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Abstract

Given a collection of probability distributions p1, . . . , pm, the minimum entropy coupling is the coupling X1, . . . , Xm (Xi ∼
pi) with the smallest entropy H(X1, . . . , Xm). While this problem is known to be NP-hard, we present an efficient algorithm for
computing a coupling with entropy within 2 bits from the optimal value. More precisely, we construct a coupling with entropy
within 2 bits from the entropy of the greatest lower bound of p1, . . . , pm with respect to majorization. This construction is also
valid when the collection of distributions is infinite, and when the supports of the distributions are infinite. Potential applications
of our results include random number generation, entropic causal inference, and functional representation of random variables.

Index Terms

Entropy minimization, coupling, random number generation, alias method, functional representation.

I. INTRODUCTION

The problem of finding the minimum entropy coupling of two discrete probability distributions p, q, i.e., finding a pair of
jointly distributed random variables X,Y such that X has marginal distribution p, Y has marginal distribution q, and the joint
entropy H(X,Y ) is minimized, has been studied by Vidyasagar [1], Painsky, Rosset and Feder [2], [3], Kovačević, Stanojević
and Šenk [4], Kocaoglu, Dimakis, Vishwanath and Hassibi [5], [6], Cicalese, Gargano and Vaccaro [7], [8], Yu and Tan [9],
and Rossi [10]. Also see [11], [12], [13] for related problems. While it is shown in [1], [4] that this problem is NP-hard, a
polynomial time approximation algorithm (within 1 bit from the optimum) is given in [8] (also see [6], [10]).

This problem can be generalized to the coupling of m probability distributions p1, . . . , pm (i.e., constructing random variables
X1, . . . , Xm with marginals Xi ∼ pi), where [8] gives an algorithm for constructing a coupling with entropy H(X1, . . . , Xm)
within dlogme bits from the optimum (also see [6] for another algorithm). More precisely, [8] gives a coupling with entropy
at most H(

∧
i pi) + dlogme bits, where

∧
i pi denotes the greatest lower bound of p1, . . . , pm with respect to majorization of

probability vectors [14]. Since any coupling of p1, . . . , pm has entropy at least H(
∧
i pi) [8], this gives a construction within

dlogme bits from the optimum.
In this paper, we improve this result by constructing a coupling of p1, . . . , pm with entropy at most

H
(∧

i

pi

)
+ 2− 22−m, (1)

which is at most 2 bits from the optimum. A more general bound in terms of Rényi entropy [15] can also be obtained. See
Corollary 9 and Theorem 11. Compared to the dlogme gap in [8], the gap 2 − 22−m ≤ 2 in our result does not scale with
m. Also note that the gap becomes 1 when m = 2, the same gap as in [8], [10] for the coupling of two distributions. We
describe an algorithm (Algorithm 3) for computing a coupling achieving (1) with time complexity O(m2n+mn log n), where
we assume the pmf’s pi are over a finite set X with |X | = n. If we allow an error at most ε (i.e., changing each pi by at most
ε in total variation distance), we can reduce the time complexity to O(mn log(1/ε) +mn log n) (see Remark 14).

Moreover, (1) continues to hold when the collection of pmf’s to be coupled is infinite, or even uncountable (in this case,
m =∞ and 22−m = 0). The bound in (1) also applies to the case where the supports of the distributions are infinite. These
cases are not handled in [5], [6], [8], [10].

Below are some potential applications of a low entropy coupling of a collection of distributions.

A. Random Number Generation

It was shown by Knuth and Yao [16] that a discrete random variable X can be generated using an expected number of fair
coin flips no more than H(X) + 2, indicating that the entropy H(X) is a measure of the amount of resources (coin flips)
needed to generate the random number X (also see [17], [18]). The entropy of a coupling of a collection of distributions S
can be regarded as the amount of resources needed to allow generation of any distribution in S. More precisely, consider the
setting where there is a random number generator device that can output a random number to the user (who does not have
access to random sources other than the generator). The user wants to generate X ∼ p for a distribution p ∈ S of the user’s
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choice (p is not fixed a priori). If the generator is versatile enough to generate any distribution p at the user’s request, then
the minimum amount of entropy used by the generator is H(p). Nevertheless, the generator may not be programmable or
configurable. If we assume the generator is only capable of generating a random number Z following a fixed distribution (that
depends on the design of the generator, but cannot depend on the user’s choice of p), then the user has to apply a mapping gp
(depending on the choice of p) to obtain the final random number X = gp(Z) ∼ p. This induces a coupling {gp(Z)}p∈S of the
distributions in S. Therefore, the minimum entropy coupling of S corresponds to the distribution of Z that has the minimum
entropy needed to accomplish this task.

Existing hardware random number generators are capable of generating a uniformly random integer within a range of
integers. While we can generate from any discrete distribution by repeated and interactive usages of such generator (e.g. by
[16]), such interactive communication between the generator and the user may not be feasible depending on the situation (e.g.
delay in generating the random number and communication). The minimum entropy coupling allows us to design the generator
according to S (with possibly non-uniform output Z) so that we only need to use the generator once per random number
X ∼ p obtained by the user.

We will see in the following sections that our construction is similar to the alias method for random number generation
by Walker [19]. While the alias method only works for discrete distributions with finite support, and requires an amount of
entropy approximately log k (where k is the size of the support), our construction works for any discrete distribution (with
finite or infinite support), and requires an amount of entropy close to the theoretical minimum (which can be much smaller
than log k depending on the collection of distributions S).

