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Capacity-Achieving Private Information Retrieval

Schemes from Uncoded Storage Constrained

Servers with Low Sub-packetization
Jinbao Zhu, Qifa Yan, Xiaohu Tang, and Ying Miao

Abstract

This paper investigates reducing sub-packetization of capacity-achieving schemes for uncoded Storage Constrained Private

Information Retrieval (SC-PIR) systems. In the SC-PIR system, a user aims to download one out of K files from N servers

while revealing nothing about the identity of the requested file to any individual server, in which the K files are stored at the N

servers in an uncoded form and each server can store up to µK equivalent files, where µ is the normalized storage capacity of

each server. We first prove that there exists a capacity-achieving SC-PIR scheme for a given storage design if and only if all the

packets are stored exactly at M , µN servers for µ such that M = µN ∈ {2, 3, . . . , N}. Then, the optimal sub-packetization

for capacity-achieving linear SC-PIR schemes is characterized as the solution to an optimization problem, which is typically hard

to solve since it involves non-continuous indicator functions. Moreover, a new notion of array called Storage Design Array (SDA)

is introduced for the SC-PIR system. With any given SDA, an associated capacity-achieving SC-PIR scheme is constructed. Next,

the SC-PIR schemes that have equal-size packets are investigated. Furthermore, the optimal equal-size sub-packetization among

all capacity-achieving linear SC-PIR schemes characterized by Woolsey et al. is proved to be
N(M−1)
gcd(N,M)

, which is achieved by

a construction of SDA. Finally, by allowing unequal size of packets, a greedy SDA construction is proposed, where the sub-

packetization of the associated SC-PIR scheme is upper bounded by
N(M−1)
gcd(N,M)

. Among all capacity-achieving linear SC-PIR

schemes, the sub-packetization is optimal when min{M,N −M}|N or M = N , and within a multiplicative gap
min{M,N−M}

gcd(N,M)

of the optimal one in general. In particular, for the special case N = d · M ± 1 where the positive integer d ≥ 2, we propose

another SDA construction to obtain lower sub-packetization.

Index Terms

Private information retrieval, uncode, storage constrained servers, sub-packetization, capacity-achieving, storage design array.

I. INTRODUCTION

Along with the rapid advancement of Distributed Storage Systems (DSSs), protecting the download privacy of a user against

public servers is of vital importance. The problem of Private Information Retrieval (PIR) was first introduced by Chor et al.

in [9] and has attracted remarkable attention within computer science community subsequently [9], [11], [18], [35]. In the

classical framework, a user wishes to retrieve one out of K files from N servers, each of which stores the whole library of

K files, while ensuring that any server can not learn any information about the file index being requested. To this end, the

user sends a query string to each server. Then the server responds truthfully with an answer string depending on the received

query and the contents stored. Finally, the user correctly decodes the requested file from the answers. Note that to prevent each

server from obtaining information about which file is being requested, the query distribution has to be marginally independent

of the desired file index.

A trivial strategy is to download all the K files in the library no matter which file is requested by the user, but this results in

impractical communication cost, especially in a modern DSS, which typically maintains a large number of files. In the seminal

work [9] where each file is of one bit size, the communication cost was measured by the sum of upload cost (the total size

of query strings) and download cost (the total size of answer strings). In the sense of information-theoretic security, which
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assures privacy even if the servers have unbounded computational power, it was shown in [9] that the naive strategy is the

only feasible solution to a single server, whereas low communication cost can be attained by replicating the files at multiple

non-colluding servers. To improve the efficiency, single-server PIR has been widely studied in the sense of computational

security, whose privacy is guaranteed by some computational hard problems, for examples, the problems related to so-called

Φ-hiding number-theory [6], [12], trapdoor permutations [15], [4], or quadratic/composite residuosity [13], [8]. These works

improve the efficiency at the cost of non-zero possibility of disclosing information relevant to the identity of the requested file.

Instead of retrieving a single bit, Shannon theory allows the file size to be arbitrarily large, and therefore the upload cost

can be neglected compared to the download cost since it does not scale with file size [20], [7], [22], [3], [25]. Then, the

communication efficiency is usually measured by retrieval rate, defined as the number of bits that the user can privately

retrieve per bit of download data across all random realizations of queries. Particularly, the supremum of retrieval rates over

all achievable schemes is called capacity. To implement a PIR scheme, the files typically need to be partitioned into some

non-overlapping packets. The number of packets is referred to as sub-packetization in the literature. The sub-packetization

reflects the complexity of the scheme in practice and is preferred to be as small as possible. This is because any practical

scheme will require each of the packets to include some header information for user to decode [27], especially the header

overhead may be non-negligible when there are a large number of packets. This problem has already been noticed in other

applications, for example coded caching [32], [33], [34], [27], [21].

In 2014, Shah et al. revisited the PIR problem and reported an interesting scheme achieving the PIR rate 1− 1
N

and requiring

sub-packetization N − 1 [20]. Later in the influential work by Sun and Jafar [22], the exact PIR capacity was characterized as(
1+ 1

N
+ . . .+ 1

NK−1

)−1
for any N and K . However, to achieve the capacity, the smallest sub-packetization of the proposed

PIR schemes [22] is NK , which increases exponentially with the number of files K and thus is impractical even for moderate

number of files. Soon afterwards, the sub-packetization was decreased to NK−1 in [23], which was proved to be optimal under

the assumption that the download cost are identical over all random realizations of queries. In a very recent work [28], Tian

et al. innovatively introduced a new capacity-achieving scheme, which incurs different download cost for distinct realizations

of queries. As a result, the sub-packetization was decreased to N − 1, which is independent of K and shown to be optimal

among all the capacity-achieving PIR schemes.

A common assumption in the aforementioned results is that each server has sufficiently large storage capacity to store all

the files in the library, i.e., a repetition coding is used to store the files across servers. Though repetition coding can offer

simplicity in designing PIR schemes and the high immunity against server failures, it suffers from extremely large storage

cost. The storage cost in a PIR system has been widely investigated in terms of the coding structures in the storage design,

such as specific Maximum Distance Separable (MDS) codes [3], [25], [37], an uncoded storage [26], [1], [31], and other more

complicated coding techniques [20], [10], [5], [19], [36], [14], [2]. Moreover, the tradeoff between the storage cost and retrieval

rate was considered without any explicit constraints on the storage codes [24], [29], [30].

As the first step toward exactly characterizing the tradeoff between storage cost and retrieval rate, Tandon et al. formulated

the problem of uncoded Storage Constrained PIR (SC-PIR) in [26], [1]. In this setup, each server can store up to µKL symbols

by some storage design, where 1
N
≤ µ ≤ 1 is the normalized storage and L is the number of symbols of each file. The capacity

of SC-PIR was proved in [1] to be
(
1 + 1

M
+ . . . + 1

MK−1

)−1
for M , µN ∈ {1, . . . , N}. However, the capacity-achieving

SC-PIR scheme in [26], [1] has sub-packetization
(
N
M

)
MK . Thus the problem of high sub-packetization shows up again in

this SC-PIR model. Recently, Woolsey et al. [31] proposed a general construction of SC-PIR schemes by establishing the

connection between storage design and Storage Full PIR (SF-PIR, i.e., the case that each server can store all the files). Then,

the sub-packetization to achieve the capacity of the SC-PIR system was reduced to NMK−1 in [31], which also increases

exponentially with K .

In this paper, we are interested in characterizing the optimal sub-packetization to achieve the capacity of SC-PIR systems.

Note from the previous work [1], [31] that linear schemes are sufficient to achieve the capacity of SC-PIR. Additionally, it was

proved in [1] that, for any µ with 1
N
≤ µ ≤ 1, the capacity of SC-PIR system can be achieved by memory-sharing technique

between the discrete points such that M ∈ {1, 2, . . . , N}, where M = 1 is a trivial case since the user has to download all

the contents stored at the N servers to assure privacy. Therefore, the problem comes down to the case M ∈ {2, 3, . . . , N} for

linear SC-PIR schemes, which is the focus of this paper. The contributions of this paper are:

1) We prove that there exists a capacity-achieving SC-PIR scheme for a given storage design if and only if all the packets
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are stored exactly at M servers in the storage phase.

2) We characterize the optimal sub-packetization of capacity-achieving linear SC-PIR schemes by an optimization problem.

Consequently, a general construction of capacity-achieving linear SC-PIR schemes with optimal sub-packetization can

be obtained based on the optimal solution of this optimization problem.

3) Storage Design Array (SDA) is introduced to obtain feasible solutions to the optimization problem. Any given SDA is

associated to a practical capacity-achieving linear SC-PIR scheme with low sub-packetization.

4) We prove that the optimal equal-size sub-packetization is
N(M−1)
gcd(N,M) among all the classes of capacity-achieving linear

SC-PIR schemes characterized by Woolsey et al. [31].

5) In order to further decrease sub-packetization of capacity-achieving SC-PIR schemes, we investigate the problem under

a more general assumption, i.e., the sizes of the packets are allowed to be unequal. In particular, a greedy algorithm is

proposed to construct SDA for any positive integers N,M such that 1 ≤M ≤ N . The sub-packetization of the associated

SC-PIR scheme is shown to be optimal among all capacity-achieving linear SC-PIR schemes when min{M,N −M}|N

or M = N . In the other cases, the sub-packetization is within a multiplicative gap
min{M,N−M}

gcd(N,M) compared to its lower

bound. Moreover, for the case N = d ·M ± 1 where the integer d ≥ 2, we propose another construction of SDA to

achieve lower sub-packetization compared to the greedy SDA.

The rest of this paper is organized as follows. In Section II, we introduce the system model and problem formulation.

In Section III, we establish an information-theoretic lower bound on sub-packetization of capacity-achieving linear SC-PIR

schemes. In Section IV, we characterize a generic construction of capacity-achieving linear SC-PIR schemes with optimal sub-

packetization. In Section V, we introduce SDA to construct capacity-achieving SC-PIR schemes with low sub-packetization.

In Section VI, we present the results under the assumption of equal-size packets. Section VII proposes two SDA constructions

and proves the optimality of the resultant sub-packetization. Finally, the paper is concluded in Section VIII.

The following notation is used throughout this paper.

• For any integers n,m, s,N with n ≤ m, [n : m] and ([n : m] + s)N respectively denote the sets {n, n+ 1, . . . ,m} and

{i+ s (modN) : n ≤ i ≤ m};

• For a finite set S, |S| denotes its cardinality;

• Denote A1:m a vector (A1, . . . , Am), and define AΓ as (Aγ1 , . . . , Aγk
) for any index set Γ = {γ1, . . . , γk} ⊆ [1 : m]

with γ1 < . . . < γk or any index vector Γ = (γ1, . . . , γk);

• Define 1(x) as a function of a logical variable x, i.e., 1(x) = 1 if x is true and 1(x) = 0 otherwise.

II. SYSTEM MODEL

Let Fq be the finite field for a prime power q. Consider a non-colluding PIR system with K files W1, . . . ,WK ∈ F
L×1
q

stored across N servers in an uncoded fashion. Each of files is comprised of L i.i.d. uniform symbols over Fq , i.e.,

H(W1) = . . . = H(WK) = L, (1)

H(W1, . . . ,WK) =

K∑

k=1

H(Wk), (2)

where the entropy function H(·) is measured with logarithm q. Let Zn (n ∈ [1 : N ]) be the contents stored at server n, which

is subject to the storage capacity of server n, then the storage constraint for each server is

H(Zn) ≤ µKL, ∀n ∈ [1 : N ], (3)

where µ is the normalized storage capacity. Notice that, when µ < 1
N

, the total storage capacity of N servers is insufficient

to store all the K files. For µ = 1, each server can store all the K files. Thus, we are interest in the case 1
N
≤ µ ≤ 1.

The system operates in the following two phases:

Storage Phase: Each file Wk is partitioned into F disjoint packets and thus it will be convenient to label the F packets as

Wk,1,Wk,2, . . . ,Wk,F , where Wk,i is the i-th packet of file Wk. By convention, we call F sub-packetization. Then, for any

k ∈ [1 : K],

Wk = {Wk,i : i ∈ [1 : F ]} , (4)
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H(Wk) =

F∑

i=1

H(Wk,i). (5)

Clearly, each of these packets must be stored at at least one server because of the constraint of reliable decoding. In

particular, all the files are partitioned and stored in the same manner1, i.e.,

H(W1,i) = H(W2,i) = . . . = H(WK,i), ∀ i ∈ [1 : F ], (6)

Zn = {Wk,i : k ∈ [1 : K], i ∈ Zn}, ∀n ∈ [1 : N ], (7)

where Zn is a subset of [1 : F ] such that Zn satisfies (3). In other words, Zn ⊆ [1 : F ] consists of the indices of packets

stored at server n.

