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Some punctured codes of several families of binary linear codes

Xiaoqiang Wang, Dabin Zheng∗, Cunsheng Ding

Abstract. Two general constructions of linear codes with functions over

finite fields have been extensively studied in the literature. The first one

is given by C(f) =
{

Tr(af(x) + bx)x∈F∗

qm
: a, b ∈ Fqm

}

, where q is a prime

power, F∗
qm = Fqm \{0}, Tr is the trace function from Fqm to Fq, and f(x) is

a function from Fqm to Fqm with f(0) = 0. Almost bent functions, quadratic

functions and some monomials on F2m were used in the first construction,

and many families of binary linear codes with few weights were obtained

in the literature. This paper studies some punctured codes of these binary

codes. Several families of binary linear codes with few weights and new

parameters are obtained in this paper. Several families of distance-optimal

binary linear codes with new parameters are also produced in this paper.

Keywords. Boolean function, linear code, punctured code, distance-optimal

code, weight distribution
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1 Introduction of motivations, objectives, and methodology

Let q be a prime power and n be a positive integer. An [n, k, d] code C over the finite field Fq is a

k-dimensional linear subspace of Fn
q with minimum Hamming distance d. The dual code, denoted

by C⊥, of C is defined by

C⊥ =

{

x = (x0, . . . , xn−1) ∈ Fn
q :

n−1
∑

i=0

xici = 0 ∀ c = (c0, . . . , cn−1) ∈ C

}

.

The minimum distance of C⊥, denoted by d⊥, is called the dual distance of C. C is called a projec-

tive code if its dual distance is at least 3. An [n, k, d] code over Fq is said to be distance-optimal

(respectively, dimension-optimal and length-optimal) if there is no [n, k, d′ ≥ d + 1] (respectively,

[n, k′ ≥ k + 1, d] and [n′ ≤ n − 1, k, d]) linear code over Fq. An optimal code is a code that is

length-optimal, or dimension-optimal, or distance-optimal, or meets a bound for linear codes. A
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binary linear code C is called self-complementary if it contains the all-one vector. Let Ai denote

the number of codewords with Hamming weight i in C. The weight enumerator of C is defined by

1+A1x+A2x
2+ · · ·+Anx

n. The weight distribution of C is defined by the sequence (1, A1, · · · , An).

If the number of nonzero Ai in the sequence (A1, · · · , An) is t, then the code C is said to be a t-weight

code. By the parameters of a code, we mean its length, dimension and minimum distance.

Coding theory has important applications in communications systems, data storage systems,

consumer electronics, and cryptography. In addition, coding theory is closely related to many areas of

mathematics, such as algebra, algebraic geometry, algebraic function fields, algebraic number theory,

association schemes, combinatorics, finite fields, finite geometry, graph theory, and group theory.

These are the major motivations of studying coding theory. Constructing linear codes with desired

parameters and weight distributions has been an important task in the history of coding theory.

Linear codes may be constructed directly with algebraic approaches, combinatorial approaches and

other approaches. Alternatively, almost all linear codes over finite fields can be constructed from

some known codes by the puncturing or shortening techniques.

Let C be an [n, k, d] code over Fq, and let T be a set of t coordinate positions in C. We puncture

C by deleting all the coordinates in T in each codeword of C. The resulting code is still linear and

has length n − t, where t = |T |. We denote the punctured code by CT . Let C(T ) be the set of

codewords which are 0 on T . Then C(T ) is a subcode of C. We now puncture C(T ) on T , and obtain

a linear code over Fq with length n− t, which is called a shortened code of C, and is denoted by CT .

The puncturing and shortening techniques are two very important tools for constructing new codes

from old ones. It was shown that every projective linear code over Fq (i.e., the minimum distance

of the dual code is at least 3) is a punctured code of a Simplex code over Fq and a shortened code

of a Hamming code over Fq [37]. These facts justify the importance of the Simplex codes and the

Hamming codes as well as the puncturing and shortening techniques. Note that the Simplex codes

are optimal with respect to the Griesmer bound. Since every projective code is a punctured Simplex

code, a punctured code of an optimal linear code may have good or bad parameters. To obtain a

very good punctured code CT from a good or optimal linear code C, one has to choose a proper set T

of coordinate positions in C. This is the difficulty of using the puncturing technique to construct new

linear codes with good parameters from old ones [37, 56]. In this paper, we will use the puncturing

technique to construct new codes with interesting and new parameters from some old linear codes.

Linear codes with few weights have applications in secret sharing [1], strongly regular graphs [5],

association schemes [4] and authentication codes [17]. In finite geometry, hyperovals in the projective

geometry PG(2, 2m) are the same as [2m + 2, 3, 2m] MDS codes with two weights [13, Chapter 12],

maximal arcs in PG(2, 2m) are the same as a special type of two-weight codes [13, Chapter 12], and

ovoids in PG(3, q) are the same as a special type of two-weight codes [13, Chapter 13]. Many families

of linear codes have been used to construct combinatorial t-designs [13, Chapters 5–13]. These are

some of the motivations of studying linear codes with few weights in the literature. In the past two

decades, a lot of progress on the construction of linear codes with few weights has been made. The

reader is referred to [11,12,16,18,24,34,38,43,44,46,47,50–52,54,60] and the references therein for

information. One of the objectives of this paper is to construct binary linear codes with few weights.

Functions and linear codes are closely connected. In the literature two general constructions

of linear codes with functions over finite fields have been intensively investigated [12]. The first
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construction is given by

C(f) =
{

Tr(af(x) + bx)x∈F∗

qm
: a, b ∈ Fqm

}

, (1)

where q is a prime power, F∗
qm = Fqm \ {0}, Tr is the trace function from Fqm to Fq, and f(x) is a

function from Fqm to Fqm with f(0) = 0. It is clear that C(f) is a linear code with length qm − 1

and dimension at most 2m. If f(x) is a monomial, then C(f) is permutation-equivalent to a cyclic

code [7]. This general construction has a long history and its importance is supported by Delsarte’s

Theorem [10]. The weight distribution of C(f) is closely related to the value distributions of certain

exponential sums, and is difficult to settle in general. In order to determine the weight distribution of

C(f), people usually choose f(x) to be a special function such as a quadratic function, PN function,

and APN function. Many good and optimal linear codes have been obtained with this construction.

