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Abstract

We consider the question of estimating a real low-complexity signal (such as a
sparse vector or a low-rank matrix) from the phase of complex random measure-
ments. We show that in this phase-only compressive sensing (PO-CS) scenario, we
can perfectly recover such a signal with high probability and up to global unknown
amplitude if the sensing matrix is a complex Gaussian random matrix and if the
number of measurements is large compared to the complexity level of the signal
space. Our approach proceeds by recasting the (non-linear) PO-CS scheme as a
linear compressive sensing model built from a signal normalization constraint, and
a phase-consistency constraint imposing any signal estimate to match the observed
phases in the measurement domain. Practically, stable and robust signal direction
estimation is achieved from any instance optimal algorithm of the compressive sens-
ing literature (such as basis pursuit denoising). This is ensured by proving that the
matrix associated with this equivalent linear model satisfies with high probability
the restricted isometry property under the above condition on the number of mea-
surements. We finally observe experimentally that robust signal direction recovery
is reached at about twice the number of measurements needed for signal recovery
in compressive sensing.

1 Introduction

About 40 years ago, Oppenheim and his collaborators [1, 2] determined that, under
certain conditions and up to a global unknown amplitude, a band-limited signal can
be exactly recovered from the phase of its Fourier transform; one can reconstruct the
direction of this signal. The authors also provided a practical iterative algorithm for this
purpose. Since the observed signal lies at the intersection of the set of band-limited signals
and a specific phase-consistency set — the set of signals matching, in the frequency space,
the phase of the observed signal — this algorithm is designed to find this intersection,
when it is unique, by alternate projections onto these two convex sets (the POCS method).
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More recently, Boufounos [3] considered a similar question in the context of complex
compressive sensing where measurements of a sparse signal are obtained from its multi-
plication with a complex, fat sensing matrix. Since keeping the phase of such complex
measurements naturally extends the formalism of one-bit compressive sensing (which
keeps only the sign of real random projections) [4, 5, 6], the author demonstrated that, in
the case of complex Gaussian random sensing matrices, one can estimate the direction of
such a signal from the phase of the compressive measurements (or phase-only compressive
sensing – PO-CS). The estimation error then provably decays when the number of mea-
surements increases. Boufounos actually proved that, with high probability (w.h.p.) and
up to a controlled distortion, the discrepancy between the phase of complex Gaussian
random projections of two sparse vectors encodes their Euclidean distance. Recently,
pursuing the correspondence with one-bit CS and extending its central (`1, `2)-restricted
isometry property ((`1, `2)-RIP) [7] to complex sensing matrices, Feuillen and co-authors
established that a single-step procedure called projected back-projection (PBP) — an
estimation of the signal direction by hard-thresholding the multiplication of the PO-CS
measurements by the adjoint sensing matrix [8] — also yields small and decaying re-
construction error. Of interest for our work, Boufounos also designed in [4] a greedy
algorithm delivering an estimate that is both sparse and phase-consistent with the un-
known signal; this signal and the estimate share identical phases in the random projection
domain. However, none of the theoretical approaches above can explain why this specific
algorithm succeeds numerically in perfectly estimating the observed signal direction.

With this work, we bring two main contributions to this context. First, we demon-
strate that, in a noiseless scenario, perfect estimation of a signal direction from the phase
of its random, complex Gaussian measurements is possible, not only for sparse signals but
for any signals belonging to a symmetric, low-complexity conic set (or cone) of reduced
dimensionality, including (union of) subspaces, the set of sparse signals, the set of model-
based or group sparse vectors [9, 10] or the set of low-rank matrices [11]. This result
strikingly differs from known reconstruction guarantees in the context of (real) one-bit
CS [4, 5, 6]; in this case, the direction of a low-complexity signal can only be estimated
up to a lower-bounded error [5].

Second, we show that one can reconstruct the direction of a low-complexity signal from
any instance optimal algorithms of the CS literature whose error guarantees are controlled
by the restricted isometry property of the sensing matrix [12, 13, 14]. Using such algo-
rithms, we can bound the reconstruction error of the direction of a low-complexity signal
observed in a PO-CS model. This error bound is (i) non-uniform, in the sense that the
estimation is possible, w.h.p., given the observed low-complexity signal, and (ii) stable
and robust as the instance optimality of the selected algorithm allows for both a bounded
noise on the observed measurement phases and an error on the modeling of the signal
by an element of a low-complexity set. Experimentally, we observe that the number of
measurements required for robust estimation of signal direction from noiseless phase-only
observation is about twice the one needed for signal estimation in the case of (linear) CS.

Our approach is thus complementary to [8]; in this work, provided that the sensing
matrix respects the (`1, `2)-RIP, the PBP algorithm yields a bounded reconstruction error
for the estimation of the direction of any unknown signal in (noisy) PO-CS. The bound
thus holds uniformly. However, the observed signal must be sparse and the reconstruction
error does not vanish in absence of measurement noise.
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Regarding the mathematical tools, all our developments rely on recasting of the PO-
CS recovery problem as a linear compressive sensing problem. This one is built from a
signal normalization constraint — as allowed from the independence of the PO-CS model
to the signal amplitude — and a phase-consistency constraint imposing to match the ob-
served measurement phases. We show that in noiseless PO-CS, provided that the number
of measurements is large compared to the signal set complexity, the sensing matrix as-
sociated with this equivalent formulation respects the restricted isometry property over
the signal set; the distance between two low-complexity vectors is encoded in the one of
their projections by this matrix (see Sec. 2). Moreover, when a bounded noise corrupts
the PO-CS model, this property is preserved if the noise variations are small. All our
proofs are self-contained and mostly rely on extending to the complex field previously
introduced random embeddings, such as the (local) sign-product embedding [6, 15, 7].

The rest of this paper is structured as follows. We first end this introduction by
defining some useful notations and conventions. In Sec. 2, we recall a few fundamental
results of the compressive sensing theory that are subsequently used in this work. Sec. 3
defines the PO-CS problem, its reformulation as a signal recovery problem observed by a
linear model and provides the first guarantees on the exact estimation of a low-complexity
signal in the case of noiseless PO-CS. Sec. 4 extends these guarantees to the case where the
PO-CS model is corrupted by a bounded noise and the unknown signal is well represented
in a low-complexity domain with a bounded modeling error. For clarity, the proofs of our
main results are inserted in Sec. 5. In Sec. 6, we provide several experiments leveraging the
instance optimality of the basis pursuit denoising algorithm. We first establish from which
number of measurements one can perfectly estimate the direction of a sparse signal in
PO-CS with complex Gaussian random sensing matrices. We then measure the accuracy
of such an estimate under noise corruption for various noise levels. We conclude this
paper in Sec. 7 with a few open questions and perspectives.