Retrieval Phase: A user selects an index θ ∈ [1 : K] privately and wishes to retrieve the file Wθ from the system without

disclosing any information about θ to any individual server. For this purpose, the user generates N queries Q
[θ]
1:N and sends

Q
[θ]
n to server n ∈ [1 : N ]. Indeed, the queries are generated independently of file realizations, i.e.,

I(Q
[θ]
1:N ;W1:K) = 0, ∀ θ ∈ [1 : K], (8)

where I(·) is the mutual information function. Upon receiving the query Q
[θ]
n , server n responds with an answer A

[θ]
n , which

is determined by the received query and its stored contents. Thus, by the data processing inequality,

H(A[θ]
n |Q

[θ]
n , Zn) = H(A[θ]

n |Q
[θ]
n ,W1:K) = 0, ∀n ∈ [1 : N ]. (9)

Finally, from all the answers A
[θ]
1:N collected from the N servers, the user must be able to decode the desired file Wθ correctly,

i.e.,

H(Wθ|A
[θ]
1:N , Q

[θ]
1:N) = 0, ∀ θ ∈ [1 : K]. (10)

To ensure the privacy, the strategies for retrieving any two files Wθ and Wθ′ must be indistinguishable in terms of any individual

server, i.e.,

(Q[θ]
n , A[θ]

n , Zn) ∼ (Q[θ′]
n , A[θ′]

n , Zn), ∀ θ, θ′ ∈ [1 : K], ∀n ∈ [1 : N ], (11)

where X ∼ Y means that the random variables X and Y are identical distribution. Equivalently, the desired index θ must be

hidden from all the information available to each server, i.e.,

I(Q[θ]
n , A[θ]

n , Zn; θ) = 0, ∀n ∈ [1 : N ]. (12)

Throughout this paper, we refer to this system as a (µ,N,K) Storage Constrained PIR (SC-PIR) system. If µ = 1, the

system is also referred to as an (N,K) Storage Full PIR (SF-PIR) system.

In order to measure the performance of SC-PIR systems, the following two quantities are considered:

1. The sub-packetization F , which reflects the complexity of the SC-PIR scheme in practical applications, and thus is

preferred to be as small as possible.

2. The retrieval rate R, which is the number of desired bits that the user can retrieve privately per bit of downloaded data,

is defined as

R ,
H(Wθ)∑N

n=1 H(A
[θ]
n )

=
L

D
, (13)

where D ,
∑N

n=1 H(A
[θ]
n ) is the average download cost from the N servers over random queries. Obviously, R and D

are independent of θ by (1) and (11).

A retrieval rate R is said to be achievable if there exists a design of both storage and retrieval phases satisfying (3)–(12)

such that its retrieval rate is greater than or equal to R. The capacity of the SC-PIR system, denoted by C∗, is the

supremum over all the achievable rates, i.e.,

C∗ = sup {R : R is achievable} .

1To the best of our knowledge, all the previous storage constrained PIR schemes satisfy this assumption [26], [1], [31], which is also a popular storage

manner in coded caching [16], [34], [27], [21], [17].
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Define the total normalized storage capacity as

M , µN ∈ [1, N ].

For the case M ∈ [1 : N ], the capacity of SC-PIR is exactly characterized in [1] as

C∗ =

(
1 +

1

M
+ . . .+

1

MK−1

)−1

. (14)

Generally, for other M ∈ [1, N ] (or equivalently µ ∈ [ 1
N
, 1]), the capacity can be achieved by memory-sharing technique

between the integer points ⌈M⌉ and ⌊M⌋ (see [1, Claim 1 & Theorem 2]). Thus, in the sequel, we will concentrate our

discussion on the case M ∈ [2 : N ] since it is straightforward to prove that the optimal sub-packetization is F = N for the

case M = 1.

Moreover, the existing work [26], [1], [31] have shown that linear SC-PIR schemes can achieve the capacity.

Definition 1 (Linear SC-PIR Scheme). For a given scheme of the (µ,N,K) SC-PIR system, let ℓn be the answer length2 of

query Q
[θ]
n . It is said to be a linear SC-PIR scheme if the answers A

[θ]
n (n ∈ [1 : N ]) are formed by

A[θ]
n = LC[θ]

n (Zn) =
(
LC

[θ]
n,1(Zn), . . . ,LC

[θ]
n,ℓn

(Zn)
)
, ∀n ∈ [1 : N ]

with each entry LC
[θ]
n,j(Zn) (j ∈ [1 : ℓn]) given by a linear combination of the packets stored at server n, i.e.,

LC
[θ]
n,j(Zn) =

∑

k∈[1:K]

∑

i∈Zn

β
[θ]
n,k,i,j ·Wk,i, (15)

where β
[θ]
n,k,i,j ∈ Fq is the coefficient of packet Wk,i in the j-th entry of A

[θ]
n and is determined completely by the received

query Q
[θ]
n . Here, it implicitly assumes that each of packets {Wk,i : k ∈ [1 : K], i ∈ [1 : F ]} is represented by a vector over

Fq. If the packets have different dimensions, then the additions are performed by padding the vectors with zeros to the largest

dimension.

The objective of the paper is to design (µ,N,K) linear SC-PIR schemes achieving the SC-PIR capacity with the minimum

sub-packetization for the case M ∈ [2 : N ].

III. A LOWER BOUND ON SUB-PACKETIZATION OF CAPACITY-ACHIEVING LINEAR SC-PIR SCHEMES

To simplify our notations in the following discussion, denote Wk,S the set of packets of file Wk that are exclusively stored

by servers in S, S ⊆ [1 : N ], i.e.,

Wk,S ,

{
Wk,i : i ∈

(
∩

n∈S
Zn

)∖(
∪

m∈[1:N ]\S
Zm

)}
, ∀ k ∈ [1 : K]. (16)

Obviously, Wk,∅ = ∅ and H(Wk,∅) = 0 due to the constraint of reliable decoding. Then, file Wk and the storage contents at

server n can be respectively rewritten as

Wk = ∪
S⊆[1:N ]

Wk,S , ∀ k ∈ [1 : K] (17)

and

Zn = ∪
k∈[1:K]

∪
S⊆[1:N ]
n∈S

Wk,S , ∀n ∈ [1 : N ]. (18)

Notice from (6) and (7) that both the entropy of random variable Wk,S and the size of set Wk,S are irrespective of k.

Thus, for all S ⊆ [1 : N ], we can set H(Wk,S) , αSL and FS , |Wk,S | where αS ∈ [0, 1]. In other words, αS is the

normalized file size of Wk,S and FS is the number of packets in Wk,S . By (1), (3), (17) and (18), the file size, storage size,

and sub-packetization F are respectively constrained as

∑

S⊆[1:N ]

αS = 1, (19)

2Throughout this paper, the “length” is counted by the number of packets, thus “answer length” refers to as the number of packets in the answer.
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∑

S⊆[1:N ]
n∈S

αS ≤ µ, ∀n ∈ [1 : N ], (20)

and

F =
∑

S⊆[1:N ]

FS . (21)

In the following, we establish an information-theoretical lower bound on sub-packetization of any capacity-achieving

(µ,N,K) linear SC-PIR scheme with M = µN ∈ [2 : N ], which is characterized by the following optimization problem.

Definition 2. Given any positive integers N and M = µN ∈ [2 : N ], Problem 1 is defined as

{α∗
S}S⊆[1:N ],|S|=M = argmin

∑

S⊆[1:N ]
|S|=M

1(αS > 0)

s.t.
∑

S⊆[1:N ]
|S|=M,n∈S

αS = µ, ∀n ∈ [1 : N ] (22)

0 ≤ αS ≤ 1, ∀S ⊆ [1 : N ], |S| = M (23)

where {α∗
S}S⊆[1:N ],|S|=M is called the optimal solution to Problem 1 and η∗ =

∑
S⊆[1:N ],|S|=M

1(α∗
S > 0) is called the optimal

value of Problem 1. In addition, the parameters {αS}S⊆[1:N ],|S|=M satisfying (22) and (23) are called a feasible solution to

Problem 1.

A. Necessary Conditions of Capacity-Achieving Linear SC-PIR Schemes

In this subsection, we derive five necessary conditions (Lemmas 1 and 2 below) for capacity-achieving linear SC-PIR

schemes, whose proofs are left in Appendix.

Lemma 1. Given any (µ,N,K) SC-PIR system with M = µN ∈ [2 : N ] and {αS : αS ∈ [0, 1],S ⊆ [1 : N ]}, the storage

design of any capacity-achieving SC-PIR scheme must satisfy:

P1. All the packets must be stored exactly at M servers, i.e., αS = 0 for all S ⊆ [1 : N ] with |S| 6= M ;

P2. The storage capacity at all servers must be used up, i.e.,
∑

S⊆[1:N ],n∈S

αS = µ for all n ∈ [1 : N ].

Remark 1. Given any parameters {αS : αS ∈ [0, 1],S ⊆ [1 : N ]}, P1 along with P2 are equivalent to the constraints (22) and

(23) of Problem 1.

For any K ⊆ [1 : K],S ⊆ [1 : N ], denote WK,S , ∪
k∈K

Wk,S . Given θ ∈ [1 : K], let L̃C
[θ]

n (Zn) be the answer of server

n when receiving the query realization Q̃
[θ]
n . Let L̃C

[θ]

n (WK,S) be the part of L̃C
[θ]

n (Zn) involving the linear combinations of

packets in WK,S , i.e.,

L̃C
[θ]

n (WK,S) ,

(
L̃C

[θ]

n,1(WK,S), . . . , L̃C
[θ]

n,ℓ̃n
(WK,S)

)
, ∀n ∈ [1 : N ], (24)

where ℓ̃n is the answer length for the query realization Q̃
[θ]
n , and L̃C

[θ]

n,j(WK,S) is given by

L̃C
[θ]

n,j(WK,S) =
∑

k∈K,Wk,i∈WK,S

β̃
[θ]
n,k,i,j ·Wk,i, ∀ j ∈ [1 : ℓ̃n] (25)

in which the coefficient β̃
[θ]
n,k,i,j is the realization of β

[θ]
n,k,i,j in (15) when the query realization Q̃

[θ]
n is received by server n.

Lemma 2. Given any (µ,N,K) SC-PIR system with M = µN ∈ [2 : N ], let S ⊆ [1 : N ] and θ, θ′ ∈ [1 : K] such that

|S| = M, θ 6= θ′. For every realization of queries Q̃
[θ]
1:N with positive probability, the retrieval phase for any capacity-achieving

linear SC-PIR scheme must satisfy:

P3. (Independence of the retrieved data) The M random variables

L̃C
[θ]

n

(
Wθ,S

)
, ∀n ∈ S (26)
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are independent of each other;

P4. (Independence of the requested data) The M random variables

L̃C
[θ]

n

(
W[1:K]\{θ′},S

)
, ∀n ∈ S (27)

are independent of each other;

P5. (Identical information for the residuals) The M random variables

L̃C
[θ]

n

(
W[1:K]\{θ,θ′},S

)
, ∀n ∈ S (28)

are deterministic of each other.

B. Lower Bound on Sub-packetization of Capacity-Achieving Linear SC-PIR Schemes

Lemma 3. Given any capacity-achieving (µ,N,K) linear SC-PIR scheme with M = µN ∈ [2 : N ] and {αS : αS ∈ [0, 1],S ⊆

[1 : N ]},
{
FS ≥M − 1, if αS > 0,S ⊆ [1 : N ], |S| = M

FS = 0, otherwise
.

Proof: It is clear that FS = 0 if αS = 0. By Lemma 1, we just need to prove FS ≥M−1 if αS > 0,S ⊆ [1 : N ], |S| = M .

Let Wθ∗ and Q̃
[θ∗]
1:N be the desired file of the user and a realization of queries with positive probability, respectively. For

any S with |Wθ∗,S | > 0, recall from (16) that Wθ∗,S are exclusively stored at servers in S. Thus, in the conditioning of the

realization of queries Q̃
[θ∗]
1:N , to ensure that the user can correctly decode Wθ∗ , there must be a server n ∈ S such that the

coefficients of packets Wθ∗,S in L̃C
[θ∗]

n (Zn) are not all zeros, i.e.,

H
(

L̃C
[θ∗]

n (Wθ∗,S)
)
> 0, ∀n ∈ S.

Note that, the random queries for retrieving distinct files at a given server have the identical distribution by the privacy

constraint (11). Thus, the following observation holds:

Observation: For any realization of queries Q̃
[θ∗]
1:N with positive probability, the query Q̃

[θ∗]
n , sent to server n for retrieving

file Wθ∗ , can also be sent to the same server n but for retrieving any distinct file θ 6= θ∗ in another realization of queries

Q̃
[θ]
1:N with positive probability, where Q̃

[θ]
n = Q̃

[θ∗]
n . As a result, for the two realizations of queries Q̃

[θ∗]
1:N and Q̃

[θ]
1:N , server

n will respond the same answer, i.e.,

L̃C
[θ∗]

n (Zn) =

(
L̃C

[θ∗]

n,1 (Zn), . . . , L̃C
[θ∗]

n,ℓ̃n
(Zn)

)
=

(
L̃C

[θ]

n,1(Zn), . . . , L̃C
[θ]

n,ℓ̃n
(Zn)

)
= L̃C

[θ]

n (Zn).

That is, for any θ ∈ [1 : K]\{θ∗}, there exists another realization of queries Q̃
[θ]
1:N with positive probability such that server

n will respond with the same answer L̃C
[θ]

n (Zn) = L̃C
[θ∗]

n (Zn), where the terms involving Wθ∗,S are identical, i.e.,

H
(

L̃C
[θ]

n (Wθ∗,S)
)
= H

(
L̃C

[θ∗]

n (Wθ∗,S)
)
> 0.

Then, for any θ′ ∈ [1 : K]\{θ, θ∗},

H
(

L̃C
[θ]

n (W[1:K]\{θ,θ′},S)
)

(a)

≥ H
(

L̃C
[θ]

n (W[1:K]\{θ,θ′},S)
∣∣W[1:K]\{θ,θ′,θ∗},S

)

(b)
= H

(
L̃C

[θ]

n (Wθ∗,S)
)

> 0, (29)

where (a) holds because conditioning reduces entropy; (b) follows from the linearity of (25).

