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Abstract— In this paper, we consider a general K-user
Gaussian multiple-input multiple-output (MIMO) broadcast
channel (BC). We assume that the channel state is determin-
istic and known to all the nodes. While the private-message
capacity region is well known to be achievable with dirty
paper coding (DPC), we are interested in the simpler linearly
precoded transmission schemes. In particular, we focus on
linear precoding schemes combined with rate-splitting (RS).
First, we derive an achievable rate region with minimum mean
square error (MMSE) precoding at the transmitter and joint
decoding of the sub-messages at the receivers. Then, we study
the achievable sum rate of this scheme and obtain two findings:
1) an analytically tractable upper bound on the sum rate
that is shown numerically to be a close approximation, and
2) how to reduce the number of active streams – crucial to the
overall complexity – while preserving the sum rate to within a
constant loss. The latter results in two practical algorithms: a
stream elimination algorithm and a stream ordering algorithm.
Finally, we investigate the constant-gap optimality of linearly
precoded RS with respect to the capacity. Our result reveals
that, while the achievable rate of linear precoding alone can be
arbitrarily far from the capacity, the introduction of RS can
help achieve the capacity region to within a constant gap in
the two-user case. Nevertheless, we prove that the RS scheme’s
constant-gap optimality does not extend to the three-user case.
Specifically, we show, through a pathological example, that
the gap between the sum rate and the sum capacity can be
unbounded.

Index Terms— Multiple-input multiple-output (MIMO), broad-
cast channel (BC), rate-splitting (RS), linear precoding, common
message, constant-gap rate.

I. INTRODUCTION

THE capacity region of a multi-antenna (MIMO) broad-
cast channel (BC) with additive Gaussian noise has

been characterized for more than a decade [1], [2]. The
capacity achieving scheme is essentially the dirty paper cod-
ing (DPC) [3] combined with the minimum mean square
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error (MMSE) precoding. This BC capacity region can be
conveniently represented with the capacity region of the dual
multiple-access channel (MAC) via the so-called MAC-BC
duality (also known as the uplink-downlink duality) [4], [5].
The main role of the DPC can be regarded as interference
mitigation at the transmitter side, i.e., part of the interference
is pre-cancelled for a given receiver at the transmitter side.
The implementation of DPC is however not trivial, due to its
non-linear nature and the fact that it is sensitive to the channel
state information at the transmitter side (CSIT) [6]. As such,
linear precoding is used in most practical systems instead.
Apart from the low implementation complexity, it can be
shown that linear precoding schemes such as zero-forcing (ZF)
achieve the maximum degrees of freedom (DoF) of the sys-
tem [7], [8]. Intuitively, ZF is sufficient for the transmitter to
exploit all the available dimensions of the signal space in a
BC, leading consequently to the DoF optimality.

Despite its simplicity, the dimension-counting DoF metric
is coarse since it only characterizes the pre-log factor of the
achievable rate when the channel gains are bounded while
the signal-to-noise ratio (SNR) goes to infinity. As a result,
it fails to capture the disparity of the channel strengths among
users, and thus in some cases provides little information on
the system behavior for different channel realizations. To
see how ZF can be useless and the DoF metric can be
meaningless for some channel realizations, let us consider the
following toy example with two users. Let the channel vectors
from the transmitter to the receivers be [

√
1 − �2 �] and

[
√

1 − �2 −�], respectively, that are linearly independent for
any � ∈ (0, 1). With ZF, the beam directions for the receivers
would be [�

√
1 − �2] and [−�

√
1 − �2], respectively, both

perpendicular to the other receiver’s channel to avoid inter-
ference. Provided that each stream has power P/2 and the
noise power at each receiver is 1, the achievable rate for each
user is log(1 + 2�2(1 − �2)P ). Note that the DoF analysis
would completely erase the impact of any non-zero � and give
1 DoF for each user, while the actual rate can be arbitrarily
close to 0 when � is close to 0 or to 1. In fact, serving only
one user would provide a rate log(1 + P ), much larger than
the sum rate of ZF in those extreme cases. Indeed, the two
receivers’ signal spaces can have a non-negligible overlap so
that nullifying interference at the transmitter (e.g., ZF) could
be highly suboptimal.

To account for the relative strength of the channel coef-
ficients, one can let the channel gains of different links
grow with the SNR polynomially with different exponents,
and the resulting pre-log of the achievable rate is called the
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generalized DoF (GDoF). An even finer characterization is
the constant-gap rate, a rate that is within a constant gap to
the exact achievable rate for any channel realization. Indeed,
since the constant-gap rate and the exact rate have the same
pre-log when the SNR goes to infinity, the GDoF and DoF
can also be derived from the constant-gap rate. Therefore,
we have the following progressive improvements on the rate
approximation [9]:

DoF � GDoF � constant-gap.

To circumvent the limitation of interference, we can intro-
duce rate splitting (RS) so that interference is decodable. The
idea of using RS to partially mitigate interference was first
proposed for the two-user interference channels [10], [11],
in which independent messages are sent by independent
transmitters to their respective receivers. Essentially, each
individual message is split into one private part and one
common part, where the common part is decodable by (though
not intended to) both receivers. Each receiver decodes and
thus can remove the common message from the interfer-
ing transmitter. It turned out that such a scheme achieves
the capacity region of the two-user interference channel to
within 1 bit/s/Hz [12]. The same idea can also be applied to
the BCs. In [13], the authors showed that RS can provide a
strict sum DoF gain of a BC when only imperfect CSIT is
available. Extensions to different settings have been made in
later works [14]–[16]. Besides, RS has also been considered
for robust transmissions under bounded CSIT errors in [17].
In contrast to the DPC that pre-cancels interference at the
transmitter side, RS enables the interference mitigation at
the receivers’ side by letting the interference decodable by the
receivers.

In this work, we are interested in the constant-gap rate of
linearly precoded RS schemes for Gaussian MIMO BC. In
particular, we consider a general RS scheme with MMSE
precoding and joint decoding of the sub-messages at the
receivers, and characterize the corresponding achievable rate
region. The main contributions of our work are summarized
as follows.

• A major challenge in investigating the general K-user
case is the large number of rate constraints, up to K22K−1

in general. Characterizing the maximum sum rate, even
up to a constant gap, is hard when K is only moder-
ately large. For instance, there are about 3 × 105 and
2 × 1010 constraints when K = 5 and K = 6, respec-
tively. Our contribution here is to analyze the achievable
constant-gap sum rate and obtain two meaningful results.
First, while the set of rate constraints is large, we can
carefully choose a subset that leads to K closed-form
upper bounds. Remarkably, the proposed upper bound,
as the minimum value of the aforementioned K upper
bounds, turns out to be a numerically close approxima-
tion. Second, we show how to reduce the number of
active streams, which is crucial to the overall complexity,
while preserving the constant-gap sum rate. Specifically,
we propose two practical algorithms: 1) a stream elimi-
nation algorithm that removes streams without causing
a rate loss more than a given target value, and 2) a

stream ordering algorithm that orders the entire set of
2K − 1 streams according to their impact to the sum
rate.

• A central theoretical question on any communication
scheme is whether it achieves the channel capacity or,
if not, how far it is from capacity-achieving. Our con-
tribution here is to investigate whether linearly precoded
RS is constant-gap optimal, that is, achieves the capacity
to within a constant gap (constant-gap capacity in short).
After showing that any linear precoding scheme alone
cannot be constant-gap optimal, we go on and prove that
with rate-splitting the entire achievable constant-gap rate
region coincides with the capacity region in the two-user
case. Nevertheless, we show that such optimality does not
extend beyond two users. Specifically, we use the derived
sum rate upper bound and a simple pathological channel
realization to demonstrate an unbounded gap to the sum
capacity in the three-user case. In fact, the RS scheme
is not even GDoF optimal in this example. We argue
that without a proper codebook design for interference
alignment or interference pre-cancellation (e.g., DPC),
the independent interference streams become overwhelm-
ing for each individual receiver to decode. Our study thus
reveals a fundamental gap between the receiver-side inter-
ference mitigation and the transmitter-side interference
mitigation.

In the literature, there have been quite a few works on RS
for BC in recent years. While some of the works consider
perfect CSIT, most of works apply RS to mitigate interference
caused by CSIT imperfection. In particular, one can consider
the GDoF while letting the CSIT error scales as SNR−β , where
β ≥ 0 is used to measure the CSIT accuracy [17]. In such
a setting, the presence of the common message to all users
is necessary to make full use of the transmit power. It is
shown in [9] that using only one common message together
with the private messages is optimal in a symmetric K-user
setting. Many other works focus on the optimization problems
related to precoder designs for different channel models, with
perfect or imperfect CSIT assumptions. Some optimize the
sum rate [15], while others focus on the pre-log factor at high
SNR [16]–[18]. MMSE precoder has also been considered
in previous works but is only limited for private messages
[19], [20]. In this work, we are interested in the unanswered,
yet fundamental, question of whether the RS scheme can
be close to optimal in a stronger sense than the DoF even
with perfect CSIT (which can be regarded as an extreme
case of the imperfect CSIT). Our work’s technical and new
contribution beyond the state of the art is the constant-gap
analyses of linearly precoded RS schemes. Furthermore, while
most of the existing works on the RS are limited to one
or two layers of common messages [15], [20], our work is
the first to characterize an analytical upper bound of the
general K-user RS scheme, to the best of our knowledge.
This is also the first attempt to propose a constructive way
with an analytical criterion to reduce the number of streams
according to the actual channel realization, in contrast to
previous works that apply numerical simulations for such
purposes.
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The remainder of the paper is organized as follows.
We present the channel model in Section II. In Section III,
we describe the RS scheme in its most general form with
MMSE precoding, and derive the achievable constant-gap rate
region. The constant-gap sum rate is analyzed in Section IV
with the general K-user sum rate upper bound derived in
Section IV-A and the stream elimination and ordering algo-
rithms described in Section IV-B. The constant-gap optimality
is then investigated in Section V, before we conclude the paper
in Section VI.