Notations and conventions: Hereafter, the symbols C, c > 0 represent absolute
constants whose exact value may change from one instance to the other. We denote
matrices and vectors with bold symbols, e.g., Φ ∈ Cm×n, x ∈ Cn, and scalar val-
ues with light symbols. We will often use the following quantities: [d] := {1, · · · , d}
for d ∈ N; i =

√
−1; <{λ} (or λ<) and ={λ} (or λ=) are the real and imaginary

part of λ ∈ C, respectively, and λ∗ is its complex conjugate; 1d := (1, · · · , 1)> ∈ Rd

and Id is the d × d identity matrix; A∗ is the adjoint (conjugate transpose) of A;
suppx = {i : xi 6= 0}; |S| is the cardinality of a finite set S; AΩ is matrix formed
by restricting the d columns of A to those indexed in Ω ⊂ [d]; 〈x,y〉 =

∑d
i=1 x

∗
i yi is

the scalar product of x,y ∈ Cd; ‖x‖p = (
∑d

i=1 |xi|p)1/p is the `p-norm of x (p ≥ 1),
with ‖x‖∞ = maxi |xi| and ‖x‖0 := | supp(x)|; K − K′ := {u − v : u ∈ K,v ∈ K′}
and Rx denote the Minkowski difference of K,K′ ⊂ Rd and the span of x ∈ Rd, re-
spectively. The symbol “∼” is used to describe either the distribution law of a random
quantity (e.g., X ∼ N (0, 1)), or the equivalence of distribution between two random
quantities (e.g., Y ∼ X). Given a (scalar) random distribution D, we denote by Dm×n
the m × n random matrix distribution generating matrices with entries independently
and identically distributed (i.i.d.) as D, and we omit the superscript n for vectors (for
which n = 1); for instance, the m × n real and complex Gaussian random matrices
distributed as Nm×n(µ′, σ2) and Nm×n

C (µ, 2σ2) ∼ Nm×n(µ<, σ2)+ iNm×n(µ=, σ2), respec-
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tively, for some means µ, µ′ and variance σ2. An s-sparse x vector belongs to the set
Σn
s := {u ∈ Rn, ‖u‖0 ≤ s}.

2 Preliminaries

Let us first provide the key principles of CS theory. In the complex field, the compressive
sensing of a signal x ∈ Rn with a complex sensing matrix A = A< + iA= ∈ Cm×n

corresponds to acquiring m noisy complex measurements through the model [13]

y = Ax+ ε, (1)

for some complex measurement noise ε ∈ Cm. In this model, we assume x real as we
can always recast the sensing of x ∈ Cn as the one of (<(x)>,=(x)>)> ∈ R2n with the
sensing matrix (A<,−A=) + i(A=,A<) ∈ Cm×2n.

The signal x can be recovered from the measurement vector y, if A is “well condi-
tioned” with respect the sparse signal set Σn

s [12, 13]. This happens for instance if, for
some 0 < δ < 1, A satisfies the restricted isometry property of order 2s, or RIP(Σn

2s, δ),
defined by

(1− δ)‖u‖2 ≤ ‖Au‖2 ≤ (1 + δ)‖u‖2, ∀u ∈ Σn
2s. (2)

For instance, this property holds with high probability if A is a real (or complex [13])
m× n random Gaussian matrix, and if m ≥ Cδ−2s log(n/δs) [16].

If the RIP is verified over Σn
2s with δ < 1/

√
2 [17] (see also [7, Thm 6]), then, for some

C,D > 0 and ε ≥ ‖ε‖, the basis pursuit denoising [18] estimate x̂ = ∆Σn
s
(y,A; ε) with

∆Σn
s
(y,A; ε) := arg minu ‖u‖1 s.t. ‖Au− y‖ ≤ ε, (BPDN)

satisfies
‖x− x̂‖ ≤ Cs−1‖x− xs‖1 +Dε, (3)

with xs the closest s-sparse signal to x (that is, its best s-sparse approximation). Con-
sequently, if x ∈ Σn

s , ε = 0, and ε = 0, we get perfect signal recovery (x̂ = x). Similar
robustness and stability results can be achieved for a series of other algorithms — such as
orthogonal matching pursuit (OMP), compressive sampling matching pursuit (CoSaMP),
or iterative hard thresholding (IHT) — as soon as A respects the RIP for sparsity levels
equal to a few multiples of s and for small enough δ [19, 20, 7, 21]

In this paper, we are interested in more general low-complexity signal spaces than
the set of sparse vectors. We open our study, for instance, to (union of) subspaces of
Rn, such as band-limited or sparse signals, or signals displaying more complex sparsity
patterns such as model-based or group sparsity [10, 9], and to the set Λn

r of
√
n ×
√
n

rank-r matrices (for n a squared integer). We thus focus on symmetric cones K (for
which −K = K and λK ⊂ K for all λ > 0) that occupy a “small volume” of Rn. This
can be measured by the (localized) Gaussian mean width w(K ∩ Sn−1) of K, with

w(K′) := E sup
u∈K′
〈g, u〉, for K′ ⊂ Rn and g ∼ N n(0, 1). (4)

This quantity encodes the intrinsic dimension of K; for instance, w2(L ∩ Sn−1) ≤ CL for
a subspace L ⊂ Rn of dimension L (such as the space of band-limited signals of Rn whose
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discrete cosine transform (DCT) is zero over the last n−L frequencies), w2(Σn
s ∩Sn−1) ≤

Cs log(n/s) — that is the quantity driving the number of measurements for sparse signal
recovery in CS —, and w(Λn

r ∩ Sn−1) ≤ Cr
√
n [22, 6, 23] (see also [24, Table 1] for other

examples of low-complexity sets).
It has now been established that, for a variety of low-complexity, symmetric cones K,

a signal x ∈ K can be recovered from the noisy measurement vector y in (1). For each
of these sets, there exists an algorithm ∆K : Cm × Cm×n × R+ → Rn that provides an
instance optimal estimate x̂ = ∆K(y,A; ε) of x verifying, for some C,D > 0,

‖x− x̂‖ ≤ Ce0(x,K) +Dε, (5)

where e0, which vanishes if x ∈ K, stands for a modeling error in the approximation of
x by an element of K. For instance, we have e0(x,Σn

s ) = ‖x − xs‖1/
√
s or e0(x,Σn

s ) =
‖x − xs‖2 [13, 14], and e0(X,Λn

r ) = ‖X −Xr‖∗/
√
r with ‖ · ‖∗ the nuclear norm and

Xr is the best rank-r approximation of X ∈ R
√
n×
√
n [25].

This instance optimality holds if, for some 0 < δ0 < 1 associated with ∆K and K (for
instance, δ0 = 1/

√
2 for BPDN and K = Σn

s ) and 0 < δ < δ0, A respects the general
RIP(K −K, δ) [14] defined by

(1− δ)‖u‖2 ≤ ‖Au‖2 ≤ (1 + δ)‖u‖2, ∀u ∈ K −K, (6)

where K−K is the Minkowski difference of K with itself (e.g., K−K = Σn
2s for K = Σn

s ).
We introduce the concept of recoverable set to capture these last considerations.