Assume that the number of packets in Wθ,S is less than M − 1, i.e., FS < M − 1. According to (25) and (26), the M

random variables L̃C
[θ]

n′

(
Wθ,S

)
(n′ ∈ S) consisting of linear combinations of FS packets in Wθ,S are independent of each

other. Thus, FS < M − 1 results in that there must exist two distinct servers i, j ∈ S such that

L̃C
[θ]

i (Wθ,S) = L̃C
[θ]

j (Wθ,S) = 0, ∀ i, j ∈ S, i 6= j. (30)
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However, we have

0
(a)
= I

(
L̃C

[θ]

i (W[1:K]\{θ′},S); L̃C
[θ]

j (W[1:K]\{θ′},S)
)

(b)
= I

(
L̃C

[θ]

i (W[1:K]\{θ′,θ},S) + L̃C
[θ]

i (Wθ,S); L̃C
[θ]

j (W[1:K]\{θ′,θ},S) + L̃C
[θ]

j (Wθ,S)
)

(c)
= I

(
L̃C

[θ]

i (W[1:K]\{θ′,θ},S); L̃C
[θ]

j (W[1:K]\{θ′,θ},S)
)

(d)
= H

(
L̃C

[θ]

i (W[1:K]\{θ′,θ},S)
)

(e)
> 0,

where (a) follows by (27); (b) follows from the linearity of (25) again; (c) is due to (30); (d) is because of (28); (e) holds

since

H
(

L̃C
[θ]

i (W[1:K]\{θ,θ′},S)
)
= H

(
L̃C

[θ]

n (W[1:K]\{θ,θ′},S)
)
> 0

by (28) and (29). Thus, FS ≥M − 1 and the proof is completed.

Now, we are ready to characterize a lower bound on the sub-packetization among all capacity-achieving linear SC-PIR

schemes.

Theorem 1. For any given (µ,N,K) SC-PIR system with M = µN ∈ [2 : N ], the sub-packetization of any capacity-achieving

linear SC-PIR scheme is lower bounded by

F ≥ η∗ · (M − 1), (31)

where η∗ is the optimal value to Problem 1.

Proof: Given any capacity-achieving linear SC-PIR scheme with {αS : αS ∈ [0, 1],S ⊆ [1 : N ]}, the sub-packetization

F
(a)
=

∑

S⊆[1:N ]

FS

(b)

≥
∑

S⊆[1:N ]
|S|=M

1(αS > 0) · (M − 1)

(c)

≥ η∗ · (M − 1),

where (a) follows by (21); (b) holds by Lemma 3; (c) is due to Lemma 1 and Remark 1 that {αS : αS ∈ [0, 1],S ⊆ [1 : N ]}

of any capacity-achieving SC-PIR scheme must satisfy (22) and (23).

Definition 3. The sub-packetization F of a capacity-achieving linear SC-PIR scheme is said to be optimal if it achieves the

equality in (31).

IV. A GENERIC CAPACITY-ACHIEVING LINEAR SC-PIR SCHEME WITH OPTIMAL SUB-PACKETIZATION

In this section, we present a generic construction of capacity-achieving linear SC-PIR schemes with optimal sub-packetization.

A. SF-SC-PIR Schemes Based on Transformation From SF-PIR Schemes to SC-PIR Schemes

We first introduce a class of SC-PIR schemes in Algorithm 1, which are constructed by a transformation from SF-PIR

schemes to SC-PIR schemes, where we term the resultant schemes as SF-SC-PIR schemes for convenience. Actually, the

transformation was first characterized in [31].

Theorem 2. For any positive integers N,K,M with M ∈ [2 : N ], given any feasible solution {αS}S⊆[1:N ],|S|=M to Problem 1

and any capacity-achieving (M,K) linear SF-PIR scheme with sub-packetization FSF, the (µ = M/N,N,K) linear SF-SC-PIR

scheme obtained in Algorithm 1 is capacity-achievable with sub-packetization F = η·FSF, where η =
∑

S⊆[1:N ],|S|=M

1(αS > 0).

Proof: Obviously, the output SF-SC-PIR scheme of Algorithm 1 is linear if the input SF-PIR scheme is linear. Furthermore,

by Lines 2-5, the sub-packetization of the output scheme is F = η · FSF. Consequently, we prove the theorem by showing
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Algorithm 1 Capacity-Achieving SF-SC-PIR Schemes

Input: A feasible solution {αS}S⊆[1:N ],|S|=M to Problem 1 and a capacity-achieving (M,K) SF-PIR scheme with sub-

packetization FSF

Output: Capacity-Achieving SF-SC-PIR Scheme with sub-packetization F = η · FSF, where η =
∑

S⊆[1:N ],|S|=M

1(αS > 0).

1: procedure Storage

2: for k ∈ [1 : K] do

3: Divide Wk into {Wk,S : S ⊆ [1 : N ], |S| = M,αS > 0} such that H(Wk,S) = αSL

4: Further divide each Wk,S into FSF disjointed packets for S ⊆ [1 : N ], |S| = M,αS > 0

5: end for

6: for n ∈ [1 : N ] do

7: Zn ← {Wk,S : k ∈ [1 : K],S ⊆ [1 : N ], |S| = M,αS > 0, n ∈ S}

8: end for

9: end procedure

10: procedure Retrieval

11: for each S ⊆ [1 : N ], |S| = M,αS > 0 do

12: Employ the (M,K) capacity-achieving SF-PIR scheme3 independently to retrieve Wθ,S privately from the M servers

in S and the K packet sets in {Wk,S : k ∈ [1 : K]}

13: end for

14: The user combines Wθ,S (S ⊆ [1 : N ], |S| = M,αS > 0) to recover Wθ

15: end procedure

that the storage design in Algorithm 1 is achievable and the SF-SC-PIR scheme is capacity-achievable while satisfying the

constraints of correctness and privacy.

In Line 3, each file can be partitioned into Wk = {Wk,S : S ⊆ [1 : N ], |S| = M,αS > 0} since the feasible solution

{αS}S⊆[1:N ],S=M that satisfies (22) and (23) has
∑

S⊆[1:N ]
|S|=M,αS>0

αS =
∑

S⊆[1:N ]
|S|=M

αS (32)

=
1

M

∑

S⊆[1:N ]
|S|=M

αS

∑

n∈[1:N ]

1(n ∈ S)

=
1

M

∑

n∈[1:N ]

∑

S⊆[1:N ]
|S|=M

αS · 1(n ∈ S)

=
1

M

∑

n∈[1:N ]

∑

S⊆[1:N ]
|S|=M,n∈S

αS

(a)
=

µN

M
= 1,

where (a) is due to (22). In Line 7, the storage content Zn at each server is

Zn = ∪
k∈[1:K]

∪
S⊆[1:N ],|S|=M

αS>0,n∈S

Wk,S , ∀n ∈ [1 : N ].

Since all the random variables Wk,S are independent of each other, by applying H(Wk,S) = αSL and (22), we get

H(Zn) = KL
∑

S⊆[1:N ],|S|=M
αS>0,n∈S

αS = µKL,

3It is not necessary to use different SF-PIR schemes as building blocks since the sub-packetization of resultant SC-PIR scheme can be further reduced by

adopting the identical SF-PIR scheme with minimum sub-packetization.
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which satisfies the storage constraint (3). Thus, the storage design in Algorithm 1 is achievable.

Then, we prove the scheme in Algorithm 1 to be capacity-achievable. By Lines 4 and 7, for any S ⊆ [1 : N ], |S| = M,αS >

0, each Wk,S (k ∈ [1 : K]) is partitioned into FSF packets and is stored at M servers in S. Thus, in Lines 11-13, the non-zero

Wθ,S can be retrieved from servers in S by employing the capacity-achieving (M,K) SC-PIR schemes independently. Then,

according to (13), the download cost for retrieving Wθ,S is

DS =
H(Wθ,S)

CSF
=

(
1 +

1

M
+ . . .+

1

MK−1

)
αSL,

where CSF = (1 + 1/M + . . .+ 1/MK−1)
−1

is the capacity of (M,K) SF-PIR scheme. Therefore, the rate for retrieving Wθ

is

R =
L

D
=

L∑
S⊆[1:N ]

|S|=M,αS>0

DS
=

(
1 +

1

M
+ . . .+

1

MK−1

)−1

,

which achieves the capacity of SC-PIR in (14).

The user can recover Wθ by combining all non-zero Wθ,S , where privacy is guaranteed because the SF-PIR scheme satisfying

the constraint of privacy is independently employed to download the desired packet sets.

We know from Theorem 2 that any parameters {αS : αS ∈ [0, 1],S ⊆ [1 : N ]} satisfying (22) and (23) result in a storage

design of a capacity-achieving SC-PIR scheme. Thus, we have the following corollary according to Remark 1.

Corollary 1. Given any parameters {αS : αS ∈ [0, 1],S ⊆ [1 : N ]}, P1 and P2 are necessary and sufficient conditions for

the storage design of a capacity-achieving SC-PIR scheme.

B. Capacity-Achieving Linear SC-PIR Schemes with Optimal Sub-packetization

From Algorithm 1, we can construct a capacity-achieving SC-PIR scheme by using any feasible solution to Problem 1 and

any capacity-achieving SF-PIR scheme as a building block. Such capacity-achieving (M,K) SF-PIR schemes have been found

in [22], [23], [28]. If the SF-PIR scheme with sub-packetization MK−1 [23] is employed, then we can obtain a capacity-

achieving SC-PIR scheme with sub-packetization η ·MK−1, which has identical download cost across all random realizations

of queries. Whereas, if the scheme with sub-packetization M − 1 in [28] is adopted, the asymmetry of download cost over all

realizations of queries will be inherited by the resultant SC-PIR scheme so that the sub-packetization is reduced to η · (M −1).

In particular, when any optimal solution to Problem 1 is further employed, a capacity-achieving SF-SC-PIR scheme with

sub-packetization η∗ · (M − 1) can be obtained.

For the sake of completeness, we summarize the scheme of [28] in Algorithm 2, where Q is defined as

Q ,
{
(q1, . . . , qK) ∈ [0 : M − 1]K

}
.

Note that the dummy packets in Line 2 are not stored by the servers at all. Let ∆ =
∑

i∈[1:K]\{θ} Wi,qi , then the user

can decode file Wk = (Wk,0, . . . ,Wk,M−2) from the answers (A
[θ]
0 , . . . , A

[θ]
M−1) in Line 5 because of (A

[θ]
0 , . . . , A

[θ]
M−1) =

(∆ +Wθ,qθ , . . . ,∆+Wθ,M−2,∆+ 0,∆+Wθ,0, . . . ,∆+Wθ,qθ−1).

The following result is immediate by Theorems 1 and 2.

Theorem 3. For any positive integers N,K,M with M ∈ [2 : N ], given any optimal solution {α∗
S}S⊆[1:N ],|S|=M to Problem

1 and the capacity-achieving (M,K) linear SF-PIR scheme in Algorithm 2, Algorithm 1 outputs a capacity-achieving (µ =

M/N,N,K) linear SC-PIR scheme with sub-packetization F ∗ = η∗ · (M − 1), where η∗ =
∑

S⊆[1:N ],|S|=M

1(α∗
S > 0).

Particularly, the sub-packetization F ∗ is optimal among all capacity-achieving linear SC-PIR schemes.

V. STORAGE DESIGN ARRAY

According to Theorem 3, in terms of designing capacity-achieving linear SC-PIR schemes with optimal sub-packetization, it

is crucial to solve the optimization problem in Problem 1. However, it is not easy because of the involved indicator functions.

Thus, in this section, we dedicate to construct concrete capacity-achieving linear schemes with low sub-packetization by finding

sub-optimal solutions to Problem 1.
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Algorithm 2 Capacity-Achieving (M,K) Linear SF-PIR Scheme with Sub-packetization M − 1

1: Relabel the indices of the M servers as 0, 1, . . . ,M − 1.

2: For each k ∈ [1 : K], file Wk is uniformly partitioned into M − 1 disjoint packets Wk,0,Wk,1, . . . ,Wk,M−2. For easy of

exploration, each file Wk is appended a dummy packet Wk,M−1 , 0, i.e.,

Wk = (Wk,0, . . . ,Wk,M−2, 0) , ∀ k ∈ [1 : K].

3: Select a vector from the set Q independently and uniformly:

q = (q1, . . . , qθ−1, qθ, qθ+1, . . . , qK).

4: Query Phase: Based on the vector q, the user constructs a query sent to server m as

Q[θ]
m = (q1, . . . , qθ−1, (qθ +m)M , qθ+1, . . . , qK), ∀m ∈ [0 : M − 1].

5: Answer Phase: After receiving the query Q
[θ]
m , the answer at server m is

A[θ]
m =




NULL, if Q

[θ]
m = (M − 1, . . . ,M − 1)∑

i∈[1:K]\{θ}

Wi,qi +Wθ,(qθ+m)M , else , ∀m ∈ [0 : M − 1],

where the value NULL indicates that the server keeps silence.

6: Decoding Phase: Decode file Wθ = (Wθ,0, . . . ,Wθ,M−2) from the answers A
[θ]
0 , . . . , A

[θ]
M−1

For clarity, we first introduce Storage Design Array (SDA) to construct feasible solutions of Problem 1.

Definition 4 (Storage Design Array (SDA)). For any positive integers N,M with M ∈ [1 : N ], an (N,M) storage design

array is an array of size N × N
gcd(N,M) with each entry being either “∗” or “NULL” that satisfies

S1. Each column has M “∗”s;

S2. Each row has M
gcd(N,M) “∗”s.