This is also a main method for constructing linear codes with few weights. The reader is referred to,

for example, [7, 20,26,33,39,43,51,57] for information.

The second general construction of linear codes is described as follows [16, 53]. Let D =

{d1, d2, · · · , dn} ⊂ F∗
qm be a multiset. Define a linear code

CD = {(Tr(xd1),Tr(xd2), · · · ,Tr(xdn)) : x ∈ Fqm} ,

where q is a prime power, Tr is the trace function from Fqm to Fq. The code CD over Fq has length n

and dimension at most m, where D is called the defining set of CD. This construction is fundamental

in the sense that every linear code over Fq can be expressed as CD for some positive integer m and

some subset D of Fqm [23,55]. It is known that this construction is equivalent to the generator matrix

construction of linear codes. The code CD may have good parameters if the defining set is properly

chosen. With the second general construction, many good linear codes with few weights have been

constructed [11, 15, 19, 24, 25, 34, 36, 38, 43, 50, 52]. With some variants of the second construction,

interesting linear codes were obtained in [32,34,48].

By the definition of the second construction above, CF∗

qm
has parameters [qm−1,m, (q−1)qm−1]

and weight enumerator 1 + (qm − 1)z(q−1)qm−1
. If D ⊂ F∗

qm does not contain repeated elements, let

D̄ = F∗
qm \ D. In this case, we have CD = (CF∗

qm
)D̄, where the coordinate positions in CF∗

qm
are

indexed by the elements in F∗
qm . This means that CD is in fact a punctured code of the one-weight

code CF∗

qm
, which is a concatenation of (q − 1) Simplex codes over Fq with the same parameters.

Hence, the second construction above is in fact a puncture construction, and every projective linear

code over Fq is a punctured code of the one-weight code CF∗

qm
.

Motivated by the power of the puncture technique and the first construction, in this paper we

study some punctured codes of several families of binary linear codes C(f) from special functions on

F2m . Specifically, we will study the following punctured codes.

Let f be a function on F2m with f(0) = 0, and let D = {d1, d2, · · · , dn} ⊂ F∗
2m that does not

contain any repeated elements. Define D̄ = F∗
2m \D. In this paper, we will study the punctured code

C(f)D̄ = {c(a, b) = (Tr(af(d1) + bd1), · · · ,Tr(af(dn) + bdn)) : a, b ∈ F2m} , (2)

where Tr is the trace function from F2m to F2 and the binary code C(f) was defined in (1). We call

the set D the position set of the code C(f)D̄, as we index the coordinate positions of the code C(f)

with the elements in F∗
2m . The dimension of C(f)D̄ is at most 2m. The two objectives of this paper
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are to obtain binary linear codes C(f)D̄ with new parameters and few weights and (C(f)D̄)⊥ with

new and good parameters. To this end, we have to select f and the position set D carefully.

Concretely, we first choose the position set to be

D = {x ∈ F∗
2m : Tr(λf(x)) = ν} (3)

and determine the weight distributions of C(f)D̄, where ν ∈ {0, 1}, λ ∈ F∗
2m and f(x) is an almost

bent function from F2m to itself. We show that C(f)D̄ is a five-weight code if ν = 0 and a self-

complementary six-weight code if ν = 1. Some of the codes C(f)D̄ are optimal according to the

tables of best codes known in [22]. The dual of C(f)D̄ is distance-optimal with respect to the sphere

packing bound if ν = 1. We then present several classes of four-weight or six-weight linear codes

by choosing f(x) to be some special quadratic functions, and the position set to be the support of

Tr(x), i.e.,

D = {x ∈ F∗
2m : Tr(x) = 1} . (4)

Several families of complementary binary linear codes are obtained. The parameters of the duals of

C(f)D̄ are also determined and almost all of them are distance-optimal with respect to the sphere

packing bound. Finally, we present several classes of binary linear codes with three weights, or five

weights or six weights by selecting the position sets to be some cyclotomic classes. Some of the codes

and their duals are distance-optimal. The parameters of most of the codes presented in this paper

are new.

The rest of this paper is organized as follows. Section 2 introduces some preliminaries. Sec-

tion 3 investigates the weight distribution of the linear code C(f)D̄ and the parameters of its dual,

where f(x) is an almost bent function, D = {x ∈ F∗
2m : Tr(λf(x)) = ν}, ν ∈ {0, 1} and λ ∈ F∗

2m .

Section 4 determines the weight distribution of the linear code C(f)D̄ and the parameters of its dual,

where f(x) is some special quadratic function and D = {x ∈ F∗
2m : Tr(x) = 1}. Section 5 settles the

weight distribution of the linear code C(f)D̄ and the parameters of its dual, where D is a cyclotomic

class and f is a monomial. Section 6 concludes this paper.

2 Preliminaries

In this section, we introduce some special functions on F2m , some exponential sums and some basic

results in coding theory, which will be used later in this paper.

2.1 Notation used starting from now on

Starting from now on, we assume m ≥ 4 and adopt the following notation unless otherwise stated:

• F2m is the finite field with 2m elements and γ is a primitive element of F2m .

• F∗
2m = F2m \ {0}.

• Tr(·) is the absolute trace function from F2m to F2.

• Trvu(·) is the trace function from F2v to F2u , where u, v are positive integers such that u | v.

• v2(·) is the 2-adic order function with v2(0) = ∞.
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• wtH(c) denotes the Hamming weight of a vector c.

• dH(C) denotes the minimum distance of a linear code C.