A related setting is channel simulation (see [20], [21], [22], [23] for the asymptotic case, and [24], [25], [26] for the one-shot
case), where the encoder observes a distribution p ∈ S in a collection of distributions S and transmits a message M to the
decoder (who knows S but does not know p a priori), so as to allow the decoder to generate X ∼ p. The aforementioned
random number generation setting corresponds to the one-shot channel simulation setting where the encoder does not have
local randomness, the communication M from the encoder to the decoder is unlimited, and our goal is to minimize the amount
of local randomness at the decoder in order to generate X ∼ p (we require the distribution of the local randomness to be
fixed).

B. Functional Representation and Entropic Causal Inference

The functional representation lemma [27] states that for any pair of random variables (X,Y ) ∈ X ×Y , there exists a random
variable Z independent of X such that Y = g(X,Z) is a function of (X,Z). See [28], [29] for applications of this lemma in
information theory. Since Yx := g(x, Z) ∼ pY |X=x, {Yx}x∈X is a coupling of the conditional distributions pY |X=x, and hence
the problem of finding a functional representation with the smallest H(Z) is equivalent to the minimum entropy coupling
problem (see [5], [6]).

Shannon [30, Fig. 1] considers a channel to be a function mapping the input signal and noise source to the received signal.
Letting the input signal and the received signal be X and Y respectively, the minimum H(Z) in the functional representation
would be the minimum entropy of the noise source of the channel. Note that this measure is an inherent property of the
channel, and does not depend on the input distribution pX as long as pX(x) > 0 for all x ∈ X (since the minimum H(Z) is
the minimum entropy of a coupling of {pY |X=x}x∈X which does not depend on pX ).

Kocaoglu, Dimakis, Vishwanath and Hassibi [5], [6] consider the problem of identifying the causal direction between X and
Y , based on the assumption that the correct causal direction gives a small H(Z). More precisely, the entropic causal inference
method declares that X → Y is the correct direction if Y = g(X,Z) can be achieved with a smaller H(X) +H(Z) compared
to the smallest H(Y ) +H(Z̃) satisfying X = g̃(Y, Z̃). They have proposed algorithms for minimizing H(Z), or equivalently,
minimizing the entropy of the coupling of pY |X=x (also see [8] for another algorithm). Nevertheless, these algorithms only
work when X is finite (or the number of distributions to couple is finite). The method in this paper works regardless of
whether X is a discrete or continuous random variable (though Y must be discrete). By (1), the minimum of H(Z) is closely
approximated by H(

∧
x∈X pY |X=x) (within 2 bits), and hence replacing H(Z) by H(

∧
x∈X pY |X=x) (which can be computed

in O(|X ||Y| log |Y|) time if |X |, |Y| < ∞) in the entropic causal inference method provides a close approximation that can
be computed efficiently (compared to the exact minimization of H(Z) which is NP-hard [1], [4]). If the function g is also
needed, then it can be computed in O(|X |2|Y|+ |X ||Y| log |Y|) time using Algorithm 3.

The problem of minimizing H(Y |Z) (instead of H(Z)) was studied by Li and El Gamal [31]. The strong functional
representation lemma [31] states that for any pair of random variables (X,Y ), there exists a random variable Z independent
of X such that Y is a function of (X,Z), and H(Y |Z) ≤ I(X;Y ) + log(I(X;Y ) + 1) + 4 (also see [24], [32]). The lemma is
applied to show several one-shot variable-length lossy source coding results, and a short proof of the asymptotic achievability in
the Gelfand-Pinsker theorem [33]. It is also used in [34] to prove a result on minimax remote prediction with a communication
constraint. The Poisson functional representation given in [31] (which induces a coupling of pY |X=x) is also used in [35] to
prove various results in multi-user information theory. In this paper, we concern the minimization of H(Z) instead of H(Y |Z)
(while [31] gives a cardinality bound |Z| ≤ |X |(|Y|−1)+2 in addition to the bound on H(Y |Z), this is not the main objective
there).
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C. Other Uses of Coupling of Collections of Distributions

It has been shown that for any collection of distributions p1, . . . , pm, it is possible to find a coupling X1, . . . , Xm such that

P(Xi 6= Xj) ≤ 2dTV(pi, pj) (2)

for any i, j, where dTV is the total variation distance. This was shown in [36] for uniform distributions, [37] for discrete
distributions, and [38], [39] for general distributions. This result was used in locality sensitive hashing [40] and randomized
rounding algorithms [37], [41]. While a coupling achieving (2) is likely to have low entropy (since many values of Xi are
the same), a low entropy coupling does not necessarily have a low P(Xi 6= Xj) (since whether Xi 6= Xj is irrelevant in the
calculation of entropy). We also remark that the connection between entropy and total variation distance has been studied in
[42] using coupling.

In the study of Markov chains, it is often useful to represent the Markov chain X1, X2, . . . using the functional representation
Xn = g(Xn−1, Zn), where Zn

iid∼ pZ . In the coupling from the past algorithm for sampling from the stationary distribution
of a Markov chain [43], [44], the function g is designed so that g(x, z) are likely to be equal for different values of x. This
representation is also referred as innovation representation in [3]. Since the minimum entropy of Zn is the entropy of the
minimum entropy coupling of {pXn|Xn−1=x}x, we can apply the coupling achieving (1) in this paper to generate X1, X2, . . .
using a small entropy rate of Z1, Z2, . . ..

Other works on the coupling of a collection of distributions include Wasserstein barycenter [45] and multi-marginal optimal
transport [46], [47], [48], [39].

Notations

Throughout this paper, we assume that log is to base 2 and the entropy H is in bits. We write N = {1, 2, 3, . . .}, [n] =
{1, . . . , n}. For a statement E, we write 1{E} for the indicator function where 1{E} = 1 if E holds, 1{E} = 0 otherwise.

