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Abstract—This paper revisits the ordered statistics decoding
(OSD). It provides a comprehensive analysis of the OSD algo-
rithm by characterizing the statistical properties, evolution and
the distribution of the Hamming distance and weighted Hamming
distance from codeword estimates to the received sequence in
the reprocessing stages of the OSD algorithm. We prove that the
Hamming distance and weighted Hamming distance distributions
can be characterized as mixture models capturing the decoding
error probability and code weight enumerator. Simulation and
numerical results show that our proposed statistical approaches
can accurately describe the distance distributions. Based on these
distributions and with the aim to reduce the decoding complexity,
several techniques, including stopping rules and discarding rules,
are proposed, and their decoding error performance and com-
plexity are accordingly analyzed. Simulation results for decoding
various eBCH codes demonstrate that the proposed techniques
can significantly reduce the decoding complexity with a negligible
loss in the decoding error performance.

Index Terms—Gaussian mixture, Hamming distance, Linear
block code, Ordered statistics decoding, Soft decoding

I. INTRODUCTION

S INCE 1948, when Shannon introduced the notion of
channel capacity [1], researchers have been looking for

powerful channel codes that can approach this limit. Low
density parity check (LDPC) and Turbo codes have been
shown to perform very close to the Shannon’s limit at large
block lengths and have been widely applied in the 3rd and 4th
generations of mobile standards [2]. The Polar code proposed
by Arikan in 2008 [3] has attracted much attention in the last
decade and has been chosen as the standard coding scheme
for the fifth generation (5G) enhanced mobile broadband
(eMBB) control channels and the physical broadcast channel.
Polar codes take advantage of a simple successive cancellation
decoder, which is optimal for asymptotically large code block
lengths [4].

Short code design and the related decoding algorithms
have rekindled a great deal of interest among industry and
academia recently [5], [6]. This interest was triggered by
the stringent requirements of the new ultra-reliable and low-
latency communications (URLLC) service for mission critical
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IoT (Internet of Things) services, including the hundred-of-
microsecond time-to-transmit latency, block error rates of
10−5, and the bit-level granularity of the codeword size and
code rate. These requirements mandate the use of short block-
length codes; therefore, conventionally moderate/long codes
may not be suitable [4].

Several candidate channel codes such as LDPC, Polar, tail-
biting convolutional code (TB-CC), and Turbo codes, have
been considered for URLLC data channels [4]. While some
of these codes perform closely to the Shannon’s limit at
asymptotically long block lengths, they usually suffer from
performance degradation if the code length is short, e.g.,
Turbo codes with iterative decoding in short and moderate
block lengths show a gap of more than 1 dB to the finite-
length performance benchmark [2], where the benchmark
is referred to as the error probability bound developed in
[7] for finite block lengths. TB-CC can eliminate the rate
loss of conventional convolutional codes due to the zero tail
termination, but its decoding process is more complex than
that of conventional codes [4]. Although LDPC codes have
already been selected for eMBB data channels in 5G, recent
investigations showed that there exist error floors for LDPC
codes constructed using the base graph at high signal-to-
noise ratios [4], [5] at moderate and short block lengths;
hardly satisfying ultra-reliability requirements. Polar codes
outperform LDPC codes with no error floor at short block
lengths, but for short codes, it still falls short of the finite block
length capacity bound [4], i.e, the maximal channel coding rate
achievable at a given block length and error probability [7].

Short Bose-Chaudhuri-Hocquenghem (BCH) codes have
gained the interest of the research community recently [4],
[5], [8]–[10], as they closely approach the finite length bound.
As a class of powerful cyclic codes that are constructed using
polynomials over finite fields [2], BCH codes have large
minimum distances, but its maximum likelihood decoding is
highly complex, introducing a significant delay at the receiver.

The ordered statistics decoding (OSD) was proposed in
1995, as an approximation of the maximum likelihood (ML)
decoder for linear block codes [11] to reduce the decoding
complexity. For a linear block code C(n, k), with minimum
distance dH, it has been proven that an OSD with the order
of m = ddH/4 − 1e is asymptotically optimum approaching
the same performance as the ML decoding [11]. However, the
decoding complexity of an order-m OSD can be as high as
O(km) [11]. To meet the latency demands of the URLLC,
OSD is being considered as a suitable decoding method for
short block length BCH codes [8], [10], [12], [13]. However,
to make the OSD suitable for practical URLLC applications,
the complexity issue needs to be addressed.
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In OSD, the bit-wise log-likelihood ratios (LLRs) of the
received symbols are sorted in descending order, and the order
of the received symbols and the columns of the generator
matrix are permuted accordingly. Gaussian elimination over
the permuted generator matrix is performed to transform it to
a systematic form. Then, the first k positions, referred to as
the most reliable basis (MRB), will be XORed with a set of
the test error patterns (TEP) with the Hamming weight up to a
certain degree, where the maximum Hamming weight of TEPs
is referred to as the decoding order. Then the vectors obtained
by XORing the MRB are re-encoded using the permuted
generator matrix to generate candidate codeword estimates.
This is referred to as the reprocessing and will continue until
all the TEPs with the Hamming weights up to the decoding
order are processed. Finally, the codeword estimate with the
minimum distance from the received signal is selected as the
decoding output.

Most of the previous work has focused on improving
OSD and some significant progress has been achieved. Some
published papers considered the information outside of the
MRB positions to either improve the error performance or
reduce complexity [8], [12], [14]–[17]. The approach of
decoding using different biased LLR values was proposed
in [14] to refine the error performance of low-order OSD
algorithms. This decoding approach performs reprocessing for
several iterations with different biases over LLR within MRB
positions and achieves a better decoding error performance
than the original low-order OSD. However, extra decoding
complexity is introduced through the iterative process. Skip-
ping and stopping rules were introduced in [15] and [16] to
prevent unpromising candidates, which are unlikely to be the
correct output. The decoder in [15] utilizes two preprocessing
rules and a multibasis scheme to achieve the same error rate
performance as an order-(w+2) OSD, but with the complexity
of an order-w OSD. This algorithm decomposes a TEP by a
sub-TEP and an unit vector, and much additional complexity is
introduced in processing sub-TEPs. Authors in [16] proposed a
skipping rule based on the likelihood of the current candidate,
which significantly reduces the complexity. An order statistics
based list decoding proposed in [12] cuts the MRB to several
partitions and performs independent OSD over each of them
to reduce the complexity, but it overlooks the candidates gen-
erated across partitions and suffers a considerable error perfor-
mance degradation. A fast OSD algorithm which combines the
discarding rules from [16] and the stopping criterion from [17]
was proposed in [8], which can reduce the complexity from
O(km) to O(km−2) at high signal-to-noise ratios (SNRs). The
latest improvement of OSD is the Segmentation-Discarding
Decoding (SDD) proposed in [10], where a segmentation
technique is used to reduce the frequency of checking the
stopping criterion and a group of candidates can be discarded
with one condition check satisfied. Some papers also utilized
the information outside MRB to obtain further refinement
[18], [19]. The Box-and-Match algorithm (BMA) approach
can significantly reduce the decoding complexity by using the
“match” procedure [18], which defines a control band (CB)
and identifies each TEP based on CB, and the searching and
matching of candidates are implemented by memory spaces

called “boxes”. However, BMA introduces a considerable
amount of extra computations in the “match” procedure and
it is not convenient to implement. The iterative information
set reduction (IISR) technique was proposed in [19] to reduce
the complexity of OSD. IISR applies a permutation over the
positions around the boundary of MRB and generates a new
MRB after each reprocessing. This technique can reduce the
complexity with a slight degradation of the error performance
and has the potential to be combined with other techniques
mentioned above.

Many of the above approaches utilize the distance from the
codeword estimates to the received symbols, either Hamming
or weighted Hamming distance, to design their techniques. For
example, there is a distance-based optimal condition designed
in the BMA [18], where the reprocessing rule is designed
based on the distance between sub-TEPs and received symbols
in [15], and skipping and stopping rules introduced in [15] and
[16] are also designed based on the distance, etc. Despite the
improvements in decoding complexity, these algorithms lack a
rigorous error performance and complexity analysis. Till now,
it is still unclear how the Hamming distance or the weighted
Hamming distance evolves during the reprocessing stage of the
OSD algorithm. Although some attempts were made to analyze
the error performance of the OSD algorithm and its alternatives
[11], [13], [20], [21], the Hamming distance and weighted
Hamming distance were left unattended. If the evolution of
the Hamming distance and weighted Hamming distance in
the reprocessing stage are known, more insights of how those
decoding approaches improve the decoding performance could
be obtained. Furthermore, those decoding conditions can be
designed in an optimal manner and their performance and
complexity can be analyzed more carefully.

In this paper, we revisit the OSD algorithm and investigate
the statistical distribution of both Hamming distance and
weighted Hamming distance between codeword estimates and
the received sequence in the reprocessing stage of OSD. With
the knowledge of the distance distribution, several decoding
techniques are proposed and their complexity and error per-
formance are analyzed. The main contributions of this work
are summarized below.
• We derive the distribution of the Hamming distance in

the 0-reprocessing of OSD and extend the result to any
order i-reprocessing by considering the ordered discrete
statistics. We verify that the distribution of the Hamming
distance can be described by a mixed model of two ran-
dom variables related to the number of channel errors and
the code weight enumerator, respectively, and the weight
of the mixture is determined by the channel condition in
terms of signal-to-noise ratio (SNR). Simulation and nu-
merical results show that the proposed statistical approach
can describe the distribution of Hamming distance of
any order reprocessing accurately. In addition, the normal
approximation of the Hamming distance distribution is
derived.

• We derive the distribution of the weighted Hamming dis-
tance in the 0-reprocessing of OSD and extend the result
to any order i-reprocessing by considering the ordered
continuous statistics. It is shown that the weighted Ham-
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ming distribution is also a mixture of two different distri-
butions, determined by the error probability of the ordered
sequence and the code weight enumerator, respectively.
The exact expression of the weighted Hamming distribu-
tion is difficult to calculate numerically due to a large
number of integrals, thus a normal approximation of the
weighted Hamming distance distribution is introduced.
Numerical and simulation results verify the tightness of
the approximation.

• Based on the distance distributions, we propose several
decoding techniques. Based on the Hamming distance,
a hard individual stopping rule (HISR), a hard group
stopping rule (HGSR), and a hard discarding rule (HDR)
are proposed and analyzed. It can be indicated that in
OSD, the Hamming distance can also be a good metric
of the decoding quality. Simulation results show that
with the proposed hard rules, the decoding complexity
can be reduced with a slight degradation in the error
performance. Based on the weighted Hamming distance
distribution, soft decoding techniques, namely the soft
individual stopping rule (SISR), the soft group stopping
rule (SGSR), and the soft discarding rule (SDR) are
proposed and analyzed. Compared with hard rules, these
soft rules are more accurate to identify promising candi-
dates and determine when to terminate the decoding with
some additional complexity. For different performance-
complexity trade-off requirements, the above decoding
techniques (hard rules and soft rules) can be implemented
with a suitable parameter selection.

• We further show that when the code has a binomial-like
weight spectrum, the proposed techniques can be imple-
mented with linear or quadratic complexities in terms of
the message length. Accordingly, the overall asymptotic
complexity of OSD employing the proposed techniques is
analyzed. Simulations show that the proposed techniques
outperform the state of the art in terms of the TEP-
reduction capability and the run-time of decoding a single
codeword.

The rest of this paper is organized as follows. Section II
describes the preliminaries of OSD. In Section III, statistical
approaches are introduced for analyzing ordered sequences in
OSD. The Hamming distance and weighted Hamming distance
distributions are introduced and analyzed in Sections IV and
V, respectively. Then, the hard and soft decoding techniques
are proposed and analyzed in Section VI and VII, respec-
tively. Section VIII discusses the practical implementation and
complexities of the proposed techniques. Finally, Section IX
concludes the paper.

Notation: In this paper, we use an uppercase letter, e.g.,
X , to represent a random variable and [X]vu to denote a se-
quence of random variables, i.e., [X]vu = [Xu, Xu+1, . . . , Xv].
Lowercase letters like x are used to indicate the values of
scalar variables or the sample of random variables, e.g., x is
a sample of random variable X . The mean and variance of
a random variable X is denoted by E[X] and σ2

X , respec-
tively. The probability density function (pdf) and cumulative
distribution function (cdf) of a continuous random variable

X are denoted by fX(x) and FX(x), respectively, and the
probability mass function (pmf) of a discrete random variable
Y is denoted by pY (y) , Pr(Y = y), where Pr(·) is the
probability of an event. Unless otherwise specified, we use
fX(x|Z = z) to denote the conditional pdf of a continuous
random variable X conditioning on the event {Z = z}, and
accordingly the conditional means and variances of X are
denoted by E[X|Z = z] and σ2

X|Z=z , respectively. Similarly,
the conditional pmf of a discrete variable Y are represented
as pY (y|Z = z). We use a bold letter, e.g., A, to represent a
matrix, and a lowercase bold letter, e.g., a, to denote a row
vector. We also use [a]vu to denote a row vector containing
element a` for u ≤ ` ≤ v, i.e., [a]vu = [au, au+1, . . . , av].
We use superscript T to denote the transposition of a matrix
or vector, e.g., AT and aT, respectively. Furthermore, we
use a calligraphic uppercase letter to denote a probability
distribution, e.g., binomial distribution B(n, p) and normal
distribution N (µ, σ2), or a set, e.g., A. In particular, N denotes
the set of all natural numbers.

II. PRELIMINARIES

We consider a binary linear block code C(n, k) with binary
phase shift keying (BPSK) modulation over an additive white
Gaussian Noise (AWGN) channel, where k and n denote
the information block and codeword length, respectively. Let
b = [b]k1 and c = [c]n1 denote the information sequence
and codeword, respectively. Given the generator matrix G
of code C(n, k), the encoding operation can be described as
c = b · G. At the channel output, the received signal (also
referred to as the noisy signal) is given by r = s + w, where
s = [s]n1 denotes the sequence of modulated symbols with
su = (−1)cu ∈ {±1}, 1 ≤ u ≤ n, and w = [w]n1 is the
AWGN vector with zero mean and variance N0/2, for N0

being the single side-band power spectrum density. The signal-
to-noise ratio (SNR) is then given by γ = 2/N0.

At the receiver, the bit-wise hard decision vector y = [y]n1
can be obtained according to the following rule:

yu =

{
1, for ru < 0, 1 ≤ u ≤ n
0, for ru ≥ 0, 1 ≤ u ≤ n

(1)

where yu is the hard-decision estimation of codeword bit cu.
In general, if the codewords in C(n, k) have equal trans-

mission probability, the log-likelihood-ratio (LLR) of the u-
th symbol of the received signal can be calculated as lu ,
ln Pr(cu=1|ru)

Pr(cu=0|ru) , which can be further simplified to lu = 4ru/N0

if BPSK symbols are transmitted. We consider the scaled
magnitude of LLR as the reliability corresponding to bitwise
decision, defined by αu = |ru|, where | · | is the absolute op-
eration. Utilizing the bit reliability, the soft-decision decoding
can be effectively conducted using the OSD algorithm [11].
In OSD, a permutation π1 is performed to sort the received
signal r and the corresponding columns of the generator
matrix in descending order of their reliabilities. The sorted
received symbols and the sorted hard-decision vector are
denoted by r(1) = π1(r) and y(1) = π1(y), respectively, and
the corresponding reliability vector and permuted generator
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matrix are denoted by α(1) = π1(α) and G(1) = π1(G),
respectively.

Next, the systematic form matrix G̃ = [Ik P̃] is obtained
by performing Gaussian elimination on G(1), where Ik is a k-
dimensional identity matrix and P̃ is the parity sub-matrix. An
additional permutation π2 may be performed during Gaussian
elimination to ensure that the first k columns are linearly
independent. The permutation π2 will inevitably disrupt the de-
scending order property of α(1) to some extent; nevertheless, it
has been shown that the disruption is minor [11]. Accordingly,
the received symbols, the hard-decision vector, the reliability
vector, and the generator matrix are sorted to r̃ = π2(π1(r)),
ỹ = π2(π1(y)), α̃ = π2(π1(α)), and G̃ = π2(π1(G)),
respectively.

After the Gaussian elimination and permutations, the first
k index positions of ỹ are associated with the MRB [11],
which is denoted by ỹB = [ỹ]k1 , and the rest of positions
are associated with the redundancy part. A test error pattern
e = [e]k1 is added to ỹB to obtain one codeword estimate by
re-encoding as follows.

c̃e = (ỹB ⊕ e) G̃ =
[
ỹB ⊕ e (ỹB ⊕ e) P̃

]
, (2)

where c̃e = [c̃e]n1 is the ordered codeword estimate with
respect to TEP e.

In OSD, TEPs are checked in increasing order of their
Hamming weights; that is, in the i-reprocessing, all TEPs
of Hamming weight i will be generated and re-encoded.
The maximum Hamming weight of TEPs is limited to m,
which is referred to as the decoding order of OSD. Thus,
for an order-m decoding, maximum

∑m
i=0

(
k
i

)
TEPs will be

re-encoded to find the best codeword estimate. For BPSK
modulation, finding the best ordered codeword estimate c̃opt
is equivalent to minimizing the weighted Hamming distance
(WHD) between c̃e and ỹ, which is defined as [22]

d(W)(c̃e, ỹ) ,
∑

1≤u≤n
c̃e,u 6=ỹu

α̃u. (3)

Here, we also define the Hamming distance between c̃e and
ỹ as

d(H)(c̃e, ỹ) , ||c̃e ⊕ ỹ||, (4)

where || · || is the `1-norm. For simplicity of notations, we
denote the WHD and Hamming distance between c̃e and ỹ

by d(W)
e = d(W)(c̃e, ỹ) and d(H)

e = d(H)(c̃e, ỹ), respectively.
Furthermore, we alternatively use w(e) to denote the Ham-
ming weight of a binary vector e, e.g., w(e) = ||e||. Finally,
the estimate ĉopt corresponding to the initial received sequence
r, is obtained by performing inverse permutations over c̃opt,
i.e. ĉopt = π−11 (π−12 (c̃opt)).

III. ORDERED STATISTICS IN OSD

A. Distributions of received Signals

For the simplicity of analysis and without loss of generality,
we assume an all-zero codeword from C(n, k) is transmitted.
Thus, the u-th symbol of the AWGN channel output r is
given by ru = 1 + wu, 1 ≤ u ≤ n. Channel output r is

observed by the receiver and the bit-wise reliability is then
calculated as αu = |1 + wu|, 1 ≤ u ≤ n. Let us consider
the u-th reliability as a random variable denoted by Au, then
the sequence of random variables representing the reliabilities
is denoted by [A]n1 . Accordingly, after the permutations, the
random variables of ordered reliabilities α̃ = [α̃]n1 are denoted
by [Ã]n1 . Similarly, let [R]n1 and [R̃]n1 denote sequences of
random variables representing the received symbols before
and after permutations, respectively. Note that [A]n1 and [R]n1
are two sequences of independent and identically distributed
(i.i.d.) random variables. Thus, the pdf of Ru, 1 ≤ u ≤ n, is
given by

fR(r) =
1√
πN0

e−
(r−1)2

N0 , (5)

and the pdf of Au, 1 ≤ u ≤ n, is given by

fA(α) =

0, if α < 0,

e
− (α+1)2

N0√
πN0

+ e
− (α−1)2

N0√
πN0

, if α ≥ 0.
(6)

Given the Q-function defined by Q(x)= 1√
2π

∫∞
x

exp(−u
2

2 )du,
the cdf of Au can be derived as

FA(α) =

{
0, if α < 0,

1−Q( α+1√
N0/2

)−Q( α−1√
N0/2

), if α ≥ 0.
(7)

By omitting the second permutation in Gaussian elimina-
tion, the pdf of the u-th order reliability Ãu can be derived
as [23]

fÃu(α̃u) =
n!

(u− 1)!(n− u)!

·(1− FA(α̃u))u−1FA(α̃u)n−ufA(α̃u).

(8)

For simplicity, the permutation π2 is omitted in the subsequent
analysis in this paper, since the influence of π2 in OSD is
minor1. Similar to (8), the joint pdf of Ãu and Ãv , 1 ≤ u <
v ≤ n, can be derived as follows.

fÃu,Ãv (α̃u, α̃v) =
n!

(u− 1)!(v − u− 1)!(n− v)!

·(1−FA(α̃u))u−1 (FA(α̃u)−FA(α̃v))
v−u−1

·FA(α̃v)
n−vfA(αu)fA(α̃v)1[0,α̃u](α̃v),

(9)

where 1X (x) = 1 if x ∈ X and 1X (x) = 0, otherwise. For the
sequence of ordered received signals [R̃]n1 , the pdf of R̃i and
the joint pdf of R̃i and R̃j , 0 ≤ u < v ≤ n, are respectively
given by

fR̃u(r̃u) =
n!

(u− 1)!(n− u)!

·(1− FA(|r̃u|))u−1FA(|r̃u|)n−ufR(r̃u),

(10)

1The second permutation π2 occurs only when the first k columns of
π1(G) are not linearly independent. As shown in [11, Eq. (59)], the
probability that permutation π2 is occurring is very small. Also, even if π2
occurs, the number of operations of π2 is much less than the number of
operations of π1 [11]. Therefore, we omit π2 in the following analysis for
simplicity.
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and

fR̃u,R̃v (r̃u, r̃v) =
n!

(u− 1)!(v − u− 1)!(n− v)!

·(1−FA(|r̃u|))u−1(FA(|r̃u|)−FA(|r̃v|))v−u−1

·FA(|r̃v|)n−vfR(r̃u)fR(r̃v)1[0,|r̃u|](|r̃v|).
(11)

In OSD, the ordered received sequence is divided into MRB
and redundancy parts as defined in Section II. Then, the
reprocessing re-encodes the MRB bits with TEPs to generate
entire codeword estimates with redundancy bits. Thus, it is
necessary to find the number of errors within these two
parts (i.e., MRB and the redundancy part) separately, since
they will affect the distance between codeword estimates
and the received sequence in different ways, which will be
further investigated in the subsequent sections. First of all, the
statistics of the number of errors in the ordered hard-decision
vector ỹ is summarized in the following Lemma.

Lemma 1. Let random variable Eba denote the number of
errors in the positions from a to b, 1 ≤ a < b ≤ n over the
ordered hard-decision vector ỹ. The probability mass function
pEba(j) of Eba, for 0≤ j≤ b − a + 1, is given by (12) on the
top of this page, where fÃa(x) and fÃa,Ãb(x, y) are given by
(8) and (9), respectively, and p(x, y) is given by

p(x, y) =
Q(−2x−2√

2N0
)−Q(−2y−2√

2N0
)

Q(−2x−2√
2N0

)−Q(−2y−2√
2N0

) +Q( 2y−2√
2N0

)−Q( 2x−2√
2N0

)
.

(13)

Proof:
Let us first consider the case when a > 1 and b < n, and

other cases can be easily extended. Asssume the (a − 1)-th
and (b + 1)-th ordered reliabilities are given by Ãa−1 = x
and Ãb+1 = y, respectively. Then, it can be obtained that the
ordered received symbols [R̃a, R̃a+1, . . . , R̃b] = [R̃]ba satisfy

x ≥ |R̃a| ≥ |R̃a+1| ≥ . . . ≥ |R̃b−1| ≥ |R̃b| ≥ y. (14)

Because [R̃]n1 is obtained by permuting [R]n1 , these b−a+1
ordered random variables [R̃]ba uniquely correspond to b−a+1
unsorted random variables [R`a , R`a+1 . . . , R`b ] = [R`]

b
a. In

other words, for an R̃u, a ≤ u ≤ b, there exists an R`u ,
1 ≤ `u ≤ n, that satisfies R̃u = R`u .

From the correspondence, there are b − a + 1 unsorted
reliabilities [R`]

b
a ∈ [R]n1 satisfying x ≥ |R`u | ≥ y, where

1 ≤ `u ≤ n and a < u < b. Because [R]n1 are i.i.d.
random variables, for an arbitrary R`u ∈ [R`]

b
a, the probability

that R`u results in an incorrect bit in [y`]
b
a conditioning on

Ãa−1 = x and Ãb+1 = y is given by

p(x, y) =
Pr(−x ≤ R`u ≤ −y)

Pr(−x ≤ R`u ≤ −y) + Pr(y ≤ R`u ≤ x)
. (15)

It can be seen that Pr(−x ≤ R`u ≤ −y) = Q(−2x−2√
2N0

) −
Q(−2y−2√

2N0
) and Pr(y ≤ R`u ≤ x) = Q( 2y−2√

2N0
) − Q( 2x−2√

2N0
),

which are respectively given by the areas of the shadowed parts
on the left and right sides of the zero point in Fig. 1. Thus,
by comparing the areas of two shadowed parts, the probability

Fig. 1. Demonstration of obtaining p(x, y) in (16).

p(x, y) can be derived as

p(x, y) = Pr(R`u < 0 | x ≥ |R`u | ≥ y)

=
Q(−2x−2√

2N0
)−Q(−2y−2√

2N0
)

Q(−2x−2√
2N0

)−Q(−2y−2√
2N0

) +Q( 2y−2√
2N0

)−Q( 2x−2√
2N0

)
.

(16)

Therefore, conditioning on Ãa−1 = x and Ãb+1 = y, the
probability that [Rl]

b
a results in exact j errors in [y`]

b
a is given

by

pEba(j|x, y) =

(
b− a+ 1

j

)
p(x, y)j(1− p(x, y))b−a+1−j .

(17)
It can be noticed that (17) depends on x and y, i.e., the values
of Ãa−1 and Ãb+1, respectively. By integrating (17) over x
and y with fÃa−1,Ãb+1

(x, y), we can easily obtain pEba(j) for
the case {a > 1 and b < n}.

For the case when a > 1 and b = n, we can simply assume
that Ãa−1 = x. Then, it can be obtained that the ordered
received symbols [R̃a, R̃a+1, . . . , R̃n] satisfy

x ≥ |R̃a| ≥ |R̃a+1| ≥ . . . ≥ |R̃n| ≥ 0. (18)

Using the relationship between ordered and unsorted random
variables, there are n− a+ 1 unsorted random variables R`u ,
a ≤ u ≤ n, satisfying x ≥ |R`u | ≥ 0. For each R`u ,
the probability that it results in an incorrect bit in [y`]

n
a is

given by p(x, 0). Finally, by integrating
(
n−a+1

j

)
p(x, 0)j(1−

p(x, 0))n−a+1−j over x, the case {a > 1, b = n} is obtained.
Similarly, the case {a = 1, b < n} of (12) can be obtained

by assuming Ãb+1 = y, and considering there are b unsorted
random variables [R`]

b
1 satisfying ∞ ≥ |R`u | ≥ y and having

average error probability p(∞, y). Then, the case {a = 1,
b < n} of (12) can be derived by integrating

(
b
j

)
p(∞, y)j(1−

p(∞, y))b−j over Ãb+1 = y with the pdf fÃb+1
(y).

If a = 1 and b = n, the event {there are j errors in ỹ} is
equivalent to {there are j errors in y}, since ỹ is obtained
by permuting y. Thus, pEba(j) = pEn1 (j) can be simply

obtained by pEba(j) =
(
n
j

) (
1−Q( −2√

2N0
)
)j
Q( −2√

2N0
)n−j . On
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pEba(j) =



∫ ∞
0

∫ ∞
0

(
b− a+ 1

j

)
p(x, y)j(1− p(x, y))b−a+1−jfÃa−1,Ãb+1

(x, y)dydx, for a > 1 and b < n∫ ∞
0

(
n− a+ 1

j

)
p(x, 0)j(1− p(x, 0))n−a+1−jfÃa−1

(x)dx, for a > 1 and b = n∫ ∞
0

(
b

j

)
p(∞, y)j(1− p(∞, y))b−jfÃb+1

(y)dy, for a = 1 and b < n(
n

j

)(
1−Q

(
−2√
2N0

))j
Q

(
−2√
2N0

)n−j
, for a = 1 and b = n

(12)

the other hand, it can also be obtained by considering that
there are n unsorted random variables having error probability
p(∞, 0), because p(∞, 0) = 1−Q( −2√

2N0
).

Please note that the case {a = 1, b < n} of Lemma 1 was
also investigated in the previous work [13, Eq. (16)].

We show the pmf of Ek1 for a (128, 64, 22) eBCH code
at different SNRs in Fig. 2. As can be seen, Lemma 1 can
precisely describe the pmf of the number of errors over the
ordered hard-decision vector ỹ. Moreover, it can be observed
from the distribution of Ek1 that the probability of having
more than min{ddH/4−1e, k} errors is relatively low at high
SNRs, which is consistent with the results in [11], where
dH is the minimum Hamming distance of C(n, k). For the
demonstrated (128, 64, 22) eBCH code, the OSD decoding
with order min{ddH/4 − 1e, k} = 5 is nearly maximum-
likelihood [11].

B. Properties of Ordered Reliabilities and Approximations

Motivated by [21], we give an approximation of the ordered
reliabilities in OSD using the central limit theorem, which can
be utilized to simplify the WHD distributions in the following
sections. We also show that the event {Ek1 = j} tends to
be independent of the event {the `-th (` > k) position of
ỹ is in error} when SNR is high. Furthermore, despite the
independence shown in the high SNR regime, for the strict
dependency between ordered reliabilities Ãu and Ãv , 1 ≤ u <
v ≤ n, we prove that the covariance cov(Ãu, Ãv) is non-
negative.

For the ordered reliability random variables [Ã]n1 , the dis-
tribution of Ãu, 1 ≤ u ≤ n, can be approximated by a normal
distribution N (E[Ãu], σ2

Ãu
) with the pdf given by

fÃu(α̃u) ≈ 1√
2πσ2

Ãu

exp

(
− (α̃u − E[Ãu])2

2σ2
Ãu

)
, (19)

where
E[Ãu] = F−1A (1− u

n
) (20)

and

σ2
Ãu

= πN0
(n− u)u

n3

·

(
exp

(
− (E[Ãu] + 1)2

N0

)
+ exp

(
− (E[Ãu]− 1)2

N0

))−2
.

(21)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) linear scale

0 1 2 3 4 5 6
10-5

10-4

10-3

10-2

10-1

100

(b) logarithmic scale

Fig. 2. The probability of j errors occurring over [1, k] positions of ỹ in
decoding the eBCH (128, 64, 22) code at different SNRs.

Details of the approximation can be found in Appendix A.
Similarly, the joint distribution of Ãu and Ãv , 0 ≤ u < v ≤ n,
can be approximated to a bivariate normal distribution with the
following joint pdf

fÃu,Ãv (α̃u, α̃v) ≈
1

2πσÃuσÃv|Ãu=α̃u

· exp

(
− (α̃u−E[Ãu])2

2σ2
Ãu

− (α̃v−E[Ãv|Ãu= α̃u])2

2σ2
Ãv|Ãu=α̃u

)
,

(22)

where
E[Ãv|Ãu = α̃u] = γ−1α̃u

(
v − u
n− u

)
, (23)
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and

σ2
Ãv|Ãu=α̃u

= πN0
(n− v)(v − u)

(n− u)3

·

exp
(
−(E[Ãv|Ãu=α̃u]−1)2

N0

)
+exp

(
−(E[Ãv|Ãu=α̃u]+1)2

N0

)
FA(α̃u)

−2.
(24)

In (23), γα̃u (t) is defined as follows

γα̃u (t) =
FA(α̃u)− FA(t)

FA(α̃u)
. (25)

Details of this approximation are summarized in Appendix B.
Note that although (19) and (22) provide approximations of
the distributions regarding ordered reliabilities Ãu and Ãv , the
means and variances given by (20), (21), (23), and (24) are
determined with a rigorous derivation without approximations,
as shown in Appendix A and B.

We show the distributions of ordered reliabilities in the
decoding of a (128, 64, 22) eBCH code in Fig. 3. As can be
seen, the normal distribution N (E[Ãu], σ2

Ãu
) with the mean

and variance given by (20) and (21), respectively, provides a
good approximation to (8) for a wide range of u. Particularly,
the approximation of the distribution of the u-th reliability
Ãu is tight when u is not close to 1 or n. Specifically, when
u = n/2 (by assuming n is even, similar analysis can be drawn
for u = bn/2c if n is odd), it can be seen that Ãn

2
is the

median of the n samples [α1, α2, . . . , αn] of random variable
A. Thus, when n is large, Ãn

2
is asymptotically normal with

mean mA and variance 1
4nfA(mA)2 [24], where mA is the

median of the distribution of A, defined as a real number
satisfying∫ mA

−∞
fA(x)dx ≥ 1

2
and

∫ ∞
mA

fA(x)dx ≥ 1

2
. (26)

Because fA(x) is a continuous pdf , it can be directly obtained
that mA = F−1A ( 1

2 ) from (26), that is, mA is also given by
(20) when u = n/2. Then, substituting u = n/2 and mA =
F−1A ( 1

2 ) = E[Ãn
2

] into (21), it can be obtained that

σ2
Ãn

2

=
πN0

4n

(
exp

(
− (mA+1)2

N0

)
+exp

(
− (mA−1)2

N0

))−2
=

1

4nfA(mA)2
.