II. SYSTEM MODEL AND PRELIMINARIES

Notation: In this paper, we use the following notational con-
ventions. For random quantities, we use upper case non-italic
letters, e.g., X, for scalars, and upper case non-italic bold let-
ters, e.g., VVV, for vectors. Deterministic quantities are denoted
in a rather conventional way with italic letters, e.g., a scalar
x, a vector vvv, and a matrix MMM . Logarithms are in base 2.
The Euclidean norm of a vector and a matrix is denoted by
�vvv� and �MMM�, respectively. MMMT, MMMH, tr(MMM) and det(MMM)
is the transpose, the conjugate transpose, the trace and the
determinant of a matrix MMM , respectively. MMM(i, j) is the (i, j)-
th entry of the matrix MMM . [K] is the set {1, . . . , K}, while
[n] represents the set {1, . . . , n}. Subsets are denoted with
calligraphic capitalized letters, e.g., K and S. |S| represents
the cardinality of the set S. We use 2K to denote the power
set of K, i.e., the collection of all subsets of K. We use
K̄ to denote the complement set of K, i.e., K̄ = [K] \ K
if [K] is the whole set. To avoid confusion, we use bold
calligraphic letters to specify sets of sets, e.g., SSS , which are
referred to as collections. For convenience, we use {Ak}k to
denote the set {Ak : k = 1, . . . , K} where A can be any
object. The colon equal “:=” denotes equality by definition
or assignment. “Conv” stands for the convex hull operation.
(x)+ := max {x, 0}. Throughout the paper, we use “≈” for
constant-gap approximation.

A. Channel Model

We consider a K-user time-invariant and frequency-flat
Gaussian MIMO BC where the transmitter has nt antennas.
The channel output at receiver k, k ∈ [K], at time t, t ∈ [n],
is

YYYk[t] = HHHk xxx[t] + ZZZk[t], (1)

or, in a compact form[
YYYT

1 [t] · · · YYYT

K [t]
]T = HHHxxx[t] + ZZZ[t], (2)

where ZZZ[t] ∼ CN (0, III) is the temporally independent
and identically distributed (i.i.d.) additive white Gaussian
noise (AWGN) with normalized variance; HHHk ∈ Cnr,k×nt is
the channel matrix from the transmitter to the receiver k,
nr,k being the number of antennas at receiver k; HHH :=[
HHHT

1 · · · HHHT

K

]T
is the global channel matrix assumed to be

deterministic and is known globally. The input sequence is
subject to the power constraint 1

n

∑n
t=1 �xxx[t]�2 ≤ P where P

is identified with the SNR.

B. Capacity Region

Let us assume that the transmitter sends an independent
message to each receiver k, k ∈ [K], at a rate Rk bits/s/Hz.
The capacity region, denoted by CBC({HHHk}k, P ), is the set of
rate-tuples (R1, . . . , RK) such that the probability of decoding
error can be arbitrarily small when n → ∞. This capacity
region can be conveniently characterized with the so-called
MAC-BC duality. Namely, the capacity region of a MIMO BC
with power constraint P is the union of the capacity regions
of the dual MAC over all individual power constraints that
sum to P , i.e.,

CBC({HHHk}k, P ) =
⋃

{QQQk}k:
�K

k=1tr(QQQk)≤P

CMAC({HHHH

k}k, {QQQk}k), (3)

where the region CMAC({HHHH

k}k, {QQQk}k) denotes the capacity
region of the dual MAC under the individual covariance
constraint QQQk, k ∈ [K]. In fact, it is well known (see, e.g., [21],
[22]) that CMAC({HHHH

k}k, {QQQk}k) is a polymatroid with the set
of non-negative rate tuples satisfying∑

k∈K
Rk ≤ log det

(
III +

∑
k∈K

HHHH

kQQQkHHHk

)
, ∀K ⊆ [K]. (4)

Since the log-det function is increasing with the partial
ordering of positive semi-definite matrices, it follows from
QQQk � P III, k ∈ [K], that

CMAC

(
{HHHH

k}k,
P

nr
III
)
⊆ CBC({HHHk}k, P ) ⊆ CMAC({HHHH

k}k, PIII),

(5)

where nr :=
∑K

k=1 nr,k. Hence, we have the following lemma.
Lemma 1: The BC capacity region CBC({HHHk}k, P ) is

within γ := nt log nr bits/s/Hz to the MAC capacity region
CMAC({HHHH

k}k, PIII), such that,

if (R1, . . . , RK) ∈ CMAC({HHHH

k}k, PIII),
then ((R1 − γ)+, . . . , (RK − γ)+) ∈ CBC({HHHk}k, P ).

Proof: From (5), we only need to show that
CMAC({HHHH

k}k, P
nr

III) is within γ bits/s/Hz to CMAC({HHHH

k}k, PIII).
Indeed, since log det(III +

∑
k∈K

P
nr

HHHH

kHHHk)= log det(nrIII +∑
k∈K PHHHH

kHHHk) − γ ≥ log det(III +
∑

k∈K PHHHH

kHHHk) − γ,
the proof is immediate from the definition of the MAC region
in (4).

An optimal scheme that achieves the exact capacity region
consists in combining the DPC with the MMSE precod-
ing [22]. Specifically, for a given encoding order, each message
is first encoded using Costa’s DPC that pre-cancels the previ-
ously encoded signals, and is then precoded with the MMSE
matrix. In this way, each receiver only sees the interference
from the messages that are encoded afterwards. Here we can
clearly see the duality between the successive encoding of
the BC and the successive interference cancellation (SIC)
decoding of the MAC. Since part of the interference is
pre-cancelled at the transmitter side and the receivers treat
the residual interference as additive noise, such a scheme can
be regarded as transmitter-side interference mitigation. While
the MMSE precoding is linear, the DPC is non-linear and can
be implemented with nested lattices [23].
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C. Constant-Gap Rate Region

In the following, we give a formal definition of the
constant-gap rate region. Let C(HHH, P ) be the capacity region
of a given channel HHH with power constraint P , and R(HHH, P )
the achievable rate region of some scheme. We say that
R̃(HHH, P ) is an achievable constant-gap rate region with respect
to R(HHH, P ), if

sup
P≥0,HHH

max
r̃rr∈R̃

min
rrr∈R

�r̃rr − rrr� < ∞. (6)

In words, it means that every rate tuple in the constant-gap
rate region is achievable by the given scheme, to within a
constant gap. A scheme is said to be constant-gap optimal
if the capacity region C(HHH, P ) is an achievable constant-gap
rate region with respect to R(HHH, P ). R̄(HHH, P ) is said to be a
constant-gap sum rate upper bound of a given scheme if there
exists a constant γ such that any achievable rate by the given
scheme is upper bounded by R̄(HHH, P ) + γ for any channel
realization HHH and transmit power P .

For future reference, we also recall the DoF and GDoF
optimalities. The scheme is DoF optimal if

lim
P→∞

max
r̃rr∈C

min
rrr∈R

�r̃rr − rrr�
log P

= 0, ∀HHH. (7)

The scheme is GDoF optimal if we let each entry of the
channel matrix scale as Hij = H̃ijP

αij and

lim
P→∞

max
r̃rr∈C

min
rrr∈R

�r̃rr − rrr�
log P

= 0, ∀ H̃ij , αi,j . (8)

Note that any above optimality still holds when we scale
the power P by a constant. Therefore, throughout the paper,
we scale the power whenever it is convenient.

D. Linear Precoding With Point-to-Point Codes

By removing the DPC from the transmitter, we have a much
simpler but strictly suboptimal scheme, namely, the linear
precoding scheme. Specifically, by linear precoding, here we
refer to a particular class of schemes such that, 1) independent
point-to-point Gaussian codebooks1 are used to encode the K
streams; 2) the transmitted signal is a linear combination of
the K codewords; and 3) interferences are treated as noise
at each receiver. Under these assumptions, a single-letter rate
region can be obtained in terms of the input random variable
XXX =

∑K
k=1 XXXk with independent Gaussian distributed {XXXk}k

such that E [XXXkXXXH

k] = QQQk and
∑K

k=1 tr(QQQk) ≤ P . Then,
the rate region achieved by such a linear precoding is

CLP
BC({HHHk}k, P )

=
⋃

{QQQk}k:
�

K
k=1 tr(QQQk)≤P

{
(R1, . . . , RK)∈ R

K
+ :

Rk ≤ log det
(

III +
(
III +

∑
l �=k

HHHkQQQlHHH
H

k

)−1

HHHkQQQkHHH
H

k

)}
.

Note that the region CLP
BC({HHHk}k, P ) is not convex. With a

simple time-sharing strategy, we can achieve the convex hull of

1A discussion on non-Gaussian signaling is provided in Section V-A,
Remark 3.

the region. The time-sharing strategy can also be generalized
to the resource-sharing strategy. Specifically, one can divide
the whole resource (e.g., time and frequency) into orthogonal
portions, say, λ1, . . . , λN , such that λ1 + · · · + λN = 1 and
λi > 0, ∀ i. In each portion i of the resource, we can perform
the linear precoding with covariance matrices {QQQ(i)

k }k. Instead
of imposing that

∑K
k=1 tr(QQQ(i)

k ) ≤ P , ∀ i, we only let∑N
i=1 λi

∑K
k=1 tr(QQQ(i)

k ) ≤ P . Although the resource-sharing
strategy can improve the achievable rate region, we can show
that the improvement is bounded.

Lemma 2: With linear precoding schemes, the achievable
rate region with the resource-sharing strategy described above
is within nr bits/s/Hz to the region with only time-sharing, that
is,

Conv
{
CLP

BC({HHHk}k, P )
}

. (9)

Proof: See Appendix A.
Therefore, it is without loss of constant-gap optimality to

focus on the simple time-sharing strategy.

E. Single-Antenna (SISO) BC

In the single-antenna case, i.e., when the transmitter and all
the receivers have each only one antenna, the analysis becomes
easier. We can prove that the rate region of the linear scheme
Conv

{
CLP

BC({hk}k, P )
}

is not constant-gap optimal. Let us
consider the two-user case in which |h1| � |h2|. From the
MAC-BC duality, let P1 = P2 = 1

2P , the following rates are
achievable

R1 = log(1 + P1|h1|2 + P2|h2|2) − log(1 + P2|h2|2)
≈ log(1 + P |h1|2) − log(1 + P |h2|2), (10)

R2 = log(1 + P2|h2|2) ≈ log(1 + P |h2|2), (11)

where we recall that “≈” stands for constant-gap approxima-
tion. In contrast, with the linear scheme, the achievable rate of
user 2 is R′

2 = log(1+ P̃2|h2|2
1+P̃1|h2|2

) where P̃1, P̃2 are the power

for user 1 and user 2, respectively, with P̃1+ P̃2 ≤ P . In order
for user 2 to achieve log(1+P |h2|2) bits/s/Hz with the linear
scheme, the interference term P̃1|h2|2 in R′

2 must remain
bounded while the power P̃2 should be within a constant
factor to P . Consequently, user 1’s rate must be bounded by
a constant, since

R′
1 = log(1 +

P̃1|h1|2

1 + P̃2|h1|2
) (12)

≤ log(1 +
P |h1|2

P̃2|h1|2
) (13)

≈ 0, (14)

where the last equality is from the fact that P̃2 is within a
constant factor to P .