A right stochastic matrix is a square matrix with nonnegative entries where each row sums to 1. The support of a probability
mass function (pmf) p is written as supp(p). For a pmf p over [n], its probability vector is denoted as ~p ∈ Rn (a row vector). For
a pmf p over the set X , and a pmf q over the set Y , the product pmf p×q is a pmf over X ×Y with (p×q)(x, y) := p(x)q(y).
The pmf of the Bernoulli distribution is denoted as Bernγ(x) := 1{x = 0}(1 − γ) + 1{x = 1}γ. The pmf of the geometric
distribution over N is denoted as Geomγ(x) := γ(1−γ)x−1. The pmf of the capped geometric distribution over [k] is denoted
as

CGeomγ,k(x) :=


γ(1− γ)x−1 if x < k

(1− γ)k−1 if x = k

0 if x > k.

(3)

The Rényi entropy [15] of a pmf p is defined as

Hα(p) :=
1

1− α
log

∑
x∈supp(p)

(p(x))α

for α ∈ R≥0\{1}. When α = 1, Hα(p) := H(p) is the Shannon entropy. When α =∞, Hα(p) := − log maxx p(x).

II. COUPLING AND MAJORIZATION

We first define a coupling of a set of distributions.

Definition 1. For a set of pmf’s S, we say that an indexed set of random variables {Xp}p∈S is a coupling of S, written as
{Xp}p∈S ∈ Γ(S), if Xp has marginal distribution p for any p ∈ S. We say that a pmf q is an underlying distribution of a
coupling of S, written as q ∈ Γ̃(S), if there exists {Xp}p∈S ∈ Γ(S) and random variable Z ∼ q such that Xp is a function
of Z for all p ∈ S.1

Define the minimum Rényi entropy of couplings of a set of pmf’s S as

H∗α(S) := inf
q∈Γ̃(S)

Hα(q) (4)

for α ∈ R≥0 ∪ {∞}. We write H∗(S) = H∗1 (S). It is straightforward to show that when S = {p1, . . . , pm} is finite, then
H∗α(S) = inf{Xpi}i∈[m]∈Γ(S)Hα(Xp1 , . . . , Xpm) (to show a one-to-one correspondence between Γ̃(S) and Γ(S), simply take
q ∈ Γ̃(S) to be the joint pmf of {Xpi}i∈[m]). Nevertheless, we define H∗α(S) in (4) for general S using Γ̃(S) instead of Γ(S),
in order to avoid working with the joint entropy of an infinite collection of random variables when |S| =∞.

The goal of this paper is to find or approximate H∗α(S). We present the concept of aggregation in [1], [13].

1Technically, to make the set Γ̃(S) well-defined, we can restrict q to be a pmf over N, which will not cause any loss of generality since the support of a
pmf is always countable.
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Definition 2. For two pmf’s p, q, we say p is an aggregation of q, written as q v p, if there exists a function g : supp(q)→
supp(p) (called the aggregation map) such that p is the pmf of g(X), where X ∼ q.

It is clear that “v” is a transitive relation. If p, q are pmf’s over [n], then q v p if and only if there exists a right stochastic
matrix M with {0, 1} entries such that the probability vectors satisfy ~p = ~qM . Note that q ∈ Γ̃(S) if and only if q v p for
any p ∈ S. Therefore, a coupling of S can be specified using an underlying distribution q ∈ Γ̃(S) and the set of aggregation
maps {gp}p∈S , where gp is the aggregation map for q v p.

We will then show that “v” is “closed under pointwise limit” in the following sense:

Proposition 3. Let q be a pmf over a countable set X , and p, p1, p2, . . . be pmf’s over a countable set Y , such that p(y) =
limi→∞ pi(y) for any y ∈ Y , and q v pi for any i ≥ 1, then we have q v p.

Proof: Without loss of generality, assume X = Y = N, and q(1) ≥ q(2) ≥ · · · . Let g1, g2, . . . be functions from N to
N such that gi(X) ∼ pi, where X ∼ q. Consider whether gi(1) = 1. There exists an increasing sequence i1, i2, . . . such that
1{gij (1) = 1} are the same for all j (since there are only two possibilities of 1{gij (1) = 1} ∈ {0, 1}). Let that value of
1{gij (1) = 1} be b1,1. There exists an increasing subsequence i′1, i

′
2, . . . of i1, i2, . . . such that for any x, y ≤ 2, 1{gi′j (x) = y}

are the same for all j (since there are only 24 possibilities of {1{gi′j (x) = y}}x,y≤2). Let those values of 1{gi′j (x) = y} be
bx,y for x, y ≤ 2. Repeat this procedure to define bx,y for any x, y ∈ N.

Define g : supp(q) → N by g(x) = y if bx,y = 1. We now check that g is well-defined and g(X) ∼ p. It is clear from
the definition that there does not exist x and y 6= y′ such that bx,y = bx,y′ = 1 (consider the max{x, y, y′}-th iteration of
the above procedure). Fix any a, y ∈ N and ε > 0, and consider the max{a, y}-th iteration of the above procedure that fixes
bx,y for x ≤ a. There exists an increasing sequence i1, i2, . . . such that 1{gij (x) = y} = bx,y for all j and x ≤ a. By
p(y) = limi→∞ pi(y), there exists j such that |p(y)− pij (y)| ≤ ε. Since pij (y) =

∑
x 1{gij (x) = y}q(x), we have∣∣∣p(y)−

∑
x≤a

bx,yq(x)
∣∣∣ ≤ ε+

∑
x>a

q(x).