2.2 AB and APN functions

Let f(x) be a function from F2m to F2m . The Walsh transform of f(x) at (a, b) ∈ F2
2m is defined as

Wf (a, b) =
∑

x∈F2m

(−1)Tr(af(x)+bx). (5)

If Wf (a, b) = 0 or ±2
m+1

2 for any pair (a, b) ∈ F2
2m with a 6= 0, then f(x) is called an almost bent

(AB) function. Almost bent functions exist only for odd m. Define

δf (a, b) = maxa∈F∗

2m
,b∈F2m

|{x ∈ F2m : f(x+ a) + f(x) = b}|,

then f(x) is called an almost perfect nonlinear (APN) function if δf (a, b) = 2.

APN and AB functions have applications in coding theory, combinatorics, cryptography, finite

geometry and sequence design. Many good linear codes over finite fields have been constructed

with APN and AB functions [6, 11, 12, 33, 43]. AB functions and APN functions have the following

relationship.

Lemma 2.1 [3] Let F2m be a finite field with 2m elements. If f(x) is an almost bent function over

F2m , then f(x) is an almost perfect nonlinear function over F2m .

The converse is not true for Lemma 2.1, as almost bent functions exist only for m being odd while

almost perfect nonlinear functions exist for m being even too.

2.3 Quadratic functions

By identifying the finite field F2m with the m-dimensional vector space Fm
2 over F2, a function f

from F2m to F2 can be viewed as an m-variable polynomial over F2. In the sequel, we fix a basis of

F2m over F2 and identify x ∈ F2m with a vector (x1, x2, · · · , xm) ∈ Fm
2 , a quadratic function over F2

is of the form:

Q(x1, x2, · · · , xm) = (x1, x2, · · · , xm)A(x1, x2, · · · , xm)T ,

where A = (aij)m×m, aij ∈ F2, is an upper triangular matrix. The matrix A + AT is called an

alternate matrix and its rank must be even [49]. By the theory of linear equations, the rank r of the

matrix A+AT is equal to the codimension of the F2-linear subspace

V = {x ∈ F2m : Q(x+ z) +Q(x) +Q(z) = 0 for all z ∈ F2m}, (6)
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i.e. r = m− dimF2 V . Let G(x) be a linear polynomial over F2m , then





∑

x∈F2m

(−1)Tr(Q(x)+G(x))





2

=
∑

x∈F2m

(−1)Tr(Q(x)+G(x))
∑

y∈F2m

(−1)Tr(Q(y)+G(y))

=
∑

x,y∈F2m

(−1)Tr(Q(x+y)+G(x+y)+Q(x)+G(x))

=
∑

y∈F2m

(−1)Tr(Q(y)+G(y))
∑

x∈F2m

(−1)Tr(Q(x+y)+Q(x)+Q(y))

= 2m ·
∑

y∈V

(−1)Tr(Q(y)+G(y)),

where V was defined in (6). It is easy to check that

Tr (Q(x+ y) +G(x+ y)) = Tr (Q(x) +G(x)) + Tr (Q(y) +G(y))

for any x, y ∈ V . Then





∑

x∈F2m

(−1)Tr(Q(x)+G(x))





2

=

{

2m+r, if Tr (Q(y) +G(y)) = 0 for all y ∈ V ,

0, otherwise,
(7)

where r is the rank of Q(x) and r = m− dimF2 V . The following are some well known results about

quadratic forms, which will be needed in this paper.

Lemma 2.2 [8, 9] Let m and k be non-negative integers with v2(m) ≤ v2(k) and a, b ∈ F2m with

a 6= 0. Let

S(a, b) =
∑

x∈F2m

(−1)
Tr

(

ax2k+1+bx
)

, (8)

then the possible values of S(a, b) are in the set {0,±2
m+ℓ

2 }, where ℓ = gcd(m,k).

Lemma 2.3 [8, 9] Let m and k be non-negative integers with v2(m) > v2(k) and a, b ∈ F2m with

a 6= 0. Let S(a, b) be defined in (8). Then S(a, b) = 0 unless the equation a2
k
x2

2k
+ ax+ b2

k
= 0 is

solvable. Let γ be a primitive element of F2m. Let ℓ = gcd(m,k). Assume a2
k
x2

2k
+ ax+ b2

k
= 0 is

solvable. Then there are two possibilities as follows.

(i) If a 6= γs(2
ℓ+1) for any integer s, then the equation has a unique solution xb for any b ∈ F2m ,

and

S(a, b) = (−1)
m
2ℓ
−Tr

(

ax2k+1
b

)

2
m
2 .

(ii) If a = γs(2
ℓ+1) for some integer s, then the equation is solvable if and only if Trm2ℓ (bβ

−s) = 0,

where β ∈ F∗
2m is the unique element satisfying β

2k+1

2ℓ+1 = γ. In such case,

S(a, b) = −(−1)
m
2ℓ
−Tr

(

ax2k+1
b

)

2
m
2
+ℓ,

where xb is a solution to a2
k
x2

2k
+ ax+ b2

k
= 0.
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Lemma 2.4 [42] Let γ be a primitive element of F2m . Assume that m = 2sh and ℓ | (2h+1). Then

∑

x∈F2m

(−1)Tr(γ
ixℓ) =

{

(−1)s2
m
2 , if i 6≡ 0 (mod ℓ),

(−1)s−1(ℓ− 1)2
m
2 , if i ≡ 0 (mod ℓ).

Lemma 2.5 [40] Let ℓ = gcd(m2 , k) and ℓ′ = gcd(m2 + k, 2k). Let

S1(a, b) = (−1)
Tr

(

ax2k+1+bx2
m
2 +1

)

.

If ℓ′ = 2ℓ and (a, b) runs over F2m × F
2
m
2
, then

S1(a, b) =































2m, occuring 1 time,

−2
m
2 , occuring 23k(2

m
2 −1)(2m−2m−2k−2m−3k+2

m
2 −2

m
2 −k+1

(2k+1)(22k−1)
times,

2
m
2
+k, occuring 2k(2m−1)(2m−2m−ℓ+2m−2ℓ+1)

(2k+1)2
times,

−2
m
2
+2k, occuring (2

m
2 −ℓ−1)(2m−1)
(2k+1)(22k−1)

times.