Nevertheless, we know that single-user transmission
achieves the sum capacity to within a constant gap. Indeed,
if we only serve the user with the strongest channel gain, say,
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|h1| = maxk∈[K] |hk|, then the sum rate is

log(1 + P |h1|2) ≥ log
(
1 +

1
K

P
K∑

k=1

|hk|2
)

(15)

≥ log
(
1 + P

K∑
k=1

|hk|2
)
− log(K), (16)

whereas the sum capacity is, from the MAC-BC duality,

max�
kPk≤P

log
(
1 +

K∑
k=1

Pk|hk|2
)

≤ log
(
1 +

∑K
k=1 P |hk|2

)
.

(17)

Remark 1: Note that the capacity region of a SISO BC
can be achieved by linear superposition coding, since the
channel is stochastically degraded [22]. So a linear scheme
does achieve capacity in this case. However, the receivers
need to decode a subset of the interfering signals in order
to achieve the capacity. Specifically, each receiver needs to
first decode all the messages for the receivers with weaker
channel gains, then remove the interference before decoding
the intended message. In fact, this is a simple form of RS in
which the message for the weakest user is indeed a common
message that needs to be decoded by (although not intended
to) all the users. The performance of linearly precoded RS in
a general MIMO setting is the main subject of this paper, and
will be treated in Section III.

III. RATE-SPLITTING WITH MMSE PRECODING

In this section, we introduce a RS scheme at the transmitter
side, and describe this scheme in the general MIMO case with
K users. We shall derive the corresponding achievable rate
region in its general form.

A. K-User BC With Common Messages

The considered RS scheme builds on a general K-user
scheme with common messages. It is worth mentioning that
the capacity region of the two-user MIMO BC with common
message has been completely characterized in [24]. In that
work, the authors showed that Marton’s inner bound based on
binning is indeed tight with Gaussian signaling. Here, we shall
investigate the general K-user case but only on the achievable
rate region with independent point-to-point codebooks.

First, let
{
MK : K ⊆ [K],K �= ∅

}
be a set of 2K − 1

independent messages, each one with rate RK bits/s/Hz. These
messages are encoded with independent Gaussian codebooks,
each generated identically and independently according to a
distribution XK ∼ CN (0,QQQK), ∀K ⊆ [K],K �= ∅, with

QQQK =
(
P−1
K III + HHHH

K̄HHHK̄
)−1

, (18)

where K̄ := [K]\K and HHHK̄ is a matrix formed by the vertical
concatenation of the channel matrices of the users in K̄, with
the convention HHH∅ = 0; the coefficients {PK} are chosen
to satisfy the power constraint

∑
K tr (QQQK) ≤ P . Such a

precoding scheme is known as the MMSE precoding. The idea
behind the MMSE precoding is to limit the interference power

at the unintended receivers. Indeed, the covariance matrix of
XXXK at the set K̄ of users is

E [HHHK̄XXXK(HHHK̄XXXK)H] = HHHK̄
(
P−1
K III + HHHH

K̄HHHK̄
)−1

HHHH

K̄ � III,
(19)

that is, below the AWGN level. Unlike the ZF precoding
that completely nullifies interference, the MMSE precoding
is known to achieve a better trade-off between interference
and signal power. Further, the application of the ZF precoding
is possible only when a non-empty interference null space
exists, whereas the MMSE precoding is feasible in general.
The transmitted signal is a superposition of all the streams

XXX =
∑

K⊆[K]

XXXK. (20)

Next, each receiver k jointly decodes the set of messages
{MK : K � k} by treating the interferences {XXXK′ : K′ �� k}
as noise. Thus, for each receiver k, it is equivalent to a virtual
MAC whose achievable rate region is the set of non-negative
rate tuples satisfying, for every collection SSSk ⊆ {K : K � k},∑
K∈SSSk

RK ≤

log det
(
III+

(
III +

∑
K′:K′ ��k

HHHkQQQK′HHH
H

k

)−1 ∑
K∈SSSk

HHHkQQQKHHHH

k

)
. (21)

The above rate constraints provide the exact characterization of
the achievable rate region for any linear precoding scheme (not
necessarily the MMSE precoding). Note that the region is quite
involved with a large number of parameters. For our purpose,
however, it is enough to have an approximate region, i.e., to
within a constant gap. This allows us to simplify the region
and obtain the following result.

Lemma 3: Let RCM
BC ({HHHk}k, P ) be the set of achievable rate

tuples (RK : K ⊆ [K],K �= ∅) by the proposed scheme with
MMSE precoding satisfying the power constraint P and joint
decoding at the receivers. Then, the set of non-negative rate
tuples satisfying∑

K∈SSSk

RK ≤ log det
(

III + HHHkQQQSSSk
HHHH

k

)
, (22)

for all k ∈ [K] and collections SSSk ⊆ {K : K � k} forms
an achievable constant-gap rate region with respect to RCM

BC ,
where we define for convenience

QQQSSSk
:=

∑
K∈SSSk

(
P−1III + HHHH

K̄HHHK̄
)−1

. (23)

Note that in the above simplification, we have omitted the
interference term and replaced PK by P in QQQK, both of
which only incur a bounded power loss in terms of K , but
can simplfy further analyses. The number of constraints in
the above region corresponds to the number of non-empty
collections SSSk for all k ∈ [K].

We say that the collection SSSk is minimal if no ele-
ment is a proper subset of another element. For example,
{{1}, {1, 2}, {1, 3}} as SSS1 is not minimal since {1} ⊂ {1, 2}
and {1} ⊂ {1, 3}. One can always obtain a minimal collection
by removing the “smaller” elements, e.g., removing {1} in
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the previous example and we obtain {{1, 2}, {1, 3}} that
is minimal. We say that SSSk can be reduced to a minimal
collection denoted by SSSk. It is readily shown that |SSSk|QQQSSSk

�
QQQSSSk

� QQQSSSk
which we denote as

QQQSSSk
≈ QQQSSSk

. (24)

Therefore, we can replace QQQSSSk
by QQQSSSk

and only lose up to
a constant number of bits per channel use. Further, we notice
that if both collections SSS′

k and SSS′′
k can be reduced to SSSk,

then SSS ′
k

⋃
SSS′′

k can also be reduced to SSSk. Hence, in the
equivalent class of collections sharing the same minimal SSSk,
there is always a maximal collection that is the union of all
the collections that can be reduced to SSSk. It follows that for
every collection SSSk, there is a minimal SSSk and a maximal SSSk

such that

SSSk ⊆ SSSk ⊆ SSSk. (25)

For instance, when K = 2, there are three possible collections
for SSS1, namely, {{1}}, {{1,2}}, and {{1},{1,2}}. Similar
collections can be found for SSS2. Note that {{1,2}} is both
a SSS1 and a SSS2. The three collections for SSS1 can be divided
into two classes according to the minimal/maximal collection
pairs as follows.

SSS1 SSS1 SSS1

{{1}} {{1}} {{1}}
{{1,2}} {{1,2}} {{1},{1,2}}

{{1},{1,2}}
In the expression (22), we see that among all the constraints

with SSSk having the same SSSk, thus having the same right hand
side in (22) up to a constant gap due to (24), the constraint
corresponding to SSSk is obviously dominant since it involves
all the possible terms on the left hand side. Therefore, we can
further simplify the approximate rate region.

Proposition 1: The set R̃CM
BC ({HHHk}k, P ) of non-negative

common message rate tuples satisfying, for all k ∈ [K] and
SSSk ⊆ {K : K � k}, the rate constraints∑

K∈SSSk

RK ≤ l
SSSk

k (26)

is an achievable constant-gap rate region by the proposed
scheme; here we define

lSSSk := log det
(
III + HHHkQQQSSSHHHH

k

)
. (27)

Example 1 (The Two-User Case): When K = 2, the rate
region from Proposition 1 becomes

R̃1, R̃
(1)
12 , R̃2, R̃

(2)
12 ≥ 0, (28)

R̃1 ≤ l
{1}
1 , R̃2 ≤ l

{2}
2 , (29)

R̃1 + R̃
(1)
12 + R̃

(2)
12 ≤ l

{1,2}
1 , (30)

R̃2 + R̃
(1)
12 + R̃

(2)
12 ≤ l

{1,2}
2 , (31)

where l
{k}
k := log det

(
III + HHHkQQQ{k}HHH

H

k

)
and l

{1,2}
k :=

log det
(
III + PHHHkHHH

H

k

)
, for k = 1, 2; QQQ{1} := (P−1III +

HHHH

2HHH2)−1 and QQQ{2} := (P−1III + HHHH

1HHH1)−1.

B. K-User BC Without Common Messages: Rate-Splitting

Now, let us get back to the original setting without common
messages, i.e., with messages {Mk : k = 1, . . . , K}, each
one intended exclusively to one user. We can build a scheme
without common messages from any scheme with common
messages through rate-splitting.

First, we split each message Mk of rate Rk bits/s/Hz into
sub-messages {M̃(k)

K : K � k}, each of rate R̃
(k)
K such that∑

K�k R̃
(k)
K = Rk, ∀ k. By construction, each sub-message

M̃(k)
K should be decoded by all users in K, although the sub-

message is intended only to user k.
Then, the 2K−1K sub-messages

{
M̃(k)

K : k ∈ K ⊆ [K]
}

are re-assembled into 2K − 1 sub-messages

M̃K := {M̃(k)
K : k ∈ K}, (32)

each one of which should be decodable by the users in K
by construction. These 2K − 1 re-assembled sub-messages
are transmitted with the scheme described in the previous
subsection. At the receivers’ side, each user k decodes the set
of re-assembled sub-messages {M̃K : K � k}, but only keeps
the sub-messages {M̃(k)

K : K � k} in order to reconstruct
the desirable message Mk. At this point, the following result
becomes straightforward.

Proposition 2: A rate tuple (R1, . . . , RK) is achievable if
there exists a set of sub-message rates

{
R̃

(k)
K : k ∈ K ⊆ [K]

}
such that ∑

K�k

R̃
(k)
K = Rk, ∀k ∈ [K], (33)∑

k∈K
R̃

(k)
K = R̃K, ∀K ⊆ [K], (34)

and
(
R̃K : K ⊆ [K]

)
∈ RCM

BC ({HHHk}k, P ). (35)

The set of such rate tuples is denoted by RRS
BC({HHHk}k, P ).

Replacing the rate region RCM
BC in (35) by the constant-gap

rate region R̃CM
BC , we obtain an achievable constant-gap rate

region R̃RS
BC({HHHk}k, P ) with respect to RRS

BC({HHHk}k, P ).
It is worth emphasizing the three choices that we have made

for the above RS scheme: 1) independent codebooks for differ-
ent sets of sub-messages, 2) linear spatial MMSE precoding at
the transmitter, and 3) decoding common interfering streams
by treating other streams as noise at the receivers. Since the
proposed scheme allows the receivers to decode partially the
interference, it can be regarded as a receiver-side interference
mitigation scheme.