Taking a→∞ and ε→ 0, we have
∑
x bx,yq(x) = p(y). Since

∑
x

∑
y bx,yq(x) =

∑
y p(y) = 1, for any x ∈ supp(q) (where

q(x) > 0), there exists at least one (and thus exactly one) y such that bx,y = 1. The result follows.
It is demonstrated in [8] that majorization is a useful tool in the study of coupling. Here we present the concept of majorization

which allows infinite sequences or pmf’s with infinite support (e.g. see [14]):

Definition 4. For two pmf’s p, q, we say q is majorized by p, written as q � p, if

max
B⊆supp(q): |B|≤k

q(B) ≤ max
A⊆supp(p): |A|≤k

p(A)

for any k ∈ N, where we write p(A) :=
∑
x∈A p(x). In other words, the sum of the k largest q(x)’s is not greater than the

sum of the k largest p(x)’s.

It is clear that “�” is a transitive relation. It is shown in [13] that q v p implies q � p. If p, q are pmf’s over [n], then it
has been shown that q � p if and only if there exists a doubly stochastic matrix (i.e., square matrix with nonnegative entries
where each row and column sums to 1) M such that the probability vectors satisfy ~p = ~qM (e.g. see [14]). Also, if p, q are
pmf’s over [n] sorted in descending order (i.e., p(1) ≥ p(2) ≥ · · · ≥ p(n) and likewise for q), then q � p if and only if there
exists a lower triangular right stochastic matrix M such that ~p = ~qM . This property will be strenghtened in Lemma 10.

Also note that Rényi entropy is Schur concave [14], i.e., we have Hα(q) ≥ Hα(p) if q � p. We then prove a useful property
of majorization and aggregation:

Proposition 5. Let X be a random variable with pmf pX , and Y be a random variable with conditional pmf pY |X=x, and
pX,Y be the joint pmf of (X,Y ). Define X̃, pX̃ , Ỹ , pỸ |X̃=x, pX̃,Ỹ similarly. We have:
• If pX = pX̃ and pY |X=x v pỸ |X̃=x for all x, then pX,Y v pX̃,Ỹ .
• If pX = pX̃ and pY |X=x � pỸ |X̃=x for all x, then pX,Y � pX̃,Ỹ .

Proof: Assume pX = pX̃ and pY |X=x v pỸ |X̃=x for all x. There exists functions gx for x ∈ supp(pX) such that

(X, gX(Y ))
d
= (X̃, Ỹ ). Hence, pX,Y v pX̃,Ỹ with the aggregation map (x, y) 7→ (x, gx(y)).

Assume pX = pX̃ and pY |X=x � pỸ |X̃=x for all x. Fix any A ⊆ supp(pX,Y ). For any x, let Bx attains the maximum in
maxB⊆supp(pỸ |X̃=x): |B|≤|{y: (x,y)∈A}| q(B). Since pY |X=x � pỸ |X̃=x, we have

pX,Y (A) =
∑
x

pX(x)
∑

y: (x,y)∈A

pY |X=x(y)

≤
∑
x

pX(x)pỸ |X̃=x(Bx)

= pX̃,Ỹ ({(x, y) : y ∈ Bx}) .
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Since |{(x, y) : y ∈ Bx}| ≤ |A|, we have pX,Y � pX̃,Ỹ .
We then present the definition of the greatest lower bound (see e.g. [49] for the finite case):

Definition 6. For a set of pmf’s S where

lim
k→∞

inf
p∈S

max
A⊆supp(p): |A|≤k

p(A) = 1, (5)

define its greatest lower bound with respect to majorization, written as q =
∧
S, as a pmf q over N given by

q(k) := inf
p∈S

max
A⊆supp(p): |A|≤k

p(A)− inf
p∈S

max
A⊆supp(p): |A|≤k−1

p(A).

If (5) is not satisfied, then
∧
S is undefined. (Note that (5) is always satisfied when S is finite.)

If S contains pmf’s over the set X , and |S| = m < ∞, |X | = n < ∞, then it is clear that
∧
S can be computed in

O(mn log n) time (by sorting the pmf’s and computing partial sums). We give some properties of the greatest lower bound.
Note that the case |S| = 2 has been shown in [49]. While it is straightforward to generalize it to |S| > 2 and |S| = ∞, we
state these properties for the sake of completeness.

Proposition 7. For a set of pmf’s S, if q =
∧
S exists, then

1) q(1) ≥ q(2) ≥ q(3) ≥ · · · .
2) q � p for any p ∈ S.
3) For any q̃ such that q̃ � p for any p ∈ S, we have q̃ � q.

Proof: Note that q(1) ≥ q(2) ≥ · · · is equivalent to the concavity of infp∈S maxA⊆supp(p): |A|≤k p(A) in k, which holds
because the infimum of concave functions is concave. We have

∑k
i=1 q(i) = infp∈S maxA⊆supp(p): |A|≤k p(A), and hence q � p

for any p ∈ S. For any q̃ such that q̃ � p for any p ∈ S, we have maxA⊆supp(q̃): |A|≤k q̃(A) ≤ infp∈S maxA⊆supp(p): |A|≤k p(A) =∑k
i=1 q(i), and hence q̃ � q.
As a result of these properties, if

∧
S exists, for any q ∈ Γ̃(S), we have q �

∧
S, and hence Hα(q) ≥ Hα(

∧
S). Therefore,

H∗α(S) ≥ Hα(
∧
S).

III. COUPLING BY GEOMETRIC SPLITTING

We now present the main result in this paper, which shows that if the pmf’s p, q satisfy q � p, then after splitting each mass
q(y) into a sequence of masses q(y)/2, q(y)/4, q(y)/8,... (or equivalently, consider the joint pmf of (Y, Z) where Y ∼ q is
independent of Z ∼ Geom1/2), then p will be an aggregation of the resultant pmf q×Geom1/2 (“×” denote the independent
product of two pmf’s, i.e., it is the pmf of (Y,Z) mentioned before; refer to the notation section for the definition), which we
call the geometric splitting of q.

Theorem 8. If q � p, then
q ×Geom1/2 v p.

A direct result of this theorem is the following explicit formula of an underlying distribution of a coupling.