Definition 5 (Number of Distinct Columns of SDA). Let P = [pi,j ]N× N
gcd(N,M)

be an (N,M) SDA. For each j ∈ [1 : N
gcd(N,M) ],

let Sj be the set of row indices corresponding to “∗”s in column j, i.e.,

Sj , {i ∈ [1 : N ] : pi,j = ∗}, ∀ j ∈

[
1 :

N

gcd(N,M)

]
. (33)

We denote ηP as the number of distinct columns in P, i.e.,

ηP ,

∣∣∣∣
{
Sj : j ∈

[
1 :

N

gcd(N,M)

]}∣∣∣∣ . (34)

Let {Sil}
ηP

l=1 be the ηP distinct ones in {Sj}
N

gcd(N,M)

j=1 and sl be the occurrence that Sil appears in {Sj}
N

gcd(N,M)

j=1 for l ∈ [1 : ηP],

i.e.,

sl ,

∣∣∣∣
{
j ∈

[
1 :

N

gcd(N,M)

]
: Sj = Sil

}∣∣∣∣ , ∀ l ∈ [1 : ηP]. (35)
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Example 1. An (N = 9,M = 4) SDA P and another (N = 11,M = 5) SDA P′ can be written as follows, respectively.

P =




∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗




9×9

, P′ =




∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗




11×11

.

In fact, the SDAs P and P′ are constructed by greedy Algorithm 3, which will be illustrated in Section VII-A in detail.

Apparently, there are ηP = 6 distinct columns in P (i.e., columns 1, 5, 6, 7, 8 and 9) with {s1 = 4, s2 = 1, s3 = 1, s4 =

1, s5 = 1, s6 = 1} and ηP′ = 7 distinct columns in P′ (i.e., columns 1, 6, 7, 8, 9, 10 and 11) with {s1 = 5, s2 = 1, s3 = 1, s4 =

1, s5 = 1, s6 = 1, s7 = 1}.

Lemma 4. Given N and M ∈ [1 : N ], any (N,M) SDA P is associated to a set of parameters {αS}S⊆[1:N ],|S|=M that is a

feasible solution to Problem 1.

Proof: Notice from S1 and (33) that |Sil | = M for all l ∈ [1 : ηP]. Thus, we can obtain a set of parameters

{αS}S⊆[1:N ],|S|=M ,

αS =

{
sl ·

gcd(N,M)
N

, if S = Sil for some l ∈ [1 : ηP]

0, otherwise
, (36)

where sl is defined in (35). Then, for any n ∈ [1 : N ],
∑

S⊆[1:N ]
|S|=M,n∈S

αS =
∑

l∈[1:ηP]
n∈Sil

αSil

=
gcd(N,M)

N
·
∑

l∈[1:ηP]
n∈Sil

sl

(a)
=

gcd(N,M)

N
·

∑

j∈[1: N
gcd(N,M)

]

1(pn,j = ∗)

(b)
=

gcd(N,M)

N
·

M

gcd(N,M)
= µ,

where (a) follows from (33) and (35), and (b) is due to S2. That is, the parameters {αS}S⊆[1:N ],|S|=M satisfy (22) and (23),

and thus are feasible for Problem 1.

Obviously, taking the feasible solution {αS}S⊆[1:N ],|S|=M and the (M,K) SF-PIR scheme in Algorithm 2 as inputs of

Algorithm 1, one can obtain a storage design scheme by Lines 1-9 in Algorithm 1 and a capacity-achieving SF-SC-PIR

scheme with sub-packetization ηP · (M − 1) by Theorem 2, where ηP =
∑

S⊆[1:N ],|S|=M

1(αS > 0) by (36).

Theorem 4. Given any positive integers N,K,M with M ∈ [2 : N ] and any (N,M) SDA P, there is a capacity-achieving

(µ = M/N,N,K) linear SC-PIR scheme with sub-packetization ηP · (M − 1).

Example 2. For the (N = 9,M = 4) SDA P in Example 1, set

α{1,2,3,4} =
4

9
, α{5,6,7,8} = α{5,6,7,9} = α{5,6,8,9} = α{5,7,8,9} = α{6,7,8,9} =

1

9
,
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and all the other αS to be zeros. It is easy to see that {αS}S⊆[1:9],|S|=4 is a feasible solution of Problem 1 with
∑

S⊆[1:9],|S|=4

1(αS >

0) = ηP = 6. Then, we can generate a capacity-achieving (µ = 4/9, N = 9,K) linear SC-PIR scheme with sub-packetization

18. Similarly, the (N = 11,M = 5) SDA P′ in Example 1 is associated to a capacity-achieving (µ = 5/11, N = 11,K)

linear SC-PIR scheme with sub-packetization 28.

VI. EQUAL-SIZE CAPACITY-ACHIEVING LINEAR SC-PIR SCHEMES

Recall that the setup in Section II allows us to partition each file into unequal-size packets. Actually, the equal-size partition

of the files is one of the most important cases in practice, which is also considered by the previous capacity-achieving SC-PIR

schemes [26], [1], [31] and SF-PIR schemes [22], [23], [28] in the storage phase. Thus, we first focus on capacity-achieving

SC-PIR/SF-PIR schemes with small sub-packetization by imposing the assumption of equal-size packets, i.e.,

H(Wk,1) = H(Wk,2) = . . . = H(Wk,F ) =
L

F
, ∀ k ∈ [1 : K]. (37)

For simplicity, we will refer to the sub-packetization of a scheme satisfying (37) as equal-size sub-packetization. In particular,

we characterize the optimal equal-size sub-packetization of all capacity-achieving linear SF-SC-PIR schemes in the following

theorem.

Theorem 5. Given any (µ,N,K) SC-PIR system with M = µN ∈ [2 : N ], the optimal equal-size sub-packetization of all

capacity-achieving linear SF-SC-PIR schemes is given by
N(M−1)
gcd(N,M) .

The theorem will be proved by constructing an SDA-based SF-SC-PIR scheme with equal-size sub-packetization and showing

the optimality of its sub-packetization separately.

A. SDA-Based SF-SC-PIR Schemes with Equal-size Sub-packetization

In this subsection, we construct an (N,M) SDA P with all columns being distinct, i.e., ηP = N
gcd(N,M) . Later, it will be

shown that such SDA P is associated to a capacity-achieving SF-SC-PIR scheme with equal-size sub-packetization
N(M−1)
gcd(N,M) .

Before that, a simple example is presented.

Example 3. For N = 12 and M = 5, an SDA with all columns being distinct is given by

P =




∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗




12×12

.

Then it corresponds to a set of non-zero and equal-size parameters

α{1,2,3,4,5} = α{6,7,8,9,10} = α{11,12,1,2,3} = α{4,5,6,7,8} = α{9,10,11,12,1} = α{2,3,4,5,6} (38)

= α{7,8,9,10,11} = α{12,1,2,3,4} = α{5,6,7,8,9} = α{10,11,12,1,2} = α{3,4,5,6,7} = α{8,9,10,11,12} =
1

12
.

By employing these parameters and the (M = 5,K) SF-PIR scheme in Algorithm 2 as inputs of Algorithm 1, a capacity-

achieving SF-SC-PIR scheme is obtained, where each packet has equal size 1
48L and sub-packetization 48.

Formally, an (N,M) SDA P = [pi,j ]N× N
gcd(N,M)

satisfying ηP = N
gcd(N,M) is constructed as

pi,j =

{
∗, if i ∈ Sj

NULL, if i /∈ Sj
, (39)
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where

Sj ,
(
[0 : M − 1] + (j − 1) ·M

)
N
+ 1, ∀ j ∈

[
1 :

N

gcd(N,M)

]
. (40)

It is easy to check that the array P is an (N,M) SDA satisfying ηP = N
gcd(N,M) , by the following three facts from Sj

(j ∈
[
1 : N

gcd(N,M)

]
):

F1. For each j ∈
[
1 : N

gcd(N,M)

]
, set Sj is of size M , i.e., |Sj | = M for all j ∈ [1 : N

gcd(N,M) ];

F2. All the sets in (40) are distinct, i.e., Si 6= Sj for any i 6= j ∈ [1 : N
gcd(N,M) ];

F3. For any given n ∈ [1 : N ], n exactly occurs in M
gcd(N,M) different sets in (40), i.e., |{j ∈ [1 : N

gcd(N,M) ] : n ∈ Sj}| =
M

gcd(N,M) for all n ∈ [1 : N ].

By (36), αS = gcd(N,M)
N

if S = Sj for some j ∈ [1 : N
gcd(N,M) ], and αS = 0 otherwise. Accordingly, all the non-zero

{Wk,S : k ∈ [1 : K],S ⊆ [1 : N ], |S| = M,αS > 0} are of equal size and each is partitioned into M − 1 equal-size packets

by Algorithms 1-2. Therefore, its capacity-achieving SF-SC-PIR scheme has equal-size sub-packetization
N(M−1)
gcd(N,M) .

B. Optimality of Equal-Size Sub-packetization

Recall from Algorithm 1 that any feasible solution {αS}S⊆[1:N ],|S|=M to Problem 1 can support a capacity-achieving

(µ = M/N,N,K) linear SF-SC-PIR scheme by employing any specific capacity-achieving (M,K) linear SF-PIR scheme as

a building block. According to Line 4 in Algorithm 1 and (37), each Wk,S of size αS > 0 is partitioned into FSF equal-sized

disjoint packets. Thus, to design a linear SF-SC-PIR scheme with equal-size sub-packetization, it is necessary that αS > 0 is

a constant.

Lemma 5. Given any (µ,N,K) SC-PIR system with M = µN ∈ [2 : N ] and {αS}S⊆[1:N ], the storage design of any

capacity-achieving linear SF-SC-PIR scheme with equal-size sub-packetization must satisfy:

P6. The equal-size partition storage is adopted, i.e., all the non-zero αS has the same value.

From Theorem 1, the equal-size sub-packetization of any SF-SC-PIR scheme is no less than η∗e · (M − 1), where η∗e is the

optimal value of the following problem by Lemmas 1 and 5.

Definition 6. Given any positive integers N and M = µN ∈ [2 : N ], Problem 2 is defined as

({α∗
S}S⊆[1:N ],|S|=M ,∆∗) = argmin

∑

S⊆[1:N ]
|S|=M

1(αS > 0)

s.t.
∑

S⊆[1:N ]
|S|=M,n∈S

αS = µ, ∀n ∈ [1 : N ] (41)

αS ∈ {∆, 0}, ∀S ⊆ [1 : N ], |S| = M (42)

0 ≤ ∆ ≤ 1 (43)

where ({α∗
S}S⊆[1:N ],|S|=M ,∆∗) is called the optimal solution to Problem 2 and η∗e =

∑
S⊆[1:N ],|S|=M

1(α∗
S > 0) is called the

optimal value of Problem 2.

Thus, we just need to prove that the optimal value η∗e of Problem 2 satisfies η∗e ≥
N

gcd(N,M) . From Problem 2,

1
(a)
=

∑

S⊆[1:N ]
|S|=M

α∗
S

= ∆∗ ·
∑

S⊆[1:N ]
|S|=M

1(α∗
S > 0)

= ∆∗ · η∗e ,

where (a) follows by (32) and (41)-(43). Thus, we have ∆∗ = 1
η∗
e

.
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By (41), the storage constraint of any server n is

µ =
∑

S⊆[1:N ]
|S|=M,n∈S

α∗
S

= ∆∗ ·
∑

S⊆[1:N ]
|S|=M,n∈S

1(α∗
S > 0)

=
1

η∗e
ν.

Note that ν =
∑

S⊆[1:N ],|S|=M,n∈S

1(α∗
S > 0) is an integer. Then, the above equation indicates that

ν = µ · η∗e =
M

N
· η∗e

is an integer. Therefore, η∗e must be greater than or equal to N
gcd(N,M) , which completes the proof of Theorem 5.

VII. CAPACITY-ACHIEVING LINEAR SC-PIR SCHEMES WITH LOWER SUB-PACKETIZATION

The sub-packetization reflects the implementation complexity of a scheme, specifically in a PIR system, low sub-packetization

achieves low complexity [28]. In order to further reduce sub-packetization, we allow unequal-size packets in this section.

Notably, unequal-size packets are usually unavoidable in such SC-PIR [26], [1], since the memory-sharing technique typically

results in schemes with unequal-size packets [1], [16]. Particularly, memory-sharing is often used to achieve the capacity for

any storage M ∈ [1, N ] by resorting to the discrete points with M = 1, 2, . . . , N .

Next, we first present an example to illustrate that allowing unequal-size packets can further decrease sub-packetization of

capacity-achieving SC-PIR schemes.

Example 4. An (N = 12,M = 5) SDA can be also constructed by the form of

P =




∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗




12×12

.

There are ηP = 6 distinct columns in P, i.e., columns 1, 6, 8, 10, 11 and 12. By Theorem 4, the SDA can be used for

constructing a capacity-achieving (µ = 5/12, N = 12,K) linear SC-PIR scheme with sub-packetization 24, which is smaller

than 48, the optimal equal-size sub-packetization as illustrated in Example 3.

Based on Theorem 4, we wish to construct an SDA P with ηP as low as possible for further reducing sub-packetization.

A. Greedy Construction of Storage Design Arrays

In this subsection, we propose a greedy construction of (N,M) SDA P for any N and M ∈ [1 : N ]. By convenience, for

any positive integers n,m, we use [∗]n×m to denote an array of size n×m with all the entries being “∗”s.

Clearly, when gcd(N,M) > 1, an (N,M) SDA P can be yielded by

P =




P′

...