2.4 Pless power moments and the sphere packing bound

To study the parameters of the duals of the punctured binary codes C(f)D̄, we need the Pless power

moments of linear codes. Let C be a binary [n, k] code, and denote its dual by C⊥. Let Ai and A⊥
i be

the number of codewords of weight i in C and C⊥, respectively. The first five Pless power moments

are the following [41, p. 131]:

n
∑

i=0

Ai = 2k;

n
∑

i=0

iAi = 2k−1(n−A⊥
1 );

n
∑

i=0

i2Ai = 2k−2[n(n+ 1)− 2nA⊥
1 + 2A⊥

2 ];

n
∑

i=0

i3Ai = 2k−3[n2(n + 3)− (3n2 + 3n − 2)A⊥
1 + 6nA⊥

2 − 6A⊥
3 ];

n
∑

i=0

i4Ai = 2k−4[n(n+ 1)(n2 + 5n − 2)− 4n(n2 + 3n− 2)A⊥
1 + 4(3n2 + 3n− 4)A⊥

2 − 24nA⊥
3 + 24A⊥

4 ].

If A⊥
1 = A⊥

2 = A⊥
3 = A⊥

4 = 0, then the sixth Pless power moment becomes the following:

n
∑

i=0

i5Ai = 2k−5 · n5 + 5 · 2k−4 · n4 + 15 · 2k−5 · n3 − 5 · 2k−4 · n2 −A⊥
5 · 2k−5 · 120.

We will need the following bound for binary linear codes later.

Lemma 2.6 (The sphere packing bound) Let C be an [n, k, d] binary code. Then

2n ≥ 2k
⌊ d−1

2
⌋

∑

i=0

(

n

i

)

.
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3 Some punctured codes of the binary codes from almost bent

functions

Recall the code C(f) defined in (1). When q = 2 and f(x) = x2
h+1 with gcd(h,m) = 1 and m

being odd, the parameters and weight distribution of the binary code C(f) were settled in [29, 30].

When q = 2, m is odd and f(x) is an almost bent function on F2m , the parameters and weight

distribution of the binary code C(f) were settled in [6]. The binary code C(f) has parameters

[2m−1, 2m, 2m−1−2(m−1)/2] and three nonzero weights [6]. Let C(f)D̄ be the binary punctured code

defined in (2) with position set D in (3), where f(x) is an almost bent function from F2m to itself. In

this section, we investigate the weight distribution of the punctured code C(f)D̄ and the parameters

of its dual. We first give the length of the linear code C(f)D̄ in the following lemma.

Lemma 3.1 Let C(f)D̄ be the linear code defined in (2) with the position set D in (3), where f(x)

is an almost bent function from F2m to itself. Then the length n of C(f)D̄ is

n = |D| =















2m−1 − (−1)ν2
m−1

2 − 1 + ν, if Wf (λ, 0) = −2
m+1

2 ,

2m−1 + (−1)ν2
m−1

2 − 1 + ν, if Wf (λ, 0) = 2
m+1

2 ,

2m−1 − 1 + ν, if Wf (λ, 0) = 0,

where Wf (λ, 0) was defined in (5) and ν ∈ {0, 1}.

In order to apply the Pless power moments to determine the multiplicity of each Hamming

weight of C(f)D̄, we need to investigate the minimum Hamming distance of its dual.

Lemma 3.2 Let C(f)D̄ be the linear code defined in (2) with the position set D in (3), where f(x)

is an almost bent function from F2m to itself. Then the dual distance is lower bounded by

dH

(

(

C(f)D̄
)⊥
)

≥

{

5, if ν = 0,

6, if ν = 1.

Proof. It is easy to see dH

(

(C(f)D̄)⊥
)

≥ 3 from the definition of C(f)D̄. Next, we show that

dH

(

(C(f)D̄)⊥
)

6= 4. The case of dH

(

(C(f)D̄)⊥
)

6= 3 can be shown similarly, and we omit the

details of the proof.

If dH

(

(C(f)D̄)⊥
)

= 4, then there are four pairwise-distinct elements x1, x2, x3 and x4 in F∗
2m

such that

{

Tr(λf(x1)) = Tr(λf(x2)) = Tr(λf(x3)) = Tr(λf(x4)) = ν,

a(x1 + x2 + x3 + x4) + b(f(x1) + f(x2) + f(x3) + f(x4)) = 0

for any a, b ∈ F2m . Then,















Tr(λf(x1)) = Tr(λf(x2)) = Tr(λf(x3)) = Tr(λf(x4)) = ν,

x1 + x2 + x3 + x4 = 0,

f(x1) + f(x2) + f(x3) + f(x4) = 0.

(9)
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The second and third equations in (9) can be rewritten as

{

x1 + x2 = α and x3 + x4 = α,

f(x1) + f(x2) = β and f(x3) + f(x4) = β,

where α, β ∈ F2m with α 6= 0. Hence, there are four different elements x1, x1 + α, x3 and x3 + α

satisfying the equation f(x) + f(x + α) = β. This contradicts Lemma 2.1, as f(x) is an almost

perfect nonlinear function. Therefore, dH

(

(C(f)D̄)⊥
)

≥ 5.

If ν = 1 and dH

(

(C(f)D̄)⊥
)

= 5, there are five pairwise-distinct elements x1, x2, x3, x4, x5

in F∗
2m such that f(x1) + f(x2) + f(x3) + f(x4) + f(x5) = 0 by the definition of C(f)D̄, then

Tr(λ(f(x1)+f(x2)+f(x3)+f(x4)+f(x5))) = 0, which is contradictory to Tr(λf(x1)) = Tr(λf(x2)) =

Tr(λf(x3)) = Tr(λf(x4)) = Tr(λf(x5)) = 1. Hence,

dH

(

(C(f)D̄)⊥
)

≥

{

5, if ν = 0,

6, if ν = 1.