Finally, it is possible to ignore a subset T ⊆ [K] of users
and only apply the proposed RS scheme to the remaining users
in [K] \ T . Together with time sharing, the achievable rate
region is described as follows.

Corollary 1: The following convex hull of rate-tuples is
achievable with the proposed RS scheme and time sharing

Conv
⋃

T ⊆[K]

{
RT = 0, R[K]\T ∈ RRS

BC({HHHk}k∈[K]\T , P )
}

.

(36)

Similarly, replacing RRS
BC by R̃RS

BC, we obtain an achievable
constant-gap region.
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In the following, we shall only focus on constant-gap rates
for our purpose. For brevity, we drop the term “constant-gap”
whenever confusion is not likely.

IV. ACHIEVABLE SUM RATE

In general, the achievable rate region is analytically
intractable. Even the numerical evaluation becomes hard for
a moderately large number of users due to the exponential
growth of the number of sub-messages and doubly exponential
growth of the number of constraints. In this section, we shall
focus on the achievable sum rate instead of the entire rate
region to obtain meaningful insights. First, we shall establish
an upper bound on the achievable sum rate of the proposed
region. We shall then show how to preserve the achievable sum
rate up to a constant loss while reducing the total number of
active streams.

A. Sum Rate Upper Bound

Before analyzing the sum rate, we take a closer look
at the defining term lSSSk := log det

(
III + HHHkQQQSSSHHHH

k

)
of the

achievable rate region in Proposition 1. First, note that lSSSk is
increasing with respect to the partial ordering of the collection
SSS. Indeed, when SSS ⊇ SSS ′, we have QQQSSS � QQQSSS′ according to the
definition (23), implying lSSSk ≥ lSSS

′
k . Similarly, for SSS = {K} and

SSS′ = {K′} with K ⊇ K′, we have lSSSk ≥ lSSS
′

k . For convenience,
we also define

CK := log det
(
III + PHHHKHHHH

K
)
, ∀K ⊆ [K], (37)

where we let C∅ := 0. Finally, the following relationship
between the C’s and the l’s will be useful.

Lemma 4: For each k ∈ [K] and each collection SSS of
subsets of [K], we have

lSSSk ≥ max
K∈SSS

C{k}∪K̄ − CK̄, (38)

where equality holds when |SSS| = 1.
Proof: Since from the definition (23) QQQSSS :=∑

K∈SSS
(
P−1III + HHHH

K̄HHHK̄
)−1 �

(
P−1III + HHHH

K̄HHHK̄
)−1

, ∀
K ∈ SSS , we have lSSSk := log det

(
III + HHHkQQQSSSHHHH

k

)
≥

log det
(
III + HHHk

(
P−1III + HHHH

K̄HHHK̄
)−1

HHHH

k

)
= C{k}∪K̄ − CK̄.

Equality holds when |SSS| = 1.
Proposition 3: The maximum sum rate of the RS scheme

with K active users is upper bounded by

min

{
C[K],

K∑
i=1

(
l
(K)
i

K − 1
+

K−2∑
k=1

l
(k)
i

k(k + 1)

)

+
1

K − 1
min

m∈[K]

{
l(K−1)
m − l(K)

m

}}
, (39)

where

l
(k)
i := l

SSS(k)
i

i = log det
(
III + HHHiQQQSSS(k)

i

HHHH

i

)
, (40)

SSS(k)
i := {S : |S| = k, i ∈ S} , ∀ i ∈ [K], (41)

where we recall that QQQSSS is defined as in (23). In particular,
the upper bound is achievable to within a constant gap when
K ≤ 3.

Proof: The first upper bound C[K] is trivial since it is the
sum capacity of the channel. Alternatively, we can also recover
it from the region (26). Indeed, let us consider the sequence
of maximal collections SSSk = {S : k ∈ S, i �∈ S, ∀i > k},
k ∈ [K], and their corresponding minimal collections SSSk =
{[k]}, k ∈ [K]. Then, the sum rate can be decomposed as∑

k∈[K]

∑
K∈SSSk

R̃K ≤
∑

k∈[K] l
SSSk

k =
∑

k∈[K] C{k,...,K} −
C{k+1,...,K} = C[K] where the inequality is from (26) and
the first equality is from Lemma 4. We shall now focus on
the second term in (39).

For given i, k ∈ [K], let us consider the collection SSS(k)
i as

defined in (41). It is clearly a minimal collection according to
the definition in Section III-A, since no element is a proper
subset of another element. Now, let us define the following
collection

SSS(k)

i := {S : 1 ≤ |S| ≤ k, i ∈ S} . (42)

We notice that SSS(k)

i ⊇ SSS(k)
i is a maximal collection according

to the definition in Section III-A. From (26), we have∑
K∈SSS(k)

i

RK ≤ log det
(

III + HHHkQQQSSS(k)
i

HHHH

k

)
= l

(k)
i . (43)

Letting k = K in (43), we obtain

R[K] +
K−1∑
k′=1

∑
K∈SSS(k′)

i

RK

︸ ︷︷ ︸
ai

≤ l
(K)
i , (44)

while letting k = K − 1 in (43), we have
K−1∑
k′=1

∑
K∈SSS(k′)

i

RK

︸ ︷︷ ︸
bi

≤ l
(K−1)
i . (45)

Next, we sum up ai and bi as follows.
K−1∑
i=1

ai + bK = (K − 1)R[K] +
K∑

i=1

K−1∑
k′=1

∑
K∈SSS(k′)

i

RK (46)

= (K − 1)R[K] +
K−1∑
k′=1

K∑
i=1

∑
K∈SSS(k′)

i

RK (47)

= (K − 1)R[K] +
K−1∑
k′=1

k′
∑

K: |K|=k′
RK (48)

= (K − 1)R(K) +
K−1∑
k′=1

k′R(k′), (49)

where in the second equality we exchange the sums over i and
k′; in the third one we apply the symmetry and rearrange the
K ×

(
K−1
k′−1

)
summands into k′ summations over

(
K
k′
)

terms;
in the last one we define R(k) :=

∑
K: |K|=k RK. Summing

up the right-hand sides of (44) and (45) in the same way, we
obtain

(K − 1)R(K) +
K−1∑
k′=1

k′R(k′) ≤
K−1∑
i=1

l
(K)
i + l

(K−1)
K . (50)
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TABLE I

NUMERICAL RESULTS COMPARING THE DERIVED UPPER BOUND (39) AND THE EXACT RS SUM RATE
OF THE REGION (26) (IN BITS/s/Hz) FOR P = 40 dB. THE TRANSMITTER HAS nT = 6 ANTENNAS

Similarly, for any k ≤ K − 2, we can apply (43) and obtain

k∑
k′=1

∑
K∈SSS(k′)

i

RK ≤ l
(k)
i . (51)

Summing over i, we have

K∑
i=1

k∑
k′=1

∑
K∈SSS(k′)

i

RK =
K−1∑
k′=1

k′R(k′). (52)

Since
∑K

i=1

∑k
k′=1

∑
K∈SSS(k′)

i

RK =
∑K−1

k′=1 k′R(k′), we have

k∑
k′=1

k′R(k′)

︸ ︷︷ ︸
ck

≤
K∑

i=1

l
(k)
i , k = 1, . . . , K − 2. (53)

Consider the following weighted sum over ck

K−2∑
k=1

K − 1
k(k + 1)

ck =
K−2∑
k=1

K − 1
k(k + 1)

k∑
k′=1

k′R(k′) (54)

=
K−2∑
k′=1

k′R(k′)
K−2∑
k=k

K − 1
k(k + 1)

(55)

=
K−2∑
k′=1

(K − 1 − k′)R(k′), (56)

and the same weighted sum over the right-hand side of (53),
we obtain

K−2∑
k′=1

(K − 1 − k′)R(k′) ≤
K−2∑
k=1

K∑
i=1

K − 1
k(k + 1)

l
(k)
i . (57)

Summing up (50) and (57), and dividing both sides by K−1,
we have

R(K)
sum ≤

K∑
i=1

(
l
(K)
i

K − 1
+

K−2∑
k=1

l
(k)
i

k(k + 1)

)

+
1

K − 1

(
l
(K−1)
K − l

(K)
K

)
, (58)

where R
(K)
sum :=

∑K
i=1 R(i). Note that in (46), we can also

start with
∑K

i=1,i�=m ai + bm instead of
∑K−1

i=1 ai + bK , for
any m = 1, . . . , K . Repeating the same steps, we can obtain

R(K)
sum ≤

K∑
i=1

(
l
(K)
i

K − 1
+

K−2∑
k=1

l
(k)
i

k(k + 1)

)

+
1

K − 1

(
l(K−1)
m − l(K)

m

)
, m ∈ [K]. (59)

Since the above upper bound holds for every rate tuple, it is
also an upper bound on the maximum sum rate. This concludes

the proof of the upper bound (39). We defer the proof of the
achievability for K ≤ 3 in Appendix C.

In Table I, we provide the numerical evaluation of the upper
bounds and the sum rate of the region (26) for K = 4
and 5 users.2 Two channel models are considered: Rayleigh
fading and the one-ring model [25]. Average rates are obtained
with 1000 channel realizations for each distribution, while
maximum gap is from all 2000 realizations. We observe that
the upper bound is indeed very close to the exact rate in
average, and the maximum gap is small as compared to the
average rate.

Remark 2: Note that the upper bound in (39) holds when
all K users are active. Nevertheless, one can ignore K − K ′

users and apply the RS scheme to the K ′ active users for
any K ′ ≤ K . In this case, the above bound is still valid by
replacing K with K ′ and replacing HHH with the corresponding
submatrix.

B. Stream Elimination and Stream Ordering Algorithms

The general RS scheme transforms K messages into 2K−1
different sub-messages, and then the BS creates one stream
for each sub-message aiming at the corresponding user group.
In practice, we would like to reduce the number of streams
for lower signaling and decoding complexity. In this section,
we first propose an algorithm that eliminates some of the
streams without reducing the sum rate for more than a given
number of bits per channel use. Then, based on the same idea,
we propose a second algorithm that orders all the 2K − 1
streams, and validate the algorithm through numerical simula-
tion. For simplicity of demonstration, we focus on the MISO
case with M ≥ K in the following. Nevertheless, the results
can be extended to multi-antenna receivers straightforwardly.

