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Abstract

An additive quaternary [n,k,d]-code (length n, quaternary di-
mension &k, minimum distance d) is a 2k-dimensional Fo-vector space
of n-tuples with entries in Zs x Zs (the 2-dimensional vector space
over Fy) with minimum Hamming distance d. We determine the op-
timal parameters of additive quaternary codes of dimension k£ < 3.
The most challenging case is dimension k = 2.5. We prove that an
additive quaternary [n,2.5,d]-code where d < n — 1 exists if and
only if 3(n —d) > [d/2] + [d/4] + [d/8]. In particular we con-

struct new optimal 2.5-dimensional additive quaternary codes. As
a by-product we give a direct proof for the fact that a binary linear
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[3m, 5, 2¢]s-code for e < m —1 exists if and only if the Griesmer bound
3(m —e) > [e/2] + [e/4] + [e/8] is satisfied.
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1 Introduction

The concept of additive codes is a far-reaching and natural generalization of
linear codes, see [2], Chapter 18. Here we restrict to the quaternary case.

Definition 1. Let k be such that 2k is a positive integer. An additive qua-
ternary [n, k|-code C (length n, dimension k) is a 2k-dimensional subspace of
F2" where the coordinates come in pairs of two. We view the codewords as n-
tuples where the coordinate entries are elements of F3 and use the Hamming
distance.

We write the parameters of the code as [n, k, d] where d is the minimum
Hamming distance. Here k is the quaternary dimension. As an example, in
case k = 2.5 the code is a 5-dimensional vector space over Fy. Additive codes
are particularly interesting because of a link to quantum stabilizer codes, see
[4, 5, 9]. We will also use the geometric construction of additive quaternary
codes. In fact, a quaternary [n, k, d]-code is equivalent to a multiset of n lines
in PG(2k—1,2) such that each hyperplane of PG(2k — 1, 2) contains at most
s = n—d of those lines, in the multiset sense. Blokhuis and Brouwer [§] first
suggested the problem of determining the optimum parameters of additive
quaternary codes. In earlier work we determined all such optimal parameters
when n < 13, see [2], Chapter 18 and [6]. For further results concerning larger
lengths see [1L [7]. In the present work we determine all optimal parameters
when the quaternary dimension is k£ < 3. Dimensions k£ < 2 are degenerate
cases, see Section 2l Dimension 3 is easily dealt with as well, see Section
Bl Our main result is Theorem 2l in Section [4] where the optimal parameters
of 2.5-dimensional additive quaternary codes are determined. For k£ > 1
we prefer to work with the species s = n — d instead of the minimum
distance d. Define ny(s) to be the maximal length n such that an additive
[n, k,n — s]-code exists. For integer k, let ng,(s) be the maximal n such
that a linear quaternary [n, k,n — s]s-code exists. In the present paper we
determine ny(s) for k& < 3 and all s. The following obvious lemma will be
used to prove nonexistence results:



Lemma 1. The concatenation of a quaternary additive [n, k, d|-code and the
binary linear 3,2, 2]s-code is a binary linear [3n, 2k, 2d],-code.

2 Dimensions k < 2.

Clearly dimension k£ = 1 is a trivial case, the optimal parameters being
[n,1,n]. Dimension k = 1.5 is degenerate as well. The ambient space is the
Fano plane and the optimal choice is to use each of its seven lines with multi-
plicity s. This shows ny5(s) = 7s. The corresponding codes have parameters
[7s,1.5,65s]. Dimension k = 2 still is degenerate. In the linear case we have
Nain(s) = bs. In fact we work in the projective line PG(1,4) and the optimal
choice is to use each of its points with multiplicity s.

Proposition 1. We have ny(s) = ngin(s) = ds for all s.

Proof. Assume ny(s) > 5s. We would have a [5s + 1,2,4s + 1]-code. Lemma
[ would yield a binary linear [15s + 3,4, 8s 4 2]o-code. This contradicts the
Griesmer bound. O

3 The case of dimension £ = 3.

The optimal parameters of linear quaternary 3-dimensional codes are of
course known:

Proposition 2. We have n3;,(2) = 6,n31n(3) = 9, n3,n(4) = 16,

N300 (D7) = 214, 13 45 (5 + 1) = 2104+ 1 and ng i (5i+0) = 21i+1+5(c — 1)
fori>1,0€{2,3,4}.

Proof. For d < 9 this is easy to check. For larger d we can invoke a result by
Hamada-Tamari [10] stating that linear [n, 3, d],-codes for d > (¢ — 1)? exist
if and only if the parameters satisfy the Griesmer bound (see [2], Theorem
17.7). This coincides with the statement of our proposition. O

Theorem 1. We have n3(s) = ngn(s) for all s.

Proof. Assume there is an additive 3-dimensional code with larger n and
the same species. We illustrate with case s = 5i. We would have a [21i +
1,3,16i 4 1]-code. Lemma [I] yields a linear [63¢ + 3, 6, 32 + 2|»-code, which
contradicts the Griesmer bound . The other cases are analogous. O
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4 The case of dimension 2.5.

Our main result is the following:

Theorem 2. An additive quaternary [n,2.5,d|-code where d < n — 1 exists
if and only if 3(n — d) > [d/2] + [d/4] + [d/8].