Definition 2.1. A symmetric cone K ⊂ Rn is called (∆K, δ0)-recoverable if there exists
an algorithm ∆K : Cm × Cm×n × R+ → Rn such that, for some 0 < δ0 < 1, any matrix
A ∈ Cm×n satisfying the RIP(K − K, δ) with 0 < δ < δ0, and any noise ε ∈ Cm with
‖ε‖ ≤ ε, the vector x̂ = ∆K(Ax+ε,A; ε) ∈ Rn estimates any signal x ∈ Rn with bounded
modeling error e0(x,K) according to the instance optimality condition (5).

To give a few examples of sets K and algorithms, we can mention that a mixed
norm penalization of BPDN is adapted for signals displaying structured sparsity [10], the
recovery of low-rank matrices is ensured either by replacing the `1-norm of the BPDN
program by the nuclear norm [11, 25], or by resorting to specific iterative algorithms such
as Singular Value Projection (SVP) [26] or conjugate gradient iterative hard thresholding
(CGIHT) [27].

Concerning the existence of matrices satisfying (6), Mendelson and Pajor [28] proved
the following crucial result that we will use in our proofs.

Theorem 2.2 (Adapted from1 [28, Thm 2.1]). Given a cone K′ ⊂ Rn and δ > 0, if

m ≥ Cδ−2w2(K′ ∩ Sn−1), (7)

then the matrix 1√
m

Φ with Φ ∼ Nm×n(0, 1) respects the RIP(K′, δ) with probability ex-

ceeding 1− C exp(−cδ2m).

1Thm 2.1 in [28] is actually valid for any sub-Gaussian random matrices. It is also restricted to
subsets of Sn−1, which can be easily extended to cones as in Thm 2.2.
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This result, which extends easily to complex Gaussian random matrices2, shows that,
w.h.p., we can stably recover all signals of a low-complexity cone K from m Gaussian
random measurements provided m ≥ Cδ−2w2((K − K) ∩ Sn−1). For similar guarantees
in the context of other (structured) sensing matrices (e.g., partial Fourier measurements)
and specific low-complexity spaces, the interested reader may consult, for instance, [13]
for a comprehensive overview of the literature.

3 Phase-only Compressive Sensing

We now depart from the linear CS model and consider the possibility of (partly) recovering
a signal x ∈ Rn from the phase of random projections achieved with a complex sensing
matrix A ∈ Cm×n. For clarity, we first consider the case where x belongs to a low-
complexity set K ⊂ Rn and the phase measurements are exact. We thus study the
non-linear, noiseless phase-only compressive sensing (PO-CS) model

z = signC(Ax), (8)

with signC λ := λ/|λ| if λ ∈ C \ {0}, and signC 0 := 0. We develop in the next section a
noisy variant of (8), and cover the case where x is only known to be close to K (which
induces a small modeling error e0 in (5)).

This model encompasses the one considered by Oppenheim in [1] when K is the
subspace of band-limited signals and A is the Fourier sensing matrix. Moreover, since
signC λ = signλ for λ ∈ R, PO-CS naturally generalizes one-bit CS to the complex
field [4, 3].

We remove the ambiguity raised by the unobserved signal amplitude in (8) by arbitrary
specifying

‖Ax‖1 = κ
√
m, (9)

for some κ > 0. This `1-norm normalization of Φx is reminiscent of the one imposed in
one-bit CS where the signal amplitude is unknown [6]. It can also be understood by the
fact that, for ‖x‖ = 1, and A = Φ/

√
m with Φ ∼ Nm×n

C (0, 2), E‖Ax‖1 = κ
√
m with

κ :=
√
π/2 (see the proof of Lemma 5.2). Imposing (9) is thus close to enforcing ‖x‖ = 1

for complex Gaussian random matrices.
Following [3], this normalization allows us to recast the PO-CS model as a linear CS

model. Indeed, introducing αz := A∗z/(κ
√
m) ∈ Cm, we see that the phase-consistency

and normalization constraints defined by, respectively,

diag(z)∗Au ∈ Rm
+ , 〈αz, u〉 = 1, (10)

are respected for u = x. Since x is real, this is equivalent to{
Hzu = 0, 〈α<z , u〉 = 1, 〈α=z , u〉 = 0

(D<zA
< +D=zA

=)u > 0,
(11)

with u ∈ Rn, and Dv := diag(v), Hv := =(D∗vA) = D<vA
= −D=vA< for v ∈ Cm.

2Simply observe that for Φ ∼ NC(0, 2) and real x, ‖Φx‖2 = ‖Φ̄x‖2 with Φ̄ := [(Φ<)>, (Φ=)>]> ∼
N 2m×n(0, 1).
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A meaningful estimate x̂ ∈ Rn of x should thus respect the constraints (11). In-
terestingly, if we discard the second line of (11), the remaining constraints amount to
imposing

Azu = e1 = (1, 0, · · · , 0)> = Azx, (12)

with

Av :=

(α<v )>

(α=v )>

Hv

 =


1

κ
√
m

(
(v<)>A< + (v=)>A=

)
1

κ
√
m

(
(v<)>A= − (v=)>A<

)
D<vA

= −D=vA<

 ∈ R(m+2)×n, v ∈ Cm, (13)

and where the equality Azx = e1 reformulates the hypothesis ‖Ax‖1 = κ
√
m since

Hzx = 0.
In other words, a subset of the constraints in (11) leads to the equivalent CS recovery

problem (12) where we aim at estimating x from Azx = e1. Therefore, if one can show
that, for some 0 < δ < 1, Az respects w.h.p. the RIP(K−K, δ) defined in (6), then, any
estimate x̂ ∈ K satisfying (11) is sure to recover the direction of x since

‖x̂− x‖2 ≤ 1
1−δ‖Azx̂−Azx‖ = 0.

Moreover, as imposing both (12) and x̂ ∈ K often leads to impractical algorithms (in
fact, an NP-hard, constrained `0 minimization for the recovery of sparse signals), a more
practical result derives easily from the model (12) and from the definition of recoverable
set introduced in Sec. 2.

Theorem 3.1 (Perfect signal direction estimation in noiseless PO-CS). Let K ⊂ Rn be
a symmetric cone that is (∆K, δ0)-recoverable with the instance optimal algorithm ∆K.
Given A ∈ Cm×n, we can recover the direction of x ∈ K from its m phase-only measure-
ments z = signC(Ax) if the matrix Az ∈ R(m+2)×n built from A and z in (13) respects
the RIP(K − K, δ) with 0 < δ < δ0. More precisely, under the hypothesis Azx = e1

(which corresponds to ‖Ax‖1 = κ
√
m), we have x̂ = x if x̂ = ∆K(e1,Az; 0).

Proof. The proof is a direct translation of Def. 2.1; in (3), e0(x,K) = 0 since x ∈ K, and
ε = 0 according to the equivalent noiseless sensing model (12).