This completes the proof of this lemma. �

We now give the weight distribution of the binary code C(f)D̄ and the parameters of its dual

as follows.

Theorem 3.3 Let C(f)D̄ be the linear code defined in (2) with the position set D in (3), where f(x)

is an almost bent function from F2m to itself. Then the following statements hold.

(1) If ν = 0, then C(f)D̄ is an [n, 2m− 1, n+1
2 − 2

m−3
2 ] code with the weight distribution in Table 1,

where n was given in Lemma 3.1. Its dual has parameters [n, n− 2m+ 1, 5].

Table 1: Weight distribution of the code C(f)D̄ for ν = 0 in Theorem 3.3

Weight Multiplicity

0 1
n+1
2 22m−1 − (n+ 1)42−2m + 5(n+ 1)22−m−1 − 5(n + 1)2m−2 + 3

2n
2 + 2n − 1

2

n+1
2 ± 2

m−1
2

±1
6

(

(n+ 1)32
1−3m

2 − (3n + 1)2
m−1

2 − (n+ 1)2−
m+1

2 + 2
3m−3

2

)

−
1
6(n+ 1)42−2m + 1

6(n+ 1)22−m−1 − 1
6(n + 1)2m−2 + 1

4n
2 + 1

3n+ 1
12

n+1
2 ± 2

m−3
2

±1
6

(

− (n+ 1)32
3−3m

2 + (n+ 1)2
5−m

2 + 2
m+1

2 − 2
3+3m

2 + 6n · 2
m−1

2

)

+ 22−2m · n2+
1
3(n

4 + 4n3 + 4n+ 1)21−2m − 1
3(n+ 1)222−m + 1

3(n+ 1)21+m − n2 − 4
3n− 1

3

(2) If ν = 1, then C(f)D̄ is an [n, 2m, n2 − 2
m−3

2 ] code with the weight distribution in Table 2, where

n was given in Lemma 3.1. Its dual has parameters [n, n− 2m, 6], and is distance-optimal with

respect to the sphere packing bound.
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Table 2: Weight distribution of the code C(f)D̄ for ν = 1 in Theorem 3.3

Weight Multiplicity

0 1
n
2 22m − 5n · 2m−1 + 5n2 · 2−m − 21−2mn4 + 3n2 − 2n− 2

n
2 ± 2

m−1
2 −1

3n
42−2m + 1

6 (2
−mn2 + 3n2 − 2m−1n− 2n)

n
2 ± 2

m−3
2

4n
3 (2−2mn3 − 21−mn− 3n

2 + 2m + 1)

n 1

Proof. It follows from (2) that the Hamming weight of the codeword c(a, b) in C(f)D̄ is given by

wtH(c(a, b)) = |D| − |{x ∈ D : Tr (af(x) + bx) = 0}|

=
|D|

2
−

1

2

∑

x∈D

(−1)Tr(af(x)+bx)

=
|D|

2
−

1

2

∑

x∈F2m\{0}





1

2

∑

y∈F2

(−1)y(Tr(λf(x))−ν)



 (−1)Tr(af(x)+bx)

=
|D|

2
−

1

4

∑

x∈F2m





∑

y∈F2

(−1)y(Tr(λf(x))−ν)



 (−1)Tr(af(x)+bx) +
1

4

∑

y∈F2

(−1)yν

=
|D|

2
−

1

4

∑

x∈F2m

(

1 + (−1)(Tr(λf(x))−ν)
)

(−1)Tr(af(x)+bx) +
1

4

∑

y∈F2

(−1)yν

=
|D|

2
−

1

4

∑

x∈F2m

(−1)Tr(af(x)+bx) − (−1)ν
∑

x∈F2m

(−1)Tr((λ+a)f(x)+bx) +
1

4

∑

y∈F2

(−1)zyν

=
|D|

2
−

1

4
Wf (a, b) −

(−1)ν

4
Wf (a+ λ, b) +

1

4

∑

y∈F2

(−1)z0ν ,

(10)

where Wf (a, b) was defined in (5). By the definition of almost bent functions, for any (a, b) ∈

F2
2m \ {(0, 0)}, we know that Wf (a, b) ∈ {0,±2

m+1
2 }. So,

1

4
(Wf (a, b)±Wf (a+ λ, b)) ∈

{

0,±2
m−1

2 ,±2
m−3

2

}

(11)

for any (a, b) ∈ F2
2m \ {(0, 0), (λ, 0)}. In the following, we prove this theorem case by case.

Case 1: ν = 0, i.e., D = {x ∈ F∗
2m : Tr(λf(x)) = 0}. By (10) and (11), when (a, b) runs over

F2
2m \ {(0, 0), (λ, 0)}, the possible values of wtH(c(a, b)) are

n+ 1

2
,
n+ 1

2
± 2

m−1
2 , and

n+ 1

2
± 2

m−3
2 ,

where n was given in Lemma 3.1. It is easy to see that wtH(c(a, b)) = 0 if and only if (a, b) = (0, 0)

or (a, b) = (λ, 0). So, the dimension of C(f)D̄ is 2m− 1.

10



Denote w1 =
n+1
2 , w2 =

n+1
2 +2

m−1
2 , w3 =

n+1
2 −2

m−1
2 , w4 =

n+1
2 +2

m−3
2 and w5 =

n+1
2 −2

m−3
2 .

Let Awi be the number of the codewords with weight wi in C(f)D̄. By Lemma 3.2, we know that

A⊥
1 = A⊥

2 = A⊥
3 = A⊥

4 = 0. From the first five Pless power moments, we have the following system

of equations:


































∑5
i=1Awi = 22m−1 − 1;

∑5
i=1wiAwi = 22m−2n;

∑5
i=1w

2
iAwi = 22m−3n(n+ 1);

∑5
i=1w

3
iAwi = 22m−4n2(n+ 3);

∑5
i=1w

4
iAwi = 22m−5n(n+ 1)(n2 + 5n− 2).