In the present section we prove Theorem 2l In the sequel use the abbre-
viation d; = [d/l]. The necessity is obvious. In fact, Lemma [ applied to
an additive quaternary [n, 2.5, d]-code yields a binary linear [3n, 5, 2d]s-code.
The condition of Theorem [2]is the Griesmer bound as applied to this binary
code. It remains to prove sufficiency: given d,n satisfying the condition of
the theorem we need to construct an additive quaternary [n, 2.5, d]-code. As
before, let s = n — d. For each s consider the pair Dy = (s, m,) where my is
the maximal n such that n, d = n — s satisfy the condition in Theorem 2 We
need to prove the existence of an [my, 2.5, ms — s]-code, for all s > 2. When
such a code exists we say that we represented D,. Here are some examples:

Dy = (2,8), D3 = (3,11), D, = (4,16), Ds = (5,21), Dg = (6,26), D; = (7, 31).

Let C be an [n,2.5,d]-code and C’ the code obtained by increasing each
line multiplicity of C' by 1. As PG(4,2) has 155 lines and PG(3,2) has
35 lines we see that C” is an [n + 155,2.5,d 4+ 120]-code. Concerning the
bound of the theorem we observe that 3(n — d) — dy — dq — ds is invariant
under the substitution n +— n + 155,d +— d + 120. This shows that we need
prove the existence of an [n, 2.5, d]-code only for n < 155. This means that
it suffices to construct Do, Ds, ..., D35 = (35,155). Observe that there is an
obvious sum construction which shows that the existence of codes [mq, 2.5, ]
and [mag, 2.5, 5] implies the existence of an [m; + mq, 2.5, 1; + l3]-code. This
shows that if Dy, and D, can be constructed then also Dy, + Dy, can be
constructed. We see now that it suffices to construct D,,..., D7 as the
remaining Dy, s < 35 follow from the sum construction. Here are some
examples:

Dg = D¢+ Dy, Dy = D7+ Dy, Dig = D5+ Ds, D1y = Do+ Dy, D1g = Dg+ Ds.

It remains to construct Ds, ..., D;. Now Dy implies D, as Dy + Dy = Dy
and D5 = (5,21) is constructed as there is even a linear [21,3, 16]4-code
(corresponding to the points of PG(2,4)). We are reduced to construct
Dy, D3, Dg, D7. Now Dy = (2,8) corresponds to a [8,2.5,6]-code. This is
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the Blokhuis-Brouwer construction [8, [3]. In the same context an [11,2.5, 8]-
code was constructed. This is a representation of D3 = (3, 11). We are finally
reduced to construct Dg and Dy.

A construction

Consider a chain
lo C Ey C Hy C PG(4,2)

where [y is a line, Ey a plane and Hy a solid (hyperplane) in PG(4,2). Let V
be a set of 8 lines such that each point in Ey \ [y is on precisely two lines of
V), each point outside Hj is on precisely one line of V. Also, let £ be a set of
8 lines partitioning the points outside £y (Blokhuis-Brouwer construction).

Definition 2. Let C(g, h,v,e) be the additive 2.5-dimensional quaternary
code described by the following multiset of lines: line ly with multiplicity
g, the remaining lines of Eqy each with multiplicity h, the lines of V with
multiplicity v and the lines of £ with multiplicity e.

Clearly C(g, h,v,e) has length n = g + 6h + 8v + 8e. Let m(P) be the
number of codelines (including multiplicities) that contain point P. If P € I,
then m(P) = g + 2h, if P € Ey \ lp then m(P) = 3h + 2v. If P € Hy \ Ey
then m(P) = e whereas points P outside Hy have m(P) = v + e. For each
hyperplane H let m(H) = ) ., m(P). By double counting we obtain

s(H) = (m(H) —n)/2

where s(H) (the species of H) is the number of codelines contained in H. Tt
follows that the numbers n — s(H) are the nonzero weights of our code. The
numbers m(H) and s(H) are easy to determine:

Lemma 2. Ifly ¢ H then m(H) = g + 8h + 12v + 12e.
Iflo C H but Eqg ¢ H then m(H) = 3g + 6h + 8v + 12e.
If Ey C H # Hy then m(H) = 3¢ + 18h + 160 + 8e.
Finally m(Hy) = 39 + 18h + 8v + 8e.

Proof. This is a trivial calculation. In the first case above H has one point
of ly, two further points in Ejy, four further points in Hy and finally 8 affine
points for a grand total m(H) = g+8h+4v+4e+8(v+e). In the second case
H contains three points on [y, no further point on Ejy, four further points on
Hj and eight affine points: m(H) = 3g + 6h + 4e + 8(v + €). The remaining
two cases are analogous. O



Our basic formula yields:

Corollary 1. The nonzero weights of the codewords of C(g,h,v,e) are
g+ 5h+6(v+e),6h+8v+ 6e,4v+ 8¢, 8(v+e).
C(g,h,v,e) is an [g + 6h + 8(v + €), 2.5, d|,-code where
d = Min(w; = g+ b5h +6(v + e), wy = 6h + 8v + 6e, w3 = 4v + 8e).

We see that C'(2,0, 1,2) is a [26, 2.5, 20]-code and C(1, 1,0, 3) is a [31, 2.5, 24]-
code. This completes the proof of Theorem 2l Lemma [I] yields

Corollary 2. A binary linear [3m, 5, 2e]y-code for e < m — 1 ewists if and
only if the Griesmer bound 3(m — e) > ey + e4 + eg is satisfied.
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