Remark 3.2. We can question the specific choice of the normalization (9) as a way to
complement the constraint Hzu = 0 (and thus Hz) to reach a RIP matrix Az. For
instance, we could replace αz in (13) by an independent real Gaussian random vector g
and remove the signal normalization ambiguity by arbitrarily assuming 〈g, x〉 = 1 (which
should happen with probability 1). In this case, A′z := (g>,H>z )> would offer another
equivalent linear sensing model A′zu = e1, hoping then to prove that A′z respects the
RIP. However, the use of (9) is critical. As developed in the proof of the next theorem
(see Sec. 5.2), for any low-complexity vector u and in the case where A = Φ/

√
m with

Φ ∼ Nm×n
C (0, 1), 〈α<z , u〉 in the first component of Azu estimates the projection 〈 x‖x‖ , u〉.

Moreover, since Hzx = 0, ‖Hzu‖2 approximates ‖u − 〈 x‖x‖ , u〉
x
‖x‖‖

2. By Pythagoras,

we can then prove that, w.h.p., ‖Azu‖2 = (〈α<z , u〉)2 + ‖Hzu‖2 encodes ‖u‖2 up to a
controlled multiplicative distortion.
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The key result of this work (proved in Sec. 5) consists in showing that the matrix Az

in (13) built from the association of a complex Gaussian random matrix A and a signal
x ∈ Rn, respects, w.h.p., the RIP.

Theorem 3.3. Given a symmetric cone K ⊂ Rn, δ > 0, A = Φ/
√
m with Φ ∼

Nm×n
C (0, 2), x ∈ Rn, and Az defined in (13) from A and z = signC(Ax) with κ =

√
π/2,

if
m ≥ C(1 + δ−2)w2

(
(K − Rx) ∩ Sn−1

)
, (14)

then, with probability exceeding 1− C exp(−cδ2m), Az satisfies the RIP(K, δ).

Therefore, if x ∈ K and K is symmetric (as for the sets of sparse signals and low-rank
matrices, or for any union of subspaces), we have K−K−Rx ⊂ K(3) := K+K+K, and we
deduce that, from Thm 3.1 and Thm 3.3, we can exactly recover w.h.p. the direction of a
signal x ∈ K from the phase of its complex Gaussian random measurements provided m
is large compared to the intrinsic complexity of K(3) — as measured by w2(K(3) ∩ Sn−1).

In Sec. 6, we illustrate this result in the case of phase-only complex Gaussian random
measurements of sparse signals, with a recovery of their direction ensured by BPDN. In
particular, we show there that PO-CS requires about twice the number of measurements
required for perfect signal recovery in linear CS. This is naively expected as the model
(8) provides m constraints (associated with m phases) compared to (1) that delivers 2m
independent observations.

4 Robust and Stable Signal Direction Estimation

Recovering a low-complexity signal from its phase-only observations can be made both
robust and stable: we can allow for some noise in the PO-CS model (8), as well as
some signal model mismatch — assuming x /∈ K with small e0(x,K) in (5) — while still
accurately estimating the direction of x.

Given an unknown signal x ∈ Rn, we consider the noisy PO-CS model

z = signC(Ax) + ε = z0 + ε, (15)

where ε ∈ Cm stands for some bounded noise with ‖ε‖∞ ≤ τ for some level τ > 0. We
note that this model encompasses a direct disturbance of the phase of (8); if z = eiξ �
signC(Ax), where the exponential applies componentwise, � is the Hadamard product,
and ‖ξ‖∞ ≤ τ , then z = signC(Ax) + ε, with ε := (eiξ − 1) � signC(Ax) such that
‖ε‖∞ ≤ τ (since |eiµ − 1| ≤ |µ| for µ ∈ R).

As the model (15) does not depend on the signal amplitude, we can still work under
the hypothesis that ‖Ax‖1 = κ

√
m for some κ > 0. From Lemma 5.2 and (19), this

shows that, for A = Φ/
√
m with Φ ∼ NC(0, 2), δ > 0 and κ =

√
π/2, (1 + δ)−1 ≤ ‖x‖ ≤

(1− δ)−1 with probability exceeding 1− C exp(−cδ2m).
Under this hypothesis, given the definition of Av for any v ∈ Cm in (12), we find

Azx = Az0x+Aεx = e1 + εx,

with εx := Aεx. In other words, if ‖εx‖ ≤ ε for some noise level ε > 0, the signal x
respects the following `2-fidelity constraint:

‖Azu− e1‖ ≤ ε. (16)
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Moreover, in the case where A is a normalized complex Gaussian matrix, it is easy to
estimate ε.

Lemma 4.1. Given a signal x ∈ Rn, and its noisy PO-CS measurements z = signC(Ax)+
ε with A = Φ/

√
m, Φ ∼ Nm×n

C (0, 2), and ‖ε‖∞ ≤ τ , if ‖Ax‖1 = κ
√
m with κ =

√
π/2,

then, given δ > 0,
‖Aεx‖ ≤

√
2τ 1+δ

1−δ

with probability exceeding 1− C exp(−cδ2m).

Proof. If Φ ∼ Nm×n
C (0, 2), Lemma 5.2 and the `2-norm concentration of Gaussian random

projections [29, 16] show that we have jointly

| 1
κm
‖Φx‖1 − ‖x‖

∣∣ ≤ δ‖x‖, | 1
m
‖Φx‖2 − ‖x‖2

∣∣ ≤ δ‖x‖2,

with probability exceeding 1 − C exp(−cδ2m). Under this event, for A = Φ/
√
m, and

under the hypothesis
√
m‖Ax‖1 = ‖Φx‖1 = κm, we find from (12)

‖Aεx‖2 = |〈αε, x〉|2 + ‖Hεx‖2 = 1
κ2m
|〈ε, Ax〉|2 + ‖=(diag(ε)∗Ax)‖2

≤ τ2

κ2m
‖Ax‖2

1 + τ 2‖Ax‖2 ≤ τ 2(1 + (1 + δ)‖x‖2) ≤ τ 2(1 + 1+δ
(1−δ)2κ2m2‖Φx‖2

1)

≤ 2(1+δ)2

(1−δ)2 τ
2.

where we used Holder’s inequality for the first inequality. This concludes the proof.

From these observations, the definition of recoverable set in Sec. 2 provides the fol-
lowing theorem.

Theorem 4.2 (Signal direction estimation in noisy PO-CS). Let K ⊂ Rn be a sym-
metric cone that is (∆K, δ0)-recoverable with the instance optimal algorithm ∆K. Given
A ∈ Cm×n, the signal x ∈ Rn observed from its m noisy PO-CS measurements z =
signC(Ax) + ε, and the hypothesis that ‖Ax‖1 = κ

√
m for some κ > 0, if the matrix

Az ∈ R(m+2)×n built from A and z respects the RIP(K − K, δ) with 0 < δ < δ0, and if
‖Aεx‖ ≤ ε for some ε > 0, then the vector x̂ = ∆K(e1,Az; ε) estimates x according to
the bound (5).

Interestingly, the RIP condition imposed on Az by this theorem can be met for
complex Gaussian random matrices. Indeed, in the case where A = Φ/

√
m with Φ ∼

Nm×n
C (0, 2), if m is sufficiently large and the noise level τ is small enough, the following

theorem shows that w.h.p. the matrix Az = Az0 +Aε respects the RIP over K with a
constant reduced by τ .