1) Sufficient Conditions to Maintain the Sum Rate: For
convenience, let us introduce some notations first. Let HHH† be
the Moore-Penrose inverse3 of HHH . For any I ⊆ [K], let HHHI ∈
C

i×M , with i = |I|, denote the submatrix of HHH containing
the rows with indices in I; similarly, let HHH†

I ∈ CM×i denote
the submatrix of HHH† containing the columns with indices
in I.

Proposition 4: For any I ⊂ [K] with 1 ≤ |I| < K , if there
exists some WWW ∈ CM×M with �WWW�2 ≤ c such that

HHHIWWW = HHHI , and HHHĪWWW = 000, (60)

then we can eliminate any stream K such that K∩I �= ∅ and
K ∩ Ī �= ∅ without losing more than log(c) bits.

2With more users, numerical simulations become infeasible due to a large
amount of constraints, up to the order 22K−1

.
3Namely, HHH† is such that HHH†HHHHHH† = HHH†, HHHHHH†HHH = HHH , and both HHH†HHH

and HHHHHH† are Hermitian.
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Proof: Let i = |I| ∈ [1 : K − 1] and let us assume that
I = {1, . . . , i} without loss of generality. The case with an
arbitrary I follows in the same way up to a row permutation of
HHH . Let xxxK be the signal corresponding to the stream intended
for user group K, and the corresponding sub-message and
rate are denoted by MK and RK, respectively. Further, let
us assume that K ∩ I �= ∅ and K ∩ Ī �= ∅, i.e., K contains at
least one user inside I and at least one outside of it. Without
loss of generality, let K = K′ ∪K′′ with K′ ⊆ I and K′′ ⊆ Ī.

Let WWW ∈ CM×M be such that (60) holds. Then, we define
a new signal corresponding to the sub-message MK as
xxx′
K = WWWxxxK. Due to the condition (60), the received sig-

nal corresponding to the sub-message MK at users in Ī is
HHHĪxxx′

K = HHHĪWWWxxxK = 000, while the received signal at users in
I is HHHIxxx′

K = HHHIWWWxxxK = HHHIxxxK, i.e., remains the same as
with xxxK. Hence, with the new signaling scheme, users in I see
no changes, and users in Ī do not receive any signal related
to the sub-message MK. In other words, the sub-message MK
can be downgraded to a sub-message to users in K′ = K ∩ I
without degrading the decoding performance of other users.

Next, we evaluate the power loss.

�xxx′
K�2 = �WWWxxxK�2 ≤ σ2

max(WWW )�xxxK�2 ≤ �WWW�2�xxxK�2, (61)

where σmax denotes the maximum singular value of a matrix,
with σmax(WWW ) ≤ �WWW�. Next we scale down the power of xxx′

K
to meet the power constraint, namely, we let xxx′′

K := 1
‖WWW‖xxx

′
K.

Note that scaling down the power by a factor �WWW�2, we have
a rate loss on RK of at most log(�WWW�2) bits/s/Hz. Since
decreasing the power of one stream cannot hurt the other
streams, the sum rate loss is at most log(�WWW�2) ≤ log(c)
bits/s/Hz. The proof is complete.

2) Stream Elimination and Ordering:
Lemma 5: If the linear system (60) has at least one solution,

then the solution WWWI := HHH†
IHHHI is the one with minimum

Euclidean norm.
Proof: Let H̃HH :=

[
HHHI
HHHĪ

]
= ΠΠΠHHH for some permutation

matrix ΠΠΠ. Then, the condition (60) can be rewritten as H̃HHWWW =[
HHHI
000

]
. If this equation has at least one solution, then it is

known [26] that H̃HH
† [HHHI

000

]
has the minimum Euclidean norm.

Since H̃HH
†

= HHH†ΠΠΠT, we have WWW = HHH†ΠΠΠT
[

HHHI
000

]
= HHH†

IHHHI .
To include the case where (60) does not have any solution,

let us define

W̃WWI :=

{
HHH†

IHHHI , when (60) has a solution,

∞∞∞, otherwise,
(62)

where, with a slight abuse of notation, we use ∞∞∞ to denote
a matrix with infinite norm. Proposition 4 has the following
equivalent form.

Corollary 2: If
∥∥W̃WWI

∥∥2 ≤ c for some non-empty set
I ⊂ [K] and some non-negative value c, then we can eliminate
any stream K such that K ∩ I �= ∅ and K ∩ Ī �= ∅ without
losing more than log(c) bits.

At this point, we can describe our stream elimination
algorithm in Algorithm 1. Note that for each of the 2K − 2
non-empty proper subsets I of [K], the complexity of finding
WWWI is O(K2M), while the complexity to verify (60) is

Algorithm 1 Stream Elimination Algorithm
Input: channel matrix HHH , threshold c

Initialize the collections: SSS(c) = 2[K] \ ∅
Compute HHH†

for non-empty subset I ⊂ [K] do
Compute WWWI = HHH†

IHHHI
if WWWI verifies (60), and �WWWI�2 ≤ c then

Remove all K such that K ∩ I �= ∅ and K ∩ Ī �= ∅
from the collection SSS(c)

end if
end for
Output: SSS(c)

O(KM2). Therefore, the overall complexity of Algorithm 1
is O(KM22K), since M ≥ K .

The following property is straightforward from the
algorithm.

Claim 1: The output collection from Algorithm 1, denoted
as SSS(c), is decreasing with the threshold c such that
SSS(0) = 2[K] \ ∅ and SSS(∞) = [K].

In practice, in order to reduce the precoding and decoding
complexity, one may want to order the streams somehow
and use only the “best” ones. From the above discussion,
we observe that one way to order the streams is to use
the minimum threshold for a stream to be eliminated from
Algorithm 1. Specifically, such a threshold is defined as, for
each K ⊆ [K] with |K| ≥ 2,

cK := min
I:I∩K�=∅,Ī∩K�=∅

�W̃WWI�2 (63)

= min
I1⊂K,I1 �=∅

I2⊆K̄

�W̃WWI1∪I2�2. (64)

It is straightforward to verify that setting c = cK can eliminate
the stream K with Algorithm 1. Then, one can order the
common streams K ⊆ [K], |K| ≥ 2, according to the values
{cK}K⊆[K],|K|≥2. Note that there are in total 2K − 1 − K
common streams and, hence, 2K − 1 − K variables cK.
Since they can only take one of the 2K − 2 values in
{�W̃WWI�2}I⊂[K],I�=∅, it is probable that more than one common
stream share the same threshold value. In that case, one can
introduce a simple randomization to resolve the tie situation.
Algorithm 2 summarizes this procedure.

Note that streams with larger threshold values are consid-
ered “better”. The following claim is straightforward from the
definition of the minimum threshold in (63).

Claim 2: The minimum threshold cK, for K ⊆ [K] and
|K| ≥ 2, as defined in (63), is decreasing with the partial
ordering of K. Specifically, cK ≥ cK′ if K ⊆ K′.

Note that this is intuitive since demanding more users to
decode the same sub-message should become more costly, and
therefore higher-order sub-messages have lower priority. With
Algorithm 2, one can choose the N “best” streams for an
arbitrary number N ≤ 2K − 1. Although it is a heuristic way
to identify a given number of best streams, the complexity
is much lower compared to the exact solution. Note that
to find the exact solution, one would need to consider all
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Algorithm 2 Stream Ordering Algorithm
Input: channel matrix HHH , randomization parameter σ

Compute HHH†

for non-empty subset I ⊂ [K] do
Compute �W̃WW I�2 according to (62)

end for
for non-empty subset K ⊆ [K] with |K| ≥ 2 do

Compute cK according to (64)
Randomization: let c′K = cK + DK where DK is a

zero-mean uniform random variable with variance σ2

end for
Sort {c′K}K⊆[K] in decreasing order
Output: ordered streams

subsets of the 2K − 1 streams with cardinality N , i.e., to
check all

(
2K−1

N

)
possibilities. For instance, there are 4×1014

possibilities when K = 8 and N = 8. For each possibil-
ity, one needs to solve the sum rate maximization problem
subject to the previously derived rate constraints. Therefore,
the complexity of such optimal algorithms is prohibitive for
practical application. On the other hand, we can show that
the complexity of Algorithm 2 is O(4K) which is around
7 × 104 and no optimization problem needs to be solved.
Indeed, in Algorithm 2, for each I ⊂ [K], the complexity
for computing �W̃WWI�2, (including finding WWW I , verifying (60),
and computing the norm) is O(K2M + KM2 + M2) =
O(KM2); the complexity for finding the minimum in (64)
is O(2K); the sorting has complexity O(2K log(2K)) =
O(K2K). Therefore, the overall complexity of Algorithm 2
is O

(
KM22K + 2K2K + K2K

)
= O(4K), assuming rea-

sonably that K2 M ≤ 2K when K and M become
large.

To show that Algorithm 2 can be practically effective,
we run a numerical simulation for K = 4 users. We use the
one-ring scattering model [25] to introduce spatial correlation,
in which scenario RS is particularly useful. In the simulation,
we consider two groups with low inter-group correlation and
high intra-group correlation. Each of the four users can be
associated randomly with one of the groups. We then apply
Algorithm 2 to order the streams. In Fig. 1, we show the
achievable rate when the N “best” streams out of the total
2K − 1 streams are activated. We also plot the achievable
rate of the 1-layer RS scheme in which all private streams
and one common stream to all users (the stream [K]) are
activated. We observe that when N = K+1 = 5, the algorithm
chooses a common stream to combine with the K = 4
private streams, which improves the sum rate performance.
It outperforms the 1-layer scheme that does not depend on the
channel realization. This example shows that our algorithm
can provide an effective and efficient way to select a given
number of streams adapted to the channel condition.

V. CONSTANT-GAP OPTIMALITY

AND NON-OPTIMALITY

In the previous sections, we have investigated the achievable
rate of linear precoded RS schemes. In this section, we are

Fig. 1. Average sum rates vs. the number of active streams selected by
Algorithm 2. K = 4, M = 4, G = 2, P = 30 dB. Averaged over 1000
channel realizations generated by the one-ring scattering model [25] with
parameters Δ = 40π

180
, θg = −π

3
+ Δ + π

3
(g − 1), g = 1, 2.

interested in the optimality of such schemes as compared to
the capacity region in the constant-gap sense.

A. Linear Precoding Alone Is Not Constant-Gap Optimal

We have shown in Section II-E that even the single-user
transmission, as an extreme case of the linear schemes, can
achieve the sum capacity to within a constant gap. We shall
now show that the same optimality does not hold with mul-
tiple antennas with linear precoding alone. For this purpose,
we consider a two-user MISO BC with two transmit antennas.
Note that, in this case, the channel matrix HHHk ∈ C1×2

is a row vector for each user k, k = 1, 2, therefore, it is
instead denoted by hhhk following our notational convention.
As discussed in Section II-B, it is without loss of optimality
to consider the following quantity as the sum capacity as we
are only interested in the capacity to within a constant gap

Csum ≈ log det(III + PHHHHHHH)
= log

(
1+P�hhh1�2+P�hhh2�2 + P 2det(HHHHHHH)

)
, (65)

where HHH := [hhhT

1 hhhT

2]
T since hhh1 and hhh2 here are row vectors.