P′



N× N

gcd(N,M)





gcd(N,M) , (44)
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where P′ is an ( N
gcd(N,M) ,

M
gcd(N,M) ) SDA of size N

gcd(N,M) ×
N

gcd(N,M) . That is, P is generated by repeating P′ gcd(N,M)

times. Hereafter, we only concentrate on the construction of (N,M) SDA for gcd(N,M) = 1.

Notice that we aim to construct (N,M) SDA P with ηP as small as possible for gcd(N,M) = 1. Intuitively, by the

definition of ηP in (34), the columns of SDA should be repeated as much as possible to reduce ηP, i.e., sl should be as big

as possible for every l ∈ [1 : ηP]. However, sl is upper bounded by min{M,N −M} since

• sl ≤M follows from S2 directly.

• If sl > N −M , i.e., some column is repeated more than N −M times, without loss of generality, assume that the first

M rows and first m (m > N −M) columns of P form array [∗]M×m. Then by S1, the first m entries of the (M +1)-th

row are NULL and thus the (M + 1)-th row has at most N −m < M “∗”s, contradicting S2.

Based on the above fact that each column in SDA is repeated at most min{M,N −M} times, Algorithm 3 is proposed to

recursively construct (N,M) SDA for gcd(N,M) = 1 as follows:

1) Case 1 (Lines 6-7): If N −M ≥ M (i.e., N ≥ 2M ), min{M,N −M} = M . Thus, greedily generate [∗]M×M and

then proceed an (N −M,M) SDA.

2) Case 2 (Lines 9-10) If N−M < M (i.e., N < 2M ), min{M,N−M} = N−M . Hence greedily generate [∗]M×(N−M),

[∗](N−M)×M , and then proceed an (M, 2M −N) SDA.

The two cases above are recursively carried out until N = 1, i.e., P = [∗]1×1.

Algorithm 3 Greedy SDA Algorithm (G-SDA)

Input: Positive integers (N,M) with 1 ≤M ≤ N and gcd(N,M) = 1;

Output: An (N,M) array P of size N ×N ;

1: Procedure GreedySDA (N,M )

2: if N = 1 then

3: P = [∗]1×1;

4: else

5: if N ≥ 2M then

6: P′ = GreedySDA (N −M,M);

7: P =

[
[∗]M×M

P′

]

N × N

;

8: else

9: P′ = GreedySDA
(
M, 2M −N

)
;

10: P =

[
[∗]M×(N−M) P′

[∗](N−M)×M

]

N × N

;

11: end if

12: end if

13: end Procedure

Example 5. The SDA in Example 4 is in fact constructed by the G-SDA algorithm with input parameters (N = 12,M = 5).

The recursive processes are illustrated in (45), where Pi (1 ≤ i ≤ 6) is the output array in the i-th recursive step with input

parameters specified in the brackets to its right.
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P1 (12,5) P2 (7,5) P3 (5,3) P4 (3,1)


∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

P2



12×12

−→




∗ ∗

P3

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗



7×7

−→




∗ ∗

P4∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗ ∗



5×5

−→

[
∗

P5

]

3 × 3

P5 (2,1) P6 (1,1)

−→

[
∗

P6

]

2 × 2

−→
[
∗
]
1×1

(45)

Theorem 6. Given any positive integers N,M with 1 ≤M ≤ N , there exists an (N,M) SDA P with ηP = η
(

N
gcd(N,M) ,

M
gcd(N,M)

)
,

where η(N,M) is recursively defined for any N,M with 1 ≤M ≤ N and gcd(N,M) = 1 by

η(N,M) =





1, if N = 1

1 + η
(
N −M,M

)
, if N > 1 and N ≥ 2M

1 + η(M, 2M −N), if N > 1 and N < 2M

. (46)

Proof: For any N,M with 1 ≤M ≤ N , the SDA P in (44) has ηP = ηP′ , where P′ is an array output by Algorithm 3

with input parameters
(

N
gcd(N,M) ,

M
gcd(N,M)

)
. Thus, it is sufficient to prove that the output array of Algorithm 3 is an SDA P

with ηP = η(N,M) for any N,M with 1 ≤M ≤ N and gcd(N,M) = 1.

First of all, for any input parameters (N,M) with 1 ≤ M ≤ N and gcd(N,M) = 1, we observe two facts from Lines

6 and 9 of Algorithm 3: (1) During each recursive procedure, the recursive input parameters (N,M) always maintain the

property that 1 ≤M ≤ N and gcd(N,M) = 1; (2) N strictly decreases and thus eventually decreases to 1. Then, the recursive

procedure will terminate at Line 3, i.e., N = 1. Actually, it is also easy to observe that the recursions of Algorithm 3 happen

η(N,M) times.

Secondly, it is easy to verify from Lines 7 and 10 that P satisfies S1 and S2 with parameters (N,M) if and only if P′

satisfies them with parameters (N −M,M) (if N ≥ 2M ) or (M, 2M −N) (if N < 2M ). So, we can easily prove that the

output P is an SDA with ηP satisfying (46) by the induction method.

The corollary below follows from Theorems 4 and 6.

Corollary 2. For any positive integers N,K,M with M ∈ [2 : N ], there exists a capacity-achieving (µ = M/N,N,K) linear

SC-PIR scheme with sub-packetization η
(

N
gcd(N,M) ,

M
gcd(N,M)

)
· (M − 1).

Remark 2. Here, we show that the SDA P constructed in (44) can further decrease the sub-packetization of capacity-achieving

SC-PIR schemes compared to the optimal equal-size sub-packetization
N(M−1)
gcd(N,M) in Theorem 5. Since the (N,M) SDA P

has N
gcd(N,M) columns for any M ∈ [2 : N ], ηP = η

(
N

gcd(N,M) ,
M

gcd(N,M)

)
≤ N

gcd(N,M) . Remarkably, it is easy to prove from

(46) that the equality (i.e., ηP = N
gcd(N,M) ) holds if and only if M

gcd(N,M) = 1 or N−M
gcd(N,M) = 1. In the other cases, i.e.,

M
gcd(N,M) 6= 1 and N−M

gcd(N,M) 6= 1, we have ηP < N
gcd(N,M) and thus such SDAs can be used for generating capacity-achieving

SC-PIR schemes with sub-packetization strictly smaller than the optimal equal-size sub-packetization
N(M−1)
gcd(N,M) (e.g. Example

4). In addition, when M
gcd(N,M) = 1 or N−M

gcd(N,M) = 1, it will be shown in Theorem 8 that the associated capacity-achieving

SC-PIR scheme has the optimal sub-packetization
N(M−1)
gcd(N,M) .
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B. Improved Construction of Storage Design Arrays

Recall that Algorithm 3 always greedily repeats columns in the current recursive step l, which may lead to many sl = 1 in

the latter steps and thus results in large ηP. Particularly, when N = 2M + 1, it generates SDA with {s1 = M, s2 = . . . =

s2+M = 1}. In principle, in order to minimize ηP of SDA, it should be better to design repeated columns from a global

perspective. For this case, by decreasing s1 to M − 1 and increasing some sl from 1 to 2, we are able to present an improved

construction to decrease the sub-packetization.

Before that, it is worthy to point out the following simple property of SDA.

Lemma 6. For any (N,M) SDA P = [pi,j ]N× N
gcd(N,M)

, its opposite array P = [pi,j ]N× N
gcd(N,M)

defined by

pi,j =

{
∗, if pi,j = NULL

NULL, if pi,j = ∗

is an (N,N −M) SDA. Moreover, the number of distinct columns in P and P are equal, i.e., ηP = ηP.

Firstly, given any positive integer M ≥ 2, we construct an (N,M) = (2M +1,M) SDA QM of size (2M +1)× (2M+1)

as

• If M is even,

QM =




[∗]M×(M−1)

diag(∗)2×2

...

diag(∗)2×2

[∗](M
2 +1)×M

diag(∗)M
2 ×M

2
diag(∗)M

2 ×M
2

[∗]M
2 ×2



(2M + 1) × (2M + 1)





M
2 blocks diag(∗)2×2

;

• If M is odd,

QM =




[∗]M×(M−1)

diag(∗)3×3

...

[∗]M+3
2 ×(M−1) diag(∗)3×3

diag(∗)M−1
2 ×M−1

2
diag(∗)M−1

2 ×M−1
2

[∗]M−1
2 ×3




(2M + 1) × (2M + 1)





M+1
2 blocks diag(∗)3×3

,

where diag(∗)n×n denotes an n× n array with the entries in diagonal being “∗”s and the rest entries being “NULL”s. It is

easily checked that QM is a (2M + 1,M) SDA with ηQM
=
⌈
M
2

⌉
+ 3.

Example 6. When M = 4 and M = 5, Q4 and Q5 are the following forms, respectively.

Q4 =




∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗




9×9

, Q5 =




∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗




11×11

.

Obviously, ηQ4 = 5 with {s1 = 3, s2 = 2, s3 = 2, s4 = 1, s5 = 1} and ηQ5 = 6 with {s1 = 4, s2 = 2, s3 = 2, s4 = 1, s5 =

1, s6 = 1}. Compared to P with {s1 = 4, s2 = 1, s3 = 1, s4 = 1, s5 = 1, s6 = 1} (resp. P′ with {s1 = 5, s2 = 1, s3 = 1, s4 =

1, s5 = 1, s6 = 1, s7 = 1}) in Example 1, the distribution of repeated columns sl is more flexible than the greedy algorithm,

which leads to a smaller number of distinct columns.
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Notice that QM−1 is a (2M − 1,M − 1) SDA with ηQM−1 =
⌊
M
2

⌋
+ 3 for any M ≥ 3. By Lemma 6, we can obtain a

(2M − 1,M) SDA QM−1 with ηQM−1
= ηQM−1 =

⌊
M
2

⌋
+3 for any M ≥ 3. Next, based on QM and QM−1, for any given

positive integers M,d such that M ≥ 3, d ≥ 2, we can construct a class of (N,M) SDA with N = dM ± 1 as:

P =

d− 2︷ ︸︸ ︷



[∗]M×M

[∗]M×M

. . .

[∗]M×M

P′




N × N

, (47)

where

P′ =

{
QM , if N = dM + 1

QM−1, if N = dM − 1
.

The following result is straightforward.

Theorem 7. Given any positive integer N = dM ± 1 for integers M ∈ [3 : N ] and d ≥ 2, there is an (N,M) SDA P with

ηP =

{
d+

⌈
M
2

⌉
+ 1, if N = dM + 1

d+
⌊
M
2

⌋
+ 1, if N = dM − 1

.

Remark 3. Notice that gcd(N,M) = 1 when N = dM ± 1 for any integer d ≥ 2. Let (N,M) be the input parameters of the

G-SDA algorithm, then the number of distinct columns of the output SDA is equal to η(N,M) in (46) at N = dM ± 1, i.e.,

η(N,M) =

{
d+M, if N = dM + 1

d+M − 1, if N = dM − 1
.

Thus, the SDA presented in (47) decreases the number of distinct columns and further reduces the required sub-packetization

of capacity-achieving SC-PIR scheme.

Finally, we obtain the following corollary from Theorems 4 and 7.

Corollary 3. Given any positive integers N,K,M with M ∈ [3 : N ] and N = dM ± 1 for some integer d ≥ 2, there exists a

capacity-achieving (µ = M/N,N,K) linear SC-PIR scheme with sub-packetization
(
d+

⌈
M
2

⌉
+1
)
· (M − 1) if N = dM +1

or
(
d+

⌊
M
2

⌋
+ 1
)
· (M − 1) if N = dM − 1.

In general, it is difficult to extend the above improvement to all the parameters N and M ∈ [1 : N ], since the modification of

sl becomes very complicated and sometimes even unsolvable under the SDA constraints S1 and S2 if there are many different

values of sl.

C. Optimality on Sub-packetization of Greedy SDA

In this subsection, firstly we establish a lower bound on the optimal value of Problem 1. Next, we discuss the optimality

on sub-packetization of the SC-PIR scheme associated to the proposed SDA with respect to this bound.

Lemma 7. For any positive integers N,M with 2 ≤M < N , the optimal value of Problem 1 satisfies

η∗ ≥ max

{⌈
N

M

⌉
,

⌈
N

N −M

⌉}
. (48)

Proof: Suppose that {α∗
S}S⊆[1:N ],|S|=M is the optimal solution to Problem 1. Let {Si}

η∗

i=1 be the indices of non-zero

elements in the solution, i.e., α∗
S > 0 if and only if S ∈ {Si}

η∗

i=1. By (32), the optimal solution satisfying (22) and (23) implies

the following constraint

∑

S⊆[1:N ]
|S|=M

α∗
S =

∑

i∈[1:η∗]

α∗
Si

= 1. (49)
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Hence, there must be an index j ∈ [1 : η∗] such that

α∗
Sj
≥

1

η∗
. (50)

Assume that η∗ <
⌈
N
M

⌉
. Then, N

M
− η∗ > 0 since η∗ is an integer. Accordingly, there must exist a positive number

c = N
M
− η∗ > 0. By (50),

α∗
Sj
≥

1
N
M
− c

>
M

N
= µ.

Thus, for any n ∈ Sj ,

∑

S⊆[1:N ]
|S|=M,n∈S

α∗
S ≥ α∗

Sj
> µ, (51)

which contradicts (22). Thus, η∗ ≥
⌈
N
M

⌉
.

Assume that η∗ <
⌈

N
N−M

⌉
. Similarly, we have η∗ = N

N−M
− c for some c > 0. Then,

α∗
Sj
≥

1
N

N−M
− c

>
N −M

N
= 1− µ.

