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Abstract

Let 1 < g1 < . . . < gϕ(p−1) < p − 1 be the ordered primitive roots
modulo p. We study the pseudorandomness of the binary sequence (sn)
defined by sn ≡ gn+1 + gn+2 mod 2, n = 0, 1, . . .. In particular, we study
the balance, linear complexity and 2-adic complexity of (sn). We show
that for a typical p the sequence (sn) is quite unbalanced. However,
there are still infinitely many p such that (sn) is very balanced. We also
prove similar results for the distribution of longer patterns. Moreover, we
give general lower bounds on the linear complexity and 2-adic complex-
ity of (sn) and state sufficient conditions for attaining their maximums.
Hence, for carefully chosen p, these sequences are attractive candidates
for cryptographic applications.
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1 Introduction

For a prime p ≥ 11, let g1, . . . , gϕ(p−1) with

1 < g1 < g2 < . . . < gϕ(p−1) < p− 1
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be all the primitive roots modulo p in increasing order, where ϕ(n) is Euler’s
totient function. The sequence (sn) derived from the parities of differences (or
sums) between consecutive primitive roots modulo p is a binary sequence of
period T = ϕ(p− 1)− 1 and its first period is defined by

sn ≡ gn+1 + gn+2 mod 2, n = 0, 1, . . . , T − 1. (1)

Caragiu et al. [2] calculated the linear complexity of this sequence for the
first 1000 primes p showing that for 610 primes p the sequence has maximal
linear complexity which may suggest this sequence for cryptography. This has
motivated us to study theoretically properties of this sequence.

Balance and uniform pattern distribution are desirable features of a cryp-
tographic sequence. In Section 2.1 we show that the sequence (sn) is rather

unbalanced if ϕ(p−1)
p is large. For example, if ϕ(p−1)

p is close to its supremum

1/2, we have for sufficiently large p essentially 2T/3 ones and T/3 zeros in a
period of (sn). This is the case for Fermat primes p = 2s + 1 and safe primes,
that is, (p− 1)/2 is prime. The sequence (sn) becomes more balanced with de-

creasing ϕ(p−1)
p . Note that for any ε > 0 there are infinitely many primes with

ϕ(p−1)
p < ε. However, for a typical p we get unbalanced sequences. We also

study the distribution of longer patterns in (sn) in Section 2.2. Our results on
balance and pattern distribution are based on a result of Cobeli and Zaharescu
on the distribution of primitive roots [3]. Note that in the special case that p
is either a Fermat prime or a safe prime, that is, the primitive roots coincide
with the quadratic non-residues except −1 for the latter, the result of Ding [5]
on the distribution of quadratic residues can be used to improve our error term,
see [17] and the Remarks below Theorem 1.

The linear complexity of a sequence is the length of the shortest linear feed-
back shift register that generates the sequence. A large linear complexity is
essential for cryptographic applications. For a periodic sequence (sn) of pe-
riod T we can calculate the linear complexity L(sn) by

L(sn) = T − deg(gcd(XT − 1, S(X)), (2)

where

S(X) =
T−1∑

n=0

snX
n,

see for example [4, Lemma 8.2.1].
The 2-adic complexity C(sn) of a T -periodic binary sequence is the length

of the shortest feedback with carry shift register and can be calculated by

C(sn) =

⌊

log2

(
2T − 1

gcd(2T − 1, S(2))

)⌋

, (3)

where we denote by log2(x) the binary logarithm of x.
For some periods T any non-constant sequence of period T has a large linear

complexity and a large 2-adic complexity, respectively. In particular, we will
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see in Section 3.1 that if T = ϕ(p− 1)− 1 is a prime such that 2 is a primitive
root modulo T and p ≡ 1 mod 4, then the linear complexity of (sn) attains its
maximum L(sn) = T . Moreover, if 2T − 1 is a Mersenne prime, then the 2-adic
complexity of (sn) attains its maximum.

In Section 4 we provide some experimental data which indicates that it is
not difficult to find large primes p such that the sequence (sn) is balanced and
has a desirable pattern distribution at least for short patterns, a large linear
complexity and a large 2-adic complexity. Hence, for carefully chosen p our
sequences are attractive candidates for cryptography.

For surveys and some recent articles on linear complexity, 2-adic complexity
and related measures of pseudorandomness see [4, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20].

We use the notation f(n) = O(g(n)) if |f(n)| ≤ c|g(n)| for some absolute
constant c > 0 and the notation f(n) = o(g(n)) if g(n) 6= 0 for sufficiently

large n and lim
n→∞

f(n)
g(n) = 0.