Solving this system of equations, we obtain the desired values of Aw1 , Aw2 , Aw3 , Aw4 and Aw5 in

Table 1.

We now determine the parameters of the dual of C(f)D̄. We consider only the case n = 2m−1−1,

i.e., the value of Wf (λ, 0) is zero. The other two cases can be shown similarly. Substituting the value

of n = 2m−1 − 1 in Table 1, we obtain that Aw1 = 3 · 22m−4 + 2m−3 − 1, Aw2 = 22m−5 − 2
3m−7

2 +

2
m−5

2 −2m−4, Aw3 = 22m−5+2
3m−7

2 −2
m−5

2 −2m−4, Aw4 = 22m−3−2
3m−5

2 and Aw5 = 22m−3+2
3m−5

2 .

By Lemma 3.2, A⊥
1 = A⊥

2 = A⊥
3 = A⊥

4 = 0. Then from the sixth Pless power moment, we have

5
∑

i=1

w5
iAwi = 22m−6 · (2m−1 − 1)5 + 5 · 22m−5 · (2m−1 − 1)4

+ 15 · 22m−6 · (2m−1 − 1)3 − 5 · 22m−5 · (2m−1 − 1)2 −A⊥
5 · 22m−6 · 120.

Solving this equation, we obtain A⊥
5 = (11 · 2m+23m−4 − 13 · 22m−3 − 24)/120 6= 0. Hence, (C(f)D̄)⊥

has parameters [2m−1 − 1, 2m−1 − 2m, 5].

Case 2: ν = 1, i.e., D = {x ∈ F∗
2m : Tr(λf(x)) = 1}. By (10) and (11), when (a, b) runs over

F2
2m \ {(0, 0), (λ, 0)}, the possible values of wtH(c(a, b)) are

n

2
,
n

2
± 2

m−1
2 and

n

2
± 2

m−3
2 ,

where n was given in Lemma 3.1. Moreover, wtH(c(a, b)) = 0 if and only if (a, b) = (0, 0) and

wtH(c(a, b)) = n if (a, b) = (λ, 0). So, the dimension of C(f)D̄ is 2m.

Denote w1 = 2m−2, w2 = 2m−2 + 2
m−1

2 , w3 = 2m−2 − 2
m−1

2 , w4 = 2m−2 + 2
m−3

2 and w5 =

2m−2 − 2
m−3

2 . Let Awi be the number of the codewords with weight wi in C(f)D̄. From Lemma

3.2 we know that A⊥
1 = A⊥

2 = A⊥
3 = A⊥

4 = 0. Then the first five Pless power moments lead to the

following system of equations:


































∑5
i=1 Awi = 22m − 2;

∑5
i=1 wiAwi = 22m−1n− n;

∑5
i=1 w

2
iAwi = 22m−2n(n+ 1)− n2;

∑5
i=1 w

3
iAwi = 22m−3n2(n+ 3)− n3;

∑5
i=1 w

4
iAwi = 22m−4n(n+ 1)(n2 + 5n − 2)− n4.

Solving this system of equations, we obtain the desired values of Aw1 , Aw2 , Aw3 , Aw4 and Aw5 in

Table 2.
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We now determine the parameters of the dual of C(f)D̄. We treat only the case n = 2m−1

and the other two cases can be treated similarly. Substituting the value of n = 2m−1 in Table 2, we

obtain that Aw1 = 3 · 22m−3 + 2m−2 − 2, Aw2 = Aw3 = 22m−4 − 2m−3 and Aw4 = Aw5 = 22m−2. If

dH

(

(C(f)D̄)⊥
)

> 6, then

3
∑

i=0

(

2m−1

i

)

= 1 + 2m−1 + 2m−2 · (2m−1 − 1) +
2m−2 · (2m−1 − 1) · (2m−1 − 2)

3
> 22m,

which contradicts the sphere packing bound. From Lemma 3.2, we then deduce that dH

(

(C(f)D̄)⊥
)

=

6, and (C(f)D̄)⊥ is distance-optimal with respect to the sphere packing bound. �

Example 3.4 Let m = 7 and f(x) be an almost bent function from F27 to F27 with Wf (1, 0) = 2
7+1
2 .

Let C(f)D̄ be the linear code in Theorem 3.3.

(1) If ν = 0, then C(f)D̄ has parameters [71, 13, 28] and its dual has parameters [71, 58, 5].

(2) If ν = 1 then C(f)D̄ has parameters [56, 14, 20] and its dual has parameters [56, 42, 6].

The four codes are optimal according to the tables of best codes known in [22].

Remark 3.5 In [36], the authors proposed the following open problem (Problem 4.4): Let λ ∈ F∗
2s,

F be a function from F2m to F2s and D be the support of Trs1(λF (x)). Define a linear code C′(F )D̄

over F2 by

C′(F )D̄ = {(Trm1 (xh) + Trs1(yF (h)))h∈D : x ∈ F2m , y ∈ F2s}.

Determining the weight distributions of the linear codes if F is a vectorial bent function with m 6= 2s

or an almost bent function but not the Gold type. Clearly, if F is an almost bent function, then

s = m. Table 2 in Theorem 3.3 has given the weight distribution of C′(F )D̄ for F being an almost

bent function.

The following is a list of known almost bent monomials f(x) = xd on F2m for an odd m:

• d = 2h + 1, where gcd(m,h) = 1 is odd [21];

• d = 22h − 2h + 1, where h ≥ 2 and gcd(m,h) = 1 is odd [31];

• d = 2
m−1

2 + 3, where m is odd [31];

• d = 2
m−1

2 + 2
m−1

4 − 1, where m ≡ 1 (mod 4) [26,27];

• d = 2
m−1

2 + 2
3m−1

4 − 1, where m ≡ 3 (mod 4) [26,27].