Corollary 9. For a set of pmf’s S, if
∧
S exists, then(∧

S
)
×Geom1/2 ∈ Γ̃(S).

As a result, the minimum Rényi entropy of couplings of S satisfies

Hα

(∧
S
)
≤ H∗α(S) ≤ Hα

(∧
S
)

+Hα(Geom1/2),

where

Hα(Geom1/2) =


∞ if α = 0

2 if α = 1

1 if α =∞
−α−log(1−2−α)

1−α otherwise

is the Rényi entropy of Geom1/2.

Another way to state Theorem 8 is that for any pmf q, we have q ×Geom1/2 ∈ Γ̃({p pmf over N : q � p}).
Before we prove Theorem 8, we present a lemma similar to the alias method [19], and is a special case of the algorithm in

[8]. We include a proof of the claim for the sake of completeness, and describe a linear time algorithm (Algorithm 1) which
is considerably simpler than that in [8].
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Lemma 10. For any pmf’s p, q over [n] such that q � p, p(1) ≥ p(2) ≥ · · · ≥ p(n) and q(1) ≥ q(2) ≥ · · · ≥ q(n), there
exists ax ∈ [x− 1] and 0 ≤ rx ≤ q(x) for x = 2, . . . , n such that

p(x) = q(x)− rx +
∑

y: ay=x

ry (6)

for any x = 1, . . . , n (we let r1 = 0). Moreover, ax, rx can be computed in O(n) time (see Algorithm 1).

Lemma 10 can be stated in the following more compact form using matrices. For any pmf’s p, q over [n] sorted in descending
order such that q � p, there exists a lower triangular right stochastic matrix M where each row has at most one positive off-
diagonal entry, and the probability vectors satisfy ~p = ~qM . Its equivalence to Lemma 10 can be shown by letting Mx,ax =
rx/q(x) and Mx,x = 1− rx/q(x) for x ∈ [n] (all other entries of M are zeros).

Proof of Lemma 10: Let Bx := {y ∈ [n] : ay = x}. We give Bx and rx recursively. Take Bn = ∅, rn = q(n) − p(n)
(rn ≥ 0 since q � p). Assume Bx+1, . . . , Bn and rx+1, . . . , rn are defined and satisfies that Bx+1, . . . , Bn are disjoint,
Bx′ ⊆ {x′ + 1, . . . , n} and

p(x′) = q(x′)− rx′ +
∑
y∈Bx′

ry (7)

for all x′ > x. We now define Bx, rx. Take

Bx = {t, . . . , n}\
n⋃

y=x+1

By,

where t ∈ {x+ 1, . . . , n+ 1} such that
∑
y∈Bx ry ∈ [p(x)− q(x), p(x)]. Such t exists since ry ≤ q(y) ≤ q(x) for y > x, and∑
y∈{x+1,...,n}\

⋃n
y′=x+1

By′

ry

=

n∑
y=x+1

ry −
n∑

y′=x+1

∑
y∈By′

ry

(a)
=

n∑
y=x+1

ry −
n∑

y=x+1

(p(y)− q(y) + ry)

=

n∑
y=x+1

(q(y)− p(y))

= p(x)− q(x) +

n∑
y=x

(q(y)− p(y))

≥ p(x)− q(x)

since q � p, where (a) is by (7), and hence when t decreases from n+1 to x+1,
∑
y∈Bx ry increases from 0 to ≥ p(x)−q(x),

with step size at most q(x), and thus there exists t such that
∑
y∈Bx ry ∈ [p(x) − q(x), p(x)]. In practice, to find Bx, we

only need to scan the elements in B̄x := [n]\
⋃n
y=x+1By in decreasing order, and add elements from B̄x to Bx until∑

y∈Bx ry ≥ p(x)− q(x). We then take
rx = q(x)− p(x) +

∑
y∈Bx

ry.

Therefore, we have defined Bx, rx (and hence ax) recursively.
For the running time complexity, note that since B̄x is decreasing as x decreases, only the elements in B̄x\B̄x−1 are relevant

to the computation of Bx, rx. Since each y ∈ [n] can only be removed from B̄x once (i.e., y ∈ B̄x\B̄x−1 for at most one x),
the overall time complexity is O(n). Also note that the Bx produced by this method must be contiguous segments of integers,
and B̄x must be in the form {1, . . . , |B̄x|}, which allows simpler implementations (e.g. we only need to store bx := |B̄x|
instead of B̄x). Refer to Algorithm 1 (which we call the majorized alias algorithm) for the precise description.
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y 1 2 3 4 5

p(y) 0.37 0.36 0.25 0.02 0

q(y) 0.3 0.3 0.2 0.1 0.1

Step x = 5
ry 0.1

ay

Step x = 4
ry 0.08 0.1

ay

Step x = 3
ry 0.05 0.08 0.1

ay 3

Step x = 2
ry 0.02 0.05 0.08 0.1

ay 2 3

Step x = 1
ry 0 0.02 0.05 0.08 0.1

ay 1 1 2 3

Table I
ALGORITHM 1 APPLIED ON ~p = [0.37, 0.36, 0.25, 0.02, 0], ~q = [0.3, 0.3, 0.2, 0.1, 0.1].