2 Balance and Pattern Distribution

2.1 Balance

In this section we discuss the balance of the sequence (sn) of parities of differ-
ences of primitive roots modulo p defined by (1).

Theorem 1. Let p be a prime, and let N(1) and N(0) denote the number of
1s and 0s, respectively, in a period of the sequence (sn) defined by (1) of period
T = ϕ(p− 1)− 1. Then we have

N(1) =

(
1

2− ϕ(p− 1)/p
+ o(1)

)

T

and

N(0) =

(
1− ϕ(p− 1)/p

2− ϕ(p− 1)/p
+ o(1)

)

T,

where p → ∞.

Proof. For i ∈ F∗

p let c(i) = 1 if i is a primitive root modulo p and c(i) = −1
otherwise. For s ≥ 1 and ε1, ε2, · · · , εs ∈ {−1, 1}, set

M(ε1, · · · , εs) = |{j = 1, 2, . . . , p− s : c(j + i) = εi+1, i = 0, . . . , s− 1}| . (4)

Let z = z(ε1, . . . , εs) be the number of i with εi = 1, i = 1, . . . , s, and put

η = η(p) = ϕ(p−1)
p .

From [3, Theorem 1] we get

∣
∣
∣M(ε1, . . . , εs)− pηz (1− η)

s−z
∣
∣
∣ ≤ 2s−z+1s

√
p log p(τ(p− 1))s, (5)
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where τ(p− 1) is the number of divisors of p− 1.
Note that τ(p−1) = pO(1/ log log p), see for example [1, Theorem 13.12]. Then

for sufficiently small s with respect to p, (5) simplifies to

M(ε1, . . . , εs) = pηz (1− η)
s−z

+O
(

p1/2+o(1)
)

, s = o(log log p). (6)

For a non-negative integer k put

Nk = M(1,−1, . . . ,−1
︸ ︷︷ ︸

k

, 1),

that is, z = z(1,−1, · · · ,−1, 1) = 2. Nk contributes to N(1) for even k and to
N(0) for odd k. Choosing

m =

⌊
log log p

log log log p

⌋

= o(log log p)

and recall
p

2
> ϕ(p− 1) ≫ p

log log p
, (7)

see for example [6, Section 18.4], we have by (6)

N(1) ≥
m∑

k=0

N2k = pη2
m∑

k=0

(1− η)2k +O
(

p1/2+o(1)
)

=

(
1

2− η
+ o(1)

)

T

and

N(0) ≥
m∑

k=0

N2k+1 = pη2(1 − η)

m∑

k=0

(1− η)2k +O
(

p1/2+o(1)
)

=

(
1− η

2− η
+ o(1)

)

T.

The result follows from these inequalities and N(0) +N(1) = T . ✷

Remarks. 1. Large ϕ(p− 1):
We have

ϕ(p− 1) ≤ p− 1

2

which is attained for Fermat primes p, that is, p is of the form p = 2s + 1. We
may call ϕ(p− 1) large with respect to p if

ϕ(p− 1) =
p

2
+ o(p).
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Safe primes p, that is, (p − 1)/2 is also a (Sophie Germain) prime, are further
examples of large ϕ(p − 1) = (p − 3)/2. For primes p with large ϕ(p − 1), a
period of the sequence (sn) consists of

N(0) = (1/3 + o(1))T

zeros and
N(1) = (2/3 + o(1))T

ones and is very unbalanced.
Note that for a Fermat prime p the primitive roots modulo p are exactly the

quadratic non-residues and the proof of [17, Theorem 3.1] can be easily modified
to get the Theorem with a more precise error term. The same applies to a safe
prime p for which the primitive roots modulo p are the quadratic non-residues
6= p− 1.

Since the sequence (sn) is not balanced for large ϕ(p − 1), as in [17] we
may consider the essentially balanced sequence (tn) with tn = 1 whenever
gn+1 = gn + 1 and tn = 0 otherwise instead of (sn).

2. Small ϕ(p− 1):
We have ϕ(n) ≫ n/ log logn which is attained for infinitely many n, see for
example [6]. We call ϕ(p− 1) of order of magnitude p/ log log p or more general
with

ϕ(p− 1) = o(p)

small. In this case, for sufficiently large p, the sequence (sn) is essentially
balanced, that is,

N(a) =

(
1

2
+ o(1)

)

T, a = 0, 1.