All almost bent monomials f(x) = xd for d in the list above are permutation polynomials on F2m .

Hence, the length of C(f)D̄ is n = 2m−1−1 if ν = 0 and n = 2m−1 if ν = 1, respectively. Substituting

the value of n into Theorem 3.3, we obtain the following results.

Corollary 3.6 Let C(f)D̄ be the linear code defined in (2) with the position set D in (3). If f(x) = xd

for some integer d in the list above, then the following statements hold.

12



Table 3: Weight distribution of the code C(f)D̄ for ν = 0 in Corollary 3.6

Weight Multiplicity

0 1

2m−2 3 · 22m−4 + 2m−3 − 1

2m−2 ± 2
m−1

2 22m−5 ∓ 2
3m−7

2 ± 2
m−5

2 − 2m−4

2m−2 ± 2
m−3

2 22m−3 ∓ 2
3m−5

2

(1) If ν = 0, then C(f)D̄ is a [2m−1 − 1, 2m − 1, 2m−2 − 2
m−3

2 ] code with the weight distribution in

Table 3. Its dual has parameters [2m−1 − 1, 2m−1 − 2m, 5].

(2) If ν = 1, then C(f)D̄ is a [2m−1, 2m, 2m−2 − 2
m−3

2 ] code with the weight distribution in Table 4.

Its dual has parameters [2m−1, 2m−1−2m, 6], and is distance-optimal with respect to the sphere

packing bound.

Table 4: Weight distribution of the code C(f)D̄ for ν = 1 in Corollary 3.6

Weight Multiplicity

0 1

2m−2 3 · 22m−3 + 2m−2 − 2

2m−2 ± 2
m−1

2 22m−4 − 2m−3

2m−2 ± 2
m−3

2 22m−2

2m−1 1

Example 3.7 Let C(f)D̄ be the linear code in Corollary 3.6.

(1) If m = 7, ν = 0, then C(f)D̄ has parameters [63, 13, 24] and its dual has parameters [63, 50, 5].

(2) If m = 7, ν = 1, then C(f)D̄ has parameters [64, 14, 24] and its dual has parameters [64, 50, 6].

The four codes are optimal according to the tables of best codes known in [22].

4 Some punctured codes of binary linear codes from quadratic

functions

Let C(f)D̄ be the binary punctured code defined in (2) with the position set D in (4). It is clear that

the length of C(f)D̄ is equal to 2m−1, as |D| = |{x ∈ F∗
2m : Trm1 (x) = 1}| = 2m−1. As shown in (10),

the Hamming weight of each codeword in this case can be expressed as

wtH(c(a, b)) = 2m−2 −
1

4
(Wf (a, b)−Wf (a, b+ 1)) , (12)
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where Wf (a, b) was given in (5). In this section, we investigate the weight distribution of the

punctured code C(f)D̄ with the position set D in (4), where f is a quadratic function in the list

below and the parameters of its dual.

• f(x) = x2
k+1, where k is an integer with 1 ≤ k ≤ m− 1;

• f(x) = xt1 + xt2 , where 3 |m, m ≥ 9 and t1, t2 ∈ {2
m
3 + 1, 2

2m
3 + 1, 2

2m
3 + 2

m
3 } with t1 6= t2;

• f(x) = Trmk (x2
k+1), where m,k are positive integers such that k |m.

When f(x) = x2
k+1, the parameters and weight distribution of the binary code C(f) were settled

in [29,30]. In this section we will investigate the punctured code C(f)D̄ with a different position set

D = {x ∈ F∗
2m : Trm1 (x) = 1}. It is open if the binary code C(f) was studied in the literature or not

when f is one of the other two quadratic functions in the list above.

4.1 The case that f(x) = x2k+1

In this subsection, we study the punctured code C(f)D̄ in (2) and determine its weight distribution,

where f(x) = x2
k+1 and D = {x ∈ F∗

2m : Trm1 (x) = 1}. When k = 0, f(x) = x2. In this case, it can

be proved that the punctured code C(f)D̄ is permutation-equivalent to the first-order Reed-Muller

code. In the following, we investigate the linear code C(f)D̄ for f(x) = x2
k+1 with 1 ≤ k < m. We

start with the following two lemmas.

Lemma 4.1 Let C(f)D̄ be the linear code defined in (2) with the position set D in (4). Let A⊥
i

denote the number of codewords with weight i in (C(f)D̄)⊥. If f(x) = x2
k+1 with 1 ≤ k < m, then

A⊥
1 = A⊥

2 = A⊥
3 = A⊥

5 = 0 and A⊥
4 =

2m−1 · (2m−2 − 1) · (2ℓ − 2)

4!
,

where ℓ = gcd(k,m).

Proof. From the definition of the linear code C(f)D̄, we know that A⊥
i is equal to the number of sets

{x1, x2, · · · , xi} with i pairwise-distinct nonzero elements in F2m such that















Tr(x1) = Tr(x2) = · · · = Tr(xi) = 1,

x1 + x2 + · · ·+ xi = 0,

x2
k+1

1 + x2
k+1

2 + · · ·+ x2
k+1

i = 0.

It is clear that A⊥
1 = A⊥

2 = 0. From the first and second equations, we see that A⊥
i = 0 if i is odd.

Hence, A⊥
3 = A⊥

5 = 0. In the following, we determine the value of A⊥
4 , which is equal to the number

of sets {x1, x2, x3, x4} with 4 pairwise-distinct nonzero elements in F2m such that















Tr(x1) = Tr(x2) = Tr(x3) = Tr(x4) = 1,

x1 + x2 + x3 + x4 = 0,

x2
k+1

1 + x2
k+1

2 + x2
k+1

3 + x2
k+1

4 = 0.