Theorem 4.3. Given δ, τ > 0 with 0 < δ + 9τ < 1, x ∈ Rn, A = Φ/
√
m with Φ ∼

NC(0, 2), ε ∈ Cm with ‖ε‖∞ ≤ τ , and z = signC(Ax) + ε, if

m ≥ C(1 + δ−2)w
(
(K − Rx) ∩ Sn−1

)2
, (17)

then, the matrix Az defined in (13) from z and A with κ =
√
π/2 satisfies the RIP(K, δ+

9τ) with probability exceeding 1− C exp(−cδ2m).
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Therefore, in the case of PO-CS associated with a complex Gaussian random matrix,
and if the symmetric cone K is (∆K, δ0)-recoverable, as soon as m is large compared to

(1 + δ−2)w
(
(K−Rx)∩ Sn−1

)2
with δ+ 9τ ≤ δ0, then, Thm 4.2 and Thm 4.3 tell us that

we can stably and robustly recover the direction of x ∈ Rn — in the sense of (5) — from
its PO-CS measurements.

Remark 4.4. While we did not optimize it in the corresponding proof, the condition
imposed on τ in Thm. 4.3 makes sense. Indeed, combining Thm 4.2 and Thm 4.3 we
conclude that the estimation of the signal direction is possible if τ < δ0/9 = O(1) provided
m is large enough (as imposed by setting δ = δ0−9τ in (17)). Moreover, for the noisy PO-
CS model z = eiξ � signC(Ax), if ξk ∼i.i.d. U([−π, π]) for k ∈ [m], then the phase of each
component of z is uniformly distributed over [−π, π] whatever the value of x; estimating
x/‖x‖ is then impossible. In this case, we have τ = ‖(eiξ − 1)� signC(Ax)‖∞ = ‖eiξ −
1‖∞ > ‖ξ‖∞, with ‖ξ‖∞ arbitrary close to π (w.h.p., for large value of m). Although the
question of the existence of a robust algorithm for τ ∈ [δ0/9, π] remains open, we thus see
that imposing τ = O(1) to recover the signal direction is realistic.

5 Proofs

This section is devoted to proving the RIP of a matrix built in (13) from a complex
Gaussian random matrix A and a signal x ∈ Rn, in the context of noiseless and noisy
PO-CS. We first introduce a few useful lemmata.

5.1 Auxiliary lemmata

We first need this classical result from Ledoux and Talagrand [30, Eq. 1.6].

Lemma 5.1. If the function F : Rn → R is Lipschitz with constant λ, i.e., |F (u) −
F (u′)| ≤ λ‖u− u′‖ for all u,u′ ∈ Rn, then, for r > 0 and γ ∼ N n(0, 1),

P
(∣∣F (γ)− E

(
F (γ)

)∣∣ > r
)
≤ 2 exp(−1

2
r2λ−2). (18)

The following lemma characterizes the concentration of the random variable ‖Φz‖1

for a complex Gaussian random matrix Φ given z ∈ Rn.

Lemma 5.2. Given δ > 0, z ∈ Rn, and Φ ∼ Nm×n
C (0, 2), we have

P
[∣∣ 1
κm
‖Φz‖1 − ‖z‖

∣∣ > δ‖z‖
]
≤ C exp(−cδ2m). (19)

Proof. By homogeneity of (19), we can assume that ‖z‖ = 1. In this case, Φz ∼ g = g<+
ig=, with g<, g= ∼i.i.d. Nm

C (0, 1). In this context, 1
κm
‖Φz‖1 ∼ 1

κm
‖g< + ig=‖1 =

∑
kXk,

where each independent random variable Xk :=
(
(g<k )2 + (g=k )2

)1/2
follows a Rayleigh

distribution with unit scale parameter [31], which gives EXk =
√
π/2 = κ. Therefore,

since each Xk is a sub-Gaussian random variable [29], the concentration property of the
sum of m such random variables provides [29, 8], for t > 0,

P
[ ∣∣ ‖g< + ig=‖1 − κm

∣∣ =
∣∣∑

kXk − EXk

∣∣ > tκ
]
≤ C exp(−c t2

m
).

The result follows from a simple change of variable.
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We now show that the Gaussian mean width of a bounded set projected on a subspace
is bounded by twice the width of the original set.

Lemma 5.3. For a bounded subset K′ ⊂ Rn, and a L-dimensional subspace L ⊂ Rn

related to the projecting matrix P ∈ RL×n, we have

w(P (K′)) ≤ 2w(K′). (20)

Proof. Let us define L⊥ and P⊥ the subspace orthogonal to L and its (n − L) × n
projection matrix, respectively, so that (P⊥)>P⊥ +P>P = In. Then, for g ∼ N L(0, 1),
which can always be written as g = Pg′ for some g′ ∼ N n(0, 1) (by marginalization of
the Gaussian distribution), we have

w(PK′) = E supu∈K′〈g, Pu〉 = E supu∈K′〈Pg′, Pu〉 = E supu∈K′〈P>Pg′, u〉
≤ E supu∈K′ maxσ∈{±1} σ〈(P⊥)>P⊥g′, u〉+ 〈P>Pg′, u〉
≤ E supu∈K′

∑
σ∈{±1}〈σ(P⊥)>P⊥g′ + P>Pg′, u〉

≤
∑

σ∈{±1} E supu∈K′〈σ(P⊥)>P⊥g′ + P>Pg′, u〉 = 2w(K′),

where the last line used the fact that ±(P⊥)>P⊥g′ + P>Pg′ ∼ N n(0, 1).

Finally, this fourth lemma introduces a complex, local sign-product embedding [6, 15];
it shows that projecting the random measurements of any low-complexity vector onto the
phase-only measurements of another fixed vector is close, up to a rescaling, to the scalar
product between both vectors.

Lemma 5.4. Given a symmetric cone K ⊂ Rn, δ > 0, and z ∈ Sn−1, if

m ≥ Cδ−2w2(K ∩ Sn−1), (21)

then, with probability exceeding 1 − C exp(−cδ2m), the random matrix Φ ∼ Nm×n
C (0, 2)

satisfies
| 1
κm
〈signC(Φz), Φu〉 − 〈z, u〉| ≤ δ‖u‖, ∀u ∈ K. (22)

Proof. Since (22) is homogeneous in u and K is conic, we can assume ‖u‖ = 1. Given
K∗ = K ∩ Sn−1, we must prove that P(E > δ) ≤ C exp(−cδ2m) with

E := supu∈K∗ | 1
κm
〈signC(Φz), Φu〉 − 〈z, u〉|.

Using the decomposition u = u‖+u⊥ with u‖ := 〈z, u〉z and u⊥ := (u−〈z, u〉z) (with
〈u‖, u⊥〉 = 0), and the triangular inequality, we find

E ≤ supu∈K∗ |〈z, u〉|
∣∣ 1
κm
‖Φz‖1 − 1

∣∣ + 1
κm

supu∈K∗ |〈signC(Φz), Φu⊥〉|
≤
∣∣ 1
κm
‖Φz‖1 − 1

∣∣︸ ︷︷ ︸
A(Φ)

+ 1
κm

supu∈K∗ |〈signC(Φz), Φu⊥〉|︸ ︷︷ ︸
B(Φ)

.