The above quantity is within log 3 bits/s/Hz to

max
{

log(1 + P�hhh1�2), log(1 + P�hhh2�2),

log(1 + P 2det(HHHHHHH))
}

. (66)

Note that the first two terms in (66) can be achieved with
single-user transmission, by serving the stronger user. There-
fore, the only non-trivial case is when log(1 + P 2det(HHHHHHH))
is the dominating term in (66).

To prove our statement, let us assume that the channel
matrix has the following triangular form

HHH =
[
1 0
f g

]
, (67)

where the normalization can be done by scaling the transmit
power; hence, hhh1 = [1 0] and hhh2 = [f g]. In this case,
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the sum capacity (66) becomes

Csum ≈ max
{
log(1 + P ),

log(1 + P |f |2 + P |g|2), log(1 + P 2|g|2)
}

. (68)

Now let us restrict ourselves to linear precoding schemes
at the transmitter and treating interference as noise at the
receivers. In particular, we let XXX = XXX1 + XXX2 such that
E [XXX1XXXH

1] = QQQ1 and E [XXX2XXXH
2] = QQQ2 with the following

eigenvalue decompositions

QQQ1 =
[
u1 v1

ṽ1 ũ1

] [
λ1

μ1

] [
u∗

1 ṽ∗1
v∗1 ũ∗

1

]
, (69)

QQQ2 =
[
u2 v2

ṽ2 ũ2

] [
λ2

μ2

] [
u∗

2 ṽ∗2
v∗2 ũ∗

2

]
, (70)

where |ũ1|2 = |u1|2 = 1− |ṽ1|2 = 1− |v1|2 and λ1 ≥ μ1 ≥ 0
without loss of generality; the same convention is applied
for QQQ2. Due to the Gaussian signaling, we have

R1 = log
(

1 +
hhh1QQQ1hhh

H

1

1 + hhh1QQQ2hhh
H

1

)
(71)

= log
(

1 +
QQQ1(1, 1)

1 + QQQ2(1, 1)

)
, (72)

R2 = log
(

1 +
hhh2QQQ2hhh

H

2

1 + hhh2QQQ1hhh
H

2

)
. (73)

Note that we are only interested in the case with

QQQ1(1, 1)
1 + QQQ2(1, 1)

≥ 1 and
hhh2QQQ2hhh

H

2

1 + hhh2QQQ1hhh
H

2

≥ 1, (74)

for otherwise it is equivalent to the single-user case to within a
constant gap. In this case, the achievable sum rate with linear
precoding can be written as

R1 + R2 ≈ log
(

QQQ1(1, 1)
1 + QQQ2(1, 1)

)
+ log

(
hhh2QQQ2hhh

H

2

1 + hhh2QQQ1hhh
H

2

)
(75)

= log
(

QQQ1(1, 1)
1 + hhh2QQQ1hhh

H

2

)
+ log

(
hhh2QQQ2hhh

H

2

1 + QQQ2(1, 1)

)
. (76)

We can now maximize over QQQ1 and over QQQ2 separately. In fact,
one can show the following lemma.

Lemma 6: For any QQQ1 and QQQ2 in (69) and (70), we have

QQQ1(1, 1)
1 + hhh2QQQ1hhh

H

2

≤ 2 min
{

2
|f |2 + 2

|g|2
|f |2 λ1, λ1

}
, (77)

hhh2QQQ2hhh
H

2

1 + QQQ2(1, 1)
≤ 2|f |2 + 2|g|2λ2. (78)

Proof: See Appendix B.
To show that linear precoding is not constant-gap optimal,

we consider high SNR P and let the channel coefficients scale
with P as f = Pαf and g = Pαg for some αf , αg ∈ R.
It follows that the achievable sum rate also scales with P
as dLP(αf , αg) log P + O(1), while the sum capacity scales
as dDPC(αf , αg) log P + O(1). Here, the pre-log factor is the
GDoF as explained in Section II-C. We shall show that there
exist some (αf , αg) such that dLP(αf , αg) < dDPC(αf , αg).

Indeed, when αf > αg > αf − 1
2 ≥ 0, (77) scales

as P 1+2αg−2αf and (78) scales as P 1+2αg . It follows
that dLP ≤ 2 + 4αg − 2αf . From (68), we verify that

dDPC = max {1, 1 + 2αf , 1 + 2αg, 2 + 2αg} = 2 + 2αg.
Thus, we have shown that dDPC > dLP for such (αf , αg).
Hence, linear precoding is not GDoF optimal, thus not
constant-gap optimal.

Remark 3: It is important to emphasize that the above
results are based on the assumption of Gaussian signaling.
In fact, Gaussian input has been proved to be strictly sub-
optimal in some multi-user settings. For instance, in [27],
the authors have investigated the two-user Gaussian interfer-
ence channel with point-to-point codes, and showed that a
mixed input is needed to achieve the optimal GDoF. There,
the mixed input is the sum of a discrete random variable and a
Gaussian variable. With the mixed input, the optimal decoding,
e.g., maximum likelihood decoding, exploits the structure of
the interference and achieves a better performance than in the
case with Gaussian interference. Essentially, as the authors
of [27] pointed out, the discrete part carries somehow a sort
of “common information” that both receivers can exploit. That
explains why RS is not needed with such inputs to achieve
the optimal GDoF. Note, however, that the optimal decoding
in this case may be much more involved than the one for
Gaussian interference. The latter only needs a simple nearest
neighbour decoding.

In the following, we consider linear precoding schemes with
rate-splitting.

B. Linear Precoded RS Is Constant-Gap Optimal With
Two Users

The rate region of the two-user BC with RS is given in
Example 1 from (28) to (31). Defining

R1 = R̃1 + R̃
(1)
12 , R2 = R̃2 + R̃

(2)
12 , (79)

and applying the Fourier-Motzkin elimination [22], we obtain
the following achievable region

R1 ≤ C1, R2 ≤ C2, (80)

R1 + R2 ≤ C12, (81)

which corresponds to the capacity region CMAC({HHHH

k}k, PIII)
of the dual MAC. We thereby establish the constant-gap
optimality of the proposed RS scheme with MMSE precoding
in the two-user case.

C. Linear Precoded RS Is Constant-Gap Sub-Optimal With
Three Users

We shall show that the constant-gap optimality does not
extend beyond two users. To that end, we first present the
constant-gap sum rate of the three-user case.

Proposition 5: The optimal sum rate Rsum of the proposed
RS scheme with MMSE precoding in the three-user case is
within a constant gap to

R∗
sum := max

{
C12, C13, C23,

min
{

C123, min
k=1,2,3

l
(2)
k − Ck

2
+ ξ

}}
, (82)
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where l
(k)
i , i, k ∈ [K], is defined by (40), and

ξ :=
C1 + C2 + C3 − C12 − C23 − C13 + 3C123

2
. (83)

Proof: This is a direct consequence of Proposition 3.
Indeed, if only two users out of the three, say, users 1
and 2, are activated, then the sum rate C12 is achievable to
within a constant gap according to Proposition 3. Similarly,
C13 and C23 can be achieved if we activate another subset
instead. If all three users are activated, then the achievable
constant-gap sum rate in Proposition 3 becomes the second
term inside the max{·} in (82). Note that activating only one
user achieves max{C1, C2, C3} that is strictly smaller than
max{C12, C13, C23}.

From the above result, we can prove the constant-gap
sub-optimality of the proposed RS scheme.

Corollary 3: The proposed scheme is not GDoF opti-
mal (and therefore not constant-gap optimal) in the three-user
case.

Proof: In order to prove the suboptimality, it is enough
to find a class of channel matrices HHH such that C123 − R∗

sum
can be arbitrarily large, where C123 is the sum capacity of
the channel. Since R∗

sum in (82) is still quite involved due to
the presence of l

(2)
k , k = 1, 2, 3, we further upper bound R∗

sum
using the following inequality.

l
(2)
k ≤ log det(III + 2PHHHkHHH

H

k) ≈ Ck. (84)

Hence, we have

R∗
sum � R

∗
sum := max

{
C12, C13, C23,

C1 + C2 + C3 − C12 − C23 − C13 + 3C123

2

}
. (85)

In the following, we shall show that R
∗
sum can be arbitrarily

smaller than C123. To that end, we shall focus on the high
SNR regime and look at the pre-log of the rate expressions.
Let us consider a channel with

HHH1 = [1 0 0], HHH2 = [0 1 0], HHH3 = [P
α
2 P

α
2 1]. (86)

Define the pre-log dK := limP→∞
CK

log P , and we have

d1 = d2 = 1, d3 = 1 + α, (87)

d12 = 2, d13 = d23 = 2 + α, d123 = 3. (88)

From (85), we have the following upper bound for the pre-log
of R∗

sum,

max
{

2, 2 + α, 3 − α

2

}
, (89)

which is strictly smaller than the optimal sum GDoF d123 =
3 for any 0 < α < 1. This implies the constant-gap
sub-optimality of the proposed RS scheme.

D. Deficiency of Receiver-Side Interference Mitigation

One may wonder why the proposed RS scheme is
constant-gap optimal in the two-user case but not in
the three-user case. In particular, is it possible to improve
the current RS scheme with a better precoding (other than

the MMSE precoding) or with a more sophisticated decoding
scheme? To have a better understanding of why the RS scheme
fails in the three-user case, let us have a closer look at the
above pathological example. From the dual MAC, we know
that a GDoF triple (1, 1, 1) is achievable, e.g., with joint
decoding or successive interference cancellation in the uplink
receiver. Specifically, the receiver can first decode user 3’s
message using only the third antenna, obtaining GDoF 1, and
remove it before decoding user 1 and user 2’s messages from
the first and the second antennas, respectively. In the downlink,
with DPC, the exact reverse procedure can be applied and the
same GDoF triple can be obtained. This is the advantage of
transmitter-side interference cancellation where the transmitter
manipulates optimally all the signals so that the interference
at the receivers’ side is minimized.