(27)

Therefore, it can be concluded that (19) with mean (20) and
variance (21) provides a tight approximation for Ãn

2
, which

is consistent with the results given in [24].

Next, we give more results regarding the distributions of the
ordered reliabilities. Based on the mean of Ãv conditioning on
Ãu = α̃u, i.e., E[Ãv|Ãu = α̃u] given by (23), we observe that

FA(E[Ãv|Ãu = α̃u])

FA(α̃u)
=
n− v
n− u

. (28)

In the asymptotic scenario, where the SNR goes to infinity,

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

Fig. 3. The approximation of the distribution of the uth ordered reliability
in decoding a (128, 64, 22) eBCH code when SNR = 3 dB.

we have

lim
N0→0

FA(E[Ãv|Ãu = α̃u])
(a)
=

n− v
n− u

FA(E[Ãu])

=

(
n− v
n− u

)(
n− u
n

)
= FA(E[Ãv]),

(29)

where the step (a) follows from that Ãu concentrates on the
mean when N0 → 0. Eq. (29) implies that E[Ãv|Ãu = α̃u]
tends toward E[Ãv] when the SNR is high enough. Similarly
for the variance, we obtain

σ2
Ãv|Ãu=α̃u
σ2
Ãv

=
(n−v)(v−u)

(n− u)3
· (n−u)2

n2
· n3

(n−v)v
=

(v−u)n

(n−u)v
,

(30)
which implies that σ2

Ãv|Ãu=α̃u
≈ σ2

Ãv
when u� v. Combin-

ing (29) and (30), we can conclude that at high SNRs and when
u� v, ordered reliabilities Ãu and Ãv tend to be independent
of each other, i.e., fÃu,Ãv (α̃u, α̃v) ≈ fÃu(α̃u)fÃv (α̃v).

Based on Lemma 1 and the distribution of ordered reliabil-
ities, Pr(Ek1 = j) and the probability that the `-th position of
ỹ is in error, denoted by Pe(`), are respectively given by

Pr(Ek1 =j) = pEk1 (j)

=

∫ ∞
0

(
k

j

)
p(∞, y)j(1− p(∞, y))k−jfÃk(y)dy,

(31)

and
Pe(`) =

∫ ∞
0

fR(−x)

fR(x) + fR(−x)
fÃ`(x)dx. (32)

At high SNRs and when `� k, we further obtain that

Pr(Ek1 =j)Pe(`)

=

∫ ∞
0

(
k

j

)
p(∞, y)j(1− p(∞, y))k−jfÃk(y)dy

·
∫ ∞
0

fR(−x)

fR(x) + fR(−x)
fÃ`(x)dx
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≈
∫ ∞
0

∫ ∞
0

(
k

j

)
p(∞, y)j(1− p(∞, y))k−j (33)

·
(

fR(−x)

fR(x) + fR(−x)

)
fÃk,Ã`(x, y)dxdy

= Pr({Ek1 = j} ∩ {the `-th bit of ỹ is in error}).

Eq. (33) holds because fÃ`,Ãk(α̃`, α̃k) ≈ fÃ`(α̃`)fÃk(α̃k).
From (33) we can see that the event {Ek1 = j} tends to be
independent of the event {the `-th bit of ỹ is in error} when
`� k and at high SNRs. This conclusion is in fact consistent
with the conclusion presented in [21] that despite R̃u and R̃v ,
1 ≤ u < v ≤ n, are statistically dependent, their respective
error probabilities tend to be independent, for n large enough
and n� u.

In the following Lemma, we show that despite Ãu and Ãv
tend to be independent when SNR is high and u � v, their
covariance cov(Ãu, Ãv) is non-negative for any u and v, 1 ≤
u < v ≤ n.

Lemma 2. For any u and v, 1 ≤ u < v ≤ n, the covariance
of reliabilities Ãu and Ãv satisfies cov(Ãu, Ãv) ≥ 0.

Proof: For the reliabilities before and after ordering, we
have

∑n
u=1 Ãu =

∑n
u=1Au and

∑n
u=1 Ã

2
u =

∑n
u=1A

2
u and

by taking expectation on both sides, we obtain the following
inequality

E[Ã2
u] + E[Ã2

v] ≤
n∑
u=1

E[Ã2
u] =

n∑
u=1

E[A2
u] = nE[A2] <∞,

(34)
where the last inequality is due to the fact that the second
moment of normal distribution exists and is finite. Then,
following the argument in [25, Theorem 2.1] for the ordered
statistics, the covariance of the u-th variable and v-th variable
is non-negative if the sum of corresponding second moments
is finite. This completes the proof.

IV. THE HAMMING DISTANCE IN OSD

A. 0-Reprocessing Case

Let us first consider the Hamming distance d
(H)
0 =

d(H)(c̃0, ỹ) in the 0-reprocessing where no TEP is added
to MRB positions before re-encoding, i.e., c̃0 = ỹBG̃. To
find the distribution of 0-reprocessing Hamming distance, we
now regard it as a random variable denoted by D

(H)
0 , and

accordingly d(H)
0 is the sample of D(H)

0 .
Let us re-write ỹ and c̃0 as ỹ = [ỹB ỹP] and c̃0 =

[c̃0,B c̃0,P], respectively, where subscript B and P denote the
first k positions and the remaining positions of a length-n vec-
tor, respectively. Also, let us define c̃ = π2(π1(c)) = [c̃B c̃P]
representing the transmitted codeword after permutations,
which is unknown to the decoder but useful in the analysis
later. Accordingly, we define ẽ = [ẽB ẽP] as the permuted
hard-decision error, i.e., ẽ = c̃⊕ ỹ. For an arbitrary permuted
codeword c̃′ = [c̃′B c̃′P] from C(n, k), where c̃′ is generated
by an information vector b′ with Hamming weight w(b′) = q
and the permuted generator matrix G̃, i.e., c̃′ = b′G̃, we
further define pcP

(u, q) as the probability of w(c̃′P) = u when
w(b′) = q i.e., pcP

(u, q) = Pr(w(c̃′P) =u|w(b′) = q). It can

be seen that pcP(u, q) is characterized by the structure of the
generator matrix G of C(n, k), which is independent of the
channel conditions.

In the 0-reprocessing, the Hamming distance D
(H)
0 is af-

fected by both the number of errors in ỹP and also the
Hamming weights of the parity part c̃′P of permuted codewords
c̃′ from C(n, k) simultaneously, which is explained in the
following Lemma.

Lemma 3. After the 0-reprocessing of decoding a linear block
code C(n, k), the Hamming distance D(H)

0 between ỹ and c̃0
is given by

D
(H)
0 =

{
Enk+1, w.p. pEk1 (0),

WcP
, w.p. 1− pEk1 (0),

(35)

where Enk+1 is the random variable defined by (12) in Lemma
1 and pEk1 (0) is given by

pEk1 (0) =

∫ ∞
0

(1− p(∞, y))kfÃk+1
(y)dy. (36)

WcP
is a discrete random variable whose pmf is given by

pWcP
(j) =

n−k∑
u=0

n−k∑
v=0

(
u
δ

)(
n−k−u
v−δ

)(
n−k
v

) · pd(u) · pEnk+1
(v)

· 1N
⋂
[0,min(u,v)](δ),

(37)

where δ = (u+ v − j)/2, and

pd(u) =
1

1− pEk1 (0)

k∑
q=1

pEk1 (q)pcP(u, q), (38)

pcP(u, q) is defined as the probability of w(c̃′P) = u for
an arbitrary permuted codeword c′ from C(n, k), and here
the codeword c̃′ is generated by an information vector with
Hamming weight q.

Proof: The hard-decision results can be represented by

ỹ = [ỹB ỹP] = [c̃B ⊕ ẽB c̃P ⊕ ẽP], (39)

where ẽB and ẽP are respectively the errors over MRB and
the parity part introduced by the hard-decision decoding. If
ẽB = 0, the 0-reprocessing result is given by c̃0 = [c̃B ⊕
0]G̃ = [c̃B c̃P]. Therefore, the Hamming distance is obtained
as

D
(H)
0 = ‖ỹ ⊕ c̃0‖ = ‖c̃P ⊕ c̃P ⊕ ẽP‖ = Enk+1. (40)

The probability of event {ẽB = 0} is simply given by pEk1 (0)
according to Lemma 1.

If there are errors in ỹB, i.e., ẽB 6= 0, the 0-reprocessing
result is given by c̃0 = [c̃B⊕ ẽB]G̃ = [c̃0,B c̃0,P]. Thus, D(H)

0

is obtained as

D
(H)
0 = ‖ỹ ⊕ c̃0‖ = ‖c̃0,P ⊕ c̃P ⊕ ẽP‖. (41)

Let d̃0 = [d̃0,B d̃0,P] = [d̃0]n1 , where d̃0,B = [d̃0]k1 is an
all-zero vector and d̃0,P = c̃0,P⊕ c̃P⊕ ẽP. Because C(n, k)
is a linear block codes, c̃′0,P = c̃0,P ⊕ c̃P = [c̃′0]nk+1 is also
the parity part of a codeword of C(n, k). In fact, it can be
also observed that c̃′0 = ẽBG̃ = [ẽB c̃′0,P]. Let us define
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a random variable WcP
representing the Hamming weight of

d̃0,P = c̃′0,P ⊕ ẽP. When ẽB 6= 0, it can be seen that D(H)
0 =

WcP .
Therefore, because d̃0,P = c̃′0,P ⊕ ẽP, the pmf of WcP

is
determined by both c̃′0,P and ẽP. By observing that c̃′0 = ẽBG̃
and that each column of G has an equal probability to be
permuted to other columns of G̃ when receiving a new signal
from the channel, the probability Pr(w(c̃′0,P) = u) can be
given by pcP

(u,w(ẽB)), i.e., the probability that the Hamming
weight of the parity part of a codeword is given by u, where
the codeword is generated by an information vector with
Hamming weight w(ẽB). Furthermore, because ẽB is in fact
the errors in MRB introduced by the hard decision, the pmf
of w(ẽB) is simply given by (12) introduced in Lemma 1.
Finally, let pd(u) denote the pmf of w(c̃′0,P), pd(u) can be
derived using the law of total probability, i.e.,

pd(u) =
1

1− pEk1 (0)

k∑
q=1

pEk1 (q)pcP
(u, q). (42)

Hereby, we obtain (38).
Next, recall that d̃0,P = c̃′0,P ⊕ ẽP. To obtain the pmf

of WcP
, i.e., the Hamming weight of d̃0,P = c̃′0,P ⊕ ẽP, let

us first define the probability of w(d̃0,P) = j conditioning on
w(c̃′0,P) = u and w(ẽP) = v, simply denoted by pWcP

(j|u, v).
Since each column of G has an equal probability to be
permuted to other columns of G̃ when receiving a new signal
from the channel, each bit in c̃′0,P has an equal probability to
be nonzero. Furthermore, recalling the arguments in Lemma
1, conditioning on Ãk−1 = x, each bit in ẽ′P has an equal
probability p(x, 0) to be nonzero. Thus, pWcP

(j|u, v) is given
by

pWcP
(j|u, v) =

(
u
δ

)(
n−k−u
v−δ

)(
n−k
v

) · 1N
⋂
[0,min(u,v)](δ), (43)

where δ = u+v−j
2 represents the number of nonzero bits that

are unflipped from c̃′0,P to ẽP. Finally, by using the law of
total probability for all possible values of w(c̃′0,P) = u and
w(ẽP) = v, and Ãk−1 = x we can finally obtain pWcP

(j) as

pWcP
(j)=

∫ ∞
0

n−k∑
u=0

n−k∑
v=0

(
u
δ

)(
n−k−u
v−δ

)(
n−k
v

) · 1N
⋂
[0,min(u,v)](δ)

·pd(u)

(
n−k
v

)
p(x,0)v(1−p(x,0))n−k−vfÃk−1(x)dx

(a)
=

n−k∑
u=0

n−k∑
v=0

(
u
δ

)(
n−k−u
v−δ

)(
n−k
v

) pd(u)pEnk+1
(v) (44)

·1N
⋂
[0,min(u,v)](δ),

where step (a) follows from that pEnk+1
(v) =

∫∞
0

(
n−k
v

)
·

p(x, 0)v(1 − p(x, 0))n−k−vfÃk−1
(x)dx, as introduced in

Lemma 1. Recall that the probability of event {ẽB 6= 0}
can be derived as 1 − pEk1 (0) according to Lemma 1, and
D

(H)
0 = WcP

when ẽB 6= 0, then Lemma 3 is proved.
From (36), we can see that the probability pEk1 (0) is a

functions of k, n, the and noise power N0. If k and n are fixed,

pEk1 (0) is a monotonically increasing function of SNR. This
implies that the channel condition determines the weight of the
composition of the Hamming distance. Combining Lemma 1
and Lemma 3, the distribution of D(H)

0 is summarized in the
following Theorem.

Theorem 1. Given a linear block code C(n, k), the pmf of
the Hamming distance between ỹ and c̃0, D(H)

0 , is given by

p
D

(H)
0

(j) = pEk1 (0)pEnk+1
(j) +

(
1− pEk1 (0)

)
pWcP

(j), (45)

where pEk1 (0) is given by (36), and pEnk+1
(j) and pWcP

(j) are
the pmfs of random variables Enk+1 and WcP

given by (12)
and (37), respectively.

Proof: The pmf of D(H)
0 can be derived in the form of

conditional probability as

p
D

(H)
0

(j) = Pr(ẽB = 0)p
D

(H)
0

(j|ẽB = 0)

+ Pr(ẽB 6= 0)p
D

(H)
0

(j|ẽB 6= 0).
(46)

From the Lemma 3, we can see that Pr(ẽB = 0) and
Pr(ẽB 6= 0) are given by pEk1 (0) and 1−pEk1 (0), respectively,
and the conditional pmf p

D
(H)
0

(j|ẽB = 0) and p
D

(H)
0

(j|ẽB 6=
0) are given by pEnk+1

(j) and pWcP
(j), respectively. Therefore,

the pmf of D(H)
0 can be obtained as (45).

It is important to note that in (45), pEnk+1
(j) is given

by (12) in Lemma 1 when a = k + 1 and b = n, and
pWcP

(j) is affected by pcP
(j, q). Here pcP

(j, q) is defined
as the probability that the parity-part Hamming weight of
an arbitrary codeword from C(n, k) is given by j, where the
permuted codeword is generated by an information vector with
Hamming weight q. As can be seen, pcP(j, q) is determined
by the code structure and weight enumerator. One can find
pcP

(j, q) if the codebook of C(n, k) is known or via computer
search. It is beyond the scope of this paper to theoretically
determine pcP

(j, q) for a specific code; nevertheless, in Section
IV-C, we will show examples of p

D
(H)
0

(j) for some well-
known codes.

B. i-Reprocessing Case

In this section, we extend the analysis provided for the Ham-
ming distance in 0-reprocessing in Theorem 1 to any order-i
reprocessing, 0 < i ≤ m, where m is the predetermined max-
imum reprocessing order of the OSD algorithm. Let us define
a random variable D(H)

i representing the minimum Hamming
distance between codeword estimates and ỹ after the first i
reprocessings of an order-m OSD have been performed, and
d
(H)
i is the sample of D(H)

i . For the simplicity of expression,
for integers u, v and w satisfying 0 ≤ u < v ≤ w, we
introduce a new notation as follows

bwu:v =

v∑
j=u

(
w

j

)
. (47)

In an order-m OSD, the decoder first performs the 0-
reprocessing and then performs the following stages of re-
processing with the increasing order i, 1 ≤ i ≤ m. As
defined, D(H)

i is the minimum of the Hamming weights
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between
∑i
j=0

(
k
j

)
codeword estimates and ỹ. To characterize

the distribution of D(H)
i , we make an important assumption

that the Hamming weights of any two codeword estimates
generated in OSD are independent, and elaborate on the
rationality and limits of this assumption in Remark 1. Under
this assumption, we summarize the distribution of D(H)

i as
follows, started from Lemma 4 and concluded by Theorem 2.

Lemma 4. In an order-m OSD, assume that the number of
errors over MRB introduced by the hard decision, denoted by
w(ẽB), satisfies w(ẽB) > i. Then, for an arbitrary TEP e
satisfying w(e) ≤ i (0 ≤ i ≤ m), the Hamming weight of e⊕
ẽB, denoted by a random variable We,ẽB

, has the conditional
pmf given by

pWe,ẽB
(j|w(ẽB) > i)

=

k∑
u=i+1

i∑
v=0

(
u
δ

)(
k−u
v−δ
)(

k
v

) ·
pEk1 (u)

1−
∑i
q=0 pEk1 (q)

·
(
k
v

)
bk0:i

· 1N
⋂
[0,min(u,v)](δ),

(48)

where δ = u+v−j
2 and pEk1 (u) is given by (12).

Proof: As introduced in Lemma 1, the probability
Pr(w(ẽB) = u|w(ẽB) > i) is given by

Pr(w(ẽB) = u|w(ẽB) > i) =
pEk1 (u)

1−
∑i
q=0 pEk1 (q)

. (49)

Furthermore, the probability Pr(w(e) = v) for selecting an
arbitrary TEP with the maximal Hamming weight i is given
by

Pr(w(e) = v) =

(
k
v

)
bk0:i

. (50)

Similar to (37), summing up the conditional probabilities
Pr(w(ẽB ⊕ e) = j | w(ẽB) = u,w(ẽB) > i,w(e) = v) with
coefficients Pr(w(ẽB)=u|w(ẽB)>i)Pr(w(e) = v), Eq. (48)
can be finally obtained.

Based on Lemma 4, we can directly show that for an integer
u, 0 ≤ u ≤ k, the conditional pmf pWe,ẽB

(j|w(ẽB) = u) is
given by

pWe,ẽB
(j|w(ẽB)=u) =

i∑
v=0

(
u
δ

)(
k−u
v−δ
)(

k
v

) ·
(
k
v

)
bk0:i
·1N

⋂
[0,min(u,v)](δ).

(51)
where δ = u+v−j

2 .

Then, let a random variable We,cP denote the Hamming
weight of c̃′e,P ⊕ ẽP for an arbitrary TEP e processed in the
first i reprocessings of OSD, where c̃′e,P is the parity part of
c̃′e = [e ⊕ ẽB]G̃. We obtain the conditional pmf of We,cP

when w(ẽB) = u and w(ẽP) = v in the following lemma.

Lemma 5. When the number of errors over ỹB is given by
w(ẽB) = u and the number of errors over ỹP is given by
w(ẽP) = v, for an arbitrary TEP e in an order-m OSD, the
Hamming weight of c̃′e,P⊕ẽP, denoted by the random variable

We,cP
, has the conditional pmf pWe,cP

(j|u, v) given by

pWe,cP
(j|u, v) =

n−k∑
`=0

(
v
δ

)(
n−k−v
`−δ

)(
n−k
`

) k∑
q=0

pWe,ẽB
(q|w(ẽB) = u)

· pcP(`, q) · 1N
⋂
[0,min(`,v)](δ),

(52)

where δ = `+v−j
2 .

Proof: Based on Lemma 4, the probability Pr(w(c̃′e,P) =
`|w(ẽB) = u) is given by

Pr(w(c̃′e,P)=`|w(ẽB)=u)

=

k∑
q=0

pWe,ẽB
(q|w(ẽB) = u)pcP

(`, q)
(53)

Then, similar to (37), summing up the conditional probabilities
Pr(w(c̃′e,P ⊕ ẽP) = j | w(c̃′e,P) = `, w(ẽP) = v) with
coefficients Pr(w(c̃′e,P) = `|w(ẽB) = u), (52) can be
obtained.

For the simplicity of notation, we denote pWe,cP
(j|w(ẽB)>

i,w(ẽP) = v) as pWe,cP
(j|i(>), v). Following Lemma 4 and

Lemma 5, pWe,cP
(j|i(>), v) is given by

pWe,cP
(j|i(>), v)

=

n−k∑
`=0

(
v
δ

)(
n−k−v
`−δ

)(
n−k
`

) k∑
q=0

pWe,ẽB
(q|w(ẽB) > i)pcP(`, q)

· 1N
⋂
[0,min(`,v)](δ),

(54)

where δ = `+v−j
2 .

Based on the results and notations introduced in Lemma
4 and Lemma 5, the distribution of the minimum Hamming
distance D(H)

i after the i-reprocessing of an order-m OSD is
then given in the following Theorem.

Theorem 2. Given a linear block code C(n, k), the pmf of
the minimum Hamming distance D(H)

i after the i-reprocessing
of an order-m OSD decoding is given by

p
D

(H)
i

(j)=
i∑

u=0

pEk1 (u)

n−k∑
v=0

pEnk+1
(v)pEW (j|u, v)

+

(
1−

i∑
u=0

pEk1 (u)

)
n−k∑
v=0

pEnk+1
(v)p̃

WcP
(j−i,bk0:i|i(>), v)

(55)

where pEW (j|u, v) is given by

pEW (j|u,v)=


n−k∑
`=u+v

p
W̃cP

(`, bk1,i|u, v), for j = u+v,

p
W̃cP

(j, bk1,i|u, v), for 1≤j<u+v,

0, otherwise.
(56)

p
W̃cP

(j, b|u, v) is given by

p
W̃cP

(j, b|u, v) = b

∫ FWe,cP
(j|u,v)

FWe,cP
(j|u,v)−pWe,cP

(j|u,v)
(1− `)b−1d`,

(57)
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and FWe,cP
(j|u, v) and pWe,cP

(j|u, v) are the conditional cdf
and cdf of random variable We,cP introduced in Lemma 5,
respectively.

Proof: The proof is provided in Appendix C.

Remark 1. Theorem 2 is developed based on the assumption
that the Hamming weights of any two codeword estimates
generated in OSD are independent. In other words, the Ham-
ming weights of any linear combination of the rows of G̃
are independent. This assumption is reasonable when the
Hamming weight of each row of G̃ is not much lower than
n−k. However, when the Hamming weight of each row of G̃
is much lower than n − k, dependencies will possibly occur
between the Hamming weights of two codewords who share
the rows of G̃ as the basis, especially for codeword estimates
generated by TEPs with low Hamming weights. In this case,
(55) will show discrepancies with the actual distributions
of D

(H)
i , and (57) needs to be modified for considering

discrete ordered statistics with correlations between variables.
Therefore, Theorem 2 may not be compatible with the codes
with small minimum distance dH or with sparse generator
matrix G, because the rows of the generator matrix of these
codes tend to have lower Hamming weights.

C. Approximations and Numerical Examples

In this section, we simplify and approximate the Hamming
distance distributions given in Theorem 1 and 2 when the
weight spectrum of C(n, k) can be well approximated by the
binomial distribution. Then, we verify Theorem 1 and 2 by
comparing simulation results and numerical results for Polar
and eBCH codes.

Recalling the pmf of 0-reprocessing Hamming distance
D

(H)
0 given by (45), random variables Ek1 and WcP need to be

approximated separately. Starting from Ek1 , we first define a
binomial random variable Xu ∼ B(n− k, p(u∆x, 0)), where
u is a non-negative integer, ∆x is the infinitesimal of x and
p(x, 0) is given by (16). Xu in fact represents the number of
errors resulted by (n− k) unsorted received symbols [R]n−k1

satisfying 0 ≤ [|R|]n−k1 ≤ u∆x. Since Xu is binomial, the
mean and variance of Xu can be found as follows

E[Xu] = (n− k)p(u∆x, 0) (58)

and
σ2
Xu = (n− k)p(u∆x, 0)(1− p(u∆x, 0)), (59)

respectively. When (n − k) is large, Xu can be naturally
approximated by the normal distribution with the following
pdf

fXu(y) =
1√

2πσ2
Xu

exp

(
− (y − E[Xu])2

2σ2
Xu

)
. (60)

According to the case of {a ≥ 1, b = n} of (12), consider con-
verting the integral operation into a summation of infinitesimal
quantities, then the pmf of random variable Enk+1 given by

(12) can be represented by the linear combination of fXu(y)
for u = 0, 1, . . . ,∞ with weights fÃk(u∆x)∆x, i.e.,

pEnk+1
(j) =

∞∑
u=0

fÃk(u∆x)∆xfXu(j). (61)

Therefore, we regard pEnk+1
(j) as the infinite mixture model

of Gaussian distributions. Accordingly, the mean is given by

E[Enk+1] =

∞∑
u=0

(n− k)p(u∆x, 0)fÃk+1
(u∆x)∆x

=

∫ ∞
0

(n− k)p(x, 0)fÃk(x)dx,

(62)

and the variance is given by

σ2
Enk+1

=

∫ ∞
0

(n− k)(2p(x, 0)− p(x, 0)2)fÃk(x, y)dx

−
(∫ ∞

0

(n− k)p(x, 0)fÃk(x)dx

)2

.

(63)

Furthermore, based on the argument of infinite Gaussian
mixture model and observing that Enk+1 is unimodal, we
approximate the distribution of Enk+1 by a normal distribution
N (E[Enk+1], σ2

Enk+1
), the pdf of which is given by

fEnk+1
(x) =

1√
2πσ2

Enk+1

exp

(
−

(x− E[Enk+1]2

2σ2
Enk+1

)
. (64)

We will show later via numerical examples that the approxi-
mation (64) could be accurate. Note that (64) can be further
tightened by truncating the function and restricting the support
to x ≥ 0. However, because the value of

∫ 0

−∞ fEnk+1
(x) is

negligible and for the simplicity of expression, we keep (64)
in its current form.

For the random variable WcP
whose pmf is given by (37),

obtaining an approximation is difficult. Hence, we consider
simplifying and approximating WcP only when the weight
spectrum of C(n, k) can be tightly approximated by the
binomial distribution 2. Assume C(n, k) is a linear block
code with the minimum weight dH and weight distribution
{|A0|, |A1|, . . . , |An|}, where Au is the set of codewords with
the Hamming weight u, and |Au| is the cardinality of Au.
Then, the probability that a codeword has weight u can be
represented by the truncated binomial distribution, i.e.

|Au|
2k
≈ 1

ψ2n

(
n

u

)
for u = 0 or u ≥ dH, (65)

where ψ = 1−
∑dH−1
u=1

(
n
u

)
2−n is the normalization coefficient

such that
∑n
u=dH

Au = 2k. For such a code C(n, k) whose
weight spectrum is well approximated by (65), we can obtain
that when

∑dH−1
u=1

(
n
u

)
2−n is negligible (i.e., when n � dH

and ψ ≈ 1). Thus, pcP
(u, q) in (38) can be approximated to

pcP(u, q) ≈ 1

2n−k

(
n− k
u

)
, (66)

and it is approximately independent of q. In this case, pd(u)

2There are many kinds of codes whose weight distribution can be approx-
imated by a binomial distribution [26], e.g., BCH codes etc.
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given by (38) can be approximated as

pd(u) ≈ 1

2n−k

(
n− k
u

)
. (67)

Then, substituting (67) into (37), the pmf pWcP
can be

approximated as

pWcP
(j)

(a)
≈
∫ ∞
0

(
n− k
j

)(
1

2
p(x, 0) +

1

2
(1− p(x, 0))

)j
·
(

1− 1

2
p(x, 0)− 1

2
(1−p(x, 0))

)n−k−j
fÃk−1

(x)dx

(b)
=

(
n− k
j

)(
1

2

)j (
1− 1

2

)n−k−j
= pd(j),

(68)

where step (a) takes pEnk+1
(j) =

∫∞
0

(
n−k
j

)
p(x, 0)j(1 −

p(x, 0))n−k−jfÃk−1
(x)dx and substitutes pd(u) with pd(2δ−

v + j), and step (b) follows from that 1
2p(x, 0) − 1

2 (1 −
p(x, 0)) = 1

2 . Therefore, when C(n, k) has the weight spec-
trum described by (65), pWcP

(j) can be approximated by a
normal random variable N ( 1

2 (n− k), 14 (n− k)) with the pdf

fWcP
(x) =

1√
1
2π(n− k)

exp

(
−

(x− 1
2 (n− k))2

1
2 (n− k)

)
. (69)

Finally, when C(n, k) has the weight spectrum described by
(65), the pmf of the Hamming distance in 0-reprocessing,
i.e., p

D
(H)
0

(x), introduced in Theorem 1 can be approximated
by f

D
(H)
0

(x), which is the pdf of a mixture of two normal
distributions given by

f
D

(H)
0

(x) = pEk1 (0)fEnk+1
(x) + (1− pEk1 (0))fWcP

(x), (70)

where fEnk+1
(x) and fWcP

(x) are respectively given by (64)
and (69).

When C(n, k) has the weight spectrum described by (65),
the distribution of the Hamming distance after i-reprocessing
introduced in Theorem 2 can also have a continuous approx-
imation based on the results of 0-reprocessing and contin-
uous ordered statistics. Similar to obtaining (68), the pmf
pWe,cP

(j|u, v) given by (52) can also be approximated to

pWe,cP
(j|u, v) ≈ 1

2n−k

(
n− k
u

)
, (71)

which is independent of u and v, and can be further approx-
imated by a normal random variable N ( 1

2 (n− k), 14 (n− k))
with the pdf fWe,cP

(x) = fWcP
(x). Replacing pWe,cP

(j|u, v)
and pEnk+1

(j) with fWcP
(x) and fEnk+1

(j) respectively in (55),
and converting discrete ordered statistics to continuous ordered
statistics in (57), the pmf of D(H)

i given by (55) can be
approximated by

f
D

(H)
i

(x) =

i∑
u=0

pEk1 (u)

(
fEnk+1

(x− u)

∫ ∞
x

f
W̃cP

(v, bk1:i)dv

+f
W̃cP

(x− u, bk1:i)
∫ ∞
x

fEnk+1
(v)dv

)
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Fig. 4. The distributions of D(H)
0 in decoding (128, 64, 22) eBCH code at

different SNRs.

+

(
1−

i∑
u=0

pEk1 (u)

)
f
W̃cP

(x− i, bk0:i), (72)

where

f
W̃cP

(x, b) = b · fWcP
(x)

(
1−

∫ x

−∞
fWcP

(v)dv

)b−1
. (73)

We take the decoding of eBCH codes and Polar codes
as examples to verify the accuracy of Hamming distance
distributions (45) and (55). We first show the distribution of
D

(H)
0 in decoding (128, 64, 22) eBCH code in Fig. 4. As

the SNR increases, it can be seen that the distribution will
concentrate towards left (i.e., D(H)

0 becomes smaller), which
indicates that the decoding error decreases as well.

We also show the distribution of D
(H)
i , i = 1, 2, 3, in

decoding (128, 64, 22) eBCH code in Fig. 5. From (55), we
can see that the distribution of DH

i is also a mixture of two
random distributions, and the weight of mixture is given by∑i
u=0 pEk1 (u) and 1−

∑i
u=0 pEk1 (u), respectively. It is known

that an order-i OSD can correct maximum i errors in the MRB
positions, therefore the decoding performance is determined by
the probability that the number of errors in MRB is less than
i [13], which is given by

∑i
u=0 pEk1 (u). From the simulation

results in Fig. 5, it can be seen that the weight of the first
term of (55) increases as the decoding order increases, which
implies that the decoding performance is improved with higher
reprocessing order.

Because the weight spectrum of (128, 64, 22) eBCH code
can be well approximated by the binomial distribution, we
verify the accuracy of the approximations obtained in (70)
and (72) for the distributions of D(H)

0 and D(H)
i in decoding

(128, 64, 22) eBCH code in Fig. 6. It can be seen that the
normal approximation of Hamming distance distribution is
tight, especially for low order reprocessings.

For the case that the binomial distribution cannot approxi-
mate the weight spectrum of the code, we take the (64, 21, 16)
Polar code as an example to verify Theorem 1 and Theorem
2. As depicted in Fig 7, the pmfs given by (45) and (55)
can accurately describe the distributions of D(H)

0 and D
(H)
i ,
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Fig. 5. The distributions of D(H)
i in decoding (128, 64, 22) eBCH code,

SNR = 1 dB.

