z ∈ F or z−1 ∈ O. 1349

Example 8: Assume that F = K(x), the rational function 1350

field. Let r(x) ∈ K[x] be an irreducible polynomial. Then the 1351

set 1352

Or(x) =
{

a(x)
b(x)

: a(x), b(x) ∈ K[x], r(x) � b(x)
}

1353

is a valuation ring of F . 1354

Let O be a valuation ring of F . The group of units of O is 1355

O× = {u ∈ O : there exists v ∈ O such that uv = 1} . 1356

It is well known that O is a local ring, that there exists a unique 1357

maximal ideal P of O, which is given by P = O \ O×. 1358

A place P of F is the maximal ideal of a valuation 1359

ring O of F . Conversely the valuation ring O is also 1360

uniquely determined by its place P as follows: O = 1361{
z ∈ F \ {0} : z−1 �∈ P

} ∪ {0}. We denote it OP and call 1362

it the valuation ring of P . 1363

Let P be a place of F . There exists an element t ∈ P such 1364

that P = tO. This elements is not necessarily unique. Such an 1365

element is called a local parameter of P . As P is the maximal 1366

ideal of its valuation ring OP , the quotient ring FP = OP /P 1367

is a field. Fp is called the residue field of P . It is well known 1368

that Fp is a finite extension of K and the extension degree 1369

[Fp : K] is called the degree of P . If the degree of P is one, 1370

then we also call that P is a rational place. 1371

Example 9: Assume that K = Fq and F = Fq(x), 1372

the rational function field over Fq . There are exactly q + 1 1373

rational places (degree one places) of F and they are given as 1374

follows: 1375

i) For α ∈ Fq, let 1376

Pα =
{

a(x)
b(x)

: a(α) = 0, b(α) �= 0
}

, (61) 1377

where a(x) and b(x) ∈ Fq[x]. These form q (affine) 1378

rational places of F . 1379

ii) There is one rational place at infinity of F . It is defined 1380

as 1381

P∞ =
{

a(x)
b(x)

:, deg a(x) < deg b(x)
}

, (62) 1382

where a(x) and b(x) ∈ Fq[x]. 1383
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In general, for m ≥ 1, an arbitrary place of Fq(x) of degree1384

m, different from P∞, is obtained as follows. Let r(x) ∈ Fq[x]1385

be an irreducible polynomial of degree m. Then1386

Pr(x) =
{

a(x)
b(x)

: r(x) | a(x), r(x) � b(x)
}

, (63)1387

where a(x) and b(x) ∈ Fq[x]. is a degree m place of F .1388

The notation in (61) and (63) coincide for degree one places:1389

Pα = Px−α if α ∈ Fq .1390

Let P be a place of F . Let OP be its valuation ring and O×
P1391

be the group of units in OP . We choose a local parameter t1392

of P . The discrete valuation vP is a map corresponding to P ,1393

which is defined as1394

vP : F → Z ∪ {∞}

z �→
⎧⎨
⎩

n if there exists n ∈ Z
and u ∈ O×

P such that z = tnu,
∞ otherwise (or equivalently if z = 0)

1395

It is well known that vP is independent from the choice of the1396

local parameter.1397

Assume that E and F are algebraic function fields with the1398

same full constant field K. Assume further that E is a finite1399

extension of F . Let P be a place of E. Then P � = P ∩F is a1400

place of F . Moreover the residue field FP is a finite extension1401

of the residue field FP ′ . The extension degree [FP : FP ′ ] is1402

called the inertia degree of P |P � and its is denoted as f(P |P �).1403

In particular P is a rational place of E if and only if P � is a1404

rational place of F and f(P |P �) = 1. Moreover there exists1405

an integer e such that1406

vP (z) = evP ′(z) for all z ∈ F .1407

This integer is called the ramification index of P |P � and it1408

is denoted as e(P |P �). Conversely if Q is a place of F , then1409

there are a finite number of places Q1, . . . , Q� in E such that1410

Qi ∩ F = Q for 1 ≤ i ≤ �. A fundamental fact is that1411

�∑
i=1

e(Qi|Q)f(Qi|Q) = [E : F ].1412

Let s ≥ 1 be an integer. Let F be an algebraic function field1413

with full constant field Fq . Let F ·Fqs be the smallest extension1414

of F containing Fqs . Note that for s = 1 we have F = F ·Fq.1415

Let N(F ·Fqs ) denote the number of rational places of F ·Fqs .1416

The Hasse-Weil bound [16, Theorem 5.2.3] states that there1417

exists a nonnegative integer g(F ), which depends only on F,1418

such that for each positive s integer we have1419

|N(F · Fqs) − (qs + 1)| ≤ 2g(F )qs/2. (64)1420

The integer g(F ) in (64) is called the genus of F . The1421

definition of genus using (64) is not very common, which1422

is an arithmetic method of definition. This definition requires1423

the presentation of the Hasse-Weil bound for all constant field1424

extension F · Fqs with s ≥ 1. When we state the Hasse-Weil1425

bound, we usually refer to the version of (64) with s = 11426

only. Alternative definitions of genus would require further1427

background like Riemann-Roch Theorem and ramification1428

theory, which we do not need in this paper.1429

There is an improvement of the Hasse-Weil bound, which is1430

Serre’s improvement (see [16, Theorem 5.3.1]). It states that1431

if F is an algebraic function field with full constant field Fq, 1432

then 1433

|N(F ) − (q + 1)| ≤ g(F )
⌊
2 q1/2

⌋
. (65) 1434

Let F be an algebraic function field with full constant field 1435

Fq. Assume that F is an extension of the rational function 1436

field Fq(x). Let P be a rational place of F . Recall that Fq(x) 1437

has exactly q + 1 rational places. The affine rational places 1438

of Fq(x) are Pα; where α ∈ Fq , and Pα defined in (61) in 1439

Example 9 above. 1440

In general we call that P is an affine rational place of F 1441

if P ∩ F = Pα for an α ∈ Fq. Otherwise we call that P is a 1442

place of F at infinity. 1443

Example 10: Let r ≥ 2 be an integer. Let a(x) ∈ Fqr [x] 1444

be a polynomial of degree coprime to q. Let = Fqr (x)[y]/ < 1445

yq−y−a(x) >. Then F/Fqr (x) is a field extension of degree 1446

q and the full constant field of F is Fqr . 1447

As in Example 9, for α ∈ Fqr , let Pα be an affine rational 1448

place of Fqr , which corresponds to the irreducible polynomial 1449

x − α ∈ Fqr [x]. Let P∞ denote the remaining rational place 1450

of Fqr (x), which corresponds to the pole of x ∈ Fqr (x). 1451

The following characterization of all rational places of F 1452

is known. Recall that Tr : Fqr → Fq is the trace map x �→ 1453

x + xq + · · ·+ xqr−1
. For α ∈ Fqr and the affine place Pα of 1454

Fqr (x) we have two cases to consider: 1455

• Case Tr (a(α)) = 0: In this case there are exactly 1456

q rational places Qα,1, Qα,2, . . . , Qα,q of F such that 1457

Qα,i ∩ F = Pα for each 1 ≤ i ≤ r. 1458

• Case Tr (a(α)) �= 0: In this case there is no rational 1459

place Q of F such that Q ∩ F = Pα. 1460

Moreover there is a unique rational place Q∞ of F such that 1461

Q∞ ∩ F = P∞. 1462

Let N (aff)(F ) denote the number of affine rational places 1463

of F . These arguments imply that 1464

N (aff)(F ) = N(F ) − 1 1465

and 1466

N (aff)(F ) = q |{α ∈ Fqr : Tr (a(α))}| . 1467
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