With the RS scheme, however, the receivers are
interference-limited. To see this, let us impose that user 1 and
user 2 both have GDoF 1. Thus, full power P must be
used for antennas 1 and 2 to send the users’ signals, which
generates an interference power P 1+α at user 3. Note that
user 3’s signal, in order not to interfere with user 1 and
2’s signals, must be essentially sent from antenna 3, arriving
at user 3 with power P . Unless the interference could be
fully cancelled or decoded and removed, full GDoF 1 would
not be achievable. As shown in Figure 2, we can split the
signal 1 into common and private parts

√
PXc,1+

√
P 1−αXp,1

with DoF α and 1 − α, respectively. Similarly for signal 2,
we use

√
PXc,2 +

√
P 1−αXp,2. Signal 3 carries the private

information for user 3 and cancels the private parts in sig-
nal 1 and 2, namely,

√
PXp,3 −

√
PXp,1 −

√
PXp,2, so that

user 3 receives
√

PXp,3+
√

P 1+α(Xc,1+Xc,2)+Z3. Note that
Xp,3, Xc,1, Xc,2, with a total DoF 1 + 2α, must be decoded
by user 3 in order to recover the private DoF of 1. This is
impossible since the maximum GDoF for receiver 3 is 1 + α.
Instead, user 3 can only achieve a GDoF of 1+α−2α = 1−α.
In other words, the RS scheme achieves the (1, 1, 1 − α)
GDoF triple instead of (1, 1, 1). Note that the above discussion
is independent of the precoding scheme and the decoding
scheme, which implies that the sub-optimality of the RS
scheme cannot be resolved in these directions.

In fact, the fundamental issue of the RS scheme in the
above example is that independent codebooks are used for
different streams. Intuitively, the interference signal space
becomes too large for any individual receiver. If one could
align different interferers into a reduced subspace, however,
then the achievable rate could be improved. In particular, in the
above case, if the information in Xc,1 + Xc,2 only occupies
a DoF of α instead of 2α, then user 3 could decode the sum
of the interferences instead of the individual interferences, and
achieves the GDoF 1+α−α = 1. This is precisely the idea of
interference alignment [28], [29]. Instead of using independent
codebooks, one could use the same lattice codebook for Xc,1

and Xc,2 in such a way that the sum is still within the same
codebook and thus have a reduced rate. Therefore, combining
RS and interference alignment, it is possible to reduce the
GDoF gap and may be possible to attain constant-gap optimal-
ity. One may also improve the performance by using non-linear
precoding for interference cancellation. For example, a recent
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Fig. 2. A pathological three-user MISO BC example.

work [30] proposes a RS scheme with Tomlinson-Harashima
precoding which has lower implementation complexity than
the DPC and is shown to outperform the linear precoding
schemes. Nevertheless, such improvements come at the price
of a higher complexity at the transmitter side, which limits the
practical and theoretical interests.

Finally, it is also worth mentioning that Gaussian signaling
is known to achieve the capacity region of a two-user BC with
common message [24], while the optimal signaling for more
users with common messages is still unknown. The above rate
analysis on the three-user RS scheme, and thus the conclusion,
may not hold with a different signaling.

VI. CONCLUSION

We have investigated the achievable rate region of lin-
early precoded rate-splitting schemes in the K-user MIMO
broadcast channel to within a constant gap. In particular,
we have derived the achievable constant-gap sum rate for
K ≤ 3, and obtained closed-form upper bounds for K > 3.
The constant-gap results, though asymptotic, provide useful
insights that guided us to propose a practical stream elimi-
nation algorithm. Our analyses also revealed the constant-gap
optimality of linearly precoded RS with respect to the funda-
mental capacity region in the two-user case. While such opti-
mality does not extend beyond two users, we have provided
explanations on the deficiency and potential remedies. The
results presented in the initial version of this work have been
followed up in [31] with additional precoder optimization and
numerical simulations. Therein, the stream elimination algo-
rithm has also been applied and shown effective in practical
scenarios.

Note that for K-user broadcast channels with general mes-
sage sets — even the Gaussian MIMO case with degraded
message sets — the capacity region is still unknown. In those
cases, rate-splitting goes beyond a method to simplify trans-
mission, as in our case with linear precoding, and becomes
an essential tool to improve the achievable rate region when
combined with binning [32].

APPENDIX A
PROOF OF LEMMA 2

Denote Pi :=
∑K

k=1 tr(QQQ(i)
k ), i = 1, · · · , N , then the power

constraint can be expressed as

Ps :=
N∑

i=1

λiPi ≤ P. (90)

Define the following variable μi for each resource portion i

μi :=

{
1, if Pi ≤ Ps,
Ps

Pi
, otherwise.

(91)

One can notice that μi ≤ 1, ∀i. With resource-sharing, user k
achieves the following rate

N∑
i=1

λi log det
(

III +
(
III +

∑
l=1, l �=k

HHHkQQQ
(i)
l HHHH

k

)−1

HHHkQQQ
(i)
k HHHH

k

)

=
N∑

i=1

λi log det
(

III +
1
μi

K∑
l=1

HHHk(μiQQQ
(i)
l )HHHH

k

)

−
N∑

i=1

λi log det
(

III +
1
μi

K∑
l=1, l �=k

HHHk(μiQQQ
(i)
l )HHHH

k

)

≤ nr

N∑
i=1

λi log
1
μi

+
N∑

i=1

λi log det
(

III +
K∑

l=1

HHHk(μiQQQ
(i)
l )HHHH

k

)

−
N∑

i=1

λi log det
(

III +
K∑

l=1, l �=k

HHHk(μiQQQ
(i)
l )HHHH

k

)
(92)

≤ nr +
N∑

i=1

λiR
′
k,i, (93)

where

R′
k,i := log det

(
III +

K∑
l=1

HHHk(μiQQQ
(i)
l )HHHH

k

)

− log det
(

III +
K∑

l=1, l �=k

HHHk(μiQQQ
(i)
l )HHHH

k

)
. (94)

The inequality (92) is from μi ≤ 1, ∀ i; the last
inequality is from the concavity of the log function, i.e.,∑N

i=1 λi log 1
μi

≤ log
∑N

i=1 λi
1
μi

, and the fact that

N∑
i=1

λi

μi
=

∑
i:Pi≤Ps

λi +
∑

i:Pi>Ps

λiPi

Ps
≤ 1 + 1 = 2. (95)
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From the definition of {μi}i in (91), we can verify that, for
any i,

K∑
k=1

tr(μiQQQ
(i)
k ) = μi

K∑
k=1

tr(QQQ(i)
k ) (96)

= μiPi (97)

= min{Pi, Ps} (98)

≤ P, (99)

where (98) is from (91); (99) is from (90). Hence, we have,
for each i, (R′

1,i, . . . , R
′
K,i) ∈ CLP

BC({HHHk}k, P ), and

( N∑
i=1

λiR
′
1,i, . . . ,

N∑
i=1

λiR
′
K,i

)
∈ Conv

{
CLP

BC({HHHk}k, P )
}

.

Finally, from (93), the proof is complete.

APPENDIX B
PROOF OF LEMMA 6

Let us first consider the part with QQQ1

QQQ1(1, 1)
1 + hhh2QQQ1hhh

H

2

=
|u1|2λ1 + |v1|2μ1

|fu1 + gṽ1|2λ1 + |fv1 + gũ1|2μ1 + 1
. (100)

Since |fu1 +gṽ1|2 + |fv1 +gũ1|2 = |f |2 + |g|2, we use a ≤ b
to denote the ordered version of |fu1+gṽ1|2 and |fv1+gũ1|2,
then we have a ≥ (|fu1|−|gṽ1|)2 and 2b ≥ |f |2 + |g|2. Using
the fact that λ1 ≥ μ1, we have the following upper bound

QQQ1(1, 1)
1 + hhh2QQQ1hhh

H

2

≤ |u1|2λ1 + |v1|2μ1

aλ1 + bμ1 + 1
(101)

≤ |u1|2λ1

aλ1 + 1
+

|v1|2μ1

bμ1 + 1
(102)

≤ |u1|2λ1

(|fu1| − |gṽ1|)2λ1 + 1
+

μ1

|f |2+|g|2
2 μ1 + 1

(103)

≤ max
u1: |fu1|≥|gṽ1|

|u1|2λ1

(|fu1| − |gṽ1|)2λ1 + 1

+ min

{(
|f |2 + |g|2

2

)−1

, μ1

}
(104)

≤ max
u1: |fu1|≥|gṽ1|

min
{

|u1|2
(|fu1| − |gṽ1|)2

, |u1|2λ1

}
+ min

{(
|f |2 + |g|2

2

)−1

, μ1

}
(105)

≤ min

{(
1√
λ1

+ |g|
)2

λ1

|f |2 , λ1

}

+ min

{(
|f |2 + |g|2

2

)−1

, μ1

}
(106)

≤ min
{

2
|f |2 + 2

|g|2
|f |2 λ1, λ1

}
+ min

{(
|f |2 + |g|2

2

)−1

, μ1

}
(107)

≤ 2 min
{

2
|f |2 + 2

|g|2
|f |2 λ1, λ1

}
, (108)

where (104) is from the fact that the objective function is
increasing with |fu1| when |fu1| ≤ |gṽ1|; since in (105),

|u1|2
(|fu1|−|gṽ1|)2 is decreasing with |u1| and |u1|2λ1 is increasing
with |u1|, the max-min is attained when both terms are
equalized or when |u1| = 1; (106) is indeed an upper bound
of (105). The second part can be shown as follows.

hhh2QQQ2hhh
H

2

1 + QQQ2(1, 1)

=
|fu2 + gṽ2|2λ2 + |fv2 + gũ2|2μ2

|u2|2λ2 + |v2|2μ2 + 1
(109)

≤ 2
|f |2(|u2|2λ2 + |v2|2μ2) + |g|2(|ṽ2|2λ2 + |ũ2|2μ2)

|u2|2λ2 + |v2|2μ2 + 1
(110)

≤ 2|f |2 |u2|2λ2 + |v2|2μ2

|u2|2λ2 + |v2|2μ2 + 1

+ 2|g|2 λ2

|u2|2λ2 + |v2|2μ2 + 1
(111)

≤ 2|f |2 + 2|g|2λ2, (112)

where to obtain (110) we used |a + b|2 ≤ 2|a|2 + 2|b|2,
∀ a, b ∈ C; (111) is from the fact that |ṽ2|2λ2 + |ũ2|2μ2 ≤
|ṽ2|2λ2 + |ũ2|2λ2 = λ2 due to μ2 ≤ λ2 and |ũ2|2 + |ṽ2|2 = 1.

APPENDIX C
PROOF OF THE ACHIEVABILITY

OF (39) FOR K = 2 AND K = 3

First we present the following submodularity property that
will be useful later.