Since M < N , there exists n ∈ [1 : N ]\Sj such that

∑

S⊆[1:N ]
|S|=M,n∈S

α∗
S =

∑

S⊆[1:N ],|S|=M
S6=Sj ,n∈S

α∗
S

(a)

≤ 1− α∗
Sj

< µ,

where (a) is due to (49), a contradiction to (22) again. That is, η∗ ≥
⌈

N
N−M

⌉
.

Recall from Theorem 6 and Corollary 2 that the capacity-achieving linear SC-PIR scheme associated to the SDA in (44)

has sub-packetization

F
(N,M)
G-SDA , η

(
N

gcd(N,M)
,

M

gcd(N,M)

)
· (M − 1). (52)

In general, it is difficult to directly compare the sub-packetization F
(N,M)
G-SDA and the optimal value F ∗ = η∗ · (M − 1)

in Theorem 3 since η
(

N
gcd(N,M) ,

M
gcd(N,M)

)
is defined in (46) as a recursive form. In the following theorem, we obtain a

multiplicative gap by relaxing η
(

N
gcd(N,M) ,

M
gcd(N,M)

)
to an upper bound and η∗ to a lower bound. In addition, this theorem

also characterize two special optimal cases.

Theorem 8. Given any (µ,N,K) SC-PIR system with M = µN ∈ [2 : N ], the sub-packetization F
(N,M)
G-SDA is within a

multiplicative gap
min{M,N−M}

gcd(N,M) of the optimal sub-packetization of capacity-achieving linear SC-PIR schemes. In particular,

in the cases min{M,N −M}|N or M = N , the sub-packetization F
(N,M)
G-SDA = N(M−1)

gcd(N,M) is optimal.

Proof: From Theorem 3, the optimal sub-packetization is F ∗ = η∗ · (M − 1). In the case M = N , since η∗ ≥ 1,

F
(N,M)
G-SDA = M − 1 = F ∗ is optimal. When M ∈ [2 : N − 1],

1 ≤
F

(N,M)
G-SDA

F ∗

(a)
=

η
(

N
gcd(N,M) ,

M
gcd(N,M)

)

η∗
(53)
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(b)

≤

N
gcd(N,M)

max
{⌈

N
M

⌉
,
⌈

N
N−M

⌉}

≤
min{M,N −M}

gcd(N,M)
, (54)

where (a) follows by (52); (b) is due to the lower bound in (48) and the upper bound η
(

N
gcd(N,M) ,

M
gcd(N,M)

)
≤ N

gcd(N,M) by

Remark 2.

In particular, in the case min{M,N −M}|N , we have gcd(N,M) = min{M,N −M}. Thus, F
(N,M)
G-SDA = F ∗ by (54), i.e.,

F
(N,M)
G-SDA = N

gcd(N,M) · (M − 1) is the optimal sub-packetization in this case.

Remark 4. The SC-PIR problem straightly degrades to the problem of replicated PIR by setting M = N . Obviously, when

M = N , our SC-PIR scheme associated to the SDA in (44) achieves the optimal sub-packetization F ∗ = M − 1 = N − 1,

which is the same as that in [28].

VIII. CONCLUSION

In this paper, we investigated the sub-packetization of uncoded Storage Constrained PIR (SC-PIR). We first characterized the

optimal sub-packetization of capacity-achieving SC-PIR schemes by an optimization problem, which is hard to solve due to

the involved non-continuous indicator functions. We introduced Storage Design Array (SDA) to construct practical operational

SC-PIR schemes with low sub-packetization. It turns out that, for the SC-PIR system with N servers and a total normalized

storage capacity M ∈ {2, . . . , N}, the equal-size sub-packetization
N(M−1)
gcd(N,M) is optimal among all capacity-achieving linear

SC-PIR schemes characterized by Woolsey et al.. Finally, by allowing unequal-size packets, two constructions of SDAs were

proposed to further decrease the sub-packetization. The resultant sub-packetizations were shown to be optimal in the cases

min{M,N −M}|N or M = N , and within a multiplicative gap of
min{M,N−M}

gcd(N,M) compared to a lower bound on the optimal

sub-packetization otherwise.

APPENDIX

In this section, we provide the proof of the five necessary conditions P1–P5 for any capacity-achieving linear SC-PIR scheme.

To this end, we first refine the converse proof of SC-PIR capacity given in [1], and accordingly, we have placed an emphasis

on the necessary properties of capacity-achieving SC-PIR schemes by constraining the inequalities in the refined proof to be

held with equalities. Further, the obtained properties are specialized to linear SC-PIR schemes to complete the proof. Actually,

the similar approach was used in [28] and [37] for the setups of replicated PIR and MDS-coded PIR, respectively.

We start by proving two useful lemmas.

A. Preliminary Lemmas

Lemma 8. For any i ∈ [1 : N ],K ⊆ [1 : K], and N ⊆ [1 : N ],

H(A
[θ]
i |WK, ZN , Q

[θ]
i ) = H(A

[θ]
i |WK, ZN , Q

[θ]
1:N), ∀ θ ∈ [1 : K]. (55)

Proof: Notice that

0 ≤ H(A
[θ]
i |WK, ZN , Q

[θ]
i )−H(A

[θ]
i |WK, ZN , Q

[θ]
1:N )

= I(A
[θ]
i ;Q

[θ]
[1:N ]\{i}|WK, ZN , Q

[θ]
i )

≤ I(A
[θ]
i ,W[1:K]\K;Q

[θ]
[1:N ]\{i}|WK, ZN , Q

[θ]
i )

= I(W[1:K]\K;Q
[θ]
[1:N ]\{i}|WK, ZN , Q

[θ]
i ) + I(A

[θ]
i ;Q

[θ]
[1:N ]\{i}|W1:K , ZN , Q

[θ]
i )

(a)
= I(W[1:K]\K;Q

[θ]
[1:N ]\{i}|WK, ZN , Q

[θ]
i )

≤ I(W1:K , ZN ;Q
[θ]
[1:N ]\{i}|Q

[θ]
i )

≤ I(W1:K , ZN ;Q
[θ]
1:N)

(b)
= I(W1:K ;Q

[θ]
1:N )

(c)
= 0,
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where (a) holds because A
[θ]
i is a function of W1:K and Q

[θ]
i by (9); (b) follows from the fact that ZN is a function of the

files W1:K by (7); and (c) follows from the independence of files and queries by (8).

Lemma 9. For any i ∈ [1 : N ],K ⊆ [1 : K], and N ⊆ [1 : N ],

H(A
[θ]
i |WK, ZN , Q

[θ]
i ) = H(A

[θ′]
i |WK, ZN , Q

[θ′]
i ), ∀ θ, θ′ ∈ [1 : K]. (56)

Proof: For any θ ∈ [1 : K],

0 ≤ I(Q
[θ]
i , A

[θ]
i ,WK, ZN ; θ)

≤ I(Q
[θ]
i , A

[θ]
i ,W1:K , ZN ; θ)

(a)
= I(Q

[θ]
i ,W1:K ; θ)

= I(Q
[θ]
i ; θ) + I(W1:K ; θ|Q

[θ]
i )

(b)
= I(Q

[θ]
i ; θ)

≤ I(Q
[θ]
i , A

[θ]
i , Zi; θ)

(c)
= 0,

where (a) holds because A
[θ]
i and ZN are determined by Q

[θ]
i and W1:K , (b) holds because the files are independent of the

desired file index and the query, and (c) follows from the privacy constraint (12).

Notice that, I(Q
[θ]
i , A

[θ]
i ,WK, ZN ; θ) = 0 indicates that (Q

[θ]
i , A

[θ]
i ,WK, ZN ) and θ are independent of each other. Therefore,

(56) holds.

Next, we present some properties of any SC-PIR scheme.

B. Properties of SC-PIR Schemes

For n ∈ [0 : N − 1] and k ∈ [0 : K − 1], define

T (n, k) ,
1

NK
(
K−1
k

)(
N−1
n

)
∑

K⊆[1:K]
|K|=k

∑

N⊆[1:N ]
|N |=n

∑

θ∈[1:K]\K

∑

i∈[1:N ]\N

H(A
[θ]
i |WK, ZN , Q

[θ]
i ) (57)

and

T (n,K) , 0, ∀n ∈ [0 : N − 1]. (58)

In addition,

λn ,
1

K
(
N
n

)
∑

N⊆[1:N ]
|N |=n

∑

θ∈[1:K]

H(Wθ|ZN ), ∀n ∈ [0 : N − 1]. (59)

Lemma 10. For each n ∈ [0 : N−1] and k ∈ [0 : K−1], any SC-PIR scheme must satisfy the following inductive relationship.

T (n, k) ≥
1

N − n

[
N−1∑

n′=n

T (n′, k + 1) + λn

]
. (60)

Moreover, to establish the equality in (60), for every realization of queries Q̃
[θ]
1:N with positive probability,

• For any K ⊆ [1 : K] of size k, N ⊆ [1 : N ] of size n, and θ ∈ [1 : K]\K,

∑

i∈[1:N ]\N

H(A
[θ]
i |WK, ZN , Q

[θ]
1:N = Q̃

[θ]
1:N ) = H(A

[θ]
[1:N ]\N |WK, ZN , Q

[θ]
1:N = Q̃

[θ]
1:N); (61)

• For any K ⊆ [1 : K], θ ∈ K,N1 ⊆ [1 : N ],N2 ⊆ [1 : N ]\N1 and i ∈ [1 : N ]\(N1∪N2) such that |K| = k+1, |N1| = n,

|N2| = n′ − n with n′ ∈ [n+ 1 : N − 1],

I(A
[θ]
i ;ZN2 |WK, ZN1 , A

[θ]
N2

, Q
[θ]
1:N = Q̃

[θ]
1:N) = 0. (62)
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Proof: For any n ∈ [0 : N − 1] and k ∈ [0 : K − 1], T (n, k) in (57) can be lower bounded as

T (n, k) =
1

NK
(
K−1
k

)(
N−1
n

)
∑

K⊆[1:K]
|K|=k

∑

N⊆[1:N ]
|N |=n

∑

θ∈[1:K]\K

∑

i∈[1:N ]\N

H(A
[θ]
i |WK, ZN , Q

[θ]
i )

(a)
=

1

NK
(
K−1
k

)(
N−1
n

)
∑

K⊆[1:K]
|K|=k

∑

N⊆[1:N ]
|N |=n

∑

θ∈[1:K]\K

∑

i∈[1:N ]\N

H(A
[θ]
i |WK, ZN , Q

[θ]
1:N)

(b)

≥
1

NK
(
K−1
k

)(
N−1
n

)
∑

K⊆[1:K]
|K|=k

∑

N⊆[1:N ]
|N |=n

∑

θ∈[1:K]\K

H(A
[θ]
[1:N ]\N |WK, ZN , Q

[θ]
1:N) (63)

(c)
=

1

NK
(
K−1
k

)(
N−1
n

)
∑

K⊆[1:K]
|K|=k

∑

N⊆[1:N ]
|N |=n

∑

θ∈[1:K]\K

[
H(A

[θ]
[1:N ]\N |WK, ZN , Q

[θ]
1:N) +H(Wθ|A

[θ]
[1:N ]\N ,WK, ZN , Q

[θ]
1:N )

]

=
1

NK
(
K−1
k

)(
N−1
n

)
∑

K⊆[1:K]
|K|=k

∑

N⊆[1:N ]
|N |=n

∑

θ∈[1:K]\K

H(A
[θ]
[1:N ]\N ,Wθ|WK, ZN , Q

[θ]
1:N)

(d)
=

1

NK
(
K−1
k

)(
N−1
n

)
∑

K⊆[1:K]
|K|=k

∑

N⊆[1:N ]
|N |=n

∑

θ∈[1:K]\K

H(A
[θ]
[1:N ]\N |W(K∪{θ}), ZN , Q

[θ]
1:N)

+
1

NK
(
K−1
k

)(
N−1
n

)
∑

K⊆[1:K]
|K|=k

∑

N⊆[1:N ]
|N |=n

∑

θ∈[1:K]\K

H(Wθ|ZN )

(e)
=

1

NK
(
K−1
k

)(
N−1
n

)
∑

K⊆[1:K]
|K|=k+1

∑

N⊆[1:N ]
|N |=n

∑

θ∈K

H(A
[θ]
[1:N ]\N |WK, ZN , Q

[θ]
1:N )

︸ ︷︷ ︸
,T̃ (n,k)

+
1

N − n
·

1

K
(
K−1
k

)(
N
n

)
∑

K⊆[1:K]
|K|=k

∑

N⊆[1:N ]
|N |=n

∑

θ∈[1:K]\K

H(Wθ|ZN )

(f)
= T̃ (n, k) +

1

N − n
·

1

K
(
K−1
k

)(
N
n

)
∑

N⊆[1:N ]
|N |=n

∑

θ∈[1:K]

∑

K⊆[1:K]\{θ}
|K|=k

H(Wθ|ZN )

(g)
= T̃ (n, k) +

1

N − n
·

1

K
(
N
n

)
∑

N⊆[1:N ]
|N |=n

∑

θ∈[1:K]

H(Wθ|ZN )

(h)
= T̃ (n, k) +

1

N − n
· λn, (64)

where (a) follows by (55); (b) follows from the property of independence bound on entropy; (c) follows from (9) in which

A
[θ]
N are a determined function of ZN and Q

[θ]
N , thus with (A

[θ]
[1:N ]\N , ZN , Q

[θ]
1:N), the file Wθ can be decoded by (10), i.e.,

H(Wθ|A
[θ]
[1:N ]\N ,WK, ZN , Q

[θ]
1:N) = 0; (d) is due to H(Wθ|WK, ZN , Q

[θ]
1:N ) = H(Wθ|ZN ) for θ /∈ K by the independence of

the files (2) and the fact that queries are independent of the files (8); (e) and (f) follow by simply changing the summation

indices; (g) follows from
∑

K⊆[1:K]\{θ},|K|=k

H(Wθ|ZN ) =
(
K−1
k

)
H(Wθ|ZN ); (h) follows from the definition of λn in (59).