0 5 10 15 20 25 30 35 40 45

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fig. 6. The Normal approximations of the distributions of D(H)
i in decoding

(128, 64, 22) eBCH code, SNR = 1 dB, i = 0, 1, 2.

respectively. Note that in the numerical computation, we
determine pcP

(`, q) in (52) by computer search. One can
further determine pcP

(`, q) theoretically based on the code
structure to enable an accurate calculation of (52).

V. THE WEIGHTED HAMMING DISTANCE IN OSD

In this section, we characterize the distribution of the WHD
in the OSD algorithm. Compared to the Hamming distance,
WHD plays a more critical role in the OSD decoding since it
is usually applied as the metric in finding the best codeword
estimate. Given the distribution of WHD, we can acquire more
information about a codeword candidate generated by the re-
encoding and benefit the decoder design.

The accurate characterization of the WHD distribution in-
volves the linear combination of a large number of dependent
and non-identical random variables. In what follows, we first
introduce the exact expression of WHD distribution in 0-
reprocessing, and then give a normal approximation using
the approximation we derived in Section III-B. The results

0 5 10 15 20 25 30 35
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0.06

0.08
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0.12

0.14

0.16

Fig. 7. The distributions of D(H)
i distribution in decoding (64, 21, 16) Polar

code, i = 0, 1.

of 0-reprocessing will be further extended to the general i-
reprocessing OSD case.

A. WHD distribution in the 0-reprocessing

Let c̃0 denote the codeword estimate after the 0-
reprocessing. The WHD between c̃0 and ỹ is defined as

d
(W)
0 = d(W)(c̃0, ỹ) ,

∑
1≤u<≤n
c̃0,u 6=ỹu

α̃u. (74)

Let D(W)
0 denote the random variable of 0-reprocessing WHD,

and d(W)
0 is the sample of D(W)

0 . Consider a vector tPh = [tP]h1
with length h, 0 ≤ h ≤ (n− k), representing a set of position
indices satisfying (k + 1) ≤ tP1 < tP2 < . . . < tPh ≤ n.
Assume that T P

h =
{
tPh
}

is the set of all the vectors tPh with
length h, thus the cardinality of T P

h is
(
n−k
h

)
. Let ztPh denote

a length-(n − k) binary vector which has nonzero elements
only in the positions indexed by tPh − k. Let us also define a
new random variable ÃtPh

representing the sum of reliabilities

corresponding to the position indices tPh , i.e., ÃtPh
=

h∑
u=1

ÃtPu ,

and the pdf of ÃtPh
is denoted by fÃ

tP
h

(x).

Assuming that the probability pcP
(u, q) with respect to

C(n, k) is known, we characterize the distribution of 0-
reprocessing WHD in Lemma 6 and Theorem 3 as follows.

Lemma 6. Given a linear block code C(n, k) and its re-
spective pcP

(u, q), consider the probability Pr(c̃′0,P ⊕ ẽP =

ztPh |ẽB 6= 0), denoted by Pc(tPh ), where c̃′0,P is the parity part
of c̃′0 = ẽBG̃ and ẽB 6= 0. Then, Pc(tPh ) is given by

Pc(tPh ) =
∑

x∈{0,1}n−k
Pr(c̃′0 = ztPh ⊕ x|ẽB 6= 0)Pr(ẽP = x),

(75)
where x = [x]n−k1 is a length-(n − k) binary vector, and
Pr(c̃′0 = ztPh ⊕ x|ẽB 6= 0) and Pr(ẽP = x) are respectively
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given by

Pr(c̃′0 =ztPh ⊕ x|ẽB 6= 0)=

k∑
q=1

pEk1 (q)pcP
(w(ztPh ⊕ x), q)

(1−pEk1 (0))
(

n−k
w(z

tP
h
⊕x)
) ,

(76)
and

Pr(ẽP =x) =

∫ ∞
0

· · ·︸ ︷︷ ︸
n−k−w(x)

∫ 0

−∞
· · ·︸ ︷︷ ︸

w(x)

(
n!

k!
FA(xk+1)k

n∏
v=k

fR(xv)

·
n∏

v=k+1

1[0,|xv−1|](|xv|)

) ∏
k<v≤n
zv=0

dxv
∏

k<v≤n
zv 6=0

dxv.

(77)

Proof: For a specific vector ztPh , there exist 2n−k possible
pairs of c̃′0,P and ẽP that satisfy c̃′0,P ⊕ ẽP = ztPh . To see
this, we assume that there exists an arbitrary length-(n − k)
binary vector x, then it can be noticed that ztPh = x⊕x⊕ztPh .
Therefore, (75) can be obtained by considering the probability
Pr(c̃′0 = x⊕ ztPh |ẽB 6= 0)Pr(ẽP = x).

When symbols with random noises are being received and
the generator matrix is permuted accordingly, each column of
the generator matrix has an equal probability of being per-
muted to any other columns. Thus, if w(c̃′0,P) = w(x⊕ ztPh ),
it can be seen that

Pr
(
c̃′0,P =x⊕ ztPh |w(c̃′0,P)=w(x⊕ ztPh )

)
=

1(
n−k

w(x⊕z
tP
h
)

) .
(78)

Then, by observing that Pr(w(c̃′0,P) = w(x⊕ztPh )|ẽB 6= 0) =

1
1−p

Ek1
(0)

k∑
q=1

pEk1 (q)pcP(w(x⊕ ztPh ), q), finally Pr(c̃′0 = x⊕

ztPh |ẽB 6= 0) can be determined as (76).
The probability Pr(ẽP = x) can be determined by consider-

ing the joint error probability of parity bits of ỹ, which can be
obtained by the joint distribution of ordered received symbols
[R̃]nk+1. According to the ordered statistics theory [27], the
joint pdf of [R̃]nk+1, denoted by f[R̃]nk+1

(xk+1, . . . , xn), can
be derived as

f[R̃]nk+1
(xk+1, . . . , xn)

=
n!

k!
FA(xk+1)k ·

n∏
v=k

fR(xv)

n∏
v=k+1

1[0,|xv−1|](|xv|).
(79)

Therefore, Pr(ẽP = x) can be finally determined as

Pr(ẽP = x)

=

∫ ∞
0

· · ·︸ ︷︷ ︸
n−k−w(x)

∫ 0

−∞
· · ·︸ ︷︷ ︸

w(x)

f[R̃]nk+1
(xk+1, . . . , xn)

∏
k<v≤n
zv=0

dxv
∏

k<v≤n
zv 6=0

dxv.

(80)

Finally, summing up the probability Pr(c̃′0 = x⊕ ztPh ) ·
Pr(ẽP = x) for 2n−k different x, (77) is obtained.

Theorem 3. Given a linear block code C(n, k) and its re-

spective pcP
(u, q), the pdf of the weighted Hamming distance

D
(W)
0 between ỹ and c̃0 after the 0-reprocessing is given by

f
D

(W)
0

(x) =

n−k∑
h=0

∑
tPh∈T

P
h

Pe(tPh )fÃ
tP
h

(x)

+

n−k∑
h=0

∑
tPh∈T

P
h

(1− pEk1 (0))Pc(tPh )fÃ
tP
h

(x),

(81)

where pEk1 (0) is given by (36), fÃ
tP
h

(x) is the pdf of the sum

of reliabilities corresponding to the position indices tPh , i.e.,
ÃtPh

=
∑h
u=1 ÃtPu , Pe(tPh ) is given by

Pe(tPh ) =

∫ ∞
0

· · ·︸ ︷︷ ︸
n−h

∫ 0

−∞
· · ·︸ ︷︷ ︸

h

(
n!

n∏
v=1

fR(xv)

n∏
v=2

1[0,|xv−1|](|xv|)

)

·
∏

0<v≤n
v∈tPh

dxv
∏

0<v≤n
v/∈tPh

dxv,

(82)

and Pc(tPh ) is given by (75).

Proof: The proof is provided in Appendix D.

B. WHD distribution in the i-Reprocessing

In this part, we introduce the distribution of the recorded
minimum WHD after the i-reprocessing (0 ≤ i ≤ m)
in the order-m OSD, i.e., the minimum WHD among the
0, 1, · · · , i reprocessings. We define the random variable D(W)

i

representing this minimum WHD, and random variable D(W)
e

representing the WHD between c̃e and ỹ. Accordingly, d(W)
i

and d(W)
e are the samples of D(W)

i and D(W)
e , respectively.

Consider a vector tB` = [tB]`1, 0 ≤ ` ≤ i, representing
a set of position indices within the MRB part which satisfy
1 ≤ tB1 < tB2 < . . . < tB` ≤ k. Assume that T B

` =
{
tB`
}

is
the set of all vectors tB` with length `, thus the cardinality of
T B
` is given by

(
k
`

)
. Let us consider a new indices vector th`

defined as th` = [tB` tPh ] with length `+h, and let the random
variable Ãth`

denote the sum of reliabilities corresponding to
the position indices th` , i.e., Ãth`

=
∑`
u=1 ÃtBu

+
∑h
u=1 ÃtPu

,
with the pdf fÃ

th
`

(x). Furthermore, let ztB` denote a length-

k binary vector whose nonzero elements are indexed by tB` .
Thus, zth` = [ztB` ztPh ] is a length-n binary vector with nonzero
elements indexed by th` . Next, we investigate the distribution
of D(W)

i , started with Lemma 7 and concluded in Theorem 4.

First, we give the pdf of D(W)
e on the condition that some

TEP e eliminates the error pattern ẽB over ỹB, which is
summarized in the following Lemma.

Lemma 7. Given a linear block code C(n, k), if the errors ẽB

over ỹB are eliminated by a TEP e after the i-reprocessing
(0 ≤ i ≤ m) of an order-m OSD, the pdf of the weighted
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Hamming distance between c̃e and ỹ, D(W)
e , is given by

f
D

(W)
e

(x|ẽB =e) =
1

i∑
v=0

pEk1 (v)

i∑
`=0

n−k∑
h=0

∑
th`

tB` ∈T
B
`

tPh∈T
P
h

Pe(th` )fÃ
th
`

(x),

(83)
where Pe(th` ) is given by

Pe(th` )=

∫ ∞
0

· · ·︸ ︷︷ ︸
n−h−̀

∫ 0

−∞
· · ·︸ ︷︷ ︸

h+̀

(
n!

n∏
v=1

fR(xv)

n∏
v=2

1[0,|xv−1|](|xv|)

)

·
∏

1≤v≤n
v∈th`

dxv
∏

1≤v≤n
v/∈th`

dxv,

(84)

and fÃ
th
`

(x) is the pdf of Ãth`
=
∑̀
u=1

ÃtBu
+

h∑
u=1

ÃtPu
.

Proof: The proof is provided in Appendix E.

From Lemma 7 and its proof, we can see that if errors
in MRB positions are eliminated by a TEP, the WHD is
determined by the errors in MRB part and the parity part.
In contrast, if the errors are not eliminated by a TEP, both the
error over ỹ and the code weight enumerator affect the WHD.
We summarize this conclusion in the following Lemma.

Lemma 8. Given a linear block code C(n, k) with the
probability pcP

(u, q), if the errors over the MRB ỹB are
not eliminated by any TEPs in the first i (0 ≤ i ≤ m)
reprocessings of an order-m OSD, for a random TEP e, the
weighted Hamming distance between c̃e and ỹ is given by

f
D

(W)
e

(x|ẽB 6= e) =

i∑
`=0

n−k∑
h=0

∑
th`

tB` ∈T
B
`

tPh∈T
P
h

Pc(th` )fÃ
th
`

(x), (85)

where Pc(th` ) is given by

Pc(th` ) =
1

bk0:i
·

∑
x∈{0,1}n−k

Pr(c̃′e,P = ztPh ⊕ x)Pr(ẽP = x),

(86)
where x is a length-(n − k) binary vector. The probability
Pr(c̃′e = ztPh ⊕ x) is given by

Pr(c̃′e,P = ztPh ⊕ x)

=
1(

n−k
w(z

tP
h
⊕x)
) k∑
q=1

pWe,ẽB
(q|e=ztB` )pcP(w(ztPh⊕x), q).

(87)

pWe,ẽB
(q|e = ztB` ) is the conditional pmf of We,ẽB

given by

pWe,ẽB
(q|e = ztB` ) =

∑
x∈{0,1}k

w(z
tB
`
⊕x)=q

Pr(ẽB = x), (88)

where x = [x]k1 is a length-k binary vector satisfying w(ztB` ⊕

x) = q, and

Pr(ẽB =x)=

∫ ∞
0

· · ·︸ ︷︷ ︸
k−w(x)

∫ 0

−∞
· · ·︸ ︷︷ ︸

w(x)

(
n!

n∏
v=1

fR(xv)

n∏
v=2

1[0,|xv−1|](|xv|)

)

·
∏

0<v≤k
xv 6=0

dxv
∏

0<v≤k
xv=0

dxv.

(89)

Furthermore, the probability Pr(ẽP = x) is given by (77), and

fÃ
th
`

(x) is the pdf of Ãth`
=
∑̀
v=1

ÃtBv +
h∑
v=1

ÃtPv .

Proof: The proof is provided in Appendix F.
It is worth noting that q 6= 0 in (87), therefore e 6= ẽB, i.e.,

the errors over the MRB are not eliminated by any TEPs.
We can directly extend the result in Lemma 8 to find

the conditional pdf of the D(W)
e conditioning on {w(ẽB) 6=

e, w(ẽB)≤ i} as

f
D

(W)
e

(x|ẽB 6=e, w(ẽB)≤ i)

=

i∑
`=0

n−k∑
h=0

∑
th`

tB` ∈T
B
`

tPh∈T
P
h

Pc(th` |w(ẽB)≤ i)fÃ
th
`

(x), (90)

where the conditional probability Pc(th` |w(ẽB)≤ i) is obtained
similar to (86), but with pWe,ẽB

(q|e = ztB` ) replaced by
pWe,ẽB

(q|e=ztB` , w(ẽB)≤ i) given by

pWe,ẽB
(q|e=ztB` , w(ẽB)≤ i)

=
∑

x∈{0,1}k
w(z

tB
`
⊕x)=q

w(x)≤i

Pr(ẽB = x)

(
i∑

u=0

pEk1 (u)

)−1
, (91)

Similar to (90), we can also obtain f
D

(W)
e

(x|ẽB 6=e, w(ẽB)>i)
as

f
D

(W)
e

(x|ẽB 6=e, w(ẽB)>i)

=

i∑
`=0

n−k∑
h=0

∑
th`

tB` ∈T
B
`

tPh∈T
P
h

Pc(th` |w(ẽB)>i)fÃ
th
`

(x), (92)

by considering

pWe,ẽB
(q|e=ztB` , w(ẽB)>i)

=
∑

x∈{0,1}k
w(z

tB
`
⊕x)=q

w(x)>i

Pr(ẽB = x)

(
1−

i∑
u=0

pEk1 (u)

)−1
,

(93)

For the sake of brevity, we omit the proofs of (90) and (92)
because their proofs are similar to that of Lemma 8.

Lemma 7 and Lemma 8 give the pdf of the WHD after
the i-reprocessing in an order-m OSD under two different
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conditions. However, it is worthy of noting that in Lemma
7 and Lemma 8, even though we assume that the errors are
eliminated by one TEP e, the specific pattern of e is unknown
and is not included in the assumption. It is reasonable because
the decoder cannot know which TEP can exactly eliminate the
error, but only output the decoding result by comparing the
distances. Combining Lemma 7 and Lemma 8 and considering
ordered statistics over a sequence of random variable D(W)

e ,
we next characterize the distribution of the minimum WHD
D

(W)
i after the i-reprocessing of an order-m OSD.
On the conditions that 1) the errors in MRB are not

eliminated by any test error patterns and 2) w(eB) ≤ i, in
the first i (0 ≤ i ≤ m) reprocessings of an order-m OSD, we
first consider the correlations between two random variables
D

(W)
e and D(W)

ê , where e and ê are two arbitrary TEPs that are
checked in decoding one received signal sequence, satisfying
e 6= ẽB, ê 6= ẽB, and e 6= ê. Thus, pdfs of D(W)

e and D
(W)
ê

are both given by the mixture model described by (90) with
the pdf f

D
(W)
e

(x|ẽB 6= e, w(ẽB) ≤ i). However, D(W)
e and

D
(W)
ê are not independent random variables, because D

(W)
e

and D
(W)
ê are both linear combinations of [Ã]n1 which are

dependent variables. For [Ã]n1 , we define the mean matrix
Ẽn×n as

Ẽn×n =


E[Ã1]2 E[Ã1]E[Ã2] · · · E[Ã1]E[Ãn]

E[Ã2]E[Ã1] E[Ã2]2 · · · E[Ã2]E[Ãn]
...

...
. . .

...
E[Ãn]E[Ã1] E[Ãn]E[Ã2] · · · E[Ãn]2

 ,
(94)

and the covariance matrix Σ̃n×n as

Σ̃n×n=


cov(Ã1, Ã1) cov(Ã1, Ã2) · · · cov(Ã1, Ãn)

cov(Ã2, Ã1) cov(Ã2, Ã2) · · · cov(Ã2, Ãn)
...

...
. . .

...
cov(Ãn, Ã1) cov(Ãn, Ã2) · · · cov(Ãn, Ãn)

 .
(95)

Consider two different position indices vectors th` =

[tB` tPh ] and t̂ĥˆ̀ = [t̂Bˆ̀ t̂P
ĥ

]. For their corresponding random
variables Ãth`

, and Ã
t̂ĥˆ̀

representing the sum of reliabilities

of positions in th` and t̂ĥˆ̀, respectively, the covariance of Ãth`

and Ã
t̂ĥˆ̀

is given by

cov

(
Ãth`

, Ã
t̂ĥˆ̀

)
=
∑̀
u=1

ˆ̀∑
v=1

Σ̃tBu ,t̂
B
v

+

h∑
u=1

ĥ∑
v=1

Σ̃tPu ,t̂
P
v

+
∑̀
u=1

ĥ∑
v=1

Σ̃tBu ,t̂
P
v

+

ˆ̀∑
u=1

h∑
v=1

Σ̃t̂Bu ,t
P
v
.

(96)

However, D(W)
e and D

(W)
ê are linear combinations of the

same samples [α̃]n1 because e and ê are two different TEPs
used in decoding one received signal sequence. Thus, the
covariance of D(W)

e and D
(W)
ê cannot be simply obtained

by combining cov(Ãth`
, Ã

t̂ĥˆ̀
) for all possible th` and t̂ĥˆ̀. For

example, if d̃e = [1, 1, 0] and d̃ê = [1, 0, 1] for n = 3, i.e.,

D
(W)
e = α̃1 + α̃2 and D(W)

e = α̃1 + α̃3, we can observe that
the covariance of D(W)

e and D(W)
ê will only be determined by

cov(Ã2, Ã3), and α̃1 will be considered as a constant which
will not affect the correlations. Accordingly, we can find the
covariance of D(W)

e and D(W)
ê as (97) on the top of the next

page.
where z`,h is the position indices of the nonzero elements of

zth` �[zth` ⊕z
t̂ĥˆ̀

], and x̂ˆ̀,ĥ is the position indices of the nonzero
elements of z

t̂ĥˆ̀
� [zth` ⊕ z

t̂ĥˆ̀
], where � is the Hadamard

product of vectors. It can be seen that z`,h in fact represents
the positions indexed by zth` but not by z

t̂ĥˆ̀
. Then, because

D
(W)
e and D

(W)
ê follow the same distribution, they have the

same mean E[D
(W)
e |ẽB 6= e] and variance σ2

D
(W)
e |ẽB 6=e

, which
can be simply obtained as

E[D(W)
e |ẽB 6=e, w(ẽB)≤ i]

=

∫ ∞
0

xf
D

(W)
e

(x|ẽB 6=e, w(ẽB)≤ i)dx
(98)

and

σ2

D
(W)
e |ẽB 6=e,w(ẽB)≤i

=

∫ ∞
0

x2f
D

(W)
e

(x|ẽB 6=e, w(ẽB)≤ i)dx− E[D(W)
e |ẽB 6= e]2,

(99)

respectively, where f
D

(W)
e

(x|ẽB 6= e, w(ẽB) ≤ i) is the pdf

given by (90). Therefore, on the conditions that {e 6= ẽB, ê 6=
ẽB, e 6= ê}, we derive the correlation coefficient ρ1 between
D

(W)
e and D(W)

ê as

ρ1 =
cov

(
D

(W)
e , D

(W)
ê

)
σ2

D
(W)
e |ẽB 6=e,w(ẽB)≤i

. (100)

On the conditions that 1) the errors in MRB are not elimi-
nated by any test error patterns and 2) w(eB) > i, we can also
obtain E[D

(W)
e |ẽB 6= e, w(ẽB) > i] and σ2

D
(W)
e |ẽB 6=e,w(ẽB)>i

similar to (98) and (99), respectively. Furthermore, we use ρ2
to denote the correlation coefficient between D(W)

e and D(W)
ê

conditioning on w(eB) > i, which can be obtained similar to
(100) by replacing Pc(th` |w(ẽB) ≤ i) and Pc(t̂ĥˆ̀|w(ẽB) ≤ i)
with Pc(th` |w(ẽB)>i) and Pc(t̂ĥˆ̀|w(ẽB)>i), respectively.

With the help of the correlation coefficients ρ1 and ρ2
and combining Lemma 7 and Lemma 8, we can have the
insight that the distribution of the minimum WHD in an order-
m OSD can be derived by considering the ordered statistics
over dependent random variables of WHDs. However, for the
pdf of ordered dependent random variable with an arbitrary
distribution, only the recurrence relations can be found and the
explicit expressions are unsolvable [27]. Therefore, we here
seek the distribution of the minimum WHD under a stronger
assumption that the distribution of D(W)

e is normal, where the
dependent ordering of arbitrary statistics can be simplified to
ordered statistics of exchangeable normal variables. This as-
sumption follows from that the WHDs are linear combinations
of the ordered reliabilities, and the distribution will tend to
normal if the code length n is large. Under this assumption,
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cov
(
D(W)

e , D
(W)
ê

)
=

i∑
`=0

n−k∑
h=0

∑
th`

tB` ∈T
B
l

tPh∈T
P
h

i∑
ˆ̀=0

n−k∑
ĥ=0

∑
t̂ĥˆ̀

t̂Bˆ̀∈T
B
ˆ̀

t̂P
ĥ
∈T P

ĥ

Pc(th` |w(ẽB)≤ i) Pc(t̂ĥˆ̀|w(ẽB)≤ i) cov(Ãz`,h , Ãx̂ˆ̀,ĥ
),

(97)

we summarize the pdf of the minimum WHD D
(W)
i after the

i-reprocessing of an order-m OSD, denoted by f
D

(W)
i

(x), in
the following Theorem.

Theorem 4. Given a linear block code C(n, k), the pdf of the
minimum weighted Hamming distance D(W)

i between ỹ and
c̃opt after the i-reprocessing (0 ≤ i ≤ m) of an order-m OSD
decoding is given by

f
D

(W)
i

(x) =

i∑
v=0

pEk1 (v)

·
(
f
D

(W)
e

(x|ẽB =e)

∫ ∞
x

f
D̃

(W)
i

(
u, bk1:i|w(ẽB)≤ i

)
du

+ f
D̃

(W)
i

(
u, bk1:i|w(ẽB)≤ i

)∫ ∞
x

f
D

(W)
e

(u|ẽB =e)du

)
+

(
1−

i∑
v=0

pEk1 (v)

)
f
D̃

(W)
i

(
u, bk0:i|w(ẽB) > i

)
,

(101)

where f
D̃

(W)
i

(x, b|w(ẽB) ≤ i) and f
D̃

(W)
i

(x, b|w(ẽB) > i)

are given by (102) and (103) on the top of the next page,
respectively, and

fφ(x, b) = b φ(x)

(
1−

∫ x

−∞
φ(u)du

)b−1
, (104)

φ(x) is the pdf of the standard normal distribution and
f
D

(W)
e

(x|ẽB =e) is given by (83).

Proof: The proof is provided in Appendix G.

C. Simplifications, Approximations, and Numerical Results

Theorem 3 and Theorem 4 investigate exact expressions of
the pdfs of the WHDs in the 0-reprocessing and after the i-
reprocessing. However, calculating (81) and (101) is daunting
as fÃ

tP
h

(x) and fÃ
th
`

(x) are the pdfs of the summations of

non-i.i.d. reliabilities and characterizing Pe(tPh ) and Pc(th` )
involves calculating a large number of integrals.

In this section, we consider simplifying and approximating
(81) and (101) by assuming that the probability pcP

(u, q) of
C(n, k) is known and has been determined from the codebook.
First, we investigate the probability that a parity bit of a
codeword estimate in OSD is non-zero, as summarized in the
following Lemma.

Lemma 9. Let pbitcP
(`, q) denote the probability that the `-th bit

(k < ` ≤ n) of c̃′ = b′G̃ = [c̃′]n1 is nonzero when w(b′) = q,
i.e., pbitcP

(`, q) = Pr(c̃′` 6= 0|w(b′) = q), then pbitcP
(`, q) can be

derived as

pbitcP
(`, q) =

n−k∑
u=0

u

n− k
· pcP(u, q). (105)

Furthermore, let pbitcP
(`, h, q) denote the joint probability that

the `-th and h-th bit (k < ` < h ≤ n) of c̃′ is nonzero when
w(b′) = q, and pbitcP

(`, h, q) is given by

pbitcP
(`, h, q) =

n−k∑
u=0

u(u− 1)

(n− k)(n− k − 1)
· pcP

(u, q). (106)

Proof: Considering that the columns of G are randomly
permuted to the columns of G̃ whenever new noisy symbols
are received, when w(c̃′P) = u with the probability pcP

(u, q),
each bit c̃′` of c̃′, k < ` ≤ n, has equal probability u

n−k to
be nonzero. Then, (105) can be easily obtained, and (106) can
also be obtained similarly.

Note that pbitcP
(`, q) and pbitcP

(`, h, q) are identical for all
integers ` and h, k < ` < h ≤ n, because of the randomness of
the permutation over G. In other words, despite G is permuted
according to the received signals, an arbitrary column of G
has the same probability to be permuted to each column of
G̃. Next, based on pbitcP

(`, q) and pbitcP
(`, h, q), we simplify

and approximate the distributions given by (81) and (101),
respectively.

1) Simplification and Approximation of D(W)
0 : In what

follows, first an approximation of fÃ
tP
h

(x) based on the normal

approximation of ordered reliabilities (previously derived in
Section III-B) will be introduced, then the probability that the
different bits between c̃0 and ỹ are nonzero will be character-
ized, and finally (81) is simplified for practical computations.
In addition, some numerical examples for decoding BCH and
Polar codes using order-0 OSD will be illustrated.

Recall that the random variable Ãu of the u-th ordered
reliability can be approximated by a normal random variable
with the distribution N (E[Ãi], σ

2
Ãi

), thus ÃtPh
=
∑h
u=1 ÃtPu

can also be regarded as a normal random variable. Using the
mean and covariance matrices introduced in (94) and (95),
respectively, the mean and variance of ÃtPh

are given by

E[ÃtPh
] =

h∑
u=1

√
ẼtPu ,t

P
u

(107)

and

σ2
Ã

tP
h

=

h∑
u=1

h∑
v=1

Σ̃tPu ,t
P
v
. (108)

Therefore, fÃ
tP
h

(x) can be approximated by a normal distri-
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f
D̃

(W)
i

(x, b|w(ẽB) ≤ i) =

∫ ∞
−∞

(√
1− ρ1 σD(W)

e |ẽB 6=e,w(ẽB)≤i

)−1
· fφ

 (x− E[D
(W)
e |ẽB 6= e, w(ẽB) ≤ i])/σ

D
(W)
e |ẽB 6=e,w(ẽB)≤i +

√
ρ
1
z

√
1− ρ1

, b

φ(z) dz,

(102)

f
D̃

(W)
i

(x, b|w(ẽB) > i) =

∫ ∞
−∞

(√
1− ρ2 σD(W)

e |ẽB6=e,w(ẽB)>i

)−1
· fφ

 (x− E[D
(W)
e |ẽB 6=e, w(ẽB)>i])/σ

D
(W)
e |ẽB6=e,w(ẽB)>i

+
√
ρ
2
z

√
1− ρ2

, b

φ(z) dz,

(103)

bution N (E[ÃtPh
], σ2

Ã
tP
h

) with the pdf given by

fÃ
tP
h

(x) =
1√

2πσ2
Ã

tP
h

exp

− (x− E[ÃtPh
])2

2σ2
Ã

tP
h

 . (109)

Then, let us consider the probability that the `-th (k < ` ≤
n) bit of d̃0 = [d̃0]n1 = c̃0⊕ỹ is nonzero, i.e., Pr(d̃0,` 6= 0). As
discussed in Lemma 3, when ẽB = 0, d̃0,P equals to ẽP and
Pr(d̃0,` 6= 0) can be simply characterized the error probability
of the `-th bit of ỹ. Whereas, when ẽB 6= 0, d̃0,P is given by
d̃0,P = c̃′0,P ⊕ ẽP, where c̃′0 = ẽBG̃ = [ẽB c̃′0,P]. Therefore,
Pr(d̃0,` 6= 0) is obtained as

Pr(d̃0,` 6= 0)

= Pr(c̃′0,` 6= 0)Pr(ẽ` = 0) + Pr(c̃′0,` = 0)Pr(ẽ` 6= 0)

(a)
=

1

1− pEk1 (0)

k∑
q=1

pEk1 (q)
(
pbitcP

(`, q)(1− Pe(`))

+ (1− pbitcP
(`, q))Pe(`)

)
,

(110)

where pbitcP
(`, q) is given by (106) and step (a) takes Pe(`) =

Pr(ẽ` 6= 0). When ẽB 6= 0, the joint nonzero probabilities
of the `-th and the h-th (k < ` < h ≤ n) bits of d̃0, i.e.,
Pr(d̃0,` 6= 0, d̃0,h 6= 0), is given by

Pr{d̃0,` 6= 0,d̃h 6= 0}
=Pr{c̃′0,` 6= 0, c̃′0,h 6= 0}Pr{ẽ` = 0, ẽh = 0}
+Pr{c̃′0,` 6= 0, c̃′0,h = 0}Pr{ẽ` = 0, ẽh 6= 0}
+Pr{c̃′0,` = 0, c̃′0,h 6= 0}Pr{ẽ` 6= 0, ẽh = 0}
+Pr{c̃′0,` = 0, c̃′0,h = 0}Pr{ẽ` 6= 0, ẽh 6= 0}.

(111)

In (111), Pr{c̃′0,` 6= 0, c̃′0,h 6= 0}Pr{ẽ` = 0, ẽh = 0} is
determined as

Pr{c̃′0,` 6= 0, c̃′0,h 6= 0}Pr{ẽ` = 0, ẽh = 0}

=

k∑
q=1

pEk1 (q)pbitcP
(`, h, q)

1−pEk1 (0)

∫ ∞
0

∫ ∞
0

fR̃`,R̃h(r̃`, r̃h)dr̃` dr̃h,

(112)

where fR̃`,R̃h(r̃`, r̃h) is the joint pdf of two ordered received
symbols, which is given by (11). Other terms of (111) can be
determined similar to (112).

Next, similar to the Hamming distance distribution in 0-
reprocessing, we approximate (81) by considering the large-
number Gaussian mixture model. Let f

D
(w)
0

(x|w(ẽB) = 0)

denote the first mixture component in (278), i.e.,

f
D

(w)
0

(x|w(ẽB)=0)

=

n−k∑
h=0

∑
tPh

tPh∈T
P
h

Pr
(
d̃0,P = ztPh |w(ẽB) = 0

)
fÃ

tP
h

(x). (113)

f
D

(w)
0

(x|w(ẽB) = 0) is also the pdf of D(w)
0 conditioning

on {w(ẽB) = 0}. Also, let t
P(u)
h denote the vector tPh that

contains the element “u” and t
P(u,v)
h denote the vector tPh

that contains both “u” and “v”, i.e., t
P(u)
h = {tPh | ∃ `, 1≤` ≤

h, tP` =u} and t
P(u,v)
h = {tPh | ∃ ` and j, 1≤ `<j≤h, tP` =

u, tPj = v}. Then, the mean of the first mixture component
f
D

(w)
0

(x|w(ẽB)=0) can be derived and approximated as

E[D
(w)
0 |w(ẽB)=0]

=

n∑
u=k+1

n−k∑
h=0

∑
t
P(u)
h

t
P(u)
h ∈T P

h

Pr
(
d̃0,P = z

t
P(u)
h

|w(ẽB)=0
)√

Ẽu,u

=

n∑
u=k+1

Pe(u|Ek1 = 0)

√
Ẽu,u

(a)
≈

n∑
u=k+1

Pe(u)

√
Ẽu,u , (114)

where Pe(u) is the bit-wise error probability given by (32) and
step (a) follows the independence between Pe(u) and Ek1 , as
introduced in (33). Similarly, the variance of mixture compo-
nent f

D
(w)
0

(x|w(ẽB) = 0) can be derived and approximated
as

σ2

D
(w)
0 |w(ẽB)=0

=

n∑
u=k+1

n∑
v=k+1

Pe(u, v|Ek1 = 0)
[
Ẽ + Σ̃

]
u,v

−
(
E[D

(w)
0 |w(ẽB)=0]

)2
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≈
n∑

u=k+1

n∑
v=k+1

Pe(u, v)
[
Ẽ + Σ̃

]
u,v

(115)

−
(
E[D

(w)
0 |w(ẼB)=0]

)2
,

where Pe(u, v) is the joint probability that the u-th and v-
th positions of ỹ are both in error. When u = v, Pe(u, v)
is simply given by Pe(u). Otherwise, Pe(u, v) is given by∫ 0

−∞
∫ 0

−∞ fR̃u,R̃v (x, y)dxdy.
Next, let f

D
(w)
0

(x|w(ẽB) 6= 0) denote the second mixture
component in (278), i.e.,

f
D

(w)
0

(x|w(ẽB) 6=0)

=

n−k∑
h=0

∑
tPh

tPh∈T
P
h

Pr
(
d̃0,P = ztPh |w(ẽB) 6= 0

)
fÃ

tP
h

(x).