Moreover, since P(E > δ) ≤ P(2 max(A,B) > δ) ≤ P(A > δ/2) + P(B > δ/2), and
P(A > δ/2) ≤ C exp(−cδ2m) from Lemma 5.2, we only have to prove that P(B > δ/2) ≤
C exp(−cδ2m) if (21) holds.
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From the rotational invariance of the Gaussian distribution, Φ and ΦR have the
same distribution for any rotation matrix R ∈ Rn×n, and P(B(Φ) > δ/2) = P(B(ΦR) >
δ/2). Since z ∈ Sn−1 is fixed, we decide to set R such that Rz = e1 and (Rv)1 = 0
for all v ∈ (Rz)⊥ := {u ∈ Rn : 〈u, z〉 = 0}. Then, defining the restriction matrix
S ∈ R(n−1)×n such that Sw = (w2, · · · , wn)> ∈ Rn−1 for any w ∈ Rn, we observe that,

for all v ∈ (Rz)⊥, ΦRv = GSRv with G = ΦS> ∼ Nm×(n−1)
C (0, 2) independent of

g := ΦRz = Φe1 ∼ Nm
C (0, 2).

Therefore, since u⊥ ∈ (Rz)⊥ and SRu⊥ = SRu by design of S and R, we can write

|〈signC(ΦRz), ΦRu⊥〉| = |〈signC(g), GSRu⊥〉| = |〈signC(g), GSRu〉|, (23)

From the independence of g and G, the equivalence (23) allows us to condition the
random variable B(ΦR) to the value of g while preserving the distribution of G. We
thus focus on bounding P

(
B(ΦR) > δ/2 | g

)
and eventually use P

(
B(ΦR) > δ/2

)
=

EP
(
B(ΦR) > δ/2 | g

)
by expectation over g.

For g fixed, |〈signC(g), GSRu〉| = |〈G∗ signC(g), SRu〉| is distributed as
√
m |〈γ, SRu〉|

with γ ∼ N n−1
C (0, 2), since ‖ signC(g)‖ =

√
m. Therefore, using |〈a, b〉| ≤ 2 max(|〈a<, b〉|, |〈a=, b〉|

for any a ∈ Cd and b ∈ Rd, we find

P
(
B(ΦR) > δ

2
| g
)

= P
(

1
κ
√
m

supu∈K∗ |〈γ, SRu〉| ≥ δ
2
| g
)

≤ P
(

1
κ
√
m

supu∈K∗ max
(
|〈γ<, SRu〉|, |〈γ=, SRu〉|

)
≥ δ

4
| g
)

≤ 2P
(
F (g′) ≥ δ

4
| g
)
,

where we defined F : v ∈ Rn−1 → F (v) := supu∈K∗ |〈v, SRu〉|/(κ
√
m), and we used the

union bound and the fact that γ<,γ= ∼i.i.d. g
′ ∼ N n−1(0, 1).

Let us characterize the random variable F (g′). We first observe that

EF (g′) = 1
κ
√
m
E supu∈K∗ |〈g′, SRu〉| = 1

κ
√
m
E supu∈K∗ 〈g′, SRu〉 = 1

κ
√
m
w(K′),

where K′ := (SRK∗), the width w is defined in (4), and we used the symmetry of K.
Since S is a projector with S>S + e1e

>
1 = In, Lemma 5.3 tells us that

κ
√
mEF (g′) ≤ w(K′) ≤ 2w(RK∗) = 2w(K∗), (24)

since the Gaussian mean width is invariant under rotation.
Moreover, F is Lipschitz with constant λ = 1/(κ

√
m) since ‖SRu‖ ≤ 1 for all u ∈ K∗,

|F (v)− F (v′)| ≤ 1
κ
√
m

supu∈K∗ |〈v − v′, SRu〉| ≤ 1
κ
√
m
‖v − v′‖.

We can thus invoke Lemma 5.1 on F and g′ to conclude that, from (24) and for r > 0,

P
(

1
κ
√
m
E supu∈K∗ |〈g′, SRu〉| ≥ 2

κ
√
m
w(K∗) + r | g

)
≤ P

(
1

κ
√
m
E supu∈K |〈g′, SRu〉| ≥ EF (g′) + r | g

)
= P

(
F (g′) ≥ EF (g′) + r | g

)
≤ P

(∣∣F (g′)− EF (g′)
∣∣ > r | g

)
≤ 2 exp(−1

2
r2κ2m).

Taking, e.g., r = δ/8 and m ≥ 64 δ−2κ−2w(K∗), gives r + 2
κ
√
m
w(K∗) ≤ δ/4 so that, by

expectation over g, the proof is concluded from

P(B > δ
2
) = EP(B > δ

2
| g) ≤ 2EP

(
1

κ
√
m
E supu∈K∗ |〈g′, SRu〉| ≥ δ

4
|g
)
≤ C exp(−cδ2m).
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5.2 Proof of Thm 3.3

Given a symmetric cone K ∈ Rn, x ∈ Rn (with x̄ := x/‖x‖), A = Φ/
√
m with Φ ∼

Nm×n
C (0, 2), and z = signC(Ax), we can now determine under which conditions and

with which probability the matrix Az defined in (12) satisfies the RIP over K for some
distortion δ > 0. This amounts to showing that, under the condition (14) and with
probability exceeding 1− C exp(−cδ2m),∣∣‖Azu‖2 − 1

∣∣ ≤ δ, ∀u ∈ K∗ := K ∩ Sn−1,

where we can assume ‖u‖ = 1 since K is a cone.

Given the definition of αz and Hz in (12), for u ∈ K∗, we see that

‖Azu‖2 =
∥∥[α<z ,α=z ]>u∥∥2

+ ‖Hzu‖2 = |〈αz, u〉|2 + ‖Hzu‖2

= 1
κ2m2 |〈signC(Φx), Φu〉|2 + ‖Hzu‖2. (25)

We first bound the first term of (25). Under the conditionm ≥ C(1+δ−2)w2(K∩Sn−1),
which is involved by (14), Lemma 5.4 and Thm 2.2 inform us that the joint event

E : | 1
κm
〈signC(Φx), Φv〉 − 〈x̄, v〉| ≤ 3

8
δ and | 1

m
‖Φu‖2 − 1| ≤ κ2 − 1, ∀v ∈ K∗,

holds (by union bound) with probability exceeding 1 − C exp(−cδ2m). Since for any
A,B ∈ C, ||A|2 − |B|2| ≤ |A+B||A−B|, E involves

| 1
κ2m2 |〈signC(Φx), Φu〉|2−|〈x̄, u〉|2| ≤ 3δ

8
(1+| 1

κm
〈signC(Φx), Φu〉|) ≤ 3δ

8
(1+ 1

κ
√
m
‖Φu‖) ≤ 3

4
δ.