Algorithm 1 MAJORIZEDALIAS(p, q)

Input: pmf’s p, q over [n] such that q � p, p(1) ≥ · · · ≥ p(n) and q(1) ≥ · · · ≥ q(n)
Output: ax, rx for x ∈ {2, . . . , n}
b← n
ax ← 1 for x = 2, . . . , n
for x← n, n− 1, . . . , 2 do

rx ← q(x)− p(x)
while rx < 0 do

rx ← rx + rb
ab ← x
b← b− 1

end while
end for

return {ax}, {rx}

Algorithm 1 has time complexity O(n) since the block inside the while loop is executed at most n times (b decreases each
time it is executed). We remark that Algorithm 1 reduces to the alias method [19] when q is the uniform distribution. The alias
method is an efficient algorithm that can generate a random number following the distribution p over [n], using a uniformly
random integer in [n] and a uniformly random real number in [0, 1]. The alias method requires an O(n) (or O(n log n) if p
is unsorted and needs to be sorted first) precomputation time to compute ax and rx satisfying (6) (where q is the uniform
distribution over [n]). After the precomputation, each sample of x ∼ p can be generated in constant time by first generating
y ∼ q independent of z ∼ Unif[0, 1], and then outputting x = y if z ≥ ry/q(y), x = ay if z < ry/q(y). While the alias
method focuses only on the case where q is uniform (which guarantees q � p), Algorithm 1 generalizes it to any q satisfying
q � p.

Table I shows Algorithm 1 applied on ~p = [0.37, 0.36, 0.25, 0.02, 0], ~q = [0.3, 0.3, 0.2, 0.1, 0.1]. The values of {ry}, {ay}
for each iteration x = 5, 4, 3, 2, 1 in the algorithm are given. The red cells are cells with positions y in the interval y ∈ [x..b],
which are unfinished cells with ry (the excess amount) computed, but ay is not computed yet, i.e., it is not yet known where
the excess amount ry will be allocated (while Algorithm 1 initializes ay to 1, here we assume ay is initialized to be undefined
for the sake of clarity). The green cells are cells y in the interval y ∈ [b+1 .. n], which are finished cells with ry, ay computed.
At each iteration x, we keep allocating the the excess amount of the right-most red cell to the current cell x (and change the
right-most red cell to green), until q(x) plus the total excess amount allocated to the current cell is at least p(x). The amount
in excess (q(x) plus the total excess amount allocated to the current cell minus p(x)) is written to the rx of the current cell.
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We now give a sketch of the proof of Theorem 8. Let q � p with p(1) ≥ p(2) ≥ · · · and q(1) ≥ q(2) ≥ · · · . Assume they
have finite support for now, and consider them as probability vectors ~p, ~q ∈ Rn. To show q × Geom1/2 v p, it is equivalent
to show that there exist right stochastic matrices M1,M2, . . . with {0, 1} entries such that ~p =

∑∞
i=1 2−i~qMi. By Lemma

10, we have ~p = ~qM for a stochastic matrix M where each row has at most one positive off-diagonal entry. For row x with
off-diagonal entry Mx,ax = rx/q(x), consider the binary representation of rx/q(x), and put a “1” at the position (x, ax) of
Mj if the j-th digit after the decimal point of the binary representation is “1” (otherwise put a “1” at the position (x, x)) for
j = 1, 2, . . .. This ensures that M =

∑∞
i=1 2−iMi, and hence the requirement is satisfied. The following is the complete proof

for the case where the support size may be infinite.
Proof: Without loss of generality, assume p, q are pmf’s over N with p(1) ≥ p(2) ≥ · · · and q(1) ≥ q(2) ≥ · · · . Define

pmf ql by

ql(x) =


q(x) if x < l∑∞
y=l q(y) if x = l

0 if x > l.

Define pl similarly. Since p v pl, we have q � p � pl. Fix l and let n > l be large enough that
∑∞
y=n q(y) ≤ q(l), and

hence the l largest entries of qn are the same as the l largest entries of q. Since pl has at most l nonzero entries, whether
q � pl holds only depend on the l largest entries of q. Hence, we have qn � pl. By Lemma 10, there exists ax ∈ [n]\{x} (we
no longer have ax < x since we have to sort qn(x) in descending order before applying the lemma) and rx ∈ [0, qn(x)] for
x = 1, . . . , n such that

pl(x) = qn(x)− rx +
∑

y∈[n]: ay=x

ry

for any x = 1, . . . , n. Define a mapping g : supp(qn)× N→ [n] by

g(x, i) =

{
x if 2irx/qn(x) mod 2 < 1

ax if 2irx/qn(x) mod 2 ≥ 1,

where amod b := a−bba/bc. Since
∑∞
i=1 2−i1{2irx/qn(x) mod 2 ≥ 1} = rx/qn(x) is the binary representation of rx/qn(x),

we have P(g(x, Z) = ax) = rx/qn(x) and P(g(x, Z) = x) = 1− rx/qn(x), where Z ∼ Geom1/2. Let X ∼ qn independent
of Z, we have

P(g(X,Z) = x)

= qn(x)P(g(x, Z) = x) +
∑

y∈[n]: ay=x

qn(y)P(g(y, Z) = ay)

= qn(x)− rx +
∑

y∈[n]: ay=x

ry

= pl(x),

and hence qn × Geom1/2 v pl. Since q v qn, we have q × Geom1/2 v qn × Geom1/2 v pl by Proposition 5. Since
pl(x)→ p(x) as l→∞ for any x ∈ N, by Proposition 3, we have q ×Geom1/2 v p.

Note that (
∧
S) ×Geom1/2 in Theorem 8 has an infinite support size or cardinality. If S is finite and the pmf’s in S are

over a set X which is finite, then we can reduce the cardinality to |S|(|X | − 1) + 1 (without increasing its Rényi entropy), as
given in the following theorem.

Theorem 11. For a finite set of pmf’s S with |S| = m, where the pmf’s in S are over a finite set X with |X | = n, there
exists a pmf q ∈ Γ̃(S) with |supp(q)| ≤ m(n− 1) + 1 and(∧

S
)
× CGeom1/2,m � q,

where CGeom1/2,m is the capped geometric distribution defined in (3). As a result, the minimum Rényi entropy of couplings
of S satisfies

Hα

(∧
S
)
≤ H∗α(S) ≤ Hα

(∧
S
)

+Hα(CGeom1/2,m).