(116)

f
D

(w)
0

(x|w(ẽB) 6= 0) is also the pdf of D(w)
0 conditioning

on {w(ẽB) 6= 0}. For simplicity, we denote Pr(d̃0,` 6=
0) and Pr{d̃0,` 6= 0, d̃h 6= 0} obtained in (110) and
(111) as Pc0(`) and Pc0(`, h), respectively. Using the sim-
ilar approach of obtaining (114) and (115) and considering
Pr
(
d̃0,P = ztPh |w(ẽB) 6= 0

)
= Pc(tPh ), the mean and vari-

ance of f
D

(w)
0

(x|w(ẽB) 6=0) can be derived as

E[D
(w)
0 |w(ẽB) 6=0] =

n∑
u=k+1

Pc0(u)

√
Ẽu,u. (117)

and

σ2

D
(w)
0 |w(ẽB)6=0

=

n∑
u=k+1

n∑
v=k+1

Pc0(u, v)
[
Ẽ + Σ̃

]
u,v

−
(
E[D

(w)
0 |w(ẽB) 6=0]

)2
,

(118)

respectively, where Pc0(u) = Pr(d̃0,u 6= 0) is given by (110)
and Pc0(u, v) = Pr(d̃0,u 6= 0, d̃0,v 6= 0) is given by (111) for
u 6= v. In particular, Pc0(u, v) = Pc0(u) when u = v.

Because D
(w)
0 can be regarded as a linear combination

of a number of random variables [Ã]n1 when n is large, we
approximate the pdf of D(w)

0 by a combination of two normal
distributions, whose pdf is given by

f
D

(W)
0

(x)

=pEk1 (0)f
D

(w)
0

(x|w(ẽB)=0)+(1−pEk1 (0))f
D

(w)
0

(x|w(ẽB)6=0)

≈
pEk1 (0)√

2πσ2

D
(w)
0 |w(ẽB)=0

exp

− (x− E[D
(w)
0 |w(ẽB)=0])2

2σ2

D
(w)
0 |w(ẽB)=0


+

1− pEk1 (0)√
2πσ2

D
(w)
0 |w(ẽB)6=0

exp

− (x− E[D
(w)
0 |w(ẽB) 6=0])2

2σ2

D
(w)
0 |w(ẽB)6=0

 .

(119)

To verify (119), we show the distributions of D(W)
0 for

decoding the (128, 64, 22) eBCH code and (128, 64, 8) Polar
code in Fig. 8 and Fig. 9, respectively, at different SNRs. It can
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Fig. 8. The distribution of D(W)
0 in decoding (128, 64, 22) eBCH code.
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Fig. 9. The distribution of D(W)
0 in decoding (128, 64, 8) Polar code.

be seen that (119) provides a promising approximation of the
0-reprocessing WHD distribution. Similar to the distribution
of 0-reprocessing Hamming distance, the pdf of D(H)

0 is also
a mixture of two distributions. The weight of the left and right
parts can be a reflection of the channel condition and decoding
error performance since the weights of f

D
(w)
0

(x|w(ẽB) = 0)

and f
D

(w)
0

(x|w(ẽB) 6=0) in (119) are controlled by pEk1 (0). It
can be seen that the distribution concentrates towards the left
when the channel SNR increases, indicating that the decoding
error performance improves. From Fig. 8 and Fig. 9, we can
also observe that the discrepancies between the approximation
(119) and the simulation results mainly exist on the left side of
the curves, dominated by f

D
(w)
0

(x|w(ẽB)=0). This is because

1) the support of D(W)
0 is [0,∞) but (119) is obtained with

complete normal distributions, and 2) f
D

(w)
0

(x|w(ẽB) = 0) is
obtained by approximated mean and variance (e.g., step (a) of
(117)).

2) Simplification and Approximation of D(W)
i : In what

follows, we first investigate the probability that the different
bits between c̃e and ỹ are nonzero, followed by simplify-
ing and approximating the means, variances, and covariance
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introduced in Section V-B. Finally, we study the normal
approximation of D(W)

i after the i-reprocessing of an order-m
OSD.

As investigated in Theorem 2 and Theorem 4, when ẽB 6=
e, the difference pattern between c̃e and ỹ can be given by
d̃e = c̃e⊕ ỹ = [e c̃′e,P⊕ ẽP], where c̃e,P is the parity part of
c̃′e = [ẽB⊕e]G̃. Next, we characterize the probability that `-th
bit d̃e,` of d̃e is nonzero, conditioning on {w(ẽB) ≤ i} and
{w(ẽB) > i}, respectively. Similar to (110), the probability
Pr(d̃e,` 6= 0|w(ẽB)≤ i) is given by

Pr(d̃e,` 6= 0|w(ẽB) ≤ i)
= Pr(c̃′e,` 6= 0)Pr(ẽ` = 0) + Pr(c̃′e,` = 0)Pr(ẽ` 6= 0)

=

k∑
q=1

pWe,ẽB
(q|w(ẽB) ≤ i)

(
pbitcP

(`, q)(1− Pe(`))

+ (1− pbitcP
(`, q))Pe(`)

)
,

(120)

where pWe,ẽB
(q|w(ẽB) ≤ i) is the conditional pmf of the

random variable We,ẽB
introduced in Lemma 4. Following

Lemma 4, pWe,ẽB
(q|w(ẽB) ≤ i) is given by

pWe,ẽB
(q|w(ẽB)≤ i)=

i∑
u=0

i∑
v=0

(
u
δ

)(
k−u
v−δ
)(

k
v

) ·
pEk1 (u)∑i
q=0 pEk1 (q)

·
(
k
v

)
bk0:i
· 1N

⋂
[0,min(u,v)](δ),

(121)

where δ = u+v−q
2 . The probability Pr(d̃e,` 6= 0|w(ẽB) > i)

is also given by (120) with replacing pWe,ẽB
(q|w(ẽB) ≤ i)

with pWe,ẽB
(q|w(ẽB) > i), which is given by (48). For

simplicity, let us denote Pr(d̃e,` 6= 0|w(ẽB) ≤ i) and
Pr(d̃e,` 6= 0|w(ẽB) > i) by Pce(`|i(≤)) and Pce(`|i(>)),
respectively. Also, for probabilities Pr(d̃e,` = 0|w(ẽB) ≤ i)

and Pr(d̃e,` = 0|w(ẽB) > i), we simply denote them by
Pce(¯̀|i(≤)) and Pce(¯̀|i(>)).

The joint probability Pr(d̃e,` 6= 0, d̃e,h 6= 0|w(ẽB) ≤ i) can
be determined similar to (111), i.e.,

Pr(d̃e,` 6= 0, d̃e,h 6= 0|w(ẽB)≤ i)
= Pr{c̃′e,` 6= 0, c̃′e,h 6= 0|w(ẽB)≤ i}Pr{ẽ` = 0, ẽh = 0}
+ Pr{c̃′e,` 6= 0, c̃′e,h = 0|w(ẽB)≤ i}Pr{ẽ` = 0, ẽh 6= 0}
+ Pr{c̃′e,` = 0, c̃′e,h 6= 0|w(ẽB)≤ i}Pr{ẽ` 6= 0, ẽh = 0}
+ Pr{c̃′e,` = 0, c̃′e,h = 0|w(ẽB)≤ i}Pr{ẽ` 6= 0, ẽh 6= 0}.

(122)

By considering pWe,ẽB
(q|w(ẽB)≤ i) in (121) and pbitcP

(`, h, q)
in (106), (122) can be computed. We omit the expanded
expression of (122) here for the sake of brevity. Furthermore,
the probability Pr(d̃e,` 6= 0, d̃e,h 6= 0|w(ẽB) > i) can be
obtained similar to (122), by replacing pWe,ẽB

(q|w(ẽB) ≤ i)
with pWe,ẽB

(q|w(ẽB) > i) given by (48). For simplicity of
notation, we denote Pr(d̃e,` 6= 0, d̃e,h 6= 0|w(ẽB) ≤ i) and
Pr(d̃e,` 6= 0, d̃e,h 6= 0|w(ẽB) > i) as Pce(`, h|i(≤)) and
Pce(`, h|i(>)), respectively. In addition, we use Pce(¯̀, h|i(≤))
and Pce(`, h̄|i(>)) to denote Pr(d̃e,` = 0, d̃e,h 6= 0|w(ẽB)≤ i)

and Pr(d̃e,` 6= 0, d̃e,h = 0|w(ẽB)>i), respectively.

Based on the probabilities Pce(`|i(≤)), Pce(`|i(>))
Pce(`, h|i(≤)) and Pce(`, h|i(>)) introduced above, we next
simplify and approximate the distribution of D(W)

i . We first
consider the WHD D

(W)
e conditioning on ẽB = e introduced

in Lemma 7. According to (33), the mean of D(W)
e condition-

ing on ẽB = e can be approximated as

E[D(W)
e |ẽB =e]

=

i∑
`=0

n−k∑
h=0

∑
th`

tB` ∈T
B
l

tPh∈T
P
h

P(th` )

(∑̀
u=1

√
ẼtBu ,t

B
u

+

h∑
u=1

√
ẼtPu ,t

P
u

)

=

n∑
u=1

Pe(u|Ek1 ≤ i)
√

Ẽu,u

(a)
≈

(
1−

pEk1 (i)∑i
v=0 pEk1 (v)

)
k∑
u=1

Pe(u)

√
Ẽu,u+

n∑
u=k+1

Pe(u)

√
Ẽu,u,

(123)

where step (a) follows from that Pe(u|Ek1 ≤ i) ≈
Pe(u)Pr(Ek1≤i−1)

Pr(Ek1≤i)
for u, 1 ≤ u ≤ k, and Pe(u|Ek1 ≤ i) ≈ Pe(u)

for u, k+1 ≤ u ≤ n, according to (33). Similarly, the variance
of D(W)

e is approximated as

σ2

D
(W)
e |ẽB=e

≈

(
1−

pEk1 (i) + pEk1 (i−1)∑i
`=0 pEk1 (`)

)
k∑
u=1

k∑
v=1

Pe(u, v)[Ẽ + Σ̃]u,v

+

n∑
u=k+1

n∑
v=k+1

Pe(u, v)[Ẽ + Σ̃]u,v

+ 2

(
1−

pEk1 (i)∑i
`=0 pEk1 (`)

)
k∑
u=1

n∑
v=k+1

Pe(u, v)[Ẽ + Σ̃]u,v

−
(
E[D(W)

e |ẽB =e]
)2
.

(124)

where Pe(u, v) = Pe(u) for u = v. Then, because the pdf
f
D

(W)
e

(x|ẽB = e) given by (83) is a large-number Gaussian
mixture model, we formulate it as the pdf of a Gaussian
distribution N (E[D

(W)
e |ẽB = e], σ2

D
(W)
e |ẽB=e

) denoted by
fapp
D

(W)
e

(x|ẽB =e) i.e.,

fapp
D

(W)
e

(x|ẽB =e)

=
1√

2πσ2

D
(W)
e |ẽB=e

exp

− (x−E[D
(W)
e |ẽB =e])2

2σ2

D
(W)
e |ẽB=e

 .
(125)

Next, we simplify the mean and variance of D(W)
e condi-

tioning on ẽB 6= e and w(ẽB) ≤ i, as introduced in Lemma 8,
as well as to characterize the related covariance. Considering
the probability Pr(d̃e,` 6= 0|w(ẽB) ≤ i), the conditional mean
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of D(W)
e , previously given by (98), can be simplified as

E[D(W)
e |ẽB 6=e, w(ẽB)≤ i]

=
bk−10:(i−1)

bk0:i

k∑
u=1

√
Ẽu,u +

n∑
u=k+1

Pce(u|i(≤))
√

Ẽu,u,

(126)

where Pce(u|i(≤)) = Pr(d̃e,u = 0|w(ẽB) ≤ i) is given
by (120). Then, considering the joint probability Pr(d̃e,` 6=
0, d̃e,h 6= 0|w(ẽB) ≤ i) and using the same approach of
obtaining (124), the conditional variance of D(W)

e , previously
given by (99), can be simplified as

σ2

D
(W)
e |ẽB 6=e,w(ẽB)≤i

=

k∑
u=1

bk−10:(i−1)

bk0:i
[Ẽ+Σ̃]u,u + 2

k−1∑
u=1

k∑
v=u+1

bk−20:(i−2)

bk0:i
[Ẽ+Σ̃]u,v

+ 2

k∑
u=1

n∑
v=k+1

(
bk−10:(i−1)

bk0:i
Pce(v|i(≤))

)
[Ẽ+Σ̃]u,v

+

n∑
u=k+1

n∑
v=k+1

Pce(u, v|i(≤))[Ẽ+Σ̃]u,u

−
(
E[D(W)

e |ẽB 6=e, w(ẽB)≤ i]
)2
, (127)

where Pce(u, v|i(≤)) = Pr(d̃e,` 6= 0, d̃e,h 6= 0|w(ẽB)≤ i) is
given by (122). In particular, Pce(u, v|i(≤)) = Pce(u|i(≤))
for u = v. On the conditions that ẽB 6= e and w(ẽB) ≤ i, we
can also simplify the covariance given in (97) as

cov
(
D(W)

e , D
(W)
ê

)
=

k∑
u=1

n∑
v=k+1

(
bk−10:(i−1)

bk0:i
· b
k−1
0:i

bk0:i
Pce(ū|i(≤))Pce(v|i(≤))

)
Σ̃u,v

+ 2

n−1∑
u=k+1

n∑
v=u+1

Pce(ū, v|i(≤)) Pce(u, v̄|i(≤)) Σ̃u,v

+ 2

(
bk−20:(i−1)

bk0:i

)2 k−1∑
u=1

k∑
v=u+1

Σ̃u,v. (128)

Utilizing (127) and (128), the correlation efficiency ρ1
given by (100) is numerically computed. Replacing proba-
bilities Pce(·|i(≤)) and Pce(·, ·|i(≤)) with Pce(·|i(>)) and
Pce(·, ·|i(>)) in (126), (127), and (128), we can also ob-
tain the mean E[D

(W)
e |ẽB 6= e, w(ẽB) > i], the variance

σ2

D
(W)
e |ẽB6=e,w(ẽB)>i

, and the covariance regarding D
(W)
e con-

ditioning on {w(ẽB)> i, ẽB 6= e}, and numerically calculate
ρ2. Finally, by substituting fapp

D
(W)
e

(x|ẽB = e) in (125), the

means and variances of D(W)
e , and ρ1 and ρ2 into (101), the

distribution of the D(W)
i is finally approximated as

f
D

(W)
i

(x) ≈
i∑

v=0

pEk1 (v)

·
(
fapp
D

(W)
e

(x|ẽB =e)

∫ ∞
x

f
D̃

(W)
i

(
u, bk1:i|w(ẽB)≤ i

)
du

+ f
D̃

(W)
i

(
u, bk1:i|w(ẽB)≤ i

)∫ ∞
x

fapp
D

(W)
e

(u|ẽB =e)du

)
+

(
1−

i∑
v=0

pEk1 (v)

)
f
D̃

(W)
i

(
u, bk0:i|w(ẽB) > i

)
,

(129)

where f
D̃

(W)
i

(
u, bk1:i|w(ẽB)≤ i

)
and f

D̃
(W)
i

(
u, bk0:i|w(ẽB)>i

)
are respectively given by (102) and (103), and fapp

D
(W)
e

(x|ẽB =

e) is given by (125).
We enabled the numerical calculation of (101) by introduc-

ing the approximation (129). To verify (129), We compare
the approximated distribution (129) of D(W)

i with the sim-
ulation results in decoding the (128,64,22) eBCH code and
the (64,21,16) Polar code, as depicted in Fig. 10 and Fig. 11,
respectively. As can be seen, (129) is a tight approximation
of f

D
(W)
i

(x). Similar to the distribution of D(H)
i , the pdf

of D(W)
i also concentrates towards the left part when the

reprocessing order increases. This is because the weight of
the two combined components in f

D
(W)
i

(x) are given by∑i
v=0 pEk1 (v) and 1−

∑i
v=0 pEk1 (v), respectively. The extent

to which the distribution concentrates towards the left reflects
the improvement in the decoding performance, i.e., the more
the distribution is concentrated to the left, the better the
error performance. In addition, similar to the distribution of
D

(H)
i , the distribution D

(W)
i given by (101) or (129) is only

compatible with codes with the minimum distance dH not
much lower than n − k, where the correlations between any
two codeword estimates generated in OSD can be ignored.
However, when dH � n−k or the generator matrix is sparse,
the result given by (129) will show discrepancies with the
simulation results.

From Fig. 10 and Fig. 11, we can also notice that although
(129) provides a relatively tight approximation, there are still a
few deviations between (129) and the simulation results. These
deviations are mainly due to the reasons: 1) the approximation
of ordered reliabilities enlarges the deviations of approximat-
ing D

(W)
i , as D(W)

i is composed of ordered reliabilities, 2)
we approximately obtained the mean and variance of D(W)

e for
the simplicity of numerical calculations, e.g., step (a) of (126).
Furthermore, the pdf in (129) is not truncated to consider only
non-negative values of D(W)

0 for the simplicity of expression.
One can further improve the accuracy of (129) by considering
the truncated distributions in the derivation.

VI. HARD-DECISION DECODING TECHNIQUES BASED ON
THE HAMMING DISTANCE DISTRIBUTION

For the OSD approach, the decoding complexity can be
reduced by applying the discarding rule (DR) and stopping
rule (SR). Given a TEP list, DRs are usually designed to
identify and discard the unpromising TEPs, while SRs are
typically designed to determine whether the best decoding
result has been found and terminate the decoding process
in advance. In this Section, we propose several SRs and
DRs based on the derived Hamming distance distributions
in Section IV. We mainly take BCH codes as examples to
demonstrate the performance of the proposed conditions. The
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Fig. 10. The distribution of D(W)
i in decoding (128, 64, 22) eBCH code

when SNR = 1 dB.
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Fig. 11. The distribution of D(W)
i in decoding (64, 21, 16) Polar code when

SNR = 1 dB.

efficient decoding algorithms of BCH codes are of particular
interest because they can hardly be decoded by using modern
well-designed decoders (e.g., successive cancellation for Polar
codes and belief propagation for LDPC). In Section VIII, we
will further show that the proposed techniques are especially
effective for codes with binomial-like weight spectrum (e.g.,
the BCH code), in which case the SRs and the DRs can be
efficiently implemented.

A. Hard Success Probability of Codeword Estimates

Recalling the statistics of the Hamming distance D
(H)
0

proposed in Theorem 1, the pmf of Hamming distance D(H)
0

is a mixture of two random variables Enk+1 and WcP which
represent the number of errors in redundant positions and the
Hamming weight of the redundant part of a codeword from
C(n, k), respectively. Furthermore, from Lemma 3, it is clear
that Enk+1 can represent the Hamming distance between ỹ
and the 0-reprocessing estimate c̃0 if no errors occur in MRB
positions and WcP can represent the Hamming distance if there
are some errors in the MRB positions.

It is known that 0-reprocessing of OSD can be regarded
as the reprocessing of a special all-zero TEP 0, where ỹB ⊕
0 is re-encoded. Thus, Eq. (45) in Theorem 1 is in fact the
Hamming distance between ĉe and y in the special case that
e = 0. In order to obtain the SRs and DRs for an arbitrary TEP
e, we first introduce the following Corollary from Theorem 1.

Corollary 1. Given a linear block code C(n, k) and a specific
TEP e satisfying w(e) = v, the pmf of the Hamming distance
between ỹ and c̃e, i.e., D(H)

e , is given by

p
D

(H)
e

(j) = Pe(e)pEnk+1
(j − v)

+ (1−Pe(e))pWe,cP
(j−v|w(e)=v),

(130)

for j ≥ w(e), where Pe(e) is given by

Pe(e) =

∫ ∞
0

· · ·︸ ︷︷ ︸
k−w(e)

∫ 0

−∞
· · ·︸ ︷︷ ︸

w(e)

·

(
n!

(n− k)!
FA(|xk|)

k∏
`=1

fR(x`)

k∏
`=2

1[0,|x`−1|](|x`|)

)
·
∏

0<`≤k
e` 6=0

dx`
∏

0<`≤k
e`=0

dx`,

(131)

pEnk+1
(j) is the pmf of random variable Enk+1 given by (12),

and pWe,cP
(j|w(e) = v) is the conditional pmf of random

variable We,cP
defined in Lemma 5. The conditional pmf

pWe,cP
(j|w(e) = v) is given by

pWe,cP
(j|w(e) = v)

=

n−k∑
`=0

n−k∑
u=0

(
u
δ

)(
n−k−u
`−δ

)(
n−k
`

) k∑
q=0

(
pWe,ẽB

(q|w(e) = v)pcP
(`, q)

)
· pEnk+1

(u) · 1N
⋂
[0,min(u,`)](δ),

(132)

where δ = `+u−j
2 , and pWe,ẽB

(q|w(e) = v) is the conditional
pmf of random variable We,ẽB

introduced in Lemma 4, which
is given by

pWe,ẽB
(q|w(e)=v)=

k∑
u=0

(
u
δ′

)(
k−u
v−δ′
)(

k
v

) pEk1 (u) · 1N,[0,min(u,v)](δ
′),

(133)
for δ′ = u+v−q

2 .

Proof: Similar to (45) in Theorem 1 with respect to the
all-zero TEP 0, the pmf of D(H)

e with respect to a general TEP
e can be derived by replacing pEk1 (0) and 1−pEk1 (0) by Pe(e)
and 1−Pe(e), respectively, where Pe(e) is the probability that
only the nonzero positions of e are in error in ỹB, i.e., e can
eliminate the errors in MRB. Furthermore, slightly different
from D

(H)
0 given by (35), the Hamming distance D

(H)
e is

given by Ek1 + w(e) when ẽB = e, because the Hamming
distance contributed by MRB positions needs to be included.
In contrast, when ẽB 6= e, the difference pattern between c̃e
and ỹ is given by d̃e = [e (ẽB ⊕ e)P̃] and D(H)

e is given by
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w(e) + w(d̃e,P). The Hamming weight w(d̃e,P) is described
by the random variable We,cP introduced in Lemma 5. The
pmf of We,cP conditioning on w(e) = v, given by (132), can
be easily obtained from (52).

From Corollary 1, we know that for the Hamming distance
DH

e with respect to an arbitrary TEP e, the pmf p
D

(H)
e

(j)

is also a mixture of two random variables Ek1 + w(e) and
We,cP + w(e), and the weight of the mixture is determined
by probability Pe(e). In fact, Pe(e) is the probability that e
could eliminate the MRB errors ẽB, and we refer to Pe(e)
as the a priori correct probability of the codeword estimate
c̃e with respect to e. Nevertheless, based on (130) we can
further find the probability that TEP e could eliminate the error
pattern ẽB when given the Hamming distance d(H)

e (a sample
of D(H)

e ), which is referred to as the hard success probability
of c̃e. The hard success probability can be regarded as the a
posterior correct probability of c̃e, given the value of D(H)

e .
We characterize the hard success probability in the following
Corollary.

Corollary 2. Given a linear block code C(n, k) and TEP e,
if the Hamming distance between c̃e and ỹ is calculated as
d
(H)
e , the probability that the errors in MRB are eliminated by

TEP e is given by

Psuc
e (d(H)

e ) = Pe(e)
pEnk+1

(
d
(H)
e − w(e)

)
p
D

(H)
e

(
d
(H)
e − w(e)

) , (134)

where p
D

(H)
e

(j) is the pmf given by (130).

Proof: For the probability Psuc
e (de), we observe

Psuc
e (d(H)

e )=
Pr
(
D

(H)
e =d

(H)
e , ẽB =e

)
Pr
(
D

(H)
e =d

(H)
e , ẽB=e

)
+Pr

(
D

(H)
e =d

(H)
e , ẽB6=e

),
(135)

where Pr
(
D

(H)
e =d

(H)
e , ẽB =e

)
is derived as Pr(ẽB =

e)Pr(D
(H)
e = d

(H)
e |ẽB = e), and Pr

(
D

(H)
e =d

(H)
e , ẽB 6= e

)
is derived as Pr(ẽB 6= e)Pr(D

(H)
e = d

(H)
e |ẽB 6= e). From

Corollary 1, Pr(ẽB = e) is given by Pe(e), and Pr(D
(H)
e =

d
(H)
e |ẽB = e) and Pr(D

(H)
e = d

(H)
e |ẽB 6= e) are in fact

given by pEnk+1
(d

(H)
e − w(e)) and pWe,cP

(d
(H)
e − w(e)) in

(130), respectively. Substituting Pe(e), pEnk+1
(d

(H)
e − w(e))

and pWe,cP
(d

(H)
e − w(e)) into (135), we obtain (134).

We show Psuc
e (d

(H)
e ) as a function of d(H)

e for TEP e =
[0, . . . , 0, 1, 1, 0] in decoding (128, 64, 22) eBCH code in Fig.
12. As can be seen, when d

(H)
e decreases, the probability

that errors in MRB are eliminated increases rapidly. In other
words, the a posterior correct probability of c̃e increases
as d(H)

e decreases. It is of interest that although the WHD
usually measures the likelihood of a codeword estimate to the
hard-decision vector, the Hamming distance can also represent
the likelihood. Because Pe(e) in (134) involves large-number
integrals, we adopted a numerical calculation with limited
precision to keep the overall complexity affordable, which
introduced the discrepancies between the simulation curves
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Fig. 12. Psuc
e (d

(H)
e ) in decoding (128, 64, 22) eBCH code at different SNR,

for TEP e = [0, . . . , 0, 1, 1, 0].

and the analytical curves shown in Fig. 12.
Similarly, instead of calculating the success probability for

each TEP, after the i-reprocessing (0 ≤ i ≤ m) of an order-m
OSD, we can obtain the minimum Hamming distance as d(H)

i

and the locally best codeword estimate c̃i. The a posterior
probability that the number of errors in MRB is less than
or equal to i, i.e., Pr(w(ẽB) ≤ i|d(H)

i ), can be evaluated. If
w(ẽB) ≤ i, an order-i OSD is capable of obtaining the correct
decoding result. Thus, we refer to Pr(w(ẽB) ≤ i|d(H)

i ) as the
hard success probability Psuc

i (d
(H)
i ) of c̃i. This is summarized

in the following Corollary.

Corollary 3. In an order-m OSD of decoding a linear block
code C(n, k), if the minimum Hamming distance between
the codeword estimates and the hard-decision vector after i-
reprocessing is given by d(H)

i , the probability that the number
of errors in MRB is less than or equal to i is given by

Psuc
i (d

(H)
i ) = 1−

(
1−

i∑
u=0

pEk1 (u)

)

·

n−k∑
v=0

pEnk+1
(v)p

W̃cP
(d

(H)
i − i, bk0:i|i(>), v)

p
D

(H)
i

(d
(H)
i )

(136)

where p
D

(H)
i

(d) is given by (55) and p
W̃cP

(j − i, bk0:i|i(>), v)

is given by (57).

Proof: Following the same steps as the proof of Corollary
2 and using Theorem 2, we can obtain (136).

We compare (136) with simulations in decoding the
(128, 64, 22) eBCH code at various SNRs in Fig. 13. As can
be seen, the Hamming distance after i-reprocessing can be
an indicator of the decoding quality. Furthermore, the hard
success probability of codeword c̃i tends to 1 if the Hamming
distance d(H)

i goes to 0.

B. Stopping Rules
In (134) and (136), we have shown that the Hamming

distances can be used to determine the a posterior probability
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Fig. 13. Psuc
i (d

(H)
i ) in decoding (128, 64, 22) eBCH code at different SNR,

when i = 1.

that the MRB errors can be eliminated. This section develops
the decoding SR based on (134) and (136), attempting to
reduce the decoding complexity of OSD.

Let us assume that at the receiver, a sequence of the samples
of [Ã]n1 is given by α̃ = [α̃]n1 , i.e., the receiver receives a
signal sequence r with reliabilities α̃. Thus, conditioning on
Ãu = α̃u, the error probability of the u-th (1 ≤ u ≤ n) bit of
ỹ can be obtained as

Pe(u|Ãu = α̃u) =
fR(−α̃u)

fR(−α̃u) + fR(α̃u)
, (137)

where fR(x) is given by Eq. (5). For simplicity, we denote
Pe(u|Ãu = α̃u) as Pe(u|α̃u). Then, the joint error probability
of u-th and v-th (1 ≤ u < v ≤ n) bits can be derived as

Pe(u, v|α̃u, α̃v) =
fR(−α̃u)

fR(−α̃u) + fR(α̃u)
· fR(−α̃v)
fR(−α̃v) + fR(α̃v)

= Pe(u|α̃u)Pe(v|α̃v). (138)

From (138), we can see that although the bit-wise error prob-
abilities of ordered received symbols are dependent as shown
in (11), the conditional error probabilities are independent
and Pe(u, v|α̃u, α̃v) = Pe(u|α̃u)Pe(v|α̃v) holds. Next, we
introduce the SR design based on the reliabilities α̃, which
is obtained from the channel as a priori information.

1) Hard Individual Stopping Rule (HISR): Given the or-
dered reliabilities of received symbols, i.e., α̃ = [α̃]n1 , the
conditional correct probability Pe(e|α̃) of TEP e can be
simply derived as

Pe(e|α̃) =
∏

0<u≤k
eu 6=0

Pe(u|α̃u)
∏

0<u≤k
eu=0

(1− Pe(u|α̃u)). (139)

We can also estimate conditional pmf of Eba, denoted by
pEba(j|α̃) (i.e., the number of errors over [ỹ]ba), as

pEba(j|α̃) =

(
b− a+ 1

j

)(
1

b− a+ 1

b∑
u=a

Pe(u|α̃u)

)j

·

(
1− 1

b− a+ 1

b∑
u=a

Pe(u|α̃u)

)b−a+1−j

.

(140)

Accordingly, when [Ã]n1 = [α̃]n1 , the hard success probability
Psuc
e (d

(H)
e |α̃) can be simplt obtained as

Psuc
e (d(H)

e |α̃) = Pe(e|α̃)
pEnk+1

(d
(H)
e − w(e)|α̃)

p
D

(H)
e

(d
(H)
e − w(e)|α̃)

, (141)

where p
D

(H)
e

(j|α̃) is given by (130), but in which Pe(e) is
replaced by Pe(e|α̃), and pEk1 (j) and pEnk+1

(j) are replaced
with pEk1 (j|α̃) and pEnk+1

(j|α̃), respectively. Despite the com-
plicated form, in Section VIII-A, we will show that (140) can
be computed with O(n) floating-pointing operations (FLOPs)
when C(n, k) has the binomial-like weight spectrum.

We now introduce the hard individual stopping rule (HISR).
Given a predetermined threshold success probability Psuc

t ∈
[0, 1], if the Hamming distance d(H)

e between c̃e and ỹ satisfies
the following condition

Psuc
e (d(H)

e |α̃) ≥ Psuc
t , (142)

the codeword ĉe = π−11 (π−12 (c̃e)) is selected as the decoding
output, and the decoding is terminated. Therefore, the proba-
bility that errors in MRB are eliminated is lower bounded by
Psuc
t because of (142).