3. Typical ϕ(p− 1):
For an even n the expected value of ϕ(n) is 4n/π2. More precisely, the proba-
bility that a randomly chosen even number n and a random number k are both
divisible by a prime r > 2 is 1/r2. Hence, the probability that n and k are
co-prime is

1

2

∏

r>2

(

1− 1

r2

)

=
2

3

∏

r

(

1− 1

r2

)

=
2

3ζ(2)
=

4

π2
.

Here, see for example [1, Chapters 11 and 12],

ζ(s) =

∞∑

n=1

n−s, s ∈ C,

denotes the Riemann zeta function, by Euler’s product formula [1, Theorem 11.7]
we have

1

ζ(s)
=
∏

r

(

1− 1

rs

)

, Re(s) > 1,
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and it is well-known, [1, Theorem 12.17], that

ζ(2) =
π2

6
.

We call ϕ(p− 1) typical if

ϕ(p− 1) =

(
4

π2
+ o(1)

)

p.

In this case we have

N(1) =

(
1

2− 4/π2
+ o(1)

)

T = (0.627 . . .+ o(1))T

and

N(0) =

(
1− 4/π2

2− 4/π2
+ o(1)

)

T = (0.372 . . .+ o(1))T.

2.2 Pattern Distribution

Now we extend Theorem 1 to longer patterns of fixed length ℓ and p → ∞.

Theorem 2. Let (a0, . . . , aℓ−1) ∈ Fℓ
2 be a pattern of fixed length ℓ ≥ 1 with w

coordinates equal to 1 and ℓ−w coordinates equal to 0. Let Nℓ(w) be the number
of n = 0, 1, . . . , T − ℓ with sn+i = ai for i = 0, . . . , ℓ− 1. Then we have

Nℓ(w) =

((
1

2− ϕ(p− 1)/p

)w (
1− ϕ(p− 1)/p

2− ϕ(p− 1)/p

)ℓ−w

+ o(1)

)

T, p → ∞.

Proof. Without loss of generality we consider (a0, . . . , aℓ−1) = (1, . . . , 1
︸ ︷︷ ︸

w

, 0, . . . , 0
︸ ︷︷ ︸

ℓ−w

).

Recall (4) and put

Nk1,...,kℓ
=

M(1,−1, . . . ,−1
︸ ︷︷ ︸

2k1

, 1, . . . , 1,−1, . . . ,−1
︸ ︷︷ ︸

2kw

, 1,−1, . . . ,−1
︸ ︷︷ ︸

2kw+1+1

, 1, . . . , 1,−1, . . . ,−1
︸ ︷︷ ︸

2kℓ+1

, 1).

Put

m =

⌊
log log p

log log log p

⌋

.

Then we have

Nℓ(w) ≥
m∑

k1,...,kℓ=0

Nk1,...,kℓ

≥ pηℓ+1(1 − η)ℓ−w
m∑

k1,...,kℓ=0

(1− η)2(k1+...+kℓ) +O
(

p1/2+o(1)
)
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by (6), where η = ϕ(p−1)
p and thus

Nℓ(w) ≥ Tηℓ(1 − η)ℓ−w

(
m∑

k=0

(1− η)2k

)ℓ

+O
(

p1/2+o(1)
)

= Tηℓ(1 − η)ℓ−w

(
1− (1 − η)2(m+1)

1− (1− η)2

)ℓ

+O
(

p1/2+o(1)
)

= T (1− η)ℓ−w

(
1 + o(1)

2− η

)ℓ

+O
(

p1/2+o(1)
)

= T

(

(1− η)ℓ−w

(
1

2− η

)ℓ

+ o(1)

)

.

In the last step we used T ≫ p/ log log p and 0 < 1
2−η < 1 since 0 < η < 1/2,

see the remark after Theorem 1. We recall that ℓ is fixed.
We have

(
ℓ
w

)
patterns (a0, . . . , aℓ−1) with w coordinates equal to 1. Since

ℓ∑

w=0

(
ℓ

w

)(
1

2− η

)w (
1− η

2− η

)ℓ−w

=

(
1

2− η
+

1− η

2− η

)ℓ

= 1

the main term of this lower bound is optimal and the result follows. ✷

Remark. For large ϕ(p− 1) = p
2 + o(p) we get

Nℓ(w) =

((
2

3

)w (
1

3

)ℓ−w

+ o(1)

)

T.