(26)
We now focus on bounding the second term of (25). We first note that for any

u ∈ K∗ decomposed as u = u‖ + u⊥ with u‖ = 〈u, x̄〉x̄ and u⊥ = (u − 〈u, x̄〉x̄), we
have Hzu = Hzu

⊥ since Hzx = 0. We are going to show that

pz(Φ) := P
[
∃u ∈ K∗,

∣∣‖Hzu
⊥‖2 − ‖u⊥‖2

∣∣ > 1
4
δ‖u⊥‖2

]
≤ C exp(−cδ2m), (27)

provided (14) is satisfied.
Using the rotational invariance of the Gaussian distribution, we note that pz(Φ) =

pz(ΦR) for any rotation matrix R ∈ Rn×n. We proceed similarly to the proof of
Lemma 5.4 and take R such that Rx = ‖x‖e1 and (Rv)1 = 0 for all v ∈ (Rx)⊥;

we thus find that for all v ∈ (Rx)⊥, ΦRv = GSRv with G = ΦS> ∼ Nm×(n−1)
C (0, 2)

independent of g := ‖x‖−1ΦRx = Φe1 ∼ Nm
C (0, 2).

From the independence of g and G, we can condition pz to the value of g without
altering the distribution of G, and eventually computing this probability by expecta-
tion over g from pz(ΦR) = Epz(ΦR|g). In this context, defining z′ := signC(ARx)
and using the properties of R, we have ‖u⊥‖2 = ‖Ru⊥‖2 = ‖SRu‖2. Moreover
Hz′Ru

⊥ = 1√
m
G′SRu⊥ = 1√

m
G′SRu with G′ := (D<z′G

=−D=z′G<) ∼ Nm×(n−1)(0, 1)

since (D<z′)
2 + (D=z′)

2 = Im. Therefore

pz(ΦR |g) = P
[
∃u ∈ K∗,

∣∣‖Hz′Ru
⊥‖2 − ‖u⊥‖2

∣∣ > 1
4
δ‖u⊥‖2 |g

]
= P

[
∃u ∈ K∗,

∣∣ 1
m
‖G′SRu‖2 − ‖SRu‖2

∣∣ > 1
4
δ‖SRu‖2 |g

]
.
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By homogeneity, since K is a cone, we thus get

pz(ΦR) = P
[
∃v ∈ SR(K∗),

∣∣ 1
m
‖G′v‖2 − ‖v‖2

∣∣ > 1
4
δ‖v‖2 |g

]
= P

[
∃v ∈ SR(K),

∣∣ 1
m
‖G′v‖2 − ‖v‖2

∣∣ > 1
4
δ‖v‖2 |g

]
,

hence showing that pz(ΦR) is the failing probability of 1√
m
G′ satisfying the RIP over

K′ = SR(K) with constant δ/4. We can thus invoke Thm. 2.2 and see that (27) holds,
i.e., pz(ΦR) = Epz(ΦR |g) ≤ C exp(−cδ2m), provided that

m ≥ Cδ−2w2(SR(K) ∩ Sn−2).

For K⊥ := {u − 〈x̄, u〉x̄ : u ∈ K} ⊂ K − Rx, the isotropy and monotonicity of the
Gaussian mean width [22, Sec. 3.2] involve

w(SR(K)∩Sn−2) = w
(
(0⊕SR(K))∩Sn−1

)
= w(R(K⊥)∩Sn−1) ≤ w

(
(K−Rx)∩Sn−1

)
,

where we define 0⊕ S := {(0, v) : v ∈ S} ⊂ Rn for any set S ⊂ Rn−1.
We conclude that, provided m ≥ Cδ−2w((K − Rx) ∩ Sn−1)2, which is verified from

(14), the event

E⊥ : ∀u ∈ K ∩ Sn−1,
∣∣ 1
m
‖Hzu

⊥‖2 − ‖u⊥‖2
∣∣ ≤ 1

4
δ‖u⊥‖2 (28)

holds with probability exceeding 1− C exp(−cδ2m).

Finally, from (26) and (28), if the joint event E ∩ E⊥ holds, which occurs with proba-
bility exceeding 1− C exp(−cδ2m), then, for all u ∈ K ∩ Sn−1,

‖Azu‖2 = 1
κ2m2 |〈signC(Φx), Φu〉|2 + 1

m
‖Hzu‖2

≤ |〈x̄, u〉|2 + 3
4
δ + ‖u⊥‖2 + 1

4
δ

= ‖u‖2 + δ = 1 + δ.

We find similarly that ‖Azu‖2 ≥ 1− δ, which provides the final result.

5.3 Proof of Thm 4.3

From Thm 3.3, we already know that, under the condition (17), Az0 with z0 = signC(Ax)
respects the RIP(K, δ) with probability exceeding 1− C exp(−cδ2m), which means that
the event

E0 : 1− δ ≤ ‖Az0u‖2 ≤ 1 + δ, ∀u ∈ K,
holds with that probability.

Moreover, from Thm 2.2, provided m ≥ Cδ2w(K∩Sn−1), which holds if (17) is verified,
and with a failing probability smaller than C exp(−cδ2m), this other event is respected:

E1 : 1− δ ≤ 1
m
‖Φu‖2 ≤ 1 + δ, ∀u ∈ K,

Let us assume that both events hold, which under the condition (17) happens with
probability greater than 1 − C exp(−cδ2m). Then, from the definition of Aε, αε, and
Hε, we compute that, for any u ∈ K ∩ Sn−1,

‖Aεu‖ ≤ 1
κm
|〈ε, Φu〉|+ ‖Hεu‖ = 1

κm
|〈ε, Φu〉|+ 1√

m
‖=(D∗εΦu)‖

≤ 1
κ
( 1√

m
‖ε‖)( 1√

m
‖Φu‖) + 1√

m
‖D∗εΦu‖

≤ τ
κ
√
m
‖Φu‖+ τ√

m
‖Φu‖ ≤ τ

√
2( 1

κ
+ 1) = 2

√
2τ.
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Figure 1: (left) Rate of successful recovery of s-sparse signals in function of m/s for PO-CS (in red)
under the hypothesis (9), and in linear CS (dashed blue). (right, best viewed in color) Average SNR
in function of m/s for the estimation of the direction of s-sparse signals in PO-CS. The color coding of
the SNR curves corresponds to the noise level τ , as measured by − log10 τ/π ∈ [1, 3]. All figures were
generated by Matplotlib [32].

Therefore, since 0 < δ < 1 and τ < 1/9,

‖Azu‖2 ≤ (‖Az0u‖+ ‖Aεu‖)2 ≤ (
√

1 + δ + 2
√

2τ)2

= 1 + δ + 8τ 2 + 4
√

2τ
√

1 + δ ≤ 1 + δ + 8τ(1 + τ) < 1 + δ + 9τ,

and, since
√

1− δ − 2
√

2τ > 0 if 0 < δ + 9τ < 1,

‖Azu‖2 ≥ (‖Az0u‖ − ‖Aεu‖)2 ≥ (
√

1− δ − 2
√

2τ)2

= 1− δ − 4
√

2τ
√

1− δ ≥ 1− δ − 4
√

2τ > 1− (δ + 9τ),

which finally establishes that Az is RIP(K, δ + 9τ).