Next, we give the performance bound and complexity
analysis for an order-m OSD decoding that only applies the
HISR technique, attempting to characterize the complexity
improvements and error rate performance loss introduced by
the HISR. For an arbitrary TEP e, there exists a maximum
d
(H)
e , referred to as d(H)

max,e, satisfying Psuc
e (d

(H)
e |α̃) ≥ Psuc

t ,
i.e., d(H)

max,e = max{d(H)
e |Psuc

e (d
(H)
e |α̃) ≥ Psuc

t }. It can be
seen that d(H)

max,e depends on the values of reliabilities α̃.
Thus, we define d(H)

b,e as the mean of d(H)
max,e with respect to

α̃, i.e., d(H)
b,e = E[d

(H)
max,e]. Because α̃ is a random vector with

dependent distributions, d(H)
b,e can be hardly determined. Thus,

we give an approximation of d(H)
b,e using Psuc

e (d
(H)
e ) to enable

the subsequent analysis . Let Psuc,−1
e (x) and Psuc,−1

e (x|α̃)
denote the inverse functions of (134) and (141), respectively.
It can be seen that Psuc

e (x|α̃) is a decreasing function
and accordingly Psuc,−1

e (x|α̃) is a decreasing function. In
addition, Psuc,−1

e (x) is also a decreasing function. For the
sake of brevity, we omit the proof of the monotonicity of
Psuc,−1
e (x) and Psuc,−1

e (x|α̃), which can also be observed in
Fig. 12. Note that Psuc,−1

e (x) and Psuc,−1
e (x|α̃) are discrete

functions, i.e., x cannot be a continuous real number, and
it is possible that Psuc

t is not in the domains of Psuc,−1
e (x)

and Psuc,−1
e (x|α̃). In this regard, let us define Psuc

t′ as
Psuc
t′ = min{x|x ≥ Psuc

t , x is in the domain of Psuc,−1
e (x)}
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and define Psuc
t′ (α̃) as Psuc

t′ (α̃) = min{x|x ≥
Psuc
t , x is in the domain of Psuc,−1

e (x|α̃)}. Based on these
definitions, we can notice that

d(H)
max,e = max{d(H)

e |Psuc
e (d(H)

e |α̃) ≥ Psuc
t }

= Psuc,−1
e (Psuc

t′ (α̃)|α̃)
(143)

and the difference between Psuc
t′ (α̃) and Psuc

t′ is upper bounded
by

|Psuc
t′ − Psuc

t′ (α̃)|
≤ max {|∆1Psuc

e (Psuc
t′ )| , |∆1Psuc

e (Psuc
t′ (α̃)|α̃)|} ,

(144)

where ∆1Psuc
e (j) = Psuc

e (j + 1) − Psuc
e (j). Therefore, for

Psuc
t close to 0 or 1 (recall Fig. 12), we simply take Psuc

t′ ≈
Psuc
t′ (α̃). Then, d(H)

b,e can be approximated as

d
(H)
b,e = E

[
Psuc,−1
e (Psuc

t′ (α̃)|α̃)
]

≈ E
[
Psuc,−1
e (Psuc

t′ |α̃)
]

(a)
= Psuc,−1

e (Psuc
t′ )

(b)
= max{d(H)

e |Psuc
e (d(H)

e |α̃) ≥ Psuc
t }.

(145)

Step (a) of (145) follows from that Psuc,−1
e (x) =

E[Psuc,−1
e (x|α̃)], and step (b) applies the equivalence (143)

over Psuc,−1
e (x).

let P
suc

e denote the expectation of the hard success proba-
bility of c̃e with respect to D(H)

e ≤d(H)
b,e , i.e., P

suc

e = Pr(e =

ẽB|D(H)
e ≤ d

(H)
b,e ). Thus, if c̃e satisfies the HISR, P

suc

e is
derived as

P
suc

e =

 d
(H)
b,e∑

j=w(e)

Psuc
e (j)p

D
(H)
e

(j)


 d

(H)
b,e∑

j=w(e)

p
D

(H)
e

(j)


−1

.

(146)

On the other hand, given a specific reprocessing sequence
{e1, e2, . . . , ebk0:m} (i.e., the decoder processes TEPs sequen-
tially from e1 to ebk0:m ), for any j, 1 < j ≤ bk0:m, the
probability that ĉej = π−11 (π−12 (c̃ej )) is identified and output
by the HISR is given by

Pej =

 d
(H)
b,ej∑

u=w(ej)

p
D

(H)
ej

(u)

 j−1∏
v=1

1−
d
(H)
b,ev∑

u=w(ev)

p
D

(H)
ev

(u)

 .

(147)

Particularly, Pe1 =
∑d

(H)
b,e1

u=w(e1)
p
D

(H)
e1

(u).

Generally, the overall decoding error probability of an
original OSD can be upper bounded by [11]

εe ≤ Plist + PML, (148)

where PML is the error rate of maximum-likelihood decoding
(MLD), and Plist is the probability that the error pattern ẽB

(recall the definition of ẽB in the proof of Lemma 3) is
excluded in the list of TEPs of OSD, i.e., the probability that
OSD does not eliminate the errors in MRB, which can be
derived as Plist = 1 −

∑m
i=0 pEk1 (i). For an order-m OSD

employing the HISR with the threshold success probability

Psuc
t , the error rate upper bounded as

εHISR
e ≤ Plist + PHISR + PML, (149)

where PHISR is the probability that the HISR outputs an
incorrect codeword estimate, which introduces performance
degradation in εHISR

e compared to εe. Considering the proba-
bilities given by (146) and (147), PHISR can be derived as

PHISR =

bk0:m∑
j=1

Pej

(
1− P

suc

ej

)
. (150)

Then, if the second permutation π2 is omitted, by substituting
(150) into (149), we can finally obtain the error rate upper
bound of an order-m OSD applying the HISR, i.e.,

εHISR
e ≤ 1−

m∑
j=1

pEk1 (j) +

bk0:m∑
j=1

Pej

(
1− P

suc

ej

)
+ PML

= 1− (1− θHISR)

m∑
j=0

pEk1 (j) + PML

(151)

where θHISR is defined as the error performance loss factor of
the HISR, which is given by

θHISR =

∑bk0:m
j=1 Pej

(
1− P

suc

ej

)
∑m
j=0 pEk1 (j)

(152)

It can be noticed that the performance loss rate θHISR is
controlled by Psuc

t and the value of θHISR is bounded by

0 ≤ θHISR ≤
1− pEk1 (0)∑m
j=0 pEk1 (j)

. (153)

We elaborate on the impact of Psuc
t over the error rate as

follows
• When Psuc

t goes to 1, Pej goes to 0 for any j, which
implies that no TEP will satisfy the HISR. In this case,
θHISR goes to 0, and (151) tends to be the performance
upper bound of the original OSD.

• When Psuc
t goes to 0, Pe1

=
∑d

(H)
b,e1

u=w(e1)
p
D

(H)
e1

(u) goes

to 1 as d(H)
b,e1

tends to be as large as n, which implies
that the decoder will only process the first TEP (i.e., 0-
reprocessing). When d(H)

b,e1
goes to n, P

suc

e1
given in (146)

tends to be P
suc

e1
= Pe(e1) = pEk1 (0). In this case, we

can observe that θHISR =
1−p

Ek1
(0)∑m

j=0 pEk1
(j) and εHISR

e = 1−

pEk1 (0) +
∑k
m+1 pEk1 (0) + PML, which upper bounds the

error rate of the 0-reprocessing OSD.
We illustrate the performance loss factor θHISR with dif-

ferent values of Psuc
t in the order-1 decoding of (64, 30, 14)

eBCH code in Fig. 14. It is worth mentioning that even for
small Psuc

t (e.g., 0.1 or 0.5), the loss θHISR tends to be
decreased significantly as SNR increases. For Psuc

t = 0.99,
it can be seen that only less than 0.1% of error correction
probability is lost (recall that 1 − θHISR is the coefficient of∑m
j=0 pEk1 (j) in (151)).
Regarding the decoding complexity, given a specific re-
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Fig. 14. The performance loss factor θHISR of decoding (64, 30, 14) eBCH
code with an order-1 OSD applying the HISR.

processing sequence {e1, e2, . . . , ebk0:m} and considering the
probability given by (147), the average number of re-encoded
TEPs, denoted by Na, can be derived as

Na =

bk0:m∑
j=1

j · Pej + bk0:m

1−
bk0:m∑
j=1

Pej

 . (154)

It can be seen that when Psuc
t goes to 1, Na goes to bk0:m,

which is the number of TEPs required in the original OSD.
In contrast, when Psuc

t goes to 0, Na goes to 1 as Pe1
goes

to 1, which indicates that only one TEP is re-encoded.

Compared to the conventional approaches of maximum-
likelihood decoding or OSD decoding, the HISR finds the
decoding output by calculating the Hamming distance rather
than comparing the WHD for every re-encoding products.
Furthermore, the HISR can find the promising decoding result
during the reprocessing and terminate the decoding without
traversing all the TEP. This reduces the decoding complexity.
Note that {e1, e2, . . . , ebk0:m} is non-exchangeable in (151) and
(154) as different reprocessing sequences may result in differ-
ent decoding complexity and loss rate. According to (151) and
(154), the best sequence solution should be always prioritizing

TEP ej , 1 ≤ j ≤ bk0:m, with higher
∑d

(H)
b,ej

u=w(ej)
p
d
(H)
ej

(u).

We consider the implementation of an order-1 OSD algo-
rithm applying the HISR. The decoding error performance
and the average number of TEPs is compared with different
threshold Psuc

t settings in decoding (64, 30, 14) eBCH code,
as depicted in Fig. 15(a) and Fig. 15(b), respectively. As
can be seen, HISR can be an effective stopping condition
to reduce complexity, even if it is calculated based on the
Hamming distance. In particular, with a high Psuc

t (e.g., 0.99),
the average number of TEPs Na is also significantly reduced at
high SNRs. At the same time, the error performance is almost
identical to the original OSD. It needs to be noted that the
approximation in (145) introduces the discrepancies between
(154) and the simulations in Fig. 15(b). As explained in (144),
the approximation may lose tightness particularly for medium
Psuc
t .
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Fig. 15. Decoding (64, 30, 14) eBCH code with an order-1 OSD applying
the HISR.

2) Hard Group Stopping Rule: Although the HISR can
accurately evaluate the successful probabilities of TEPs,
Psuc
e (d

(H)
e |α̃) needs to be determined for each TEP indi-

vidually and the reprocessing TEP sequence should also be
carefully considered. We further propose a hard group stopping
rule (HGSR) based on Theorem 2 and Corollary 3 as an alter-
native efficient implementation. Given the a prior information
[Ã]n1 = [α̃]n1 = α̃, we can simplify (136) in Corollary 3 as

Psuc
i (d

(H)
i |α̃) = 1−

(
1−

i∑
v=0

pEk1 (v|α̃)

)

·

n−k∑
v=0

pEnk+1
(v|α̃)p

W̃cP
(d

(H)
i − i, bk0:i|i(>), v, α̃)

p
D

(H)
i

(d
(H
i |α̃)

,

(155)

where pEk1 (v|α̃) and pEnk+1
(v|α̃) are derived from

pEba(v|α̃) in (140). In (155), p
W̃cP

(j − i, bk0:i|i(>), v, α̃) and
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p
D

(H)
i

(d
(H)
i |α̃) are the conditional pmfs obtained by replacing

all pEba(j) with pEba(j|α̃) inside p
W̃cP

(j − i, bk0:i|i(>), v) and

p
D

(H)
i

(d
(H)
i ), respectively, where p

D
(H)
i

(d) is given by (55)

and p
W̃cP

(j − i, bk0:i|i(>), v) is given by (57). Despite the
complicated form of (155), in Section VIII-A, we further
show that it can be implemented with O(n2) FLOPs if
C(n, k) has the binomial-like weight spectrum.

Therefore, we can calculate the hard success probability
Psuc
i (d

(H)
i |α̃) according to (155) for the entire reprocessing

stage, rather than calculating Psuc
e (d

(H)
e |α̃) for each TEP e

individually as in the HISR. All TEPs in the first i phases of
reprocessing can be regarded as a group and Psuc

i (d
(H)
i |α̃) is

calculated after each reprocessing. If Psuc
i (d

(H)
i |α̃) is larger

than a determined parameter, the decoder can be terminated.
This approach is referred to as the HGSR.

The HGSR is described as follows. Given a predetermined
threshold success probability Psuc

t ∈ [0, 1], after the i-
reprocessing (0 ≤ i ≤ m) of an order-m OSD, if the minimum
Hamming distance d(H)

i satisfies the following condition

Psuc
i (d

(H)
i |α̃) ≥ Psuc

t , (156)

the decoding is terminated and the codeword estimate found
best so far, ĉi = π−11 (π−12 (c̃i)), is claimed as the decoding
output. If ĉi is output, the probability that the errors in MRB
are eliminated is lower bounded by Psuc

t according to (156).
Next, we consider an order-m (m ≥ 1) OSD decoding em-

ploying the HGSR with a given threshold success probability
Psuc
t , and derive an upper bound on the error rate εHGSR

e in
a similar approach as described in Section VI-B1. For the
sake of brevity, we omit some details of the derivations in the
analysis that follows in this section.

For the i-reprocessing (0 ≤ i ≤ m), there exists a maximum
d
(H)
i , referred to as d(H)

max,i , satisfying Psuc
i (d

(H)
i |α̃) ≥ Psuc

t ,
i.e., d(H)

max,i = max{d(H)
i |Psuc

i (d
(H)
i |α̃) ≥ Psuc

t }. We define
db,i as the mean of d(H)

max,i, which can be derived as

d
(H)
b,i ≈ max{d(H)

i |Psuc
i (d

(H)
i ) ≥ Psuc

t }, (157)

where the approximation takes the same approach as (145).
Then, the probability that c̃i (1 ≤ i ≤ m) satisfies the HGSR
can be derived as

Pi =

d
(H)
b,i∑
u=0

p
D

(H)
i

(u)

 i−1∏
v=0

1−
d
(H)
b,v∑
u=0

p
D

(H)
v

(u)

 . (158)

Particularly, P0 =
∑d

(H)
b,0

u=0 pD(H)
0

(u). Let P
suc

i denote the mean
of the hard success probability of i-reprocessing conditioning
on D

(H)
i ≤ d

(H)
b,i , i.e., P

suc

i = Pr(w(ẽB) ≤ i|D(H)
i ≤ d

(H)
b,i ),

then P
suc

i can be derived as

P
suc

i =

∑d
(H)
b,i

u=0 Psuc
i (u)p

D
(H)
i

(u)∑d
(H)
b,i

u=0 pD(H)
i

(u)

. (159)

Next, let us define PHGSR as the probability that the HGSR
outputs an incorrect codeword estimate. Similar to obtaining
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Fig. 16. The performance loss rate θHGSR of decoding (64, 30, 14) eBCH
code with an order-2 OSD applying the HGSR.

(151), the error rate εHGSR
e of an order-m OSD applying the

HGSR is upper bounded as

εHGSR
e ≤ Plist + PHGSR + PML

= 1−
m∑
j=1

pEk1 (j) +

i∑
j=0

Pj

(
1− P

suc

j

)
+ PML

= 1− (1− θHGSR)

m∑
j=0

pEk1 (j) + PML,

(160)

where θHGSR is the error performance loss rate given by

θHGSR =

∑i
j=0 Pj

(
1− P

suc

j

)
∑m
j=0 pEk1 (j)

. (161)

Similar to the HISR, when Psuc
t goes to 1, (160) tends to

be the performance upper bound of the original OSD, i.e.,
εHGSR
e ≤ 1 −

∑m
j=0 pEk1 (j) + PML. In contrast, when Psuc

t

goes to 0, (160) goes to εHGSR
e =

1−p
Ek1

(0)∑m
j=0 pEk1

(j) , indicating

that the OSD only performs the 0-reprocessing. We illustrate
the performance loss θHGSR with different values of Psuc

t

in decoding a (64, 30.14) eBCH code with an order-2 OSD
applying the HGSR, as depicted in Fig. 16.

Considering the probability P
suc

i given by (158), the average
number of TEPs Na can be derived as

Na = bk0:m

1−
m∑
j=0

Pi

+

m∑
j=0

bk0:j · Pj . (162)

We consider the implementation of an order-2 OSD algo-
rithm applying the HGSR. The decoding error performance
and the average number of TEPs is compared in decoding
(64, 30, 14) eBCH code, as depicted in Fig. 17(a) and Fig.
17(b), respectively. From the simulation, it can be seen that
HGSR is also effective in reducing complexity. Compared to
the HISR, HGSR does not need to consider the sequence order
of TEPs, and it only calculates the hard success probability
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Fig. 17. Decoding (64, 30, 14) eBCH code with an order-2 OSD applying
the HGSR.

after each round of reprocessing, thus is more suitable for
high-order OSD implementations.

C. Discarding Rules
Although OSD looks for the best codeword by finding the

minimum WHD, if a codeword estimate ĉe could provide a
better estimation, its Hamming distance d(H)

e from y should
be less than or around the minimum Hamming weight dH
of the code. According to [2, Theorem 10.1], if and only if
d
(H)
e ≤ dH, the correct codeword estimate is possible to be

located in the region R , {ĉe′ ∈ C(n, k) : d(H)(ĉe′ , ĉe) ≤
dH} [2, Corollary 10.1.1]. In other words, if d(H)

e ≤ dH, the
codeword estimate ĉe is likely to be the correct estimate. In
this section, we introduce a DR to discard unpromising TEP
by evaluating the probability of producing a valid codeword
estimate based on the Hamming distance, which is referred to
as Hard Discarding Rule (HDR).

In the decoding of one received signal sequence with the
OSD algorithm, if the samples of ordered reliabilities sequence

[Ã]n1 are given by α̃ = [α̃]n1 and the minimum Hamming
weight of C(n, k) is given by dH, for the re-encoding of an
arbitrary TEP e, the probability that D(H)

e is less than or equal
to dH is given by

Ppro
e (dH|α̃) =

dH∑
j=0

p
D

(H)
e

(j|α̃), (163)

which is referred to as the hard promising probability. In
(163), p

D
(H)
e

(j|α̃) is given by (130), but in which Pe(e) is
replaced by Pe(e|α̃), and pEk1 (j) and pEnk+1

(j) are replaced
with pEk1 (j|α̃) and pEnk+1

(j|α̃), respectively.
The HDR is described as follows. Given a threshold of

the promising probability Ppro
t ∈ [0, 1] and the minimum

Hamming weight dH, if the hard promising probability of e
satisfies the following condition

Ppro
e (dH|α̃) ≤ Ppro

t , (164)

the TEP e is discarded without reprocessing.
We further define Ppro

e (dH) as

Ppro
e (dH) =

dH∑
j=0

p
D

(H)
e

(j), (165)

where p
D

(H)
e

(j) is given by (130). It can be seen that Ppro
e (dH)

is the mean of Ppro
e (dH|α̃) with respect to α̃, i.e., Ppro

e (dH) =
E[Ppro

e (dH|α̃)] .
For a linear block code C(n, k) with truncated binomial

weight spectrum as described in (65), it is unnecessary for
the decoder to check the HDR for each TEP. For the hard
promising probability defined by (163), we have the following
property.

Proposition 1. In the decoding of C(n, k) with truncated
binomially distributed weight spectrum, for an arbitrary TEP
e with the Hamming weight w(e), Ppro

e (dH|α̃) is a monoton-
ically increasing function of Pe(e|α̃).

Proof: The proof is provided in Appendix H.
Note that it is also easy to prove that the monotonicity given

in Proposition 1 also holds for Ppro
e (dH). We omit the proof for

brevity. Section VIII-A will show that (163) can be computed
with complexity O(n) FLOPs when C(n, k) has a binomial-
like weight spectrum.

Next, we consider the decoding performance and com-
plexity of HDR. In order to find the decoding perfor-
mance of HDR, the TEP e which first satisfies the HDR
check in the i-reprocessing needs to be determined. Assume
that the decoder reprocesses TEPs with a specific sequence
{ei,1, ei,2, . . . , ei,(ki)}. Given the threshold promising proba-
bility Ppro

t , there exists a non-negative integer βHDR
i , such

that

βHDR
i =

(ki)∑
j=1

1[Ppro
t ,+∞]P

pro
ei,j (dH|α̃) (166)

where βHDR
i in fact represents the number of TEPs re-encoded

in the i-reprocessing conditioning on [Ã]n1 = [α̃]n1 . Then, the
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mean of βHDR
i can be represented as

E[βHDR
i ] =

∫ ∞
0

· · ·
∫ ∞
0︸ ︷︷ ︸

n

βHDR
i f[Ã]n1

(α̃1, α̃2, . . . , α̃n)

n∏
u=1

dα̃u.

(167)
where f[Ã]n1

(x1, x2, . . . , xn) is the joint distribution of random

variables [Ã]n1 , which can be derived as [27]

f[Ã]n1
(x1, x2, . . . , xn) = n!

n∏
u=1

fA(xu)

n∏
u=2

1[0,xu−1](xu).

(168)
Similar to the approximation in (145), by considering
E[Ppro

ei,j (dH|α̃)] = Ppro
ei,j (dH) with respect to α̃, E[βHDR

i ] can
be approximated by

E[βHDR
i ] ≈

(ki)∑
j=1

1[Ppro
t ,+∞]P

pro
ei,j (dH). (169)

Therefore, the average number of re-encoded TEP Na can be
easily derived as

Na =

m∑
i=0

E[βHDR
i ]. (170)

In the i-reprocessing with the HDR, the probability that the
MRB errors ẽB are eliminated can be lower bounded by (171)
on the top of the next page.

Therefore, the decoding error performance is upper bounded
by

εHDR
e ≤

(
1−

m∑
i=0

Pfound(i)

)
+ PML.

≤ 1−
m∑
i=0

(
pEk1 (i)− ηHDR(i)

)
+ PML,

(172)

where ηHDR(i) is the degradation factor of i-reprocessing
given by

ηHDR(i) =

∫ ∞
0

· · ·︸ ︷︷ ︸
n

 (ki)∑
j=1

(
1[0,Ppro

t ]P
pro
ei,j (dH|α̃)

)
Pe(ei,j |α̃)


· f[Ã]n1

(α̃1, α̃2, . . . , α̃n)

n∏
u=1

dxu.

(173)

If Ppro
t = 1, because 1[0,Ppro

t ]P
pro
ei,j (dH|α̃) = 1 for 1 ≤ j ≤(

k
i

)
, it can be noticed that ηHDR(i) =

∑(ki)
j=1 Pe(ei,j) =

pEk1 (i), which indicates the worst error rate performance
and εHDR

e ≤ 1 + PML. Furthermore, ηHDR(i) decreases
as Ppro

t decreases. This is because the smaller Ppro
t , the

smaller
∑(ki)
j=1 1[0,Ppro

t ]P
pro
ei,j (dH|α̃). In particular, if Ppro

t = 0,
1[0,Ppro

t ]P
pro
ei,j (dH|α̃) = 0 for 1 ≤ j ≤

(
k
i

)
and ηHDR(i) = 0,

indicating the error rate performance is the same as the original
OSD, i.e., εHDR

e ≤ 1−
∑m
i=0 pEk1 (i) + PML.

If the weight spectrum of C(n, k) is binomial as described
by (65), the monotonicity described in Proposition 1 holds.

Thus, in (173), for each Pe(ei,j |α̃) satisfying Ppro
ei,j (dH|α̃) ≤

Ppro
t , we can find the following inequity by referring to the

definition of the HDR{
Ppro
ei,j (dH|α̃) ≤ Ppro

t

}
≡
{

Pe(ei,j |α̃) ≤ Ppro,−1
e (Ppro

t |α̃)
}

(174)

where Ppro,−1
e (Ppro

t |α̃) is the inverse function of Ppro
e (dH|α̃)

with respect to Pe(e|α̃). The equivalence naturally holds
because of Proposition 1. Thus, for Ppro,−1

e (Ppro
t |α̃) ≥ 0,

the degradation factor ηHDR(i) can be scaled by

ηHDR(i) ≤
∫ ∞
0

· · ·
∫ ∞
0︸ ︷︷ ︸

n

βHDR
i · Ppro,−1

e (Ppro
t |α̃)

· f[Ã]n1
(α̃1, α̃2, . . . , α̃n)

n∏
u=1

dxu

(a)

≤
(
k

i

)
E[Ppro,−1

e (Ppro
t |α̃)]

=

(
k

i

)
Ppro,−1
e (Ppro

t ),

(175)

where step (a) follows from βHDR
i ≤

(
k
i

)
as shown by

(166). Particularly when Ppro,−1
e (Ppro

t |α̃) < 0, βHDR
i = 0

and ηHDR(i) = 0. Ppro,−1
e (Ppro

t ) is the inverse function of
Ppro
e (dH) with respect to Pe(e), which is derived as

Ppro,−1
e (Ppro

t ) =
Ppro
t −

∑dH
j=i pWe,cP

(j − i|i)∑dH
j=i

(
pEnk+1

(j − i)− pWe,cP
(j − i|i)

) ,
(176)

where pEnk+1
(j) is given by (12) and pWe,cP

(j|i) is given by
(132).

We consider an order-1 OSD algorithm applying HDR in
decoding a (64, 30, 14) eBCH code. According to (175) and
(176), the threshold promising probability is set to Ppro

t =
λ

(ki)
pEk1 (i) +

∑dH
j=i pWe,cP

(j − i|i) in the i reprocessing to

adapt to the channel conditions, where λ is a non-negative real
parameter. The comparisons of error performance and average
number of TEPs Na are depicted in Fig.18(a) and Fig.18(b),
respectively. The performance degradation ηHDR with different
λ is also illustrated in Fig. 19. As can be seen, the trade-off
between error performance and decoding complexity can be
maintained by changing λ. The decoding complexity decreases
and the frame error rate suffers more degradation when λ
increases, and vice versa. Compared with the HISR or HGSR,
HDR has better error performance at low SNRs but worse
error performance at high SNRs with the same level of Na,
which implies that one can combine HDR as a DR and HISR
or HGSR as SRs to reduce the decoding complexity in both
low and high SNR scenarios.

VII. SOFT-DECISION DECODING TECHNIQUES BASED ON
WHD DISTRIBUTION

A. Soft Success Probability of codeword estimate

Based on the WHD distribution we derived in Section V,
we can also propose different SRs and DRs for improving
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Pfound(i) =

∫ ∞
0

· · ·
∫ ∞
0︸ ︷︷ ︸

n

pEk1 (i|α̃)−
(ki)∑
j=1

(
1[0,Ppro

t ]P
pro
ei,j (dH|α̃)

)
Pe(ei,j |α̃)

 f[Ã]n1
(α̃1, α̃2, . . . , α̃n)

n∏
u=1

dxu

= pEk1 (i)−
∫ ∞
0

· · ·
∫ ∞
0︸ ︷︷ ︸

n

 (ki)∑
j=1

(
1[0,Ppro

t ]P
pro
ei,j (dH|α̃)

)
Pe(ei,j |α̃)

 f[Ã]n1
(α̃1, α̃2, . . . , α̃n)

n∏
u=1

dxu.

(171)
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Fig. 18. Decoding (64, 30, 14) eBCH code with an order-1 OSD applying
the HDR.

the decoding efficiency of OSD. Different from the hard-
decision decoding techniques proposed in Section VI, the soft-
decision decoding techniques can make better use of the a
priori information.

We first investigate the distribution of WHD D
(W)
e between

c̃e = [ỹB⊕ e]G̃ and ỹ. For a specific TEP e = [e]k1 , let tBe =

[tB]
w(e)
1 represent the positions indices of nonzero elements

of e. Also, following in the same definition of tPh in Section
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Fig. 19. The performance degradation factor ηHGSR of decoding (64, 30, 14)
eBCH code with an order-1 OSD applying HDR.

V, let us consider an index vector the defined as the = [tBe tPh ]
with the length w(e) + h, where tPh = [tP]h1 . Based on the
Lemma 7 and Lemma 8, we derive the distribution of D(W)

e

for a specific e = [e]k1 in the following Corollary.

Corollary 4. Given a linear block code C(n, k) with its
respective pcP

(u, q) and a specific TEP e = [e]k1 , the pdf of
the weighted Hamming distance between ỹ and c̃e, denoted
by f

D
(W)
e

(x|e=[e]k1), is given by

f
D

(W)
e

(x|e=[e]k1) =

n−k∑
h=0

∑
tPh∈T

P
h

Pe(the)fÃ
the

(x)

+ (1− Pe(e))

n−k∑
h=0

∑
tPh∈T

P
h

Pc(the)fÃ
the

(x),

(177)

where

Pe(the) =

∫ ∞
0

· · ·︸ ︷︷ ︸
n−h−w(e)

∫ 0

−∞
· · ·︸ ︷︷ ︸

h+w(e)

(
n!

n∏
v=1

fR(xv)

n∏
v=2

1[0,|xv−1|](|xv|)

)

·
∏

1≤v≤n
v∈the

dxv
∏

1≤v≤n
v/∈the

dxv

(178)
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and

Pc(the) =
∑

x∈{0,1}n−k
Pr(c̃′e,P = ztPh ⊕ x)Pr(ẽP = x). (179)

where x is a length-(n − k) binary vectors. The probability
Pr(c̃′e = ztPh ⊕ x) is given by

Pr(c̃′e,P=ztPh⊕x)=

k∑
q=1

∑
x∈{0,1}k
w(e⊕x)=q

Pr(ẽB=x)(
n−k

w(z
tP
h
⊕x)
)pcP(w(ztPh⊕x), q).

(180)
where x is a length-k binary vector satisfying w(e⊕ x) = q,
and Pr(ẽB = x) is given by (89). The probability Pe(e) is
given by (131) and fÃ

the

(x) is the pdf of Ãthe
=
∑w(e)
v=1 ÃtBv +∑h

v=1 ÃtPv .

Proof: The proof is provided in Appendix I
Note that Corollary 4 is slightly different from a simple

combination of Lemma 7 and 8, because Corollary 4 assumes
that the TEP e = [e]k1 is known. However, Lemma 7 and 8
assume that e is unknown to the decoder. Henceforth, we use
{ẽB =e=[e]k1} to represent the condition that the MRB errors
are eliminated by a TEP e and e is known as e = [e]k1 . By
using a similar approach as in Section V-C, we approximate
the distribution f

D
(W)
e

(x|e = [e]k1) of D(W)
e as a mixture of

Gaussian distributions, i.e.

f
D

(W)
e

(x|e=[e]k1)

=Pe(e)f
D

(W)
e

(x|ẽB =e=[e]k1)

+ (1− Pe(e))f
D

(W)
e

(x|ẽB 6=e=[e]k1)

≈ Pe(e)√
2πσ2

D
(w)
e |ẽB=e=[e]k1

exp

− (x−E[D
(w)
e |ẽB =e=[e]k1 ])2

2σ2

D
(w)
e |ẽB=e=[e]k1


+

1− Pe(e)√
2πσ2

D
(w)
e |ẽB 6=e=[e]k1

exp

− (x−E[D
(w)
e |ẽB 6=e=[e]k1 ])2

2σ2

D
(w)
e |ẽB 6=e=[e]k1

,
(181)

where E[D
(w)
e |ẽB =e= [e]k1 ] and σ2

D
(w)
e |ẽB=e=[e]k1

are respec-
tively given by

E[D(w)
e |ẽB =e=[e]k1 ] =

w(e)∑
u=1

√
ẼtBu ,t

B
u

+

n∑
u=k+1

Pe(u)

√
Ẽu,u,

(182)

and

σ2

D
(w)
e |ẽB=e=[e]k1

= 2

w(e)∑
u=1

n∑
v=k+1

Pe(v)
[
Ẽ + Σ̃

]
tBu ,v

+

n∑
u=k+1

n∑
v=k+1

Pe(u, v)
[
Ẽ + Σ̃

]
u,v

+

w(e)∑
u=1

w(e)∑
v=1

[
Ẽ + Σ̃

]
tBu ,t

B
v

−
(
E[D(w)

e |ẽB =e=[e]k1 ]
)2

.