Notice that when n ∈ [0 : N − 1] and k = K− 1, all the files W1:K are presented in the conditions of each entropy function

in T̃ (n, k). Since the answers A
[θ]
[1:N ]\N is a function of Q

[θ]
[1:N ]\N and W1:K by (9), we have T̃ (n,K − 1) = 0. Thus, by (64),

for n ∈ [0 : N − 1] and k = K − 1,

T (n,K − 1) ≥
1

N − n
· λn, (65)

This proves (60) for n ∈ [0 : N − 1] and k = K − 1. We proceed to prove the other cases by deriving a lower bound on

T̃ (n, k).
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Let PN be the set consisting of all possible permutations of [1 : N ], and σ , (σ1, σ2, . . . , σN ) ∈ PN denote a permutation

operation of [1 : N ]. For any n ∈ [0 : N − 1] and k ∈ [0 : K − 2], we further lower bound T̃ (n, k) as follows.

T̃ (n, k)

=
1

NK
(
K−1
k

)(
N−1
n

)
∑

K⊆[1:K]
|K|=k+1

∑

θ∈K

∑

N⊆[1:N ]
|N |=n

H(A
[θ]
[1:N ]\N |WK, ZN , Q

[θ]
1:N )

(a)
=

1

NK
(
K−1
k

)(
N−1
n

)
∑

K⊆[1:K]
|K|=k+1

∑

θ∈K

1

n!(N − n)!

∑

σ∈PN

H(A[θ]
σ[n+1:N ]

|WK, Zσ[1:n]
, Q

[θ]
1:N)

(b)
=

1

N !K
(
K−1
k

)
(N − n)

∑

K⊆[1:K]
|K|=k+1

∑

θ∈K

∑

σ∈PN

N−1∑

n′=n

H(A[θ]
σn′+1

|WK, Zσ[1:n]
, A[θ]

σ[n+1:n′]
, Q

[θ]
1:N)

(c)

≥
1

N !K
(
K−1
k

)
(N − n)

∑

K⊆[1:K]
|K|=k+1

∑

θ∈K

∑

σ∈PN

N−1∑

n′=n

H(A[θ]
σn′+1

|WK, Zσ[1:n]
, Zσ[n+1:n′]

, A[θ]
σ[n+1:n′]

, Q
[θ]
1:N) (66)

(d)
=

1

N !K
(
K−1
k

)
(N − n)

∑

K⊆[1:K]
|K|=k+1

∑

θ∈K

∑

σ∈PN

N−1∑

n′=n

H(A[θ]
σn′+1

|WK, Zσ[1:n]
, Zσ[n+1:n′]

, Q
[θ]
1:N)

(e)
=

1

N !K
(
K−1
k

)
(N − n)

∑

K⊆[1:K]
|K|=k+1

∑

θ∈K

N−1∑

n′=n

∑

σ∈PN

H(A[θ]
σn′+1

|WK, Zσ[1:n′]
, Q[θ]

σn′+1
)

(f)
=

1

N !K
(
K−1
k

)
(N − n)

∑

K⊆[1:K]
|K|=k+1

∑

θ∈K

N−1∑

n′=n

n′!(N − n′ − 1)!
∑

N⊆[1:N ]
|N |=n′

∑

i∈[1:N ]\N

H(A
[θ]
i |WK, ZN , Q

[θ]
i )

(g)
=

1

N !K
(
K−1
k

)
(N − n)

∑

K⊆[1:K]
|K|=k+1

∑

θ∈K

N−1∑

n′=n

n′!(N − n′ − 1)!
∑

N⊆[1:N ]
|N |=n′

∑

i∈[1:N ]\N

∑

θ′∈[1:K]\K

H(A
[θ′]
i |WK, ZN , Q

[θ′]
i )

K − k − 1

(h)
=

1

N !K
(
K−1
k

)
(N − n)

∑

K⊆[1:K]
|K|=k+1

N−1∑

n′=n

n′!(N − n′ − 1)!
∑

N⊆[1:N ]
|N |=n′

∑

i∈[1:N ]\N

∑

θ′∈[1:K]\K

k + 1

K − k − 1
H(A

[θ′]
i |WK, ZN , Q

[θ′]
i )

=
1

N − n

N−1∑

n′=n

1

NK
(
K−1
k+1

)(
N−1
n′

)
∑

K⊆[1:K]
|K|=k+1

∑

N⊆[1:N ]
|N |=n′

∑

θ′∈[1:K]\K

∑

i∈[1:N ]\N

H(A
[θ′]
i |WK, ZN , Q

[θ′]
i )

=
1

N − n

N−1∑

n′=n

T (n′, k + 1), (67)

where (a) holds because for each N ⊆ [1 : N ] with |N | = n, there are exactly n!(N − n)! permutation operations σ ∈ PN

satisfying H(A
[θ]
σ[n+1:N ] |WK, Zσ[1:n]

, Q
[θ]
1:N) = H(A

[θ]
[1:N ]\N |WK, ZN , Q

[θ]
1:N ), i.e., such n!(N −n)! permutation operations σ are

restricted over N and [1 : N ]\N , hence,

∑

σ∈PN

H(A[θ]
σ[n+1:N ]

|WK, Zσ[1:n]
, Q

[θ]
1:N ) = n!(N − n)! ·

∑

N⊆[1:N ]
|N |=n

H(A
[θ]
[1:N ]\N |WK, ZN , Q

[θ]
1:N );

(b) follows from the chain rule of entropy; (c) holds because conditioning reduces entropy; (d) holds because the answers

A
[θ]
σ[n+1:n′]

is a function of the stored contents Zσ[n+1:n′]
and the queries Q

[θ]
σ[n+1:n′]

by (9); (e) follows by (55); (f) follows from

similar arguments to (a); (g) follows from (56); (h) is due to
∑

θ∈KH(A
[θ′]
i |WK, ZN , Q

[θ′]
i ) = (k+1)H(A

[θ′]
i |WK, ZN , Q

[θ′]
i ).

We prove (60) by replacing (64) with (67).

Remarkably, to establish the equality in (60), the inequalities in (63) and (66) have to hold with equalities.
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• The equality in (63) indicates that for any K ⊆ [1 : K] of size k, N ⊆ [1 : N ] of size n, and θ ∈ [1 : K]\K,

∑

i∈[1:N ]\N

H(A
[θ]
i |WK, ZN , Q

[θ]
1:N ) = H(A

[θ]
[1:N ]\N |WK, ZN , Q

[θ]
1:N).

That is,

0 =
∑

i∈[1:N ]\N

H(A
[θ]
i |WK, ZN , Q

[θ]
1:N)−H(A

[θ]
[1:N ]\N |WK, ZN , Q

[θ]
1:N )

=
∑

Q̃
[θ]
1:N

Pr(Q
[θ]
1:N = Q̃

[θ]
1:N)


 ∑

i∈[1:N ]\N

H(A
[θ]
i |WK, ZN , Q

[θ]
1:N = Q̃

[θ]
1:N )−H(A

[θ]
[1:N ]\N |WK, ZN , Q

[θ]
1:N = Q̃

[θ]
1:N )


 . (68)

Whereas, for each realization of queries Q̃
[θ]
1:N with positive probability,

∑

i∈[1:N ]\N

H(A
[θ]
i |WK, ZN , Q

[θ]
1:N = Q̃

[θ]
1:N ) ≥ H(A

[θ]
[1:N ]\N |WK, ZN , Q

[θ]
1:N = Q̃

[θ]
1:N).

That is, the terms in square bracket of (68) are nonnegative. Accordingly, (61) holds for all realizations of queries Q̃
[θ]
1:N

with positive probability.

• Similarly, the equality in (66) indicates that for any K ⊆ [1 : K], θ ∈ K,N1 ⊆ [1 : N ],N2 ⊆ [1 : N ]\N1 and

i ∈ [1 : N ]\(N1 ∪ N2) such that |K| = k + 1, |N1| = n, |N2| = n′ − n with n′ ∈ [n+ 1 : N − 1],

0 = H(A
[θ]
i |WK, ZN1 , A

[θ]
N2

, Q
[θ]
1:N)−H(A

[θ]
i |WK, ZN1 , ZN2 , A

[θ]
N2

, Q
[θ]
1:N)

= I(A
[θ]
i ;ZN2 |WK, ZN1 , A

[θ]
N2

, Q
[θ]
1:N)

=
∑

Q̃
[θ]
1:N

Pr(Q
[θ]
1:N = Q̃

[θ]
1:N )I(A

[θ]
i ;ZN2 |WK, ZN1 , A

[θ]
N2

, Q
[θ]
1:N = Q̃

[θ]
1:N ). (69)

Notice that the mutual information terms in (69) are nonnegative. Consequently, they have to be zero for all realizations

of queries Q̃
[θ]
1:N with positive probability, i.e., (62) holds.

The proof of this lemma is completed.

Define coefficients α̃ℓ and a function D̃(ℓ) as follows:

α̃ℓ ,
1(
N
ℓ

)
∑

S⊆[1:N ]
|S|=ℓ

αS , ∀ ℓ ∈ [0 : N ], (70)

D̃(ℓ) , 1 +
1

ℓ
+ . . .+

1

ℓK−1
, ∀ ℓ ∈ [1 : N + 1] (71)

with the boundary conditions

α̃N+1 , 0, D̃(0) , NK.

We next apply α̃ℓ to write the constraint of file size in (19) as

N∑

ℓ=1

(
N

ℓ

)
α̃ℓ = 1. (72)

Lemma 11. The download cost D for any SC-PIR scheme has the following lower bound:

D ≥ L ·
N∑

ℓ=1

(
N

ℓ

)
D̃(ℓ)α̃ℓ. (73)

Moreover, given any S ⊆ [1 : N ] and θ, θ′ ∈ [1 : K] such that |S| = M ∈ [2 : N ] and θ 6= θ′, if the equality in (73) holds,

then for every realization of queries Q̃
[θ]
1:N with positive probability, any SC-PIR scheme must satisfy

P3′. The answers at servers in S are independent of each other in the conditioning of W[1:K]\{θ} and Z[1:N ]\S , i.e.,

∑

i∈S

H(A
[θ]
i |W[1:K]\{θ}, Z[1:N ]\S , Q

[θ]
1:N = Q̃

[θ]
1:N) = H(A

[θ]
S |W[1:K]\{θ}, Z[1:N ]\S , Q

[θ]
1:N = Q̃

[θ]
1:N ).
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P4′. The answers at servers in S are independent of each other in the conditioning of Wθ′ and Z[1:N ]\S , i.e.,

∑

i∈S

H(A
[θ]
i |Wθ′ , Z[1:N ]\S , Q

[θ]
1:N = Q̃

[θ]
1:N) = H(A

[θ]
S |Wθ′ , Z[1:N ]\S , Q

[θ]
1:N = Q̃

[θ]
1:N ).

P5′. The answer at server i is independent of the contents stored at server j in the conditioning of Wθ,Wθ′ , Z[1:N ]\S and

A
[θ]
j for any i, j ∈ S, i.e.,

I(A
[θ]
i ;Zj |Wθ,Wθ′ , Z[1:N ]\S , A

[θ]
j , Q

[θ]
1:N = Q̃

[θ]
1:N) = 0, ∀ i, j ∈ S.

Proof: We have the following two boundary conditions on T (n, k) in (57) and λn in (59):

T (0, 0) =
1

NK

∑

θ∈[1:K]

∑

i∈[1:N ]

H(A
[θ]
i |Q

[θ]
i )

(a)
=

1

N

∑

i∈[1:N ]

H(A
[θ]
i |Q

[θ]
i ), (74)

where (a) follows from (56) by setting N = ∅ and K = ∅, and

λ0 =
1

K

∑

θ∈[1:K]

H(Wθ)
(a)
= L, (75)

where (a) is due to (1). Therefore,

D
(a)
=

N∑

i=1

H(A
[θ]
i )

≥
N∑

i=1

H(A
[θ]
i |Q

[θ]
i )

(b)
= N · T (0, 0)

(c)

≥ λ0 +

N−1∑

n1=0

T (n1, 1)

(d)

≥ λ0 +

N−1∑

n1=0

λn1

N − n1
+

N−1∑

n1=0

N−1∑

n2=n1

λn2

(N − n1)(N − n2)
+

N−1∑

n1=0

N−1∑

n2=n1

N−1∑

n3=n2

λn3

(N − n1)(N − n2)(N − n3)

+ . . .+

N−1∑

n1=0

N−1∑

n2=n1

. . .

N−1∑

nK−1=nK−2

λnK−1 +
∑N−1

nK=nK−1
T (nK ,K)

(N − n1)× (N − n2)× . . .× (N − nK−1)

(e)
= L+

N−1∑

n1=0

λn1

N − n1
+

N−1∑

n1=0

N−1∑

n2=n1

λn2

(N − n1)(N − n2)
+

N−1∑

n1=0

N−1∑

n2=n1

N−1∑

n3=n2

λn3

(N − n1)(N − n2)(N − n3)

+ . . .+

N−1∑

n1=0

N−1∑

n2=n1

. . .