For small ϕ(p− 1) = o(p) we get

Nℓ(w) =

((
1

2

)ℓ

+ o(1)

)

T

and for typical ϕ(p− 1) = 4p
π2 + o(p) we have

Nℓ(w) =
(
(0.627 . . .)w(0.372 . . .)ℓ−w + o(1)

)
T.

3 Linear Complexity and 2-Adic Complexity

3.1 Linear Complexity

In this section, we estimate the linear complexity of the T -periodic sequence (sn)
defined by (1). In particular, we give a sufficient condition for attaining the
maximal value L(sn) = T .

For integers m and q with gcd(m, q) = 1 we denote by ordm(q) the order
of q modulo m. Note that ϕ(p − 1) is even for p ≥ 5, that is, T = ϕ(p− 1)− 1
is odd and T ≥ 3 for p ≥ 11.
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Proposition 1. Let p be a sufficiently large prime and T = ϕ(p − 1) − 1.
Let T = pe11 · · · perr be the prime factorization of T with pairwise distinct odd
primes p1, . . . , pr and ei ≥ 1 for i = 1, . . . , r. Then the linear complexity of the
sequence (sn) of period T defined by (1) satisfies

L(sn) ≥ min {ordp1
(2), . . . , ordpr

(2)}+ ε,

where

ε =

{
1, p ≡ 1 mod 4,
0, p ≡ 3 mod 4.

(8)

In particular, if T is a prime and 2 is a primitive root modulo T , then

L(sn)

{
= T, p ≡ 1 mod 4,
≥ T − 1, p ≡ 3 mod 4.

The proof is based on a slightly more precise version of [4, Theorem 3.3.1].

Lemma 1. Let T = pe11 · · · perr be the prime factorization of an odd integer
T ≥ 3 with pairwise distinct primes p1, . . . , pr and ei ≥ 1 for i = 1, . . . , r. Then
for each non-constant sequence (sn) over F2 of period T we have

L(sn) ≥ min {ordp1
(2), . . . , ordpr

(2)} + S(1),

where

S(1) =

T−1∑

n=0

sn ∈ F2 = {0, 1}.

Proof. Since T is odd we have gcd(X − 1, XT−1+ . . .+X+1) = 1 and thus

gcd(XT − 1, S(X)) = gcd(X − 1, S(X)) gcd(XT−1 + . . .+X + 1, S(X)).

From the proof of [4, Theorem 3.3.1] we know that

T − deg(gcd(XT−1 + . . .+X + 1, S(X))) ≥ min{ordp1
(2), . . . , ordpr

(2)}.

Now gcd(X−1, S(X)) = X−1 if S(1) = 0 and gcd(X−1, S(X)) = 1 if S(1) = 1
and the result follows from (2). ✷

Now we study the value of S(1).

Lemma 2. For a prime p ≡ 1 mod 4 and the sequence (sn) defined by (1) we
have

S(1) = 1.

Proof. By the definition of (sn) we have

S(1) =

ϕ(p−1)−2
∑

n=0

sn =

ϕ(p−1)−2
∑

n=0

(gn+1 + gn+2) = g1 + gϕ(p−1) ∈ F2.

8



For an arbitrary primitive root g modulo p we have g(p+1)/2 ≡ −g mod p. Since
gcd((p+1)/2, p−1) = 1 for p ≡ 1 mod 4, it follows that−g is also a primitive root
modulo p. This shows that if g1 denotes the smallest primitive root modulo p,
then p− g1 is the largest primitive root modulo p, that is, g1+ gϕ(p−1) = p in Z.
Thus we have

g1 + gϕ(p−1) = 1 ∈ F2,

which completes the proof. ✷

Remark. For p ≡ 3 mod 4 both possible values of S(1) can be attained. For
example, S(1) = 2+8 = 0 ∈ F2 for p = 11 and S(1) = 2+15 = 1 ∈ F2 for p = 19.

For proving Proposition 1 it remains to verify that the sequence (sn) defined
by (1) is non-constant for a sufficiently large prime p. By (7) and Theorem 1
we have

N(1) ≥
(
1

2
+ o(1)

)

T and N(0) ≥
(
1

3
+ o(1)

)

T.

Hence, N(1) and N(0) are both positive for sufficiently large p and (sn) is not
constant. Hence, Lemma 1 is applicable and completes the proof of Proposi-
tion 1. ✷

3.2 2-Adic Complexity

Now we estimate the 2-adic complexity of (sn) defined by (1).