(183)

Then E[D
(w)
e |ẽB 6= e = [e]k1 ] and σ2

D
(w)
e |ẽB 6=e=[e]k1

are respec-
tively given by

E[D(w)
e |ẽB 6=e=[e]k1 ] =

w(e)∑
u=1

√
ẼtBu ,t

B
u

(184)

+

n∑
u=k+1

Pce(u|e=[e]k1 ])

√
Ẽu,u,

and

σ2

D
(w)
e |ẽB 6=e=[e]k1

= 2

w(e)∑
u=1

n∑
v=k+1

Pce(v|e=[e]k1 ])
[
Ẽ + Σ̃

]
tBu ,v

+

n∑
u=k+1

n∑
v=k+1

Pce(u, v|e=[e]k1 ])
[
Ẽ + Σ̃

]
u,v

+

w(e)∑
u=1

w(e)∑
v=1

[
Ẽ + Σ̃

]
tBu ,t

B
v

(185)

−
(
E[D(w)

e |ẽB 6=e=[e]k1 ]
)2
,

where Pce(u|e = [e]k1 ]) is the probability of d̃e,u 6= 0 given
that e = [e]k1 , while Pce(u, v|e=[e]k1 ]) is the joint conditional
probability of d̃e,u 6= 0 and d̃e,v 6= 0. Similar to (120),
Pce(u|e=[e]k1 ]) can be derived as

Pce(u|e=[e]k1 ])

=

k∑
q=1

∑
x∈{0,1}k
w(e⊕x)=q

Pr(ẽB = x)pbitcP
(u, q)(1− Pe(u))

+ (1− pbitcP
(u, q))Pe(u),

(186)

where Pr(ẽB = x) is given by (89) and pbitcP
is given by

(105). The joint probability Pce(u, v|e=[e]k1 ]) can be obtained
similarly following the derivation of (122). We omit the details
for the sake of brevity.

Based on Corollary 4, for a specific TEP e = [e]k1 , the
probability that the TEP e can eliminate the MRB errors ẽB

can be obtained if D(W)
e is given by d

(W)
e , i.e., Pr(ẽB =

e|D(W)
e = d

(W)
e ). We refer to P̃suc

e (d
(W)
e ) = Pr(ẽB =

e|D(W)
e = d

(W)
e ) as the soft success probability of c̃e. After

re-encoding c̃e = [ỹB ⊕ e]G̃, if the WHD between c̃e and ỹ

is given by d
(W)
e , the soft success probability of c̃e is given

by

P̃suc
e (d(W)

e ) = Pe(e)
f
D

(W)
e

(d
(W)
e |ẽB =e=[e]k1)

f
D

(W)
e

(d
(W)
e |e=[e]k1)

, (187)

where f
D

(W)
e

(x|e = [e]k1) is given by (177). The success

probability P̃suc
e (d

(W)
e ) can be approximately computed using

the normal approximations introduced in (181).
We illustrate the result of P̃suc

e (d
(W)
e ) as the function of

d
(W)
e for TEP e = [0, . . . , 0, 1, 0] in decoding the (64, 30, 14)

eBCH code in Fig. 20. As can be seen, when WHD d
(W)
e

decreases, the success probability of c̃e increases rapidly. At
all SNRs, the success probability tends to be very close to
1 when the WHD d

(W)
e is less than 3. Therefore, the WHD
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Fig. 20. P̃suc
e (d

(W)
e ) in decoding (64, 30, 14) eBCH code at different SNR,

when e = [0, . . . , 0, 1, 0].

of one codeword estimate can be a good indicator to identify
promising decoding output.

After the i-reprocessing (0 ≤ i ≤ m), if the recorded
minimum WHD is given as d(W)

i , the conditional probability
Pr(w(ẽB) ≤ i|D(W)

i = d
(W)
i ) can also be calculated accord-

ing to Theorem 4, which is referred to as the soft success
probability P̃suc

i (d
(W)
i ) of codeword ĉi, i.e.,

P̃suc
i (d

(W)
i ) = 1−

(
1−

i∑
v=0

pEk1 (v)

)

·
f
D̃

(W)
i |ẽB 6=e

(
x, bk0:i|w(ẽ) ≥ i

)
f
D

(W)
i

(d
(W)
i )

,

(188)

where f
D

(W)
i

(x) is given by (101) and
f
D̃

(W)
i |ẽB 6=e

(
x, bk0:i|w(ẽ) ≥ i

)
is given by (103).

We illustrate the probability P̃suc
i (d

(W)
i ) as a function of

d
(W)
i in Fig. 21. It can be seen that the minimum WHD d

(W)
i

after the i-th reprocessing indicates the probability that the
errors in MRB are eliminated by an OSD algorithm. It is worth
noting that the discrepancies between the simulated curves and
analytical curves are because of applying the approximation
(129) in numerical computation of (188).

B. Stopping Rules

Next, we introduce the soft-decision SRs based on the
success probabilities described in Section VII-A. Soft-decision
SRs give more accurate information of success probability than
the hard-decision SRs introduced in Section IV because the
soft information is utilized.

1) Soft Individual Stopping Rule: Let us first re-consider
the distribution of D(W)

e if the reliability information [Ã]n1 =

[α̃]n1 is given. Note that conditioning on [Ã]n1 = [α̃]n1 , D(W)
e

is no longer a continuous random variable, but is a discrete
random variable, and the sample space of D(W)

e is all possible
linear combinations of elements of α̃ = [α̃]n1 with the
coefficient 0 or 1. Given a specific TEP e = [e]k1 , a sample of
D

(W)
e can be represented as d(W)

the
= [e ztPh ]α̃T with tPh ∈ T P

h ,
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Fig. 21. P̃suc
i (d

(W)
i ) in decoding (64, 30, 14) eBCH code when i = 1.

1 ≤ h ≤ n − k. Based on Corollary 4, we summarize the
distribution of WHD D

(W)
e conditioning on [Ã]n1 = [α̃]n1 in

the following Corollary.

Corollary 5. Given a linear block code C(n, k) and a specific
TEP e = [e]k1 , if the ordered reliability is given by α̃ = [α̃]n1 ,
the probability mass function of the Weighted Hamming dis-
tance between ỹ and c̃e is given by

p
D

(W)
e

(d
(W)

the
|α̃)

= Pe(e|α̃)
∏

k<u≤n
u∈tPh

Pe(u|α̃u)
∏

k<u≤n
u/∈tPh

(1− Pe(u|α̃u))

+ (1− Pe(e|α̃))
∏

k<u≤n
u∈tPh

Pce(u|α̃u)
∏

k<u≤n
u/∈tPh

(1− Pce(u|α̃u)),

(189)

where Pe(e|α̃) is given by (139), Pe(u|α̃u) is given by (137),
and Pce(u|α̃u) is given by

Pce(u|α̃u) =

k∑
q=1

∑
x∈{0,1}k
w(e⊕x)=q

Pr(ẽB =x|α̃)pbitcP
(u, q)(1−Pe(u|α̃u)

+ (1− pbitcP
(u, q))Pe(u|α̃u),

(190)

where pbitcP
(u, q) is given by (105) and Pr(ẽB = x|α̃) is

derived as

Pr(ẽB = x|α̃) =
∏

1≤u≤k
xu 6=0

Pe(u|α̃u)
∏

1≤u≤k
xu=0

(1− Pe(u|α̃u)).

(191)

Proof: The proof is provided in Appendix J.
Corollary 5 describes the pmf of D(W)

e with respect to TEP
e if channel reliabilities are known. It can be found that WHD
d
(W)

the
= [e ztPh ]α̃T is only determined by the TEP e and the

positions tPh that differ between c̃e,P and ỹP. In other words,
D

(W)
e = d

(W)

the
when the difference pattern between c̃e and ỹ is

given by [e ztPh ]. Based on Corollary 5, we give the following
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Corollary about the soft success probability utilizing WHD.

Corollary 6. Given a linear block code C(n, k) and the
ordered reliability observation α̃ = [α̃]n1 , for a specific TEP
e = [e]k1 , if the difference pattern between c̃e and ỹ is given
by d̃e = c̃e ⊕ ỹ = [d̃e]n1 , the probability that the errors in
MRB are eliminated by e is given by

P̃suc
e (d̃e|α̃)

=

(
1+

1−Pe(e|α̃)

Pe(e|α̃)

∏
k<u≤n
d̃e,u 6=0

Pce(u|α̃u)

Pe(u|α̃u)

∏
k<u≤n
d̃e,u=0

1−Pce(u|α̃u)

1−Pe(u|α̃u)

)−1

(192)

Proof: Following the same step as the proof of Corollary
2 and using Corollary 5, (192) can be obtained.

We propose the soft individual stopping rule (SISR) to
terminate the decoding in advance by utilizing the WHD.
After each re-encoding, given a success probability threshold
Psuc
t ∈ [0, 1], if the difference pattern d̃e = c̃e⊕ỹ between the

generated codeword c̃e and ỹ satisfies the following condition

P̃suc
e (d̃e|α̃) ≥ Psuc

t , (193)

the decoding is terminated and the codeword estimate ĉe =
π−11 (π−12 (c̃e)) is selected as the decoding output, where
P̃suc
e (d̃e|α̃) is given by (192). Section VIII-A will further

show that (192) is computed with O(n) FLOPs when C(n, k)
has a binomial-like weight spectrum.

Compared with the HISR, SISR terminates the decoding
based on the difference pattern, rather than the number of dif-
ferent positions (Hamming distance), making it more accurate
for estimating the probability of decoding success.

Next, using the similar approach in Section VI-B1, we give
an upper bound of the decoding error rate when applying
the SISR. Let us consider an order-m OSD applying the
SISR with a threshold Psuc

t . Given a specific reprocessing
sequence {e1, e2, . . . , ebk0:m} (i.e., the decoder processes TEPs
sequentially from e1 to ebk0:m ), for an arbitrary TEP ej

(1 ≤ j ≤ bk0:m), there exists a maximum WHD d
(W)
max,ej

with respect to ej which satisfies P̃suc
e (d̃e|α̃) ≥ Psuc

t , where
d
(W)
max,ej = d̃eα̃

T. Let us define d(W)
b,ej

as the mean of d(W)
max,ej

with respect to α̃, then similar to (145), d(W)
b,ej

can be derived
as

d
(W)
b,ej

= Psuc,−1
ej (Psuc

t ), (194)

where Psuc,−1
ej (x) is the inverse function of (187). Then,

similar to (151), we can obtain the error rate upper bound
of an order-m OSD applying the SISR as

εSISRe = 1− (1− θSISR)

m∑
j=0

pEk1 (j) + PML, (195)

where θSISR is the error rate performance loss factor of the
SISR, i.e.,

θSISR =

∑bk0:m
j=1 P̃ej

(
1− P̃

suc

ej

)
∑m
j=0 pEk1 (j)

. (196)

In (196), P̃
suc

ej is the mean of P̃suc
e (d̃e|α̃) with respect to α̃ and

conditioning on D(W)
ej ≤d

(W)
b,ej

, i.e., P̃
suc

e = Pr(e = ẽB|D(W)
e ≤

d
(W)
b,e ), which is given by

P
suc

ej =

(∫ d
(W)
b,ej

0

p
D

(W)
ej

(x) dx

)−1∫ d
(W)
b,ej

0

P̃suc
ej (x)p

D
(W)
ej

(x) dx,

(197)
and P̃ej is the probability of that c̃ej (1 ≤ j ≤ bk0:m) satisfies
the SISR, which is given by

P̃ej =

j−1∏
v=1

(
1−

∫ d
(W)
b,ev

0

f
D

(W)
ev

(x)dx

)∫ d
(W)
b,ej

0

f
D

(W)
ej

(x)dx.

(198)

Particularly, Pe1
=
∫ d(W)

b,e1
0 f

D
(W)
e1

(x)dx.

Similar to (154), given a specific reprocessing sequence
{e1, e2, . . . , ebk0:m}, the average number of re-encoded TEPs,
denoted by Na, is derived as

Na = bk0:m

1−
bk0:m∑
j=1

P̃ej

+

bk0:m∑
j=1

jP̃ej . (199)

We compare the frame error rate and decoding complexity in
terms of the number of TEPs Na in decoding the (64, 30, 14)
eBCH code with an order-1 OSD applying the SISR in Fig.
22(a) and Fig. 22(b), respectively. As can be seen in Fig. 22(a),
even for Psuc

t = 0.5, the frame error performance exhibits
no performance loss compared with the original OSD, while
the number of re-encoded TEPs Na is significantly reduced.
It is because for an arbitrary TEP e, Psuc

e ≥ Psuc
t ≥ 0.5

can ensure the codeword estimate c̃e has higher a posterior
correct probability than other candidates. In other words,
Psuc
e ≥ Psuc

t ≥ 0.5 can be regarded as a sufficient condition
of c̃e being the best codeword estimate. It is also worthy of
noting that for Psuc

t = 0.01, the loss of coding gain is still
smaller than 0.2 dB compared with the original OSD at error
rate 10−3.

We illustrate the performance loss factor θSISR in Fig. 23.
Comparing θSISR with θHISR demonstrated in Fig 14, at the
same channel SNR and Psuc

t , SISR has a lower performance
loss and similar number of TEPs Na. Further comparisons
between SISR and HISR will be discussed in Section VIII.

2) Soft Group Stopping Rule: We first give an approxi-
mation of i-reprocessing success probability (188) condition-
ing on [Ã]n1 = [α̃]n1 . As introduced in Section V-C, the
distribution of i-reprocessing WHD can be approximated to
the ordered statistics of Gaussian distributions with positive
correlation. However, given values of the ordered reliabilities
[Ã]n1 = [α̃]n1 , the WHDs between codeword estimates and the
hard-decision vector are not correlated because the correlations
introduced by [Ã]n1 are removed. Then, based on Theorem 4
and approximation (129), the pdf of D(W)

i after i-reprocessing
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(b) Average number of TEPs

Fig. 22. Decoding (64, 30, 14) eBCH code with an order-1 OSD applying
the SISR.

(0 ≤ i ≤ m) can be approximated as

f
D

(W)
i

(x|α̃) ≈
i∑

v=0

pEk1 (v|α̃)

·
(
fapp
D

(W)
e

(x|ẽB =e, α̃)

∫ ∞
x

fapp
D̃

(W)
i

(
u, bk1:i|w(eB)≤ i, α̃

)
du

+ fapp
D̃

(W)
i

(
x, bk1:i|w(eB)≤ i, α̃

) ∫ ∞
x

fapp
D

(W)
e

(u|ẽB = e, α̃)du

)
+

(
1−

i∑
v=0

pEk1 (v|α̃)

)
fapp
D̃

(W)
i

(
x, bk0:i|w(eB)>i, α̃

)
,

(200)
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Fig. 23. The performance loss rate θSISR of decoding (64, 30, 14) eBCH
code with an order-1 OSD applying the SISR.

where pEk1 (u|α̃) is given by (140), and
fapp
D̃

(W)
i

(
u, bk1:i|w(eB)≤ i, α̃

)
is given by

fapp
D̃

(W)
i

(u, b|w(eB)≤ i, α̃) =b
(
1−F app

D
(W)
e

(x|w(eB)≤ i, α̃)
)b−1

· fapp
D

(W)
e

(x|w(eB)≤ i, α̃).

(201)

In (201), fapp
D

(W)
e

(x|w(eB)≤ i, α̃) and F app

D
(W)
e

(x|w(eB)≤ i, α̃)

are respectively the pdf and cdf of the normal distribution
N
(
E[D

(W)
e |ẽB 6=e, w(ẽB)≤ i, α̃], σ2

D
(W)
e |ẽB 6=e,w(ẽB)≤i,α̃

)
. In

(200), fapp
D

(W)
i

(x|w(eB)≤ i, α̃) is given by (201) by replacing

the condition {w(eB) ≤ i} with {w(eB) > i} in each pdf
and cdf , and fapp

D
(W)
e

(x|ẽB =e, α̃) is the pdf of the normal dis-

tribution N
(
E[D

(W)
e |ẽB =e, α̃], σ2

D
(W)
e |ẽB=e,α̃

)
. Therefore, to

numerically compute (201), the means and variances of D(W)
e

conditioning on {ẽB 6= e, w(eB) ≤ i, α̃}, {ẽB 6= e, w(eB) >
i, α̃}, and {eB = e, α̃} need to be determined respectively.
We take E[D

(W)
e |ẽB =e] and σ2

D
(W)
e |ẽB=e,α̃

as examples; they
can be respectively approximated as

E[D(W)
e |ẽB =e, α̃] ≈

(
1−

pEk1 (i|α̃)∑i
v=0 pEk1 (v|α̃)

)
k∑
u=1

Pe(u|α̃u)α̃u

+

n∑
u=k+1

Pe(u|α̃u)α̃u,

(202)

and

σ2

D
(W)
e |ẽB=e,α̃

≈

(
1−

pEk1 (i|α̃)+pEk1 (i−1|α̃)∑i
`=0 pEk1 (`|α̃)

)
k∑
u=1

k∑
v=1

Pe(u, v|α̃u, α̃v)α̃uα̃v

+ 2

(
1−

pEk1 (i|α̃)∑i
`=0 pEk1 (`|α̃)

)
k∑
u=1

n∑
v=k+1

Pe(u, v|α̃u, α̃v)α̃uα̃v

(203)
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+

n∑
u=k+1

n∑
v=k+1

Pe(u, v|α̃u, α̃v)α̃uα̃v

−
(
E[D(W)

e |ẽB = e, α̃]
)2
,

where Pe(u, v|α̃u, α̃v) is given by (138). Eq. (202) and (203)
follows from considering [Ã]n1 = [α̃]n1 in (123) and (124),
respectively. On the conditions {ẽB 6= e, w(eB) ≤ i, α̃} and
{ẽB 6=e, w(eB)>i, α̃}, the means and variances of D(W)

e can
be obtained similarly based on (126) and (127). We omit the
detailed expressions for the sake of brevity.

From (200), we can obtain the soft success probability
conditioning on [Ã]n1 = [α̃]n1 . After the i-reprocessing, if
the minimum WHD is calculated as d(W)

i , the soft success
probability of the codeword estimate c̃i corresponding to the
minimum WHD can be calculated as

P̃suc
i (d

(W)
i |α̃) = 1−

(
1−

i∑
v=0

pEk1 (v|α̃)

)

·
fapp
D

(W)
i

(
x, bk0:i|w(eB)>i, α̃

)
f
D

(W)
i |α̃(d

(W)
i |α̃)

.

(204)

Note that P̃suc
i (d

(W)
i |α̃) defined in (204) is only an approxima-

tion of Pr(w(ẽ) ≤ i|D(W)
i =d

(W)
i ), by using the approximated

pdf (200). In Section VIII-A, we will further show that (204)
can be computed with O(n2) FLOPs with simplifications.

Based on (204), we can propose a soft group stopping
rule (SGSR), which checks the success probability only after
each reprocessing. With the help of the SGSR, a high-order
OSD does not need to perform all reprocessing stages, but
only adaptively performs several low-order reprocessings. The
SGSR is described as follows. Given a predetermined thresh-
old success probability Psuc

t ∈ [0, 1], after the i-reprocessing
(0 ≤ i ≤ m) of an order-m OSD, if the minimum WHD d

(W)
i

satisfies
P̃suc
i (d

(W)
i |α̃) ≥ Psuc

t (205)

the decoding is terminated and the codeword ĉi =
π−11 (π−12 (c̃i)) is output as the decoding result, where
P̃suc
i (d

(W)
i |α̃) is given by (204).

We next give an upper bound on the error rate of an order-
m OSD algorithm applying the SGSR. For the i-reprocessing
(0 ≤ i ≤ m), we define d

(W)
b,i as the mean of d(W)

max,i =

max{d(W)
i | P̃suc

i (d
(W)
i |α̃) ≥ Psuc

t } with respect to α̃. By
considering that P̃suc

i (x|α̃) is the variant of P̃suc
i (x) given

by (188) conditioning on [Ã]n1 = [α̃]n1 , d(W)
b,i can be derived as

d
(W)
b,i = P̃suc,−1

i (Psuc
t ), (206)

where P̃suc,−1
i (x) is the inverse function of P̃suc

i (x). Then,
following the approach of obtaining (160) in Section VI-B2,
the error rate of an order-m OSD applying the SGSR, denoted
by εSGSR

e , is upper bounded by

εSGSR
e ≤ 1− (1− θSGSR)

m∑
j=0

pEk1 (j) + PML. (207)

where θSGSR is the error performance loss rate given by

θSGSR =

∑i
j=0 P̃j

(
1− P̃

suc

j

)
∑m
j=0 pEk1 (j)

. (208)

In (208), P̃j and P̃
suc

j are respectively given by

P̃j =

j−1∏
v=1

(
1−

∫ d
(W)
b,v

0

f
D

(W)
v

(x)dx

)∫ d
(W)
b,j

0

f
D

(W)
j

(x)dx,

(209)
and

P̃
suc

j =

∫ d
(W)
b,j

0

P̃suc
j (x)f

D
(W)
j

(x)dx

(∫ d
(W)
b,j

0

f
D

(W)
j

(x)dx

)−1
.

(210)
where f

D
(W)
j

(x) is the pdf of D
(W)
j given by (101). In

particular, P0 =
∫ d(W)

b,0

0 p
D

(W)
0

(x)dx.
Similar to (162), for an order-m OSD applying the SGSR,

the average number of TEPs, denoted by Na, can be derived
as

Na = bk0:m

1−
m∑
j=0

P̃i

+

m∑
j=0

bk0:j · P̃j . (211)

We implemented an order-2 OSD algorithm applying the
SGSR as the decoding stopping rule, where the decoder has the
opportunity to be terminated early at the end of 0-reprocessing
or 1-reprocessing. We illustrate the frame error rate εSGSR

e

and decoding complexity in terms of the average number of
TEPs Na in decoding the (64, 30, 12) eBCH code in Fig. 24(a)
and Fig. 24(b), respectively. As can be seen in Fig. 24(a), the
decoder has almost the same error rate performance as the
original OSD when the threshold Psuc

t is set to 0.99, while
Na is significantly reduced. In particular, Na is shown to be
less than 10, when SNR reaches 3.5 dB and εSGSR

e reaches
10−4. Compared with the HGSR, SGSR can help the decoder
reach better error performance with a smaller Na. We also
illustrate the loss factor of SGSR θSGSR in Fig. 25. It can be
seen that when Psuc

t = 0.99, the loss factor θSGSR can reach
10−5 at SNR = 4 dB, indicating that SGSR has a negligible
effect on the error performance according to (207).

C. Discarding Rule

In this Section, we introduce the soft discarding rule (SDR)
based on the distribution of WHD. Compared to HDR, SDR is
more accurate since it calculates the promising probability di-
rectly from the WHD. However, the computational complexity
is accordingly higher.

According to Corollary 5, if the ordered reliabilities of the
received signal is given by [Ã]n1 = [α̃]n1 and the recorded
minimum WHD is given by d

(W)
min , for a specific TEP e, the

probability that D(W)
e is less than d(W)

min is given by

P̃pro
e (d

(W)
min |α̃) =

n−k∑
h=0

∑
tPh∈T

P
h

d
(W)

the
<d

(W)
min

p
D

(W)
e

(d
(W)

the
|α̃), (212)
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Fig. 24. Decoding (64, 30, 14) eBCH code with an order-2 OSD applying
the SGSR.

where p
D

(W)
e

(d
(W)

the
|α̃) is given by (189). The probability

P̃pro
e (d

(W)
min |α̃) is referred to as the soft promising probability of

TEP e. In Section VIII-A, we will show that by introducing an
approximation of P̃pro

e (d
(W)
min |α̃), (212) can be evaluated with

complexity of O(n) FLOPs.
The SDR is described as follows. Given the threshold

promising probability Ppro
t ∈ [0, 1] and the current recorded

minimum WHD d
(W)
min , if the soft promising probability of e

calculated by (212) satisfies

P̃pro
e (d

(W)
min |α̃) < Ppro

t , (213)

the TEP e can be discarded without reprocessing.
For a linear block code C(n, k) with truncated binomial

weight spectrum, the soft promising probability increases
when Pe(e|α̃) increases, which is summarized in the follow-
ing proposition.

Proposition 2. In the i-reprocessing (0 < i ≤ m) of the
decoding of C(n, k) with truncated binomially distributed
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Fig. 25. The performance loss rate θSGSR of decoding (64, 30, 14) eBCH
code with an order-2 OSD applying the HGSR.

weight spectrum, P̃pro
e (d

(W)
min |α̃) is an increasing function of

Pe(e|α̃).

Proof: The proof is provided in Appendix K.

From Proposition 2, it can be seen that for an order-
m OSD decoder that processes the TEPs in the or-
der {e1, e2, · · · , ebk0:m} satisfying Pe(e1|α̃) ≥ · · · ≥
Pe(ebk0:m |α̃), if one TEP fails in the SDR check, all following
TEPs in the list can be also discarded.

Next, we give simple upper bounds on the frame error rate
εSDR
e and the average number of TEPs Na of for an order-
m OSD employing the SDR. We assume that the decoder
processes TEPs in a specific order {ei,1, ei,2, . . . , ei,(ki)} in

the i-reprocessing. Then, for the TEP ei,j , 1 ≤ j ≤
(
k
i

)
,

the mean of its soft promising probability with respect to α̃,
denoted by P̃

pro

ei,j , can be derived as

P̃
pro

ei,j =E[P̃pro
ei,j (d

(W)
i,j |α̃)]

=E[Pr(D(W)
ei,j <D

(W)
i,j |α̃)]

=

∫ y

0

∫ ∞
0

f
D

(W)
ei,j

(x|ei,j = [e]k1)f
D

(W)
i,j

(y)dy dx

(214)

where D
(W)
i,j is the random variable of the minimum

WHD before that ej is processed, with pdf f
D

(W)
i,j

(y), and

f
D

(W)
ei,j

(x|ei,j = [e]k1) is the pdf of D(W)
ei,j given by (177).

However, f
D

(W)
i,j

(y) is difficult to be characterized because it
varies with i and j. Note that ei,j is a TEP to be processed
in the i-reprocessing, thus D(W)

i−1 ≥ D
(W)
i,j ≥ D

(W)
i holds,

where D(W)
i−1 and D(W)

i are random variables representing the
minimum WHDs after (i−1)-reprocessing and i-reprocessing,
respectively. Thus, P̃

pro

ei,j can be bounded by

P̃
pro

ei,j ≥ Pr(D(W)
ei,j < D

(W)
i )

=

∫ y

0

∫ ∞
0

f
D

(W)
ei,j

(x|ei,j = [e]k1)f
D

(W)
i

(y)dy dx,
(215)
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and

P̃
pro

ei,j ≤ Pr(D(W)
ei,j

< D
(W)
i−1 ) =

∫ y

0

∫ ∞
0

f
D

(W)
ei,j

(x|ei,j = [e]k1)f
D

(W)
i−1

(y)dy dx,

(216)

where f
D

(W)
i

(y) and f
D

(W)
i−1

(y) are given by (101).

Therefore, the average number of re-encoded TEPs can be
upper bounded by

Na ≤
m∑
i=0

βupper
i , (217)

where βupper
i is given by

βupper
i =

(ki)∑
j=1

1[Ppro
t ,+∞]Pr(D(W)

ei,j < D
(W)
i−1 ). (218)

It can be seen that βupper
i is in fact the upper bound of

the number of re-encoded TEPs in the i-reprocessing with
threshold Ppro

t .
Utilizing the inequality (216), the decoding error perfor-

mance of an order-m OSD algorithm applying the SDR can
be upper bounded by

εSDR
e ≤

(
1−

m∑
i=0

(
pEk1 (i)− ηSDR(i)

))
+ PML, (219)

where ηSDR(i) is the SDR degradation factor of i-
reprocessing, i.e.,

ηHDR(i) =

(ki)∑
j=1

(
1[0,Ppro

t ]Pr(D(W)
ei,j <D

(W)
i )

)
Pe(ei,j),

(220)
for 0 < i < m. In particular, ηHDR(0) = 0 because d(W)

min has
not been recorded in the 0-reprocessing. From (220), it can
be seen that if Ppro

t = 1, ηHDR(i) = pEk1 (i) for 0 < i < m,
then εSDR

e ≤ 1−pEk1 (0)+PML upper bounds the error rate of
the 0-reprocessing decoding. In contrast, when Ppro

t = 0 and
ηHDR(i) = 0 for 0 ≤ i ≤ m, εSDR

e ≤ 1−
∑m
i=0 pEk1 (i)+PML

is the error rate upper bound of the order-m original OSD.
Next, we demonstrate the performance of an order-1 OSD

algorithm employing the SDR in terms of the decoding error
probability and complexity. The threshold Ppro

t is set as

Ppro
t = λ

p
Ek1

(i)

(ki)
, where λ is a non-negative parameter. The

frame error rate εSDR
e and number of TEPs, Na, with different

parameter λ in decoding the (64, 30, 14) eBCH code are
depicted in Fig. 26(a) and Fig. 26(b), respectively. It can be
seen that when λ = 1, the decoder with SDR has almost the
same frame error rate performance as the original OSD, but the
average number of TEPs Na is less than 5 at high SNRs, which
is significantly decreased from 31 for the original OSD. Even
for a higher λ = 5, the decoder can still maintain the error
performance within only 0.5 dB gap to the original OSD at
SNR as high as 4 dB, and the number TEP Na is reduced from
31 to less than 2. From the simulation, it can be concluded
that the SDR can effectively decrease the complexity in terms
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Fig. 26. Decoding (64, 30, 14) eBCH code with an order-1 OSD applying
the SDR.

of Na with a negligible loss of error performance, and the
trade-off between εSDR

e and Na can be adjusted by carefully
tuning λ. However, it is hard to derive tight bounds for εSDR

e

and Na because of the difficulty in deriving f
D

(W)
i,j

(x). From
Fig. 26(a) and Fig. 26(b), it can be seen that (217) and (219)
only provide simple and loose upper bounds of Na and εSDR

e

, respectively, and they can be further tightened if f
D

(W)
i,j

(x)

is derived accurately.

VIII. IMPLEMENTATION AND COMPARISONS

A. Practical Implementation of the Proposed Decoding Tech-
niques

Section VI and Section VII proposed several decoding
techniques to reduce the number of TEPs re-encoded in
the OSD algorithm. However, it is worth to note that the
overhead of the applied techniques also contributes to the
overall decoding complexity. Thus, it is essential to analyze the
overall complexity of the decoders when employing the pro-
posed techniques. In this section, we show that the proposed
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techniques can be efficiently implemented when C(n, k) has a
binomial-like weight spectrum.

1) Implementation of the HISR and HGSR: If C(n, k) has
the weight spectrum represented by the truncated binomial
distribution, as described by (65), we have obtained that
pcP

(u, q) ≈ 1
2n−k

(
n−k
u

)
in (66) and pWcP

(j) ≈ 1
2n−k

(
n−k
u

)
in (68). Similarly, substituting pcP

(u, q) ≈ 1
2n−k

(
n−k
j

)
into

(132), we can also obtain that

pWe,cP
(j|w(e) = v) ≈ 1

2n−k

(
n− k
j

)
, (221)

which is independent of w(e) = v. Therefore, recall the HISR
and the hard success probability Psuc

e (d
(H)
e |α̃) given by (141),

Psuc
e (d

(H)
e |α̃) can be further approximated by substituting

(221) into (141), i.e.,

Psuc
e (d(H)

e |α̃) = Pe(e|α̃)
pEnk+1

(d
(H)
e − w(e)|α̃)

p
D

(H)
e

(d
(H)
e − w(e)|α̃)

≈

(
1+

(
1−Pe(e|α̃)

Pe(e|α̃)

)(
2k−n

p(d
(H)
e −w(e))(1−p)(n−k−d(H)

e +w(e))

))−1
,

(222)

where p = 1
n−k

∑n
u=k+1 Pe(u|α̃u) is the arithmetic mean of

the bit-wise error probabilities of ỹP conditioning on [Ã]n1 =
[α̃]n1 . Note that p is independent of e and can be reused for the
computations of the success probabilities of different TEPs. In
addition, Pe(e|α̃) given by (139) can be computed with linear
complexity in terms of the number of FLOPs. Therefore, it can
be seen that by utilizing the approximation (222), the overhead
of computing Psuc

e (d
(H)
e |α̃) in checking the HISR is given by

O(n) FLOPs.

In the HGSR, the hard success probability Psuc
i (d

(H)
i |α̃)

is calculated as (155). Eq. (155) can be simplified using the
approximations of p

D
(H)
i

introduced in Section IV-C. Specifi-
cally, when C(n, k) has a weight spectrum described as (65),
we have shown that the pmf of D(H)

i can be approximated by
a continuous pdf f

D
(H)
i

(x) given by (72). Then, Psuc
i (d

(H)
i |α̃)

in (155) can be approximated by f
D

(H)
i

(x), i.e., (223) on the
top of the next page, where

f
W̃cP

(x, b) = b fWcP
(x)

(
1−

∫ x

−∞
fWcP

(v)dv

)b−1
= b fWcP

(x)Q

(
2x− n+ k√

n− k

)b−1
.