6 Numerical Experiments

In this section, we test the ability to recover the direction of a sparse vector from the
phase of its complex compressive observations.

As a first experiment, we compare in a noiseless scenario the sample complexities of
both PO-CS and (linear) CS for sparse signal recovery. We thus study from which number
of measurements a sparse vector (or its direction for PO-CS) can be perfectly recovered.
The tested experimental conditions are as follows. We have randomly generated (s = 10)-
sparse vectors in R(n=100) for a range of measurements m ∈ [1, 70]. Each observed sparse
vector x0 was simply generated by randomly picking a 10-sparse support in the

(
100
10

)
available supports, and by setting the non-zero vector components i.i.d. as N (0, 1). For
each value of m, we generated the complex Gaussian random matrix as Φ ∼ Nm×n

C (0, 2).

As described in Sec. 2, the x0 was normalized so that ‖Φx0‖1 = κm with κ =
√
π/2.

Moreover, for each m, the signal x0 and the matrix Φ were randomly regenerated 100
times for reaching valid recovery statistics.

For the reconstruction procedure, we used the basis pursuit denoising (BPDN) pro-
gram to solve ∆K(Az, e1; 0), in comparison with the estimate produced by ∆K(A,y; 0)
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for the CS model y = Φx0. Numerically, BPDN was solved by using the Python imple-
mentation of the SPGL1 toolbox3 [33], together with the Numpy module [34]. In PO-CS
and in CS, a reconstruction was considered as successful when the estimate x̂ reached a
relative error ‖x0 − x̂‖/‖x0‖ ≤ 10−3 (i.e., a 60 dB SNR).

Fig. 1(left) displays the success rate of both approaches, as measured from the fraction
of successful reconstructions over the 100 trials in function of m. We observe that, as
for the linear case, there exists a minimal measurement number from which the signal
direction x0/‖x0‖ is perfectly estimated, roughly from m/s ≥ 5, with a success-failure
transition around m/s ' 3.4. This is larger than the perfect reconstruction rate reached
by CS from m/s ≥ 2.5 with a transition point at m/s ' 1.8. However, this increase is
meaningful. The CS reconstruction is achieved from m complex measurements, equivalent
to 2m real observations of x0, while the constraints brought by the model (12) correspond
to a measurement model containing m+ 2 real observations (by considering the first two
rows of Az associated with the normalization constraints). Therefore, m observations
have been lost from the phase-only sensing model. We can thus expect a ratio of (at
least) 2 between the sample complexities of PO-CS and CS. This ratio could possibly be
reduced by exploiting the unused the last constraint of (11).

In a second experiment, we have measured the robustness of PO-CS to the addition
of a noise with bounded complex amplitude, as developed in Sec. 4. We have considered
the same experimental setup as above, corrupting the noisy PO-CS model (15) with a
uniform additive noise ε ∈ Cm with εk ∼i.i.d. U(τB) for k ∈ [m], B = {λ ∈ C : |λ| ≤ 1}.
Since Rem. 4.4 shows the existence of an additive noise with level greater than π for
which reconstructing the signal direction is impossible, we have set the noise level of this
experiment to τ = π/10α for α evenly sampled in [1, 3]. The reconstruction procedure was
performed using the basis pursuit denoising program ∆K(Az, e1; ε) for ε set4 to the oracle
value ε = ‖Aεx‖, and we solved BPDN with the SPGL1 python toolbox. As above, the
results have been averaged over 100 trials for each association of the parameters m and
τ , the quantities Φ, x, and ε being randomly regenerated at each trial.

In Fig. 1(right), we plot the evolution of the average signal-to-noise ratio (SNR)
20 log10 ‖x‖/‖x− x̂‖ (under the normalization hypothesis ‖Ax‖1 = κ

√
m) as a function

of m/s. For each sampled value of τ , we display one average SNR curve colored according
to the colorbar on the right. As expected, from m/s ' 3, the quality of the BPDN
estimate improves, with an SNR level growing linearly with the increase of − log10 τ/π
(i.e., for τ decaying logarithmically). This is involved by taking the logarithm of both
sides of the instance optimality relation (3) respected by BPDN.

7 Conclusion and Perspectives

With this work, we have shown that one can perfectly reconstruct the direction of a low-
complexity signal belonging to a symmetric cone from the phase of its complex Gaussian
random projections, i.e., in the non-linear PO-CS model (8). Inspired by [3], this is
achieved by formulating an equivalent linear sensing model defined from a signal normal-
ization constraint, and a phase-consistency constraint with the observed signal phases in

3https://github.com/drrelyea/spgl1
4We postpone to a future work the definition of an accurate estimator of this quantity.
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the random projection domain. This reformulation allows us to perform this reconstruc-
tion with any instance optimal algorithm provided that the associated sensing matrix
respects the RIP property over the considered low-complexity signal set. In addition,
we inherit the stability and the robustness from such algorithms; the PO-CS model can
be corrupted by a bounded noise with small noise level, and the observed signal is only
required to be well approximated by an element of a low-complexity set (with small mod-
eling error). We proved that a complex Gaussian random sensing matrix fulfills w.h.p.
the conditions allowing such a reconstruction; it leads to an equivalent sensing matrix (in
the reformulated model) that respects w.h.p. the restricted isometry property provided
that the number of measurements is large compared to the complexity of the signal set,
with an additional dependence to the noise level for noisy PO-CS.

We can think of (at least) two open questions that are worth being investigated in
future work. First, all the reconstruction guarantees involving the considered random
matrices are non-uniform; they are valid w.h.p. given the observed signal. However, up
to an increase of the exponent of 1/δ in the sample-complexity condition (14), and in the
case where the signal belongs to a low-complexity set K (zero modeling error), it should
be possible to use the sign-product embedding [7] and its extension to the complex field [8]
in order to ensure that, w.h.p., Az (with z = signC(Ax)) is RIP for all x ∈ K.

Second, in several imaging applications (such as radar, magnetic resonance imaging,
computed tomography), the complex sensing matrix representing the observational model
is structured and amounts to (randomly) sub-sampling the rows of a Fourier matrix. In
these contexts, phase-only compressive sensing provides an appealing sensing alternative,
for instance, making the measurements insensitive to large amplitude variations and
easing the measurement quantization. In correspondence with the inspirational work of
Oppenheim [2, 1], a critical open question is thus to extend the RIP stated in Thm 3.3
and Thm 4.3 to partial random Fourier matrices or to other structured random sensing
constructions. A first breakthrough in this direction would be to verify this extension
for partial Gaussian circulant matrices, which satisfy w.h.p. the (`1, `2)-RIP and are
applicable to one-bit CS [37].
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