Note that H(CGeom1/2,m) = 2− 22−m. Moreover, q and the aggregation maps for q v p for all p ∈ S can be computed in
O(m2n+mn log n) time (see Algorithm 3).

We remark that the cardinality bound |supp(q)| ≤ m(n− 1) + 1 is the same as that in [2], [5]. Therefore, the coupling in
Theorem 11 gives a small Rényi entropy, without penalty on the cardinality.
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To prove Theorem 11, we first show a lemma about coupling Bernoulli distributions.

Lemma 12. For a finite set of pmf’s S with |S| = m, where the pmf’s in S are over {0, 1}, there exists a pmf q ∈ Γ̃(S) with
|supp(q)| ≤ m+ 1 and CGeom1/2,m+1 � q. Moreover, q and the aggregation maps for q v p for all p ∈ S can be computed
in O(m2) time (see Algorithm 2).

Proof: We prove the lemma by induction on m. The lemma is true when m = 1 since CGeom1/2,2 � p for any pmf p over
{0, 1}. We now prove the lemma for m, assuming that the lemma is true for any smaller m. Let S = {p1, . . . , pm}. Without
loss of generality, assume p1 attains the minimum of max{pi(0), pi(1)} for i = 1, . . . ,m. Let γ := max{p1(0), p1(1)}. If
γ = 1, all distributions in S are degenerate, and the lemma clearly holds, and hence we can assume γ < 1. Let p̃2, . . . , p̃m be
pmf’s over {0, 1} defined as

p̃i(0) =
pi(0)− γ1{pi(0) ≥ pi(1)}

1− γ
,

p̃i(1) =
pi(1)− γ1{pi(0) < pi(1)}

1− γ
,

for i = 2, . . . ,m. Invoke the induction hypothesis to obtain a pmf q̃ ∈ Γ̃({p̃2, . . . , p̃m}) over [m] satisfying CGeom1/2,m � q̃.
Let q be a pmf over [m+1] with q(x) = (1−γ)q̃(x) for x ≤ m, and q(m+1) = γ. Since γ ≥ 1/2, we have CGeom1/2,m+1 � q.
It is left to show that q v pi for i = 2, . . . ,m. For pi, without loss of generality assume pi(0) ≥ pi(1). Since q̃ v p̃i, there
exists A ⊆ [m] such that p̃i(1) =

∑
x∈A q̃(x). We have

pi(1) = (1− γ)p̃i(1) =
∑
x∈A

q(x),

and hence q v pi. Refer to Algorithm 2 (which we call the Bernoulli splitting algorithm) for the precise description of the
algorithm.

Algorithm 2 BERNOULLISPLITTING(ρ1, . . . , ρm)

Input: ρ1, . . . , ρm ∈ [0, 1] (let ρi = pi(1))
Output: {qx}x∈[k], {gi,x}i∈[m],x∈[k] (where k ≤ m+ 1)

(let qx = q(x), gi,x = gi(x) ∈ {0, 1} for the aggregation mapping for q v pi)
gi,x ← 0 for i ∈ [m], x ∈ [k]
c← 1
k ← 0
while c > 0 do

γ ← mini max{ρi, c− ρi}
k ← k + 1
qk ← γ
for i← 1, . . . ,m do

if ρi ≥ c/2 then
gi,k ← 1
ρi ← ρi − γ

end if
end for
c← c− γ

end while
return {qx}, {gi,x}

Algorithm 2 has time complexity O(m2), since after each iteration of the while loop, the number of i’s where ρi ∈ {0, c}
increases by at least one (letting i∗ = argmini max{ρi, c − ρi}, then ρi∗ ∈ {0, c} after the iteration), and hence the number
of iterations of the while loop is upper bounded by m+ 1.

Figure 1 shows Algorithm 2 applied on {ρi}i = (0.175, 0.35, 0.6, 0.925). The graphs on top are ρi at each iteration of the
while loop, and the graphs on the bottom show qx and gi,x at each iteration. We can consider the problem as finding a set
of sticks with lengths qx which sum to c (initially c = 1), such that every ρi (we require 0 ≤ ρi ≤ c) is the sum of the
lengths of a subset of sticks. We use the following greedy approach. If the length of the longest stick is γ, then every ρi
must satisfy either ρi ≥ γ if we use the stick to form ρi, or ρi ≤ c − γ if we do not use the stick to form ρi (the regions
of inadmissible ρi are shaded in gray on the graphs on top). Therefore, the longest possible length of the longest stick is
q1 = γ = mini max{ρi, c− ρi}. For every ρi where ρi ≥ γ (or equivalently ρi ≥ c/2), we set gi,1 = 1, meaning that we use
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c = 1

0

c− γ

γ
= 0.6

= 0.4

c = 0.4

0

c− γ

γ

= 0.175

= 0.225
c = 0.175

c− γ

γ

= 0.075

= 0.1= 0.1

c = 0.075

c− γ

γ

= 0.025

= 0.05

0

q1
= 0.6

g1,1 = g2,1 = 0

g3,1 = g4,1 = 1

Step 4Step 1 Step 2 Step 3

0

q2
= 0.225

g1,2 = g3,2 = 0

g2,2 = g4,2 = 1

0

q3
= 0.1

g3,3 = 0

g1,3 = g2,3

0

q4
= 0.05

= g4,3 = 1

g2,4 = g3,4
= g4,4 = 1

g1,4 = 0

c = γ
= 0.025

0

q5
= 0.025

g3,5 = g4,5 = 0

g1,5 = g2,5 = 1

Step 5ρi

Figure 1. Algorithm 2 applied on {ρi}i = (0.175, 0.35, 0.6, 0.925).

the first stick to form ρi, and then set ρi ← ρi− γ (the remainder of the length to be fulfilled by other sticks). We set gi,1 = 0
for the rest of ρi. Now the remaining total length of sticks become c← c− γ. Repeat this process until ρi = 0 for all i.
Remark 13. Note that

∑
x>L q(x) ≤ 2−L in Lemma 12 and Algorithm 2. Therefore, stopping Algorithm 2 after L steps reduces

the time complexity to O(mL), and incurs an error (in total variation distance) upper bounded by 2−L, i.e., it computes a
coupling of {Bern(ρ̃i)}i∈[m] instead of {Bern(ρi)}i∈[m], where |ρ̃i − ρi| ≤ 2−L. One can also replace “while c > 0” in
Algorithm 2 to “while c > ε” (and adjust qx so they sum to 1) to set the desired error level.