(224)

In (223), f
D

(H)
i

(d
(H
i |α̃) is given by (72) but with replacing

pEk1 (u) and fEnk+1
(x) with pEk1 (u|α̃) and fEnk+1

(x|α̃), respec-
tively, where pEk1 (u|α̃) is given by (140) and fEnk+1

(x|α̃)
is the pdf of N ((n − k)p, (n − k)p(1 − p)) for p =

1
n−k

∑n
u=k+1 Pe(u|α̃u). Step (a) of (223) follows from that

p
W̃cP

(j, b|i, v, α̃) is approximated to f
W̃cP

(x, b), which is a

pdf independent of Enk+1 = v and [Ã]n1 = [α̃]n1 . In (224),
fWcP

(x) is the pdf of N ( 1
2 (n− k), 14 (n− k)) given by (69).

By using (223), the overhead of computing Psuc
i (d

(H)
i |α̃)

can be reduced. Precisely, the integral operation in computing

p
W̃cP

(j, b|i, v, α̃) inside Psuc
i (d

(H)
i |α̃) is approximated to the

Q-function as shown by (224), which can be efficiently
computed by its polynomial approximations, i.e., Q(x) =
eax

2+bx+c for a = −0.385, b = −0.765 and c = −0.695 [28].
Thus, f

D
(H)
i

(d
(H
i |α̃) dominates the overhead of computing

(223), where the integral
∫∞
x
f
W̃cP

(v, b)dv is involved (recall
(72)). In the numerical integration of

∫∞
x
f
W̃cP

(v, b)dv, one
can control the number of sub-intervals to limit complexity.
For example, setting n sub-intervals could provide acceptable
accuracy and limit the overhead of (223) to O(n2) FLOPs.

2) Implementation of the SISR and SGSR: When C(n, k)
has the weight spectrum described by (65), and pcP

(u, q) ≈
1

2n−k

(
n−k
u

)
, the probability pbitcP

(`, q) given by (105) can be
approximated as

pbitcP
(`, q) =

n−k∑
u=0

u

n− k
pcP(u, q)

≈
n−k∑
u=0

u

n− k
·
(
n−k
u

)
2n−k

=
1

2
.

(225)

In other words, for an arbitrary parity bit of an arbitrary
codeword from C(n, k), it approximately has the probability
1
2 to be nonzero. Then, by taking pbitcP

(`, q) = 1
2 for any

k + 1 ≤ ` ≤ n and 1 ≤ q ≤ k, the probability Pce(u|α̃u)
given by (190) can be approximated as

Pce(u|α̃u) ≈
k∑
q=1

( (kq)∑
ξ=1

Pr(ẽB = ẽξB|α̃)
)

·
(1

2
(1− Pe(u|α̃u) +

1

2
Pe(u|α̃u)

)
=

1

2
.

(226)

Then, substitute (226) into (192) and the soft success proba-
bility P̃suc

e (d̃e|α̃) computed in the SISR can be approximated
as

P̃suc
e (d̃e|α̃)

≈

(
1+

1−Pe(e|α̃)

Pe(e|α̃)

∏
k<u≤n
d̃e,u 6=0

1

2Pe(u|α̃u)

∏
k<u≤n
d̃e,u=0

1

2−2Pe(u|α̃u)

)−1
,

(227)

where Pe(e|α̃) is given by (139). As Pe(u|α̃u) can be reused
for computing P̃suc

e (d̃e|α̃) for different TEPs, it can be seen
that (227) can be simply calculated with complexity O(n)
FLOPs.

Similar to (226), when pcP
(u, q) ≈ 1

2n−k

(
n−k
u

)
, we can also

obtain that pbitcP
(`, h, q) ≈ 1

4 for k + 1 ≤ ` < h ≤ n. Then,
recalling E[D

(W)
e |ẽB 6=e, w(ẽB)≤ i] and σ2

D
(W)
e |ẽB 6=e,w(ẽB)≤i

respectively given by (126) and (127), it can be observed
that when ẽB 6= e, the mean and variance of D(W)

e tends to
be unrelated to w(ẽB). Thus, we have E[D

(W)
e |ẽB 6= e] ≈

E[D
(W)
e |ẽB 6= e, w(ẽB) ≤ i] ≈ E[D

(W)
e |ẽB 6= e, w(ẽB) > i]

and σ2

D
(W)
e |ẽB6=e

≈ σ2

D
(W)
e |ẽB 6=e,w(ẽB)≤i

≈ σ2

D
(W)
e |ẽB6=e,w(ẽB)>i

.
Therefore, the pdf f

D
(W)
i

(x|α̃) given by (200) can be further
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Psuc
i (d

(H)
i |α̃) = 1−

(
1−

i∑
v=0

pEk1 (v|α̃)

) n−k∑
v=0

pEnk+1
(v|α̃) · p

W̃cP
(d

(H)
i − i, bk0:i|i(>), v, α̃)

p
D

(H)
i

(d
(H
i |α̃)

(a)
≈ 1−

(
1−

i∑
v=0

pEk1 (v|α̃)

)
f
W̃cP

(x, bk0:i)

f
D

(H)
i

(d
(H
i |α̃)

,

(223)

approximated as

f
D

(W)
i

(x|α̃) ≈
i∑

v=0

pEk1 (v|α̃)

·
(
fapp
D

(W)
e

(x|ẽB =e, α̃)

∫ ∞
x

fapp
D̃

(W)
i

(
u, bk1:i|ẽB 6=e, α̃

)
du

+ fapp
D̃

(W)
i

(
x, bk1:i|ẽB 6=e, α̃

) ∫ ∞
x

fapp
D

(W)
e

(u|ẽB =e, α̃)du

)
+

(
1−

i∑
v=0

pEk1 (v|α̃)

)
fapp
D̃

(W)
i

(
x, bk0:i|ẽB 6=e, α̃

)
,

(228)

where

fapp
D̃

(W)
i

(x, b|ẽB 6=e, α̃)

= b
(

1− F app

D
(W)
e

(x|ẽB 6=e, α̃)
)b−1

fapp
D

(W)
e

(x|ẽB 6=e, α̃),

(229)

and fapp
D

(W)
e

(x|ẽB 6= e, α̃) and F app

D
(W)
e

(x|ẽB 6=
e, α̃) are respectively the pdf and cdf of
N
(
E[D

(W)
e |ẽB 6=e, α̃], σ2

D
(W)
e |ẽB 6=e,α̃

)
. Based on (126)

and (127), E[D
(W)
e |ẽB 6=e, α̃] and σ2

D
(W)
e |ẽB 6=e,α̃

are given by

E[D(W)
e |ẽB 6=e, α̃] =

bk−10:(i−1)

bk0:i

k∑
u=1

α̃u +

n∑
u=k+1

α̃u
2
, (230)

and

σ2

D
(W)
e |ẽB 6=e,α̃

= +
bk−10:(i−1)

bk0:i

k∑
u=1

α̃2
u +

bk−10:(i−1)

bk0:i

k∑
u=1

n∑
v=k+1

α̃uα̃v

+ 2
bk−20:(i−2)

bk0:i

k−1∑
u=1

k∑
v=u+1

α̃uα̃v

+

n−1∑
u=k+1

n∑
v=u

α̃uα̃v
2

−
(
E[D(W)

e |ẽB 6=e, α̃]
)2
.

,

(231)

Therefore, the approximation (228) can be used in computing
the soft success probability, i.e., P̃suc

i (d
(W)
i |α̃) given in (204),

in the SGSR. As can be shown, E[D
(W)
e |ẽB 6=e, α̃] in (230) is

computed with complexity O(n) and σ2

D
(W)
e |ẽB 6=e,α̃

in (231)

is computed with complexity O(n2). In (228), the terms

∫∞
x
fapp
D

(W)
e

(u|ẽB = e, α̃)du and 1 − F app

D
(W)
e

(x|ẽB 6= e, α̃)

can be both efficiently computed utilizing the polynomial
approximation of the Q-function [28]. Thus, the overhead of
computing P̃suc

i (d
(W)
i |α̃) will be dominated by the numerical

integration
∫∞
x
fapp
D̃

(W)
i

(
u, bk1:i|ẽB 6=e, α̃

)
du in (228). One can

set the maximum number of sub-intervals to n in the numerical
integration, and therefore limit the overhead of computing
(223) to O(n2) FLOPs.

3) Implementation of the HDR and SDR: Similar to
(223) and (224), after approximating pEnk+1

(j|α̃) and
pWe,cP

(j|w(e) = v) to fEnk+1
(x|α̃) and fWcP

(x), respectively,
the hard promising probability, i.e., Ppro

e (dH|α̃) given by
(163), can also be approximated as

Ppro
e (dH|α̃) =

dH∑
j=0

p
D

(H)
e

(j|α̃)

(a)
≈ Pe(e|α̃)

∫ dH

−∞
fEnk+1

(x|α̃)dx

+ (1− Pe(e|α̃))

∫ dH

−∞
fWcP

(x)dx (232)

= Pe(e|α̃)

(
1−Q

(
dH − (n− k)p√
((n− k)p(1− p))

))

+ (1− Pe(e|α̃))

(
1−Q

(
2dH − n+ k√

n− k

))
,

where p = 1
n−k

∑n
u=k+1 Pe(u|α̃u). Thus, by using the poly-

nomial approximations of Q(x), i.e., Q(x) = eax
2+bx+c [28],

Ppro
e (dH|α̃) is efficiently evaluated with complexity O(n)

FLOPs. Note that the approximation (232) can be further
tightened by truncating the domain {x < 0} for fEnk+1

(x|α̃)
and fWcP

(x) in step (a).

In the SDR, the soft promising probability P̃pro
e (d

(W)
min |α̃) is

computed as (212). However, it can be noticed that (212) is
involved with a large number of summations, which makes it
hard to implement with acceptable overhead when the parity
part length n− k is large. Therefore, approximations have to
be introduced for efficient implementation. For example, in
(212), the pmf p

D
(W)
e

(d
(W)

the
|α̃) of D(W)

e for a specific TEP

e conditioning on [Ã]n1 = [α̃]n1 can be approximated by a
continuous pdf using the similar approach to obtain (181).
Specifically, we approximate the distribution of D(W)

e by a
pdf f

D
(W)
e

(x|e = [e]k1 , α̃) given by (233) on the top of the
next page.

Note that in (233), the conditions {ẽB = e = [e]k1 , α̃} and
{ẽB 6= e = [e]k1 , α̃} are different from the conditions {ẽB =



40

f
D

(W)
e

(x|e=[e]k1 , α̃)

= Pe(e|α̃)f
D

(W)
e

(x|ẽB =e=[e]k1 , α̃) + (1− Pe(e|α̃))f
D

(W)
e

(x|ẽB =e=[e]k1 , α̃)

=
Pe(e|α̃)√

2πσ2

D
(W)
e |ẽB=e=[e]k1 ,α̃

exp

− (x− E[D
(W)
e |ẽB =e=[e]k1 , α̃])2

2σ2

D
(W)
e |ẽB=e=[e]k1 ,α̃


+

1− Pe(e|α̃)√
2πσ2

D
(W)
e |ẽB 6=e=[e]k1 ,α̃

exp

− (x− E[D
(W)
e |ẽB 6=e=[e]k1 , α̃])2

2σ2

D
(W)
e |ẽB 6=e=[e]k1 ,α̃

 ,

(233)

e, α̃} and {ẽB 6= e, α̃} in (200) and (228). Specifically, we
assume that e is unknown to the decoder in (200) and (228),
while (233) assumes that e = [e]k1 is specified. Then, based
on (182), (183), 184, and (185) and considering [Ã]n1 = [α̃]n1 ,
we can obtain that

E[D(w)
e |ẽB =e=[e]k1 , α̃] =

∑
1≤u≤k
eu 6=0

α̃u +
n∑

u=k+1

Pe(u|α̃u)α̃u,

(234)

σ2

D
(w)
e |ẽB=e=[e]k1 ,α̃

=

n∑
u=k+1

n∑
v=k+1

Pe(u, v|α̃u, α̃v)α̃uα̃v

−

(
n∑

u=k+1

Pe(u|α̃u)α̃u

)2

,

(235)

and

E[D(w)
e |ẽB 6=e=[e]k1 , α̃] =

∑
1≤u≤k
eu 6=0

α̃u +

n∑
u=k+1

α̃u
2
, (236)

σ2

D
(w)
e |ẽB 6=e=[e]k1 ,α̃

=

n−1∑
u=k+1

n∑
v=u

α̃uα̃v
2
−

(
n∑

u=k+1

α̃u
2

)2

,

(237)

where Pe(u|α̃u) and Pe(u, v|α̃u, α̃v) are respectively given by
(137) and (138). Particularly, Pe(u, v|α̃u, α̃v) = Pe(u|α̃u) for
u = v.

Using f
D

(W)
e

(x|e=[e]k1 , α̃) given by (233), we approximate
the soft promising probability given by (212) as

P̃pro
e (d

(W)
min |α̃)

=

n−k∑
h=0

∑
tPh∈T

P
h

d
(W)

the
<d

(W)
min

p
D

(W)
e

(d
(W)

the
|α̃)

(a)
≈
∫ d

(W)
min

−∞
f
D

(W)
e

(x|e=[e]k1 , α̃)dx (238)

(b)
= Pe(e|α̃)

(
1−Q

(
d
(W)
min − E[D

(w)
e |ẽB =e=[e]k1 , α̃]

σ
D

(w)
e |ẽB=e=[e]k1 ,α̃

))

+(1−Pe(e|α̃))

(
1−Q

(
d
(W)
min−E[D

(w)
e |ẽB 6=e=[e]k1 , α̃]

σ
D

(w)
e |ẽB 6=e=[e]k1 ,α̃

))
,

where step (a) approximate the summation of the pmf of
a discrete variable to the cdf of a continuous distribution.
Note that although D

(W)
e ≥ 0, step (a) does not exclude the

domain {x < 0} for f
D

(W)
e

(x|e = [e]k1 , α̃) for the sake of
simplicity, and (238) can be further tightened by truncating
the domain {x < 0}. Step (b) of (238) converts the cdfs of
normal distributions as Q-functions, which can be efficiently
computed by the polynomial approximation [28]. Therefore,
considering that σ2

D
(w)
e |ẽB=e=[e]k1 ,α̃

and σ2

D
(w)
e |ẽB=e=[e]k1 ,α̃

are
independent of TEP e and can be reused in computing (238),
and E[D

(w)
e |ẽB = e = [e]k1 , α̃] and E[D

(w)
e |ẽB 6= e = [e]k1 , α̃]

are simply computed with O(n) FLOPs, the overhead of
computing Ppro

e (dH|α̃) in the SDR can be as low as O(n)
FLOPs

B. Overall Complexity Analysis

Next, we evaluate the overall computational complexity of
OSD algorithms applying the proposed decoding techniques
when C(n, k) has the binomial weight spectrum as described
in (65). Let the Ctotal denote the computational complexity of
an OSD algorithm applying one of stopping rules (including
the HISR, HGSR, SISR, and SGSR) and one of discarding
rules (including the HDR and SDR). Ctotal can be derived as

Ctotal = O(n) +O(n log n)︸ ︷︷ ︸
sorting (FLOP)

+O(nmin(n, n− k))︸ ︷︷ ︸
Gaussian elimination (BOP)

+NaO(k + k(n− k))︸ ︷︷ ︸
re-encoding (BOP)

+CSR + CDR,
(239)

where Na is the average number of re-encoded TEPs, CSR

and CDR are the complexity of checking stopping rules and
discarding rules, respectively, and other terms are the com-
plexity of various stages in the original OSD [11]. Stopping
rules and discarding rules are used to reduce the number
of TEPs, Na, so that the total number of re-encodings,
each with complexity of O(k + k(n − k)) binary operations
(BOPs), can be decreased. Let Na = Nmax − Ns, where
Nmax is the maximum TEP number (i.e., number of TEPs
required of original OSD) and Ns is the number of TEPs
reduced by applying stopping rules and discarding rules. The
simulations in Section VI and Section VII have shown that
the proposed techniques can significantly reduce the number
of re-encoded TEPs, i.e., Na � Ns < Nmax. Therefore, if
CSR+CDR is negligible compared to Ns ·O(k+k(n−k)), i.e.,
CSR+CDR � Ns ·O(k+k(n−k)) , the overall computational
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complexity can be effectively reduced compared to the original
OSD, i.e.,

COSD = O(n) +O(n log n)︸ ︷︷ ︸
sorting (FLOP)

+O(nmin(n, n− k))︸ ︷︷ ︸
Gaussian elimination (BOP)

+NmaxO(k + k(n− k))︸ ︷︷ ︸
re-encoding (BOP)

.
(240)

1) Complexity Introduced by Stopping Rules: In our paper,
the stopping rules can be implemented by one of the HISR,
HGSR, SISR and SGSR. Commonly, in these four different
techniques, a success probability is calculated first, and then
the success probability is compared with a threshold. Let us
denote the complexity CSR of stopping rules as

CSR = Nsuc · Csuc, (241)

where Csuc is the complexity of calculating a single success
probability, and Nsuc is the number of success probabilities
that are calculated.

In the HISR and SISR as described in (142) and (193), the
success probabilities are calculated for each generated code-
word estimate, and is compared with a threshold parameter to
determine whether the best codeword estimate has been found.
Thus, the success probabilities in the HISR and SISR can only
be computed for a codeword estimate c̃e, when c̃e results
in a lower WHD d

(W)
e compared to the recorded minimum

WHD d
(W)
min . This is because c̃e cannot be the best output if

d
(W)
e > d

(W)
min . Therefore, for the HISR and SISR, it can be

concluded that Nsuc < Na � Ns < Nmax.
Furthermore, in the HISR and SISR, the success prob-

abilities can be calculated according to (222) and (227),
respectively, each with complexity O(n) FLOPs. Usually, it
is a few times slower to run a FLOP than a BOP by a modern
processor; nevertheless, modern processors have narrowed the
gap between FLOPs and BOPs with float process units (FPU)
[29]. Thus, let us assume that O(n)(FLOP) ≈ O(k + k(n −
k))(BOP), i.e., we roughly take that the FLOP is about n

4
times slower than the BOP for k ≈ n

2 , which is reasonable
when n is not too small. Then, it can be still observed that
CSR = Nsuc ·O(n)� Ns ·O(k + k(n− k)) as Nsuc � Ns.
Therefore, the HISR and SISR can be implemented in OSD
to effectively reduce the overall decoding complexity.

In the HGSR and SGSR, as described in (156) and (205),
the success probability is calculated at the end of each order
of reprocessing, so that Nsuc ≤ m, where m is the maximum
reprocessing order of OSD. Thus, only a small number of
success probabilities need to be calculated in the HGSR and
SGSR, because the decoder is asymptotically optimal when
m = bdH/4 − 1c [11]. Then, it can be found that Nsuc �
Na � Ns < Nmax. However, the success probabilities
calculated in the HGSR and SGSR could be time-consuming.
As shown by (224) and (228), the success probabilities in the
HGSR and SGSR involve numerical integration and could be
computed with O(n2) FLOPs when limiting the maximum
number of sub-intervals to n. Recall Nsuc ≤ m, then it can be
seen that CSR for the HGSR and SGSR will be negligible com-
pared with Ns·O(k+k(n−k)) when m

Ns
� O(k+(n−k)k)(BOP)

O(n2)(FLOP)
.

By assuming the FLOP is about n
4 times slower than the

BOP for k ≈ n
2 , it can be approximately obtained that

O(k+(n−k)k)(BOP)

O(n2)(FLOP)
≈ 1

n . Therefore, when nm � Ns, the
HGSR and SGSR could effectively reduce the overall decoding
complexity. For example, as shown in Fig. 24(b), the SGSR
reduces the number of TEPs from over 450 to less than 10 in
decoding (64, 30, 14) eBCH code with m = 2. In this case,
Ns = 440 > nm = 128 and the SGSR could indeed reduce
the overall complexity.

2) Complexity Introduced by Discarding Rules: The dis-
carding rules can be implemented by one of the HDR and
SDR. As described in (164) and (213), a promising probability
is calculated in HDR and SDR before re-encoding a TEP,
and the promising probability is compared with a threshold
to determine whether the TEP can be discarded. Thus, let us
denote the complexity CDR of discarding rules as

CDR = Npro · Cpro, (242)

where Cpro is the complexity of calculating a single promising
probability and Npro is the number of promising probabilities
that are being calculated.

According to Proposition 1 and Proposition 2, the promising
probabilities in the HDR and SDR are monotonically increas-
ing functions of the reliability of TEPs. Thus, if the decoder
re-encodes TEPs in descending order of their reliabilities,
the HDR and SDR do not need to calculate the promising
probability for each TEPs, but can discard all following TEPs
when one TEP fails in the promising probability check. In this
case, we can see that Npro = Na � Ns. Note that TEPs are
ordered according to the received reliability (channel outputs),
which can be efficiently implemented following the algorithm
introduced in [30]. For long block codes, it is also possible to
use the algorithm in [31] to further improve the efficiency.

Furthermore, utilizing the monotonicity of the promising
probabilities, the decoder can further reduce Npro. Precisely,
the promising probabilities can be calculated every ` TEPs,
where ` is a positive integer, so that Npro can be as low
as Na

` , but the average complexity will not be apparently
increased for ` � Na. We refer to this implementation as
“`-step discarding rule”. For example, let us assume ` = 5,
and the decoder calculates the promising probability every 5
TEPs. Because the decoder will discard all following TEPs
when a TEP fails in the discarding rule check, the Na will
not be apparently affected by the “5-step discarding rule” im-
plementation. However, Npro is reduced to Npro = Na

5 � Ns,
and CDR = Npro ·Cpro can be reduced by 5 times accordingly.

In both HDR and SDR, we have shown in Section VIII-A
that the promising probability can be calculated with O(n)
FLOPs. Therefore, the overhead satisfies CDR = Na

` ·
O(n)(FLOP) � Ns ·O(k + k(n− k))(BOP) by assuming that
the FLOP is about n

4 times slower than the BOP. Hence, the
HDR and SDR can effectively reduce the overall decoding
complexity .

C. Comparisons with state of the art

1) Comparison of Stopping Rules: In this section, we
compare the stopping rules proposed in Section VI-B and
Section VII-B with previous approaches introduced in [2] and
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[17]. In [2, Theorem 10.1], a decoding optimality condition
was proposed to terminate the decoding early. Specifically, it
has been proved that for a codeword estimate c̃e in OSD, if
the following condition

d(W)
e ≤ g(c̃e, dH), (243)

is satisfied, ĉe = π−11 (π−12 (c̃e)) is the maximum-likelihood
estimate of the received sequence, where dH is the minimum
distance of C(n, k), and g(c̃e, dH) is given by [2, Eq. (10.31)].
It has been proved that (243) is a rigorous sufficient condition
of the maximum-likelihood decoding [2]. On the other hand,
the trade-off between complexity and error rate cannot be
tuned as no parameters are introduced. In the subsequent
comparisons, we refer to (243) as the decoding optimality
condition (DOC).

In [17], a probabilistic sufficient condition (PSC) on opti-
mality for reliability based decoding was proposed. The PSC
was also integrated with the decoder proposed in [8]. In the
PSC, a syndrome-like index is calculated as

psc = [ỹB ⊕ e ỹP]H̃T, (244)

where H̃ is the ordered parity matrix corresponding to G̃.
Then, psc is compared with a parameter τ , and the decoding is
terminated if w(psc) ≤ τ . Authors of [17] have shown that the
probability of the “False alarm” of PSC can be negligible when
τ is carefully selected. Furthermore, τ provides the flexibility
between the complexity and error rate.

Next, we compare the complexity of decoders with different
stopping rules. The DOC [2] and PSC [17] are included as
benchmarks and the HISR, HGSR, SISR, SGSR are com-
pared. We consider the order-3 decoding of (64, 30, 14) eBCH
codes, which reaches the near-maximum-likelihood error per-
formance [11]. All decoders are fine-tuned to reach the same
error performance as the original OSD [11] which applies no
stopping conditions, and the sequence of TEPs are arranged in
descending order of the reliabilities. The average number of
processed TEPs are compared in Fig. 27(a). As can be seen,
the proposed stopping techniques can significantly reduce the
number of required TEPs compared to the DOC [2] and PSC
[17]. Furthermore, the soft conditions (i.e., SISR and SGSR)
outperform the hard conditions (i.e., HIHR and HGSR).

The average decoding times for decoding a single codeword
are further compared using MATLAB implementation on a 3.0
GHz CPU, as depicted in Fig. 27(b). It can be seen that the
SISR and SGSR can reduce the decoding time to less than
10 ms. However, the HGSR is not competitive in decoding
time as it has the worst performance at low SNRs, where its
overhead undermines the advantages. It is worth noting that
the HGSR, DOC, and PSC require a longer time to decode a
codeword than the original OSD at low SNRs.

The numbers of TEPs and decoding times of applying
different stopping rules are recorded in Table I.

2) Comparison of Discarding Rules: We consider the dis-
carding rules proposed in [16] as the benchmark, which
can discard the unpromising TEPs before performing the
re-encoding, to reduce the decoding complexity. In [16], a
decoding necessary condition (DNC) was proposed as follows.
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Fig. 27. Decoding (64, 30, 14) eBCH code with order-3 OSD algorithms
applying different stopping rules.

A lower bound of the reliabilities of the TEPs is first estimated
based on the so-far recorded WHD d

(W)
min , i.e.,

`∗ =
d
(W)
min

∑k
u=1 α̃u∑k

u=1 α̃u + λ
∑n
u=k+1 α̃u

, (245)

where λ is a parameter to be chosen. Then, for an arbitrary
TEP e, if the reliability of e, i.e., `(e) =

∑
1≤u≤k
eu 6=0

α̃u, satisfies

`(e) ≥ `∗, e is discarded without re-encoding.

Next, we compare the complexity of decoders with different
discarding rules. The DNC [16] is considered as the bench-
mark and the HDR and SDR are compared. We consider the
order-3 decoding of (64, 30, 14) eBCH codes. All parameters
in the simulated decoder are carefully selected to ensure that
they can reach the same error rate as the original OSD [11],
and the sequence of TEPs are ordered in descending order of
the reliabilities. As discussed in Section VIII-B, we further
adopt the “5-step” implementation for the HDR and SDR
to reduce the overhead, i.e., checking the conditions every 5
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TABLE I
DECODING (64, 30, 14) EBCH CODE WITH ORDER-3 OSD ALGORITHMS

APPLYING DIFFERENT STOPPING RULES.

SNR (dB) 0 1 2 3 4
Original

OSD [11]
Ave. TEP 4526
Time (ms) 17.45

DOC [2] Ave. TEP 4377 3924 2909 1477 377
Time (ms) 28.47 24.87 18.53 9.90 3.20

PSC [17] Ave. TEP 3134 2564 1709 851 240
Time (ms) 20.77 17.71 12.04 6.38 2.40

HISR Ave. TEP 3690 2712 1391 446 101
Time (ms) 16.65 12.62 7.09 3.21 1.72

HGSR Ave. TEP 4107 2644 997 233 60
Time (ms) 45.69 32.57 15.63 4.92 2.21

SISR Ave. TEP 2479 1267 445 96 13
Time (ms) 12.19 6.63 2.89 1.33 0.99

SGSR Ave. TEP 2240 1095 296 46 7
Time (ms) 12.12 6.21 2.49 1.22 0.96

TABLE II
DECODING (64, 30, 14) EBCH CODE WITH ORDER-3 OSD ALGORITHMS

APPLYING DIFFERENT DISCARDING RULES.

SNR (dB) 0 1 2 3 4
Original

OSD [11]
Ave. TEP 4526
Time (ms) 17.45

DNC [16] Ave. TEP 1200 574 186 40 8
Time (ms) 6.39 3.43 1.73 1.11 1.00

SDR Ave. TEP 396 192 61 21 10
Time (ms) 2.96 1.89 1.27 1.07 1.04

HDR Ave. TEP 1657 870 366 164 52
Time (ms) 8.43 4.84 2.89 2.02 1.53

TEPs.
The average numbers of re-encoded TEPs are compared in

Fig. 28(a). It can be seen that the proposed SDR can signifi-
cantly reduce the number of re-encoded TEPs, and a notable
improvement is shown compared to the DNC [16], especially
at low SNRs. However, the HDR is the worst among its
counterparts. This is because the soft information (i.e., channel
reliabilities) are not well utilized to determine the likelihoods
of TEPs in the HDR. In addition, the average decoding times
of decoding a single codeword are compared in Fig. 28(b). As
shown, each simulated approach can significantly reduce the
decoding time compared to the original OSD in both low and
high SNR regimes. The main reason is that as shown in Section
VIII-A, the HDR and SDR can be efficiently implemented with
O(n) FLOPs, and the overhead is further reduced by ` times
with the“`-step” implementation. We can also conclude that
the SDR and DNC have similar decoding time at high SNRs,
close to 1 ms; nevertheless, the SDR outperforms at low SNRs.
The numbers of TEPs and decoding times of different decoders
are recorded in Table II.

IX. CONCLUSION

In this paper, we revisited the ordered statistics decoding
algorithm as a promising decoding approach for short linear
block codes approaching maximum-likelihood performance.
We investigated and characterized the statistical properties
of the Hamming distance and weighted Hamming distance
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Fig. 28. Decoding (64, 30, 14) eBCH code with order-3 OSD algorithms
different discarding rules.

in the reprocessing stages of the ordered statistics decoding
(OSD) algorithm. The derived statistical properties can give
insights into the relationship between the decoding quality
and the distance in the decoding process. According to the
derived Hamming and weighted Hamming distance (WHD)
distributions, we proposed two classes of decoding techniques,
namely hard and soft techniques, to improve the decoding
complexity of the OSD algorithm. These decoding techniques
are analyzed and simulated. It is shown that they can sig-
nificantly reduce the complexity in terms of the number of
test error patterns (TEPs), with a negligible error performance
loss in comparison with the original OSD. For example, from
the numerical results of decoding (64, 30, 14) eBCH code, the
hard individual stopping rule (HISR) and hard group stopping
rule (HGSR) with parameter Psuc

t = 0.99 can maintain the
error performance of the original OSD, while reducing the
TEP numbers from 31 to around 2 for the order-1 decoding and
from 466 to around 4 for the order-2 decoding at high SNRs,
respectively. The same improvement can also be observed by
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using the soft individual stopping rule (SISR) and soft group
stopping rule (SGSR) with Psuc

t = 0.5. The hard discarding
rule (HDR) with λ = 0.1 can reduce the TEP numbers from
31 to 24 of the order-1 decoding of (64, 30, 14) eBCH code
with slight error performance loss, and the soft discarding rule
(SDR) with λ = 0.1 can reduce the TEP numbers from 21 to
around 5 of the order-1 decoding of (30, 21, 16) eBCH code
with virtually the same error performance with the original
OSD. Comparisons are further performed with approaches
from the literature. As shown, the proposed techniques out-
perform the state of the art in terms of the number of TEPs
and the run-time of decoding a single codeword.

These decoding techniques can be adopted to design
reduced-complexity OSD algorithms in particular for short
BCH codes in ultra-reliable and low-latency communications.
For example, considering the hard techniques introduced in
Section VI, HISR and HGSR can serve as the stopping rule
(SR) to terminate decoding early, and the HDR can serve as
the TEP discarding rule (DR) to further improve the decoding
efficiency. Applying the soft techniques introduced in Section
VII, the soft-technique decoder can be designed, where the
SISR and SGSR can serve as SRs and the SDR can serve as
a DR. Compared to hard techniques, soft techniques exhibit
better error performance however with a slightly increased
overhead due to the calculation of WHD distribution. All
techniques proposed in this paper can be easily combined with
other OSD techniques and approaches to further reduce the
decoding complexity.

APPENDIX A
THE APPROXIMATION OF fÃu(x)

For a real number t > 0, we note the equivalence between
events {Ãu ≥ t} and

{∑n
v=1 1[0,t](Av) ≤ n− u

}
, where

1X (x) = 1 if x ∈ X and 1X (x) = 0, otherwise. We define a
new random variable Zn as

Zn =

n∑
v=1

1[0,t](Av), (246)

which is a random variable with a binomial distribu-
tion B(n, FA(t)). By using the Demoivre-Laplace theorem
[23], Zn can be approximated by a normal distribution
N (E[Zn], σ2

Zn
) with mean

E[Zn] = nFA(t), (247)

and variance

σ2
Zn = nFA(t)(1− FA(t)). (248)

For a particular t ≤ 0 and a large n satisfying n3F 2
A(t)(1 −

FA(t))� 1, the above normal approximation N (E[Zn], σ2
Zn

)
holds [23, equation 3-27]. To find an approximation indepen-
dent of t, we first define a random variable dependent on t
as

W (t) =
t(n− Zn)

u
. (249)

Therefore, we can observe the following equivalence.