Proposition 2. Let p be a sufficiently large prime and T = ϕ(p − 1) − 1.
Let q be the smallest prime divisor of 2T − 1. Then the 2-adic complexity of the
sequence (sn) of period T defined by (1) satisfies

C(sn) ≥ ⌊log2(q)⌋.

In particular, if 2T − 1 is a (Mersenne) prime, then

C(sn) = ⌊log2(2T − 1)⌋.

Since (sn) is not constant for sufficiently large p, by Theorem 1 it is enough
to verify the following lemma, which may be of independent interest.

Lemma 3. Let q be the smallest prime divisor of 2T − 1. Then for each non-
constant sequence (sn) over F2 of period T we have

C(sn) ≥ ⌊log2(q)⌋.

Proof. Put d = gcd(S(2), 2T − 1). We have d = 2T − 1 if and only if
S(2) ∈ {0, 2T − 1}, that is, (sn) is constant.

Now assume that (sn) is not constant and q denotes the smallest prime

divisor of 2T − 1. Then we have d ≤ 2T−1
q and thus

C(sn) =

⌊

log2

(
2T − 1

gcd(S(2), 2T − 1)

)⌋

≥ ⌊log2(q)⌋

9



by (3). ✷

Remark. Note that there are highly predictable sequences with both max-
imum linear complexity and maximum 2-adic complexity, for example, any se-
quence with only one non-zero entry in a period. Hence, studying the balance
and pattern distribution is always a must to test a sequence for suitability in
cryptography.

4 Heuristic

To guarantee a rather balanced sequence with large linear complexity and large
2-adic complexity we need primes p such that

• The ratio ϕ(p−1)
p is small.

• The period T = ϕ(p−1)−1 contains only large prime divisors q such that
ordq(2) is also large. This is guaranteed if T is prime and 2 is a primitive
root modulo 2.

• The Mersenne number 2T − 1 contains only large prime divisors. This is
guaranteed if 2T − 1 is a Mersenne prime.

In the following table we list primes T for which 2T − 1 is a Mersenne prime
and the largest primes p with T = ϕ(p − 1) − 1. For these primes we have
L(sn) ≥ ordT (2) + S(1) with S(1) defined by (8), and C(sn) is maximal.

T p ordT (2)
ϕ(p−1)

p

3 13 2 4
13 = 0.307 . . .

5 19 4 6
19 = 0.315 . . .

7 31 3 8
31 = 0.258 . . .

19 67 18 20
67 = 0.298 . . .

31 103 5 32
103 = 0.310 . . .

107 379 106 108
379 = 0.284 . . .

127 409 7 128
409 = 0.312 . . .

1279 5281 639 1280
5281 = 0.242 . . .

2203 6619 734 2204
6619 = 0.331 . . .

Now we also list some primes T for which 2T − 1 is not a prime. We denote
by q the smallest prime divisor of 2T − 1 from which we can derive the lower
bound C(sn) ≥ ⌊log2(q)⌋ on the 2-adic complexity.

10



T q ⌊log2(q)⌋ p ordT (2)
ϕ(p−1)

p

11 23 4 43 10 0.279 . . .
23 47 5 79 11 0.303 . . .
43 431 8 139 14 0.316 . . .
47 2351 11 211 23 0.227 . . .
53 6361 12 163 52 0.331 . . .
59 179951 17 199 58 0.301 . . .
71 228479 17 271 35 0.265 . . .
79 2687 11 331 39 0.209 . . .
83 167 7 197 82 0.426 . . .
131 263 8 269 130 0.490 . . .
163 150287 17 499 162 0.328 . . .
167 2349023 21 523 83 0.321 . . .
179 359 8 419 178 0.429 . . .
191 383 8 673 95 0.285 . . .
199 164504919713 37 751 99 0.255 . . .

We may consider the following features undesirable and emphasized this in
the tables (boldface):

• The value ⌊log2(q)⌋ is small, say, smaller than T
10 . Then a very large 2-adic

complexity cannot be guaranteed.

• The order of 2 modulo T is small, say, smaller than T
4 . Then a very large

linear complexity cannot be guaranteed.

• The ratio ϕ(p−1)
p is large, say, at least 1

3 . Then for sufficiently large p
the sequence contains at least 60 percent ones and is rather unbalanced.
Moreover, the frequency of the pair 11 is at least 36 percent whereas the
frequency of 00 is at most 16 percent of the period.

Still it seems to be not difficult to find large primes T and p with T = ϕ(p−1)−1
without these undesirable features.
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