We now prove Theorem 11.
Proof: Assume p1, . . . , pm are pmf’s over [n] with pi(1) ≥ · · · ≥ pi(n). Let S = {p1, . . . , pm}, q̄ :=

∧
S. By Lemma

10, let ai,x ∈ [x− 1] and ri,x ∈ [0, q̄(x)] for x = 2, . . . , n, i = 1, . . . ,m such that

pi(x) = q̄(x)− ri,x +
∑

x′: ai,x′=x

ri,x′ (8)

for any x = 1, . . . , n, i = 1, . . . ,m (let ri,1 = 0).
Fix any 2 ≤ x ≤ n. Since

x−1∑
z=1

q̄(z) = min
i∈[m]

x−1∑
z=1

pi(z),

there exists j such that
∑x−1
z=1 q̄(z) =

∑x−1
z=1 pj(z), and hence by (8) and aj,x < x,

0 =

x−1∑
z=1

(pj(z)− q̄(z))
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=

x−1∑
z=1

q̄(z)− rj,z +
∑

x′: aj,x′=z

rj,x′ − q̄(z)


= −

x−1∑
z=1

rj,z +

x−1∑
z=1

∑
x′: aj,x′=z

rj,x′

=

x−1∑
z=1

∑
x′≥x: aj,x′=z

rj,x′

≥ rj,x,

which means there exists j such that rj,x = 0. Applying Lemma 12 on Bernri,x/q̄(x) for i 6= j, let q̃x ∈ Γ̃({Bernri,x/q̄(x)}i∈[m]\{j})
be a pmf over [m] with CGeom1/2,m � q̃x. We have q̃x v Bernri,x/q̄(x) for any i ∈ [m] (this trivially holds when i = j).

For x = 1, let q̃1(1) = 1. Since ri,1 = 0, we have q̃1 ∈ Γ̃({Bernri,1/q̄(1)}i∈[m]\{j}) and CGeom1/2,m � q̃1.
Let q be a pmf over [n] × [m] defined by q(x, y) := q̄(x)q̃x(y). For any i ∈ [m], since q̃x v Bernri,x/q̄(x), there exists

Ax ⊆ [m] such that
∑
y∈Ax q̃x(y) = ri,x/q̄(x). Hence,

pi(x) = q̄(x)− ri,x +
∑

x′∈[n]: ai,x′=x

ri,x′

= q̄(x)− q̄(x)
∑
y∈Ax

q̃x(y) +
∑

x′∈[n]: ai,x′=x

q̄(x′)
∑
y∈Ax′

q̃x′(y)

=
∑

y∈[m+1]\Ax

q(x, y) +
∑

x′∈[n]: ai,x′=x

∑
y∈Ax′

q(x′, y),

and thus

gi(x, y) :=

{
x if y /∈ Ax
ai,x if y ∈ Ax

is an aggregation map for q v pi. Since |supp(q̃1)| = 1, we have |supp(q)| ≤ m(n− 1) + 1. We have q̄ × CGeom1/2,m � q
by Proposition 5. Refer to Algorithm 3 for the precise description of the algorithm.

Algorithm 3 COMPUTECOUPLING(p1, . . . , pm)

Input: pmf’s p1, . . . , pm over [n] with pi(1) ≥ · · · ≥ pi(n)
Output: {qx}x∈[k], {gi,x}i∈[m],x∈[k] (where k ≤ m(n− 1) + 1)

(let qx = q(x) for pmf q over [k],
gi,x = gi(x) ∈ [n] for the aggregation mapping for q v pi)

q̄ ←
∧
i∈[m] pi

for i← 1, . . . ,m do
{ai,x}x=2,...,n, {ri,x}x=2,...,n ← MAJORIZEDALIAS(pi, q̄)
ri,1 ← 0

end for
k ← 0
for x← 1, . . . , n do
{q̃y}y∈[k̃], {g̃i,y}i∈[m],y∈[k̃] ← BERNOULLISPLITTING({ri,x/q̄(x)}i∈[m])

qk+y ← q̄(x)q̃y for y ∈ [k̃]
gi,k+y ← 1{g̃i,y = 0}x+ 1{g̃i,y = 1}ai,x for i ∈ [m], y ∈ [k̃]
k ← k + k̃

end for
return {qx}, {gi,x}

Remark 14. If we perform the modification in Remark 13 (stopping Algorithm 2 after L steps), it would reduce the time
complexity of Algorithm 3 to O(mnL + mn log n), the support bound to |supp(q)| ≤ (L + 1)(n − 1) + 1, but incur an
error (in total variation distance on each p ∈ S) upper bounded by 2−L, i.e., it computes a coupling of {p̃i}i∈[n] instead of
{pi}i∈[n], where dTV(pi, p̃i) ≤ 2−L. In practical implementations, setting L ≈ 60 will make the error negligible compared to
floating-point error. Therefore, the practical running time complexity of Algorithm 3 is close to O(mn log n).
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