{Ãu ≥ t} ≡ {Zn ≤ n− u} ≡ {W (t) ≥ t}. (250)

Because Zn is a normal random variable with mean and
varianve given by (247) and (248), respectively, W (t) is also
a normal random variable with mean and variance respective
given by

E[W (t)] =
tn(1− FA(t))

u
, (251)

and
σ2
W (t) =

t2nFA(t)(1− FA(t))

u2
. (252)

Finally, we can observe the following equivalence between Ãu
and W (t) as

{Ãu ≥ t} ≡{W (t) ≥ t}

≡
{
N
(
tn(1−FA(t))

u
,
t2nFA(t)(1−FA(t))

u2

)
≥ t
}
.

(253)

Despite the equivalence of (253), the mean and variance
of Ãu itself should be independent of t. Assume that Ãu
follows a normal distribution N (E[Ãu], σ2

Ãu
), and we have

the following equivalence{
N (E[Ãu], σ2

Ãu
) ≥ t

}
≡
{
N
(
tn(1− FA(t))

u
,
t2nFA(t)(1− FA(t))

u2

)
≥ t
}
.

(254)

In other words

Pr
(
N (E[Ãu], σ2

Ãu
) ≥ t

)
= Pr

(
N
(
tn(1− FA(t))

u
,
t2nFA(t)(1− FA(t))

u2

)
≥ t
)
.

(255)

Let t = t0 = E[Ãu], and it can be obtained that

Pr
(
N (t0, σ

2
Ãu

) ≥ t0
)

= Pr

(
N
(
t0n(1−FA(t0))

u
,
t20nFA(t0)(1−FA(t0))

u2

)
≥ t0
)

=
1

2
,

(256)

and
t0n(1− FA(t0))

u
= t0. (257)

Therefore, the mean of Ãu is derived as

E[Ãu] = t0 = F−1A

(
1− u

n

)
. (258)

From (253), we can also observe that

{Ãu ≥ t} ≡

{
N (0, 1) ≥ u− n+ nFA(t)√

nFA(t)(1− FA(t))

}

≡

{
N (0, 1) ≥ − (u− n(1− FA(t)))

(t− t0)
√
nFA(t)(1−FA(t))

t0

+
(u− n(1− FA(t)))

(t− t0)
√
nFA(t)(1−FA(t))

t

}
. (259)
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Thus, the variance is given by

σ2
Ãu

= lim
t→t0

(t− t0)2nFA(t)(1− FA(t))

(u− n(1− FA(t)))2

=πN0
(n− u)u

n3

(
e−

(t0+1)2

N0 + e−
(t0−1)2

N0

)−2
.

(260)

Therefore, the u-th ordered reliability can be approximated
by a Normal distribution N (E[Ãu], σ2

Ãu
), where

E[Ãu] = t0 = F−1A

(
1− u

n

)
(261)

and

σ2
Ãu

= πN0
(n− u)u

n3

(
e−

(t0+1)2

N0 + e−
(t0−1)2

N0

)−2
. (262)

APPENDIX B
THE APPROXIMATION OF fÃu,Ãv (x, y)

For 0 < u < v and 0 ≤ t ≤ x ≤ n, we ob-
serve the equivalence between events {Ãv ≥ t|Ãu = x}
and {

∑n
`=u 1[t,x](A`) ≥ v − u}. Let the random variable

Sn =
∑n
`=u 1[t,x](A`), and according to the central limit

theorem, we have{
Ãv ≥ t|Ãu = x

}
≡ {Sn ≤ v − u}

≡
{
N
(
t(u+(n−u)γx(t))

v
,
t2(n−u)γx(t)(1−γx(t))

v2

)
≥ t
}
,

(263)

where
γx(t) =

FA(x)− FA(t)

FA(x)
. (264)

Similarly as the approximation of fÃu(x), the mean and
variance of Ãv on the condition that Ãu = x can be obtained
as

E[Ãv|Ãu = x] = t1 = γ−1x (
v − u
n− u

). (265)

and

σ2
Ãv|Ãu=x

= lim
t→t1

(t− t1)2(n− u)γx(t)(1− γx(t))

(v − u− (n− u)γx(t))2

=πN0
(n−v)(v−u)

(n−u)3

e−(t1−1)
2

N0 +e
−(t1+1)2

N0
)

Fa(x)

−2,
(266)

respectively. Therefore, for 0 < u < v ≤ n, the joint
distribution of Ãu and Ãv can be approximated as

fÃu,Ãv (x, y)

≈ 1

2πσÃuσÃv|Ãu=x
exp

(
− (x−t0)2

2σ2
Ãu

− (y−t1)2

2σ2
Ãv|Ãu=x

)
.

(267)

APPENDIX C
PROOF OF THEOREM 2

Similar to Lemma 3, we first consider the composition of
the Hamming distance in i-reprocessing (0 < i ≤ m). For the
hard-decision results ỹ = [c̃B ⊕ ẽB c̃P ⊕ ẽP], it is obvious

that error pattern ẽB is in the TEP list from 0-reprocessing to
i-reprocessing if and only if w(ẽB) ≤ i.

When w(ẽB) > i, the first i reprocessings cannot decode the
received signal correctly, and the codeword estimate generated
by each re-encoding is given by c̃e = [c̃B ⊕ ẽB ⊕ e c̃e,P].
Then, we can obtain that the difference pattern d̃e = c̃e ⊕ ỹ
is given by

d̃e = [e c̃P ⊕ c̃e,P ⊕ ẽP]. (268)

Note that d̃eP = c̃P⊕ c̃e,P⊕ ẽP = [ẽB⊕ e]P̃⊕ ẽP. Thus, the
Hamming distance between c̃e and ỹ, denoted by the random
variable D(H)

e , can be represented as D(H)
e = w(e) + We,cP

,
where w(e) is the Hamming weight of e, and We,cP

is the
random variable introduced in Lemma 5. It has been shown
that when w(ẽB) = u and w(ẽP) = v, the pmf of We,cP , i.e.,
pWe,cP

(j|u, v), is given by (52).
Then, after the i-reprocessing, the minimum Hamming

distance conditioning on w(ẽB) > i is derived as

D
(H)
i = min

∀e:w(e)≤i
{w(e) +We,cP

}. (269)

Let us consider a sequence of i.i.d random variables [D
(H)
e ]

bk0:i
1

with length bk0:i, and the minimum Hamming distance D(H)
i

can be represented as the minimal element of [D
(H)
e ]

bk0:i
1 .

When i � k, w(e) can be regarded as a constant i since
bk0:i−1 �

(
k
i

)
. Therefore, let p

W̃cP
(j, b|u, v) denote the pmf

of the minimal element of b samples of We,cP
conditioning

on {w(ẽB) = u,w(ẽB) = v}. According to the discrete
ordered statistics theory [32, Eq. (2.4.1)], p

W̃cP
(j, b|u, v) can

be derived as

p
W̃cP

(j, b|u, v) = b

∫ FWe,cP
(j|u,v)

FWe,cP
(j|u,v)−pWe,cP

(j|u,v)
(1−`)b−1d`,

(270)
Thus, the pmf of D(H)

i conditioning on {w(ẽB)> i} can be
obtaining by combining all values of ẽP = v and considering
b = bk0:i, i.e.,

p
D

(H)
i

(j − i|w(ẽB)>i) =

n−k∑
v=0

pEnk+1
(v)p

W̃cP
(j, bk0:i|i(>), v).

(271)
When w(ẽB) ≤ i, the error pattern ẽB can be eliminated

by reprocessing with the TEP e = ẽB, and the generated
codeword estimate is given by

c̃e = [c̃B ⊕ ẽB ⊕ ẽB]G̃ = [c̃B c̃P], (272)

thus, if the error pattern ẽB is eliminated, the Hamming
distance D(H)

e between c̃e and ỹ can be derived as

D(H)
e = ‖c̃B⊕ ẽB⊕ c̃B‖+ ‖c̃P⊕ ẽP⊕ c̃P‖ = w(ẽB) +Enk+1.

(273)
Thus, after the i-reprocessing, the minimum Hamming dis-
tance is given by the minimum element of w(e) + Enk+1 and

[w(e) +We,cP
]
bk1:i
1 , i.e.,

D
(H)
i = min{w(ẽB)+Enk+1, min

∀e:w(e)≤i
e6=ẽB

{w(e)+WcP
}}. (274)

Conditioning on {w(ẽB) = u,w(ẽB) = v}, the pmf of
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min∀e:w(e)≤i
e6=ẽB

{w(e) +WcP
} can be simply obtained by (270),

i.e., p
W̃cP

(j, bk1:i|u, v). Furthermore, we can observe that
w(ẽB) +Enk+1 = v + u when {w(ẽB) = u,w(ẽB) = v}.
Therefore, the pdf of D(H)

i given by (274) can be derived
as pEW (j|u, v) given by (56). Then, only conditioning on
{w(ẽB)=u}, the pmf of D(H)

i , denoted by f
D

(H)
i

(j|w(ẽB)=

u), can be derived as

f
D

(H)
i

(j|w(ẽB)=u) =

n−k∑
v=0

pEnk+1
(v)pEW (j|u, v). (275)

Finally, the pmf of the D(H)
i can be obtained by the law of

total probability as

p
D

(H)
i

(j) =

i∑
u=0

pEk1 (u)f
D

(H)
i

(j|w(ẽB)=u)

+

k∑
u=i+1

pEk1 (u)p
D

(H)
i

(j − i|w(ẽB)>i).

(276)

By substituting (270) and (275) into (276), we finally obtain
(55) and Theorem 2 is proved.

APPENDIX D
PROOF OF THEOREM 3

Given an arbitrary position indices vector tPh ∈ T P
h , 0 ≤

h ≤ (n − k) and the corresponding random variable ÃtPh
=∑h

i=u ÃtPu with pdf fÃ
tP
h

(x), the pdf of the WHD D
(W)
0 in

0-reprocessing can be obtained by considering the mixture of
all cases of possible tPh with length 0 ≤ h ≤ (n − k), which
can be written as

f
D

(W)
0

(x) =

n−k∑
h=0

∑
tPh∈T

P
h

Pr(d̃0,P = ztPh )fÃ
tP
h

(x), (277)

where Pr(d̃0,P = ztPh ) is the probability that only positions
tPh = [tP]h1 in the vector d̃0 = ỹ ⊕ c̃0 are nonzero. Based on
the arguments in the Lemma 3, we re-write (277) in the form
of conditional probability as

f
D

(W)
0

(x)

=Pr(w(ẽB)=0)

n−k∑
h=0

∑
tPh∈T

P
h

Pr
(
d̃0,P =ztPh |w(ẽB)=0

)
fÃ

tP
h

(x)

+Pr(w(ẽB) 6=0)

n−k∑
h=0

∑
tPh∈T

P
h

Pr
(
d̃0,P =ztPh |w(ẽB) 6=0

)
fÃ

tP
h

(x),

(278)

where {w(ẽB) = 0} is equivalent to {Ek1 = 0}, and
Pr(w(ẽB) = 0) and Pr(w(ẽB) 6= 0) are given by pEk1 (0) and
1− pEk1 (0) (pEk1 (0) is previously given by (36)), respectively.

When w(ẽB) = 0, the difference parttern d̃0 = ỹ ⊕ c̃0 can
be fully described by the hard-decision errors (recall Lemma
3), i.e., d̃0 = [0B ẽP], where 0B is the zero vector with length

k. Therefore, Pr(w(ẽB) = 0)Pr
(
d̃0,P =ztPh |w(ẽB)=0

)
can

be represented as

Pr(w(ẽB)=0)Pr
(
d̃0,P =ztPh |w(ẽB)=0

)
= Pr(ẽ=[0B ztPh ]) = Pe(tPh ),

(279)

which is the probability that only positions of tPh are in error
over ỹ. Thus, Pe(tPh ) can be given by

Pe(tPh ) =

∫ ∞
0

· · ·︸ ︷︷ ︸
n−h

∫ 0

−∞
· · ·︸ ︷︷ ︸

h

f[R̃]n1
(x1, x2, . . . , xn)

·
∏

1<v≤n
v∈tPh

dxv
∏

1<v≤n
v/∈tPh

dxv,

(280)

where f[R̃]n1
(x1, x2, . . . , xn) is the joint pdf of ordered re-

ceived signals [R̃]n1 , which can be derived as [27]

f[R̃]n1
(x1, x2, . . . , xn) = n!

n∏
v=1

fR(xv)

n∏
v=2

1[0,|xv−1|](|xv|).

(281)
When w(ẽB) 6= 0, it can be seen from Lemma 3 that

d̃0 = [0B c̃′0,P ⊕ ẽP] where c̃′0,P is the parity part of c̃′0 =

ẽBG̃. Assume that the codebook and pcP
(u, q) of C(n, k) is

unknown. We can re-write Pr
(
d̃0,P =ztPh |w(ẽB) 6=0

)
as

Pr
(
d̃0,P = ztPh |w(ẽB) 6= 0

)
= Pr

(
c̃′0,P ⊕ ẽP =ztPh

)
,

(282)
where Pr

(
c̃′0,P ⊕ ẽP =ztPh

)
is denoted by Pc(tPh ) and previ-

ously given by (75) in Lemma 6. Substituting (280) and (282)
into (278), we can finally obtain (81). This completes the proof
of theorem 3.

APPENDIX E
PROOF OF LEMMA 7

If the error pattern in hard-decision ẽB is eliminated by the
TEP e, i.e., ẽB = e, the codeword generated by re-encoding
can be given by

c̃e = [c̃B ⊕ e⊕ ẽB]G̃ = [c̃B c̃P]. (283)

Recall that ỹ = [c̃B ⊕ ẽB c̃P ⊕ ẽP], and we can re-write the
WHD between c̃e and ỹ, denoted by a random variable D(W)

e ,
as

D(W)
e =

∑
1≤u≤k
ẽB,u 6=0

Ãu +
∑

1≤u≤n−k
ẽP,u 6=0

Ãu. (284)

Since the error pattern ẽB can be eliminated by the first i
reprocessings in the order-m OSD, it can be obtained that
w(ẽB) ≤ i, i.e., the condition {Ek1 ≤ i} holds. The probability
that positions in th` are different between c̃e and ỹ, denoted
by P(th` ), is given by

P(th` ) = Pr(ẽ = zth` |E
k
1 ≤ i)

=
Pr(ẽ = zth` , E

k
1 ≤ i)

Pr(Ek1 ≤ i)
.

(285)
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Moreover, for 0 ≤ ` ≤ i, when the event {ẽ = zth` } occurs,
the event {Ek1 ≤ i} must occur. Therefore, we obtain that
Pr(ẽ = zth` , E

k
1 ≤ i) = Pr(ẽ = zth` ) and

P(th` ) =
Pr(ẽ = zth` )

Pr(Ek1 ≤ i)
, (286)

where Pr(Ek1 ≤ i) is simply given by
∑i
v=0 pEk1 (v) according

to Lemma 1. Let us denote Pr(ẽ = zth` ) as Pe(th` ). Similar
to (280), Pe(th` ) is derived as (84) by using the joint pdf
f[R̃]n1

(x1, x2, . . . , xn). Finally, by considering all possible th` ,
we can obtain (83). This completes the proof of lemma 7.

APPENDIX F
PROOF OF LEMMA 8

If the error pattern in hard-decision ẽB is not eliminated
by the TEP e, i.e., ẽB 6= e, the codeword generated by re-
encoding can be given by

c̃e = [c̃B ⊕ e⊕ ẽB]G̃ = [c̃B ⊕ e⊕ ẽB c̃e,P]. (287)

Thus, the difference pattern d̃e = c̃e ⊕ ỹ can be obtained as

d̃e = [e c̃P⊕c̃e,P⊕ẽP]. (288)

Following the proof of Theorem 2, we know that c̃P⊕c̃e,P is
in fact the parity part of the codeword c̃′e = [e ⊕ ẽB]G̃, i.e.,
c̃P⊕c̃e,P = c̃′e,P. Consider the position index vector th` . Then
the probability Pr(d̃e = zth` ) can be represented as

Pr(d̃e =zth` ) = Pr(e=ztB` )Pr(c̃′e,P⊕ẽP =ztPh |e=ztB` ).

(289)

By considering a random TEP e in the first i reprocessings, it
can be easily obtained that Pr(e = ztB` ) = 1

bk0:i
. Furthermore,

we consider 2n−k pairs vectors, x and x⊕ztPh , with respect to
an arbitrary length-n−k binary vector x. Then, Pr(c̃′e,P⊕ẽP =
ztPh |e = ztB` ) can be represented as

Pr(c̃′e,P ⊕ ẽP = ztPh |e = ztB` )

=
∑

x∈{0,1}n−k
Pr(c̃′e,P = ztPh ⊕ x|e = ztB` )Pr(ẽP = x).

(290)

For Pr(c̃′e,P = ztPh ⊕ x|e = ztB` ), we can rewrite it as

Pr(c̃′e,P =ztPh ⊕ x|e = ztB` )

=

k∑
q=1

Pr(w(e⊕ ẽB) = q|e = ztB` )

· Pr(c̃′e,P = ztPh ⊕ x|w(e⊕ ẽB) = q)

=

k∑
q=1

Pr(w(e⊕ ẽB) = q|e = ztB` )

· Pr(c̃′e,P = ztPh ⊕ x|w(c̃′e,P) = `)

· Pr(w(c̃′e,P) = `|w(e⊕ ẽB) = q).

(291)

In (291), Pr(w(c̃′e,P) = `|w(e ⊕ ẽB) = q) is directly given
by pcP

(`, q). It is important to note that q 6= 0 to ensure
e 6= eB. Then, considering the columns of G̃ is randomly

permuted according to the received sequence, it can be seen
that Pr(c̃′e,P = ztPh⊕x|w(c̃′e,P) = `) = 1

(n−kl )
for ` = w(ztPh⊕

x). It is worthy noting that (291) does not have a summation
over ` because ` = w(ztPh ⊕ x) is determined by x and ztPh .
Furthermore, Pr(w(e⊕ ẽB) = q|e = ztB` ) can be derived as

Pr(w(e⊕ ẽB) = q|e = ztB` ) =
∑

x∈{0,1}k
w(z

tB
`
⊕x)=q

Pr(ẽB = x),

(292)
where Pr(ẽB = x) is determined as (89) by using the joint
pdf of [R̃]n1 given by (281).

When d̃e = zth` , the pdf of D(W)
e is directly given by

fÃ
th
`

. Let us take Pr(d̃e = zth` ) = Pc(th` ). Thus, considering

all possible th` and using the law of total probability, we can
finally obtain (85), which completes the proof of Lemma 8.

APPENDIX G
PROOF OF THEOREM 4

When w(ẽB) > i, i.e., Ek1 > i, the first i reprocessings can
not decode the received signal correctly. According to Lemma
8, the minimum WHD on the condition that Eki > i is given
by

D
(W)
i = min

∀e:w(e)≤i
{De|ẽB 6= e}. (293)

It is proved in Lemma 2 that the covariance cov(Ãi, Ãj),
1 ≤ i < j ≤ n, is non-negative. From (97), we know that
the covariance cov

(
D

(W)
e , D

(W)
e′

)
is a linear combination of

cov(Ãi, Ãj) with positive coefficients. Thus for any TEPs
e and e′ satisfying e 6= ẽB and e′ 6= ẽB, respectively ,
cov

(
D

(W)
e , D

(W)
e′

)
and ρ are also non-negative. Furthermore,

we regard D
(W)
e as a normally distributed variable when n

is large because it is a large-number summation of random
variables [Ã]n1 . Let f

D̃
(W)
i

(x, b|w(ẽB)> i) denote the pdf of

the minimum element of a sequence of b samples d(W)
e of

D
(W)
e , then f

D̃
(W)
i

(x, b|w(ẽB) > i) can be derived as (103)
by considering the ordered statistics of normal variables with
positive correlation coefficient ρ ∈ [0, 1) [33, Corollary 6.1.1].
Also, since in the first i reprocessings, the overall number of
checked TEP is bk0:i, we take b = bk0:i in (103).

When w(ẽB) ≤ i, i.e., Ek1 ≤ i, the first i reprocessings can
eliminate the errors in MRB positions by one TEP e which
equals ẽB, while there are still bk1:i TEPs that can not eliminate
the error ẽB. Therefore, the munimum WHD on the condition
Eki ≤ i is given by

D
(W)
i = min

∀e:w(e)≤i
e6=ẽB

{D(W)
ẽB

, D(W)
e }. (294)

Considering the ordered statistics over all possible D(W)
e ,
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we obtain the pdf of D(W)
i conditioning on {w(ẽB) ≤ i} as

f
D

(W)
e

(x|w(ẽB) ≤ i)

= f
D

(W)
e

(x|ẽB =e)

∫ ∞
x

f
D̃

(W)
i

(
u, bk1:i|w(ẽB)≤ i

)
du

+ f
D̃

(W)
i

(
u, bk1:i|w(ẽB)≤ i

)∫ ∞
x

f
D

(W)
e

(u|ẽB =e)du,

(295)

where f
D̃

(W)
i

(
u, bk1:i|w(ẽB)≤ i

)
is derived as (103) by using

the arguments in [33, Corollary 6.1.1]. Finally, we can obtain
(101) by using the law of total probability, i.e.

f
D

(W)
e

(x) = Pr(w(ẽB) ≤ i)f
D

(W)
e

(x|w(ẽB) ≤ i)
+ Pr(w(ẽB) > i)f

D
(W)
e

(x|w(ẽB) > i),
(296)

where Pr(w(ẽB) ≤ i) =
∑i
v=0 pEk1 (v) and Pr(w(ẽB) > i) =

1−
∑i
v=0 pEk1 (v) are obtained from Lemma 1. This completes

the proof of Theorem 4.

APPENDIX H
PROOF OF PROPOSITION 1

Let us consider the derivative of Ppro
e (dH|α̃) with respect

to Pe(e|α̃), which can be derived as

∂ Ppro
e (dH|α̃)

∂ Pe(e|α̃)
=

dH∑
j=w(e)

pEnk+1
(j − w(e)|α̃)

−
dH∑

j=w(e)

pWcP
(j − w(e)) (297)

(a)
=

dH−w(e)∑
j=0

(
n− k
j

)
(E[Pe])

j
(1− E[Pe])

n−k−j

−
dH−w(e)∑
j=0

(
n− k
j

)
1

2n−k
,

where

E[Pe] =
1

n− k

n∑
j=k+1

Pe(j|α̃j). (298)

Step (a) of (297) follows from that pEnk+1
(j−w(e)|α̃) is given

by (140) and pWcP
(j − w(e)) = pd(j) =

(
n−k
j

)
1

2n−k
under

binomial code spectrum assumption. Using the regularized
incomplete beta function Ix(a, b), (297) can be represented
as
∂ Ppro

e (dH|α̃)

∂ Pe(e|α̃)
= I1−E[Pe](n−k−dH+w(e), dH−w(e)+1)

− 1

β
I 1

2
(n−k−dH+w(e), dH−w(e)+1)

≥ I1−E[Pe](n−k−dH+w(e), dH−w(e)+1)

− I 1
2
(n−k−dH+w(e), dH−w(e)+1)

= (n− k − dH + w(e))

(
n− k

dH − w(e)

)
·
∫ 1−E[Pe]

1
2

tn−k−dH+w(e)−1(1− t)dH−w(e)dt.

(299)

Furthermore, it has been proved that Pe(j|α̃j) < 1/2 for 1 ≤
j ≤ n [11], so that we can obtain that 1 − E[Pe] > 1/2.
Therefore, we can conclude that

∂ Ppro
e (dH|α̃)

∂ Pe(e|α̃)
> 0, (300)

and this completes the proof of Proposition 1.
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PROOF OF COROLLARY 4

Given an arbitrary position indices vector tPh ∈ T P
h , 0 ≤

h ≤ (n− k) and the corresponding random variable Ãthe
with

pdf fÃ
the

(x), the pdf of the WHD D
(W)
e can be obtained by

considering the mixture of all possible tPh , 0 ≤ h ≤ (n − k),
i.e.,

f
D

(W)
e

(x|e = [e]k1) =

n−k∑
h=0

∑
tPh∈T

P
h

Pr(ỹP⊕c̃0,P = ztPh )fÃ
the

(x).

(301)
We re-write (301) in the form of conditional probability, i.e.,

f
D

(W)
e

(x|e = [e]k1)

= Pe(e)

n−k∑
h=0

∑
tPh∈T

P
h

Pr(ỹP⊕c̃e,P =ztPh |ẽB =e)fÃ
the

(x)

+ (1−Pe(e))

n−k∑
h=0

∑
tPh∈T

P
h

Pr(ỹP⊕c̃e,P =ztPh |ẽB 6=e)fÃ
the

(x),

(302)

where Pe(e) = Pr(ẽB = e) is given by (131). In (302), we
use Pe(the) to denote Pe(e)Pr(ỹP⊕ c̃0,P = ztPh |ẽB = e), i.e.,

Pe(the) = Pe(e)Pr(ỹP ⊕ c̃0,P = ztPh |ẽB = e)

(a)
= Pr(ẽ = zthe ),

(303)

where step (a) follows from that when ẽB = e, the difference
pattern between ỹP and c̃e,P is given by ẽP, as proved in
Lemma 7. Thus, Pe(the) is the probability that only posi-
tions the are in error in ỹ. Thus, Pe(the) can be obtained
as (178) by considering the joint distribution of [R̃]n1 , i.e.,
f[R̃]n1

(x1, . . . , xn) given by 281. For the second term of (302),
the conditional probability Pr(ỹP ⊕ c̃0,P = ztPh |ẽB 6= e) can
be derived as (179) following the approach to obtain (289) in
Lemma (8). This completes the proof of Corollary 4.

APPENDIX J
PROOF OF COROLLARY 5

The probability Pr(D
(W)
e =d

(W)

the
|α̃) can be represented as

Pr(D(W)
e =d

(W)

the
|α̃)

= Pe(e|α̃)Pr(ỹP⊕c̃e,P = ztPh |ẽB =e, α̃)

+ (1− Pe(e|α̃))Pr(ỹP⊕c̃0,P =ztPh |ẽB 6=e, α̃).

(304)

By considering that the bit-wise error probabilities condition-
ing on [Ã]n1 = [α̃]n1 are independent, Pe(e|α̃) is simply given
by (139). Furthermore, as proved in the proof of Lemma 7,
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when ẽB = e, it can be obtained that ỹP⊕c̃e,P = ẽP. Thus,
it can be seen that Pr(ỹP⊕ c̃0,P = ztPh |ẽB = e, α̃) is the
probability that only positions indexed by tPh are in error in
ỹP conditioning on [Ã]n1 = [α̃]n1 , which can be derived as

Pr(ỹP⊕ c̃0,P =ztPh |ẽB =e)=
∏

k<u≤n
u∈tPh

Pe(u|α̃u)
∏

k<u≤n
u/∈tPh

(1−Pe(u|α̃u)).

(305)
On the other hand, according to Lemma 8, Pr(ỹP⊕ c̃0,P =
ztPh |ẽB 6=e, α̃) can be represented as

Pr(ỹP⊕c̃0,P =ztPh |ẽB 6=e, α̃)

= Pr(c̃′e,P ⊕ ẽP = ztPh |ẽB 6=e, α̃).
(306)

Note that when [Ã]n1 = [α̃]n1 , for the u-th bit of ẽ, k < u ≤ n,
we can obtain Pr(ẽu 6= 0|α̃u) = Pe(u|α̃u). For the u-th bit
of c̃′e, k < u ≤ n, the probability Pr(c̃′e,u 6= 0|α̃u) can be
represented as

Pr(c̃′e,u 6= 0|α̃u)

= Pr(c̃′e,u 6= 0|w(ẽB ⊕ e)=q)Pr(w(ẽB ⊕ e)=q|α̃),
(307)

where Pr(c̃′e,u 6= 0|w(ẽB ⊕ e) = q) is previously given by
pbitcP

(u, q) in (105). Pr(w(ẽB ⊕ e) = q|α̃) can be derived by
considering all length-k vectors x satisfying w(x ⊕ e) = q,
i.e., Pr(w(ẽB ⊕ e) = q|α̃) =

∑
x∈{0,1}k
w(e⊕x)=q

Pr(ẽB = x|α̃),

where Pr(ẽB = x|α̃) can be easily derived as (191) by using
the reliabilities [α̃]n1 . Thus, for the u-th bit, k < u ≤ n, of
c̃′e,P ⊕ ẽP, i.e., c̃′e,u ⊕ ẽu, we have

Pr(c̃′e,u ⊕ ẽu 6=0|α̃u) = Pe(u|α̃u)(1− Pr(c̃′e,u 6= 0|α̃u))

+ (1− Pe(u|α̃u))Pr(c̃′e,u 6= 0|α̃u).
(308)

For the simplicity, we take Pce(u|α̃u) = Pr(c̃′e,u⊕ẽu 6=0|α̃u).
Then, Pr(ỹP⊕c̃0,P =ztPh |ẽB 6=e, α̃) given by (306) is derived
as

Pr(ỹP⊕c̃0,P =ztPh |ẽB 6=e, α̃)

=
∏

k<u≤n
u∈tPh

Pce(u|α̃u) ·
∏

k<u≤n
u/∈tPh

(1− Pce(u|α̃u)). (309)

Substituting (305) and (309) into (304), we can finally obtain
(189). This completes the proof of Corollary 5.

APPENDIX K
PROOF OF PROPOSITION 2

Assume that there exist two arbitrary TEPs e1 and e2 to
be processed in the i-reprocessing, satisfying Pe(e1|α̃) >

Pe(e2|α̃). Let us define ∆ , P̃pro
e1

(d
(W)
min |α̃)− P̃pro

e2
(d

(W)
min |α̃),

which can be obtained that

∆ =

n−k∑
h=0

∑
tPh∈T

P
h

d(W)

the1

<d
(W)
min

p
D

(W)
e1

(d
(W)

the1
|α̃)−

n−k∑
h=0

∑
tPh∈T

P
h

d(W)

the2

<d
(W)
min

p
D

(W)
e2

(d
(W)

the2
|α̃)

(a)

≥
n−k∑
h=0

∑
tPh∈T

P
h

d(W)

the2

<d
(W)
min

(
p
D

(W)
e1

(d
(W)

the1
|α̃)− p

D
(W)
e2

(d
(W)

the2
|α̃)
)

(b)
=

n−k∑
h=0

∑
tPh∈T

P
h

d(W)

the2

<d
(W)
min

(Pe(e1|α̃)− Pe(e2|α̃))

·

 ∏
k<u≤n
u∈tPh

Pe(u|α̃u)
∏

k<u≤n
u/∈tPh

(1− Pe(u|α̃u))− 2k−n


(c)
> (Pe(e1|α̃)−Pe(e2|α̃))

(
n∏

u=k+1

(1−Pe(u|α̃u))−2k−n

)
,

(310)

where step (a) follows from that for a specific vector tPh ∈ T P
h ,

inequality d
(W)

the1
≥ d

(W)

the2
holds, step (b) follows from that in

(187), Pce(u|α̃u) = 1
2 when the weight spectrum of C(n, k)

is binomial (see Eq. (226)), and step (c) takes h = 0 and
tPh = ∅.

Furthermore, because Pe(u|α̃u) < 1
2 holds for 1 ≤ u ≤ n

[11], the inequality
n∏

u=k+1

(1− Pe(u|α̃u))− 2k−n ≥ 0 (311)

holds. Therefore, it can be concluded that ∆ > 0, which
completes the proof of Proposition 2.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
efforts in reviewing this paper, which are of importance for
improving the paper’s quality.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 4, pp. 623–656, Oct 1948.

[2] S. Lin and D. J. Costello, Error control coding. Pearson Education
India, 2004.

[3] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[4] M. Shirvanimoghaddam, M. S. Mohammadi, R. Abbas, A. Minja,
C. Yue, B. Matuz, G. Han, Z. Lin, W. Liu, Y. Li, S. Johnson, and
B. Vucetic, “Short block-length codes for ultra-reliable low latency
communications,” IEEE Commun. Mag., vol. 57, no. 2, pp. 130–137,
February 2019.

[5] G. Liva, L. Gaudio, and T. Ninacs, “Code design for short blocks: A
survey,” in Proc. EuCNC, Athens, Greece, Jun. 2016.

[6] J. V. Wonterghem, A. Alloumf, J. J. Boutros, and M. Moeneclaey, “Per-
formance comparison of short-length error-correcting codes,” in 2016
Symposium on Communications and Vehicular Technologies (SCVT),
Nov 2016, pp. 1–6.



50

[7] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
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