N−1∑

nK−1=nK−2

λnK−1

(N − n1)× (N − n2)× . . .× (N − nK−1)

(f)
= L+

N∑

n1=1

λN−n1

n1
+

N∑

n1=1

n1∑

n2=1

λN−n2

n1n2
+

N∑

n1=1

n1∑

n2=1

n2∑

n3=1

λN−n3

n1n2n3
+ . . .+

N∑

n1=1

. . .

nK−2∑

nK−1=1

λN−nK−1

n1 × . . .× nK−1

(g)
= L+

N∑

n1=1

λN−n1

n1
+

N∑

n1=1

N∑

n2=n1

λN−n1

n1n2
+

N∑

n1=1

N∑

n2=n1

N∑

n3=n2

λN−n1

n1n2n3
+ . . .+

N∑

n1=1

. . .

N∑

nK−1=nK−2

λN−n1

n1 × . . .× nK−1

= L+
N∑

n1=1

(
1

n1
+

N∑

n2=n1

1

n1n2
+

N∑

n2=n1

N∑

n3=n2

1

n1n2n3
+ . . .+

N∑

n2=n1

. . .
N∑

nK−1=nK−2

1

n1 × . . .× nK−1

︸ ︷︷ ︸
,S(n1,K)

)
· λN−n1

(h)
= L+

N∑

n1=1

n1∑

ℓ=1

(
n1

ℓ

)
S(n1,K)α̃ℓL

= L ·

(
1 +

N∑

ℓ=1

α̃ℓ

N∑

n1=ℓ

(
n1

ℓ

)
S(n1,K)

︸ ︷︷ ︸
,α(ℓ,K)

)
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(i)
= L ·

(
1 +

N∑

ℓ=1

(
N

ℓ

)(
D̃(ℓ)− 1

)
α̃t

)

(j)
= L ·

N∑

ℓ=1

(
N

ℓ

)
D̃(ℓ)α̃ℓ,

where (a) follows from (13); (b) follows from (74); (c) and (d) follow by applying (60) K times recursively; (e) follows from

(75) and (58); (f) and (g) follow by changing of the summation indices simply; (h) holds because λn =
∑N−n

ℓ=1

(
N−n

ℓ

)
α̃ℓL

by the result in [1, Eq. (54)]; (i) follows from the definition of D̃(ℓ) in (71) and α(ℓ,K) =
(
N
ℓ

)
(D̃(ℓ) − 1) by the result in

[1, Eq. (60)]; (j) follows from (72).

In order to establish the equality in (73), it is easy to see that, in the steps of applying (60), all the inequalities must hold

with equalities. This implies that the equality in (60) holds for all n ∈ [0 : N − 1] and k ∈ [1 : K − 1]. Thus, by Lemma 10,

(61) and (62) hold for any n ∈ [0 : N − 1] and k ∈ [1 : K − 1].

Accordingly, for any θ, θ′ ∈ [1 : K] and S ⊆ [1 : N ] such that θ 6= θ′ and |S| = N − n = M , we have

• Let K = [1 : K]\{θ} and N = [1 : N ]\S, then K is of size k = K − 1 and N is of size n ∈ [0 : N − 1] (i.e.,

M ∈ [1 : N ]). Thus, by (61),

∑

i∈S

H(A
[θ]
i |W[1:K]\{θ}, Z[1:N ]\S , Q

[θ]
1:N = Q̃

[θ]
1:N) = H(A

[θ]
S |W[1:K]\{θ}, Z[1:N ]\S , Q

[θ]
1:N = Q̃

[θ]
1:N ).

• Let K = {θ′} and N = [1 : N ]\S, then K is of size k = 1 and N is of size n ∈ [0 : N − 1]. Thus, by (61) again,

∑

i∈S

H(A
[θ]
i |Wθ′ , Z[1:N ]\S , Q

[θ]
1:N = Q̃

[θ]
1:N) = H(A

[θ]
S |Wθ′ , Z[1:N ]\S , Q

[θ]
1:N = Q̃

[θ]
1:N ).

• For n ∈ [0 : N − 2] (i.e., M ∈ [2 : N ]), let k = 1 and n′ = n+ 1, then K = {θ, θ′} is of size k + 1, N1 = [1 : N ]\S is

of size n, N2 = {j} is of size n′ − n = 1 for j ∈ S. Thus given any i ∈ S\{j}, by (62),

I(A
[θ]
i ;Zj|Wθ,Wθ′ , Z[1:N ]\S , A

[θ]
j , Q

[θ]
1:N = Q̃

[θ]
1:N) = 0.

To conclude, P3′-P5′ must hold if the equality in (73) holds.

C. Proof of Lemma 1

For fixed j ∈ [0 : N ], the total storage of the N servers (20) is constrained as

µN ≥
∑

n∈[1:N ]

∑

S⊆[1:N ]
n∈S

αS (76)

=
N∑

ℓ=1

ℓ

(
N

ℓ

)
α̃ℓ

= j +
∑

ℓ∈[1:N ]\{j,j+1}

(
N

ℓ

)
(ℓ− j)α̃ℓ +

(
N

j + 1

)
α̃j+1, (77)

where the last two equalities follow from (70) and (72), respectively. Hence,

D

L

(a)

≥
N∑

ℓ=1

(
N

ℓ

)
D̃(ℓ)α̃ℓ (78)

(b)
= D̃(j) +

∑

ℓ∈[1:N ]\{j,j+1}

(
N

ℓ

)(
D̃(ℓ)− D̃(j)

)
α̃ℓ +

(
N

j + 1

)(
D̃(j + 1)− D̃(j)

)
α̃j+1

(c)

≥ D̃(j) +
∑

ℓ∈[1:N ]\{j,j+1}

(
N

ℓ

)(
D̃(ℓ)− D̃(j)

)
α̃ℓ +

(
D̃(j + 1)− D̃(j)

)(
µN − j −

∑

ℓ∈[1:N ]\{j,j+1}

(
N

ℓ

)
(ℓ− j)α̃ℓ

)
(79)

= (µN − j)D̃(j + 1)− (µN − j − 1)D̃(j) +
∑

ℓ∈[1:N ]\{j,j+1}

(
N

ℓ

)(
D̃(ℓ) + (ℓ − j − 1)D̃(j)− (ℓ− j)D̃(j + 1)

)
α̃ℓ

(d)

≥ (µN − j)D̃(j + 1)− (µN − j − 1)D̃(j) (80)
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= (M − j)D̃(j + 1)− (M − j − 1)D̃(j), (81)

where (a) follows by (73); (b) is due to (72); (c) follows from (77) and the fact that D̃(j + 1) − D̃(j) is negative for all

j ∈ [0 : N ]; (d) is because α̃ℓ ≥ 0 and D̃(ℓ) + (ℓ − j − 1)D̃(j) − (ℓ − j)D̃(j + 1) ≥ 0 for all ℓ ∈ [1 : N ]\{j, j + 1} by [1,

Lemma 5].

Therefore, by (13) and (81), we have

R ≤
(
(M − j)D̃(j + 1)− (M − j − 1)D̃(j)

)−1

, ∀ j ∈ [0 : N ]. (82)

In particular, for j = M and j = M − 1, (82) results in

R ≤
(
D̃(M)

)−1

=

(
1 +

1

M
+ . . .+

1

MK−1

)−1

, (83)

which achieves the capacity of the SC-PIR system (see (14)).

Thus, for any capacity-achieving SC-PIR scheme, the inequality in (83) must hold with equality, which implies that the

inequalities in (78), (79) and (80) hold with equality for both j = M and j = M − 1. Therefore,

• It is easy to prove D̃(ℓ) + (ℓ − j − 1)D̃(j) − (ℓ − j)D̃(j + 1) > 0 for all ℓ ∈ [1 : N ]\{j, j + 1} by [1, Lemma 5].

Moreover, we also have α̃ℓ ≥ 0. Thus, the equality in (80) for j = M and j = M − 1 indicates that α̃ℓ = 0 holds for

all ℓ ∈ ([1 : N ]\{M,M + 1}) ∪ ([1 : N ]\{M − 1,M}) = [1 : N ]\{M}. Accordingly, by (70), we have αS = 0 for all

S ⊆ [1 : N ] with |S| 6= M .

• Due to D̃(j + 1)− D̃(j) < 0 for all j ∈ [0 : N ], thus the equality in (79) indicates that the equality in (76) also holds,

i.e., the equalities in (20) hold for all n ∈ [1 : N ].

As a result, P1-P2 must be satisfied in the storage design phase of any capacity-achieving SC-PIR scheme. In addition, the

equality in (78) indicates D = L ·
∑N

ℓ=1

(
N
ℓ

)
D̃(ℓ)α̃ℓ, thus we obtain the following corollary by Lemma 11.

Corollary 4. Any capacity-achieving SC-PIR scheme must satisfy P3′-P5′.

D. Proof of Lemma 2

By Corollary 4, P3′-P5′ hold for any capacity-achieving SC-PIR scheme. Next, we prove Lemma 2 by specializing P3′-P5′

to linear SC-PIR schemes.

According to Lemma 1, in the capacity-achieving SC-PIR scheme, all the servers only store the packets placing in M

different servers, thus the stored contents (18) at server n are simplified to

Zn = ∪
k∈[1:K]

∪
S⊆[1:N ]

|S|=M,n∈S

Wk,S , ∀n ∈ [1 : N ]. (84)

For any realization of queries Q̃
[θ]
1:N with positive probability, the answer A

[θ]
n is a deterministic function of the corresponding

query realization Q̃
[θ]
n and the stored contents Zn by (9). Therefore, by the stored contents in (84), A

[θ]
n is merely the function

of Wθ,S and Q̃
[θ]
n conditioned on the files W[1:K]\{θ} and Z[1:N ]\S . For linear SC-PIR scheme, it is exactly L̃C

[θ]

n (Wθ,S)

conditioned on W[1:K]\{θ} and Z[1:N ]\S . Therefore,

∑

n∈S

H
(
A[θ]

n

∣∣W[1:K]\{θ}, Z[1:N ]\S , Q
[θ]
1:N = Q̃

[θ]
1:N

)

=
∑

n∈S

H
(

L̃C
[θ]

n (Wθ,S)
∣∣W[1:K]\{θ}, Z[1:N ]\S , Q

[θ]
1:N = Q̃

[θ]
1:N

)

(a)
=
∑

n∈S

H
(
L̃C

[θ]

n (Wθ,S)
)
, (85)

where (a) follows from independence of all the packets (5), and the fact that queries are independent of files by (8).

Similarly,

H
(
A

[θ]
S

∣∣W[1:K]\{θ}, Z[1:N ]\S , Q
[θ]
1:N = Q̃

[θ]
1:N

)

= H
(

L̃C
[θ]

n (Wθ,S) : n ∈ S
∣∣W[1:K]\{θ}, Z[1:N ]\S , Q

[θ]
1:N = Q̃

[θ]
1:N

)
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= H
(

L̃C
[θ]

n (Wθ,S) : n ∈ S
)
. (86)

Substituting the two sides in P3′ for (85) and (86), we obtain

∑

n∈S

H
(

L̃C
[θ]

n (Wθ,S)
)
= H

(
L̃C

[θ]

n (Wθ,S) : n ∈ S
)
.

Hence the random variables
{

L̃C
[θ]

n (Wθ,S) : n ∈ S
}

are independent of each other, i.e., P3 holds.

By the similar argument to (85), P4′ can be rewritten as

∑

n∈S

H
(
L̃C

[θ]

n (W[1:K]\{θ′},S)
)
= H

(
L̃C

[θ]

n (W[1:K]\{θ′},S) : n ∈ S
)
.

Therefore,

L̃C
[θ]

n

(
W[1:K]\{θ′},S

)
, ∀n ∈ S

are also independent of each other, i.e., P4 holds.

Let n, n′ ∈ S and θ′ 6= θ. By P5′,

0 = I
(
A[θ]

n ;Zn′

∣∣Wθ,Wθ′ , Z[1:N ]\S , A
[θ]
n′ , Q

[θ]
1:N = Q̃

[θ]
1:N

)

(a)
= I

(
L̃C

[θ]

n (W[1:K]\{θ,θ′},S);W[1:K]\{θ,θ′},S

∣∣ L̃C
[θ]

n′ (W[1:K]\{θ,θ′},S)
)

= H
(

L̃C
[θ]

n (W[1:K]\{θ,θ′},S)
∣∣ L̃C

[θ]

n′ (W[1:K]\{θ,θ′},S)
)

−H
(
L̃C

[θ]

n (W[1:K]\{θ,θ′},S}
∣∣W[1:K]\{θ,θ′},S , L̃C

[θ]

n′ (W[1:K]\{θ,θ′},S)
)

(b)
= H

(
L̃C

[θ]

n (W[1:K]\{θ,θ′},S)
∣∣ L̃C

[θ]

n′ (W[1:K]\{θ,θ′},S)
)
,

where (a) follows from the similar argument to (85) again; (b) is due to the fact that L̃C
[θ]

n (W[1:K]\{θ,θ′},S) is a function of

packets in W[1:K]\{θ,θ′},S by (24) and (25). Thus,

L̃C
[θ]

n

(
W[1:K]\{θ,θ′},S

)
, ∀n ∈ S

are deterministic of each other, i.e., P5 holds.

As a result, P3-P5 are necessary conditions of any capacity-achieving linear SC-PIR scheme.
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