Lemma 7: Let A,A′,B ⊆ [K] with A′ ⊆ A. Then, we have

CA∪B − CA ≤ CA′∪B − CA′ . (113)

Proof: Indeed, this inequality can be proved directly
using matrix properties or, more conveniently, with mutual
information. Let A = A′ ∪ A′′ with A′ ∩ A′′ = ∅. Then,
identifying CA∪B, CA, CA′∪B, and CA′ with I(XA∪B; Y),
I(XA; Y |XB), I(XA′∪B; Y |XA′′ ), I(XA′ ; Y |XB, and
XA′′), respectively, the above inequality becomes

I(XB; Y) ≤ I(XB; Y |XA′′) (114)

after applying the chain rule of mutual information. This holds
since I(XB; Y |XA′′ ) = I(XB; Y, XA′′ ) ≥ I(XB; Y) due to
the independence of XB and XA′′ .

A. The Two-User Case (K = 2)

When K = 2, the rate region is given by (28)-(31).
Then, we can verify that any rate quadruple such that R̃1 =
l
{1}
1 , R̃2 = l

{2}
2 , R̃

(1)
12 +R̃

(2)
12 = min{l{1,2}

1 −l
{1}
1 , l

{1,2}
2 −l

{1}
2 }

lies inside the region. Indeed, one have l
{1,2}
1 − l

{1}
1 ≥ 0 and

l
{1,2}
2 − l

{1}
2 ≥ 0 due to the monotone property of lSSSk with

respect to SSS. Hence, the sum rate given by the quadruple is
R̃1+R̃2+R̃

(1)
12 +R̃

(2)
12 = l

{1}
1 +l

{2}
2 +min{l{1,2}

1 −l
{1}
1 , l

{1,2}
2 −

l
{1}
2 } which coincides with the upper bound (39) for K = 2

using the definition (40).
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B. The Three-User Case (K = 3)

When K = 3, the possible minimal collections SSS1 are
{{1}}, {{1, 2}}, {{1, 3}}, {{1, 2}, {1, 3}}, {{1, 2, 3}}, lead-
ing to the following rate constraints from Proposition 2,

R̃1 ≤ l
{1}
1 = l

(1)
1 =C123 − C23, (115)

R̃1 + R̃12≤ l
{1,2}
1 = C13 − C3 (116)

R̃1 + R̃13≤ l
{1,3}
1 = C12 − C2, (117)

R̃1 + R̃12 + R̃13 ≤ l
{1,2},{1,3}
1 = l

(2)
1 , (118)

R̃1 + R̃12 + R̃13 + R̃123 ≤ l
{1,2,3}
1 = l

(3)
1 = C1, (119)

where we recall that for each collection SSS, lSSSk :=
log det

(
III + HHHkQQQSSSHHHH

k

)
with QQQSSS being defined as in (23),

while for each m ∈ [K], l
(m)
k is defined as in (40); slightly

abusing the notation, Cijk denotes C{i,j,k} as defined in (37);
the above relationships between the l’s and C’s can be verified
by their definitions.

Similarly, we can obtain the following constraints on the
rates of the re-assembled messages which should be decoded
by receivers 2 and 3,

R̃2 ≤ l
{2}
2 = l

(1)
2 = C123 − C13, (120)

R̃2 + R̃12 ≤ l
{1,2}
2 = C23 − C3, (121)

R̃2 + R̃23 ≤ l
{2,3}
2 = C12 − C1, (122)

R̃2 + R̃12 + R̃23 ≤ l
{1,2},{2,3}
2 = l

(2)
2 (123)

R̃2+R̃12+R̃23+R̃123 ≤ l
{1,2,3}
2 = l

(3)
2 = C2, (124)

R̃3 ≤ l
{3}
3 = l

(1)
3 = C123 − C12, (125)

R̃3 + R̃13 ≤ l
{1,3}
3 = C23 − C2, (126)

R̃3 + R̃23 ≤ l
{2,3}
3 = C13 − C1, (127)

R̃3 + R̃13 + R̃23 ≤ l
{1,3},{2,3}
3 = l

(2)
3 , (128)

R̃3+R̃13+R̃23+R̃123 ≤ l
{1,2,3}
3 = l

(3)
3 = C3. (129)

In the following, we shall show that there exists a rate tuple
satisfying all the constraints (115)-(129) that achieve the sum
rate upper bound (39). Note that when K = 3, the second
term in the bound (39) becomes

1
2

(
l
(3)
1 + l

(3)
2 + l

(3)
3 + l

(1)
1 + l

(1)
2 + l

(1)
3

+ min
{
l
(2)
1 − l

(3)
1 , l

(2)
2 − l

(3)
2 , l

(2)
3 − l

(3)
3

})
. (130)

Without loss of generality we assume that the receivers are
ordered such that

l
(2)
1 − l

(3)
1 ≤ l

(2)
2 − l

(3)
2 , l

(2)
1 − l

(3)
1 ≤ l

(2)
3 − l

(3)
3 . (131)

The upper bound (130) can be further simplified to

1
2

(
l
(3)
2 + l

(3)
3 + l

(1)
1 + l

(1)
2 + l

(1)
3 + l

(2)
1

)
=

l
(2)
1 + C2 + C3 + 3C123 − C12 − C23 − C13

2
. (132)

To prove the achievability of (39), let us consider the
following two cases.

1) Case C123 <
l
(2)
1 +C2+C3+3C123−C12−C23−C13

2 : The condi-
tion is equivalent to

l
(2)
1 + C2 + C3 + C123 > C13 + C23 + C12. (133)

In this case, we let

R̃1 = C123 − C23, (134)

R̃2 = C123 − C13, (135)

R̃3 = C123 − C12, (136)

R̃12 = C23 − C3 − (C123 − C13), (137)

R̃13 = C12 − C2 − (C123 − C23), (138)

R̃23 = C13 − C1 − (C123 − C12), (139)

R̃123 = C1 + C2 + C3 + C123 − C12 − C13 − C23. (140)

First, we verify that the above rate tuple is non-negative.
Indeed, (134)-(136) are non-negative by the definition of
the C’s; from Lemma 7, (137)-(139) are non-negative,
too; since l

(2)
1 := log det

(
III + HHH1QQQ{{1,2},{1,3}}HHH

H

1

)
≤

log det
(
III + 2PHHH1HHH

H

1

)
≈ C1, the assumption (133) implies

the non-negativity of (140) up to a constant gap. Next, we
can verify that all constraints (115) to (129), except for
(118), (123), and (128), are satisfied with equality. Then,
we can verify that plugging (134), (137), and (138) into (118),
the constraint coincides with the assumption (133). Similarly,
both (123) and (128) are also equivalent to (133).

2) Case C123 ≥ l
(2)
1 +C2+C3+3C123−C12−C23−C13

2 : The condi-
tion is equivalent to

l
(2)
1 + C2 + C3 + C123 ≤ C13 + C23 + C12. (141)

In this case, we let the six constraints (115), (118), (120),
(124), (125), and (129) be satisfied with equality. It is equiv-
alent to having the following six equalities:

R̃1 = C123 − C23, (142)

R̃2 = C123 − C13, (143)

R̃3 = C123 − C12, (144)

R̃12 =
l
(2)
1 + C2 + C13 + C23 − C3 − C12 − C123

2
,

(145)

R̃13 =
l
(2)
1 + C3 + C12 + C23 − C2 − C13 − C123

2
,

(146)

R̃23 + R̃123 =
C2 + C3 + C12 + C13 − l

(2)
1 − C23 − C123

2
,

(147)

where, as in the previous case, (142)-(144) are non-negative
by the definition of the C’s; since l

(2)
1 = l

{1,2},{1,3}
1 ≥

max
{
l
{1,2}
1 , l

{1,3}
1

}
= max {C13 − C3, C12 − C2}, in (145)

R̃12 ≥ 1
2 (C13−C3 +C23−C123) ≥ 0 according to Lemma 7,

and similary for R̃13; from the assumption (141), we can verify
that in (147) R̃23 + R̃123 ≥ C2 + C3 − C23 and the latter is
non-negative according to Lemma 7.
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In the following, we shall show that all the remaining
constraints are satisfied. First, (116) can be rewritten as

R̃1 + R̃12 =
l
(2)
1 + C2 + C13 + C123 − C3 − C23 − C12

2
≤ C13 − C3, (148)

which is equivalent to the assumption (141). Similarly, we can
verify that (117), (121), and (126) are all equivalent to the
assumption (141).

Then, we shall verify the constraints (119), (122), (123),
(127), (128), which all involve R̃23 and R̃123, are satisfied.
Note that R̃23 and R̃123 remain undetermined except for their
sum given by (147). Due to the symmetry of the constraints
and assumptions on receivers 2 and 3, we only need to consider
(119), (122), and (123). The three constraints, combined with
(142)-(146), can be rewritten as

R̃123 ≤ C1 − l
(2)
1 , (149)

R̃23 ≤ C12 + C13 − C1 − C123, (150)

R̃23 ≤ 2l
(2)
2 − l

(2)
1 − C2 + C3 + C12 + C13 − C23 − C123

2
.

(151)

We need to show that there exists R̃23 ≥ 0 and R̃123 ≥ 0 such
that all the three above constraints and (147) can be satisfied
simultaneously. It is enough to show the following.

• The right hand sides of (149)-(151) are all non-negative
to within a constant gap. It can be verified, 1) for (149)
since l

(2)
1 ≤ log det(III + 2PHHHHHHH) ≈ C1; 2) for (150)

from Lemma 7; and 3) for (151) we have

2l
(2)
2 − l

(2)
1 − C2 + C3 + C12 + C13 − C23 − C123

≥ l
(2)
2 − l

(2)
1 − C2 + C23 + C12 + C13 − C23 − C123

≥ −C1 + C12 + C13 − C123

≥ 0, (152)

where the first inequality is from l
(2)
2 ≥ C23 −C3 due to

Lemma 4; the second one is from the assumption (131);
the last one is from Lemma 7.

• The sum of the right-hand sides of (149) and (150) is
larger than the right-hand side of (147). Indeed, we have

(C1 − l
(2)
1 ) + (C12 + C13 − C1 − C123)

−C2 + C3 + C12 + C13 − l
(2)
1 − C23 − C123

2

= − l
(2)
1 + C2 + C3 − C12 − C13 − C23 + C123

2
≥ 0, (153)

where the inequality is from the assumption (141).

• The sum of right-hand sides of (149) and (151) is larger
than the right-hand side of (147). Indeed, we have

(C1 − l
(2)
1 )

+
2l

(2)
2 −l

(2)
1 −C2+C3+C12 + C13 − C23 − C123

2

−C2 + C3 + C12 + C13 − l
(2)
1 − C23 − C123

2
= C1 − l

(2)
1 + l

(2)
2 − C2

≥ 0,

where the inequality follows from the assumption (131).
The proof is thus complete.
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