(13)
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Assume that x1 = µ, x2 = µ+ β, x3 = γ and x4 = γ + β, where µ 6= 0, β, γ, γ + β, and γ 6= 0, β, and

β 6= 0. From (13) we know that A⊥
4 is equal to the number of the sets of the form {µ, µ+β, γ, γ+β}

such that

µ2k+1 + (µ+ β)2
k+1 = γ2

k+1 + (γ + β)2
k+1, Tr(µ) = Tr(γ) = 1 and Tr(β) = 0,

i.e.,

(µ + γ)2
k−1 = β2k−1, Tr(µ) = Tr(γ) = 1 and Tr(β) = 0.

It is clear that (µ+ γ)2
k−1 = β2k−1 if and only if there is a δ ∈ F2ℓ such that µ+ γ = δβ as gcd(2m−

1, 2k−1) = 2ℓ−1. Then A⊥
4 is equal to the number of the sets of the form {µ, µ+β, µ+δβ, µ+β(δ+1)}

such that Tr(µ) = 1 and Tr(β) = Tr(δβ) = 0, where δ ∈ F2ℓ\{0, 1}, µ 6= 0, β, δβ, β(δ + 1) and β 6= 0.

Hence,

A⊥
4 =

1

8 · 4!

∑

z0∈F2

∑

µ∈F∗

2m
\{β,δβ,β(δ+1)}

(−1)z0(Tr(µ)−1)
∑

z1∈F2

∑

β∈F∗

2m

(−1)z1Tr(β)
∑

z2∈F2

∑

δ∈F∗

2ℓ
\{1}

(−1)z2Tr(δβ)

=
2m−3

4!

∑

z1∈F2

∑

β∈F∗

2m

(−1)z1Tr(β)
∑

z2∈F2

∑

δ∈F∗

2ℓ
\{1}

(−1)z2Tr(δβ)

=
2m−3

4!

∑

z1∈F2

∑

z2∈F2

∑

β∈F∗

2m

∑

γ∈F∗

2ℓ
\{1}

(−1)Tr((z1+z2γ)β)

=
2m−3

4!







∑

z1∈F2

∑

z2∈F2

∑

β∈F2m

∑

γ∈F∗

2ℓ
\{1}

(−1)Tr((z1+z2γ)β) − 22 · (2ℓ − 2)







=
2m−3

4!

(

2m · (2ℓ − 2)− 22 · (2ℓ − 2)
)

=
2m−1 · (2m−2 − 1) · (2ℓ − 2)

4!
.

The desired conclusion then follows. �

Theorem 4.2 Let C(f)D̄ be the linear code defined in (2) with the position set D in (3). Let k be a

positive integer with k < m and ℓ = gcd(k,m). If f(x) = x2
k+1, then the following statements hold.

(1) If v2(m) ≤ v2(k), then C(f)D̄ is a [2m−1, 2m, 2m−2 − 2
m+ℓ−4

2 ] code with the weight distribution

in Table 5. If ℓ ≥ 2, then its dual has parameters [2m−1, 2m−1 − 2m, 4]. If ℓ = 1, then its dual

has parameters [2m−1, 2m−1−2m, 6], and is distance-optimal with respect to the sphere packing

bound.

(2) If v2(m) > v2(k) and gcd(m,k) = 1, then C(f)D̄ is a [2m−1, 2m, 2m−2−2
m
2 ] code with the weight

distribution in Table 6. Its dual has parameters [2m−1, 2m−1 − 2m, 6], and is distance-optimal

with respect to the sphere packing bound.

(3) If k = m
2 and m ≥ 4, then C(f)D̄ is a [2m−1, 3m2 , 2m−2 − 2

m−2
2 ] code with the weight distribution

in Table 7. Its dual has parameters [2m−1, 2m−1 − 3m
2 , 4], and is distance-optimal with respect

to the sphere packing bound.
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Table 5: The weight distribution of C(f)D̄ in Theorem 4.2

Weight Multiplicity

0 1

2m−2 22m − 22m−ℓ+1 + 3 · 22m−2ℓ−1 + 2m−ℓ−1 − 2

2m−2 ± 2
m+ℓ−2

2 22m−2ℓ−2 − 2m−ℓ−2

2m−2 ± 2
m+ℓ−4

2 22m−ℓ − 22m−2ℓ

2m−1 1

Table 6: The weight distribution of C(f)D̄ in Theorem 4.2

Weight Multiplicity

0 1

2m−2 17 · 22m−5 + 3 · 2m−3 − 2

2m−2 ± 2
m
2

1
3

(

22m−6 − 2m−4
)

2m−2 ± 2
m−2

2
1
6

(

11 · 22m−3 − 2m
)

2m−1 1

Proof. We prove the desired conclusions for Cases (1) and (3) only. The conclusions in Case (2) can

be proved in a similar way. If a = 0, it is easy to see that

wtH (c(a, b)) = 2m−2 −
1

4
(Wf (0, b) −Wf (0, b+ 1)) =















0, if b = 0,

2m−1, if b = 1,

2m−2, if b 6= 0, 1.

If a 6= 0 and v2(m) ≤ v2(k), then Lemma 2.2 shows thatWf (a, b) ∈ {0,±2
m+ℓ

2 }. Consequently, in this

case we have Wf (a, b)−Wf (a, b+1) ∈ {0,±2
m+ℓ
2 ,±2

m+ℓ+2
2 }. From (12) we see that the set of possible

nonzero weights of C(f)D̄ is {2m−1, 2m−2, 2m−2 ± 2
m+ℓ−2

2 , 2m−2 ± 2
m+ℓ−4

2 } and C(f)D̄ has dimension

2m. Set w1 = 2m−1, w2 = 2m−2, w3 = 2m−2 + 2
m+ℓ−2

2 , w4 = 2m−2 − 2
m+ℓ−2

2 , w5 = 2m−2 + 2
m+ℓ−4

2

and w6 = 2m−2 − 2
m+ℓ−4

2 . It is known that Aw1 = 1. From Lemma 4.1 and the first five Pless power

moments we have


























∑6
i=2Awi = 22m − 2;

∑6
i=2wiAwi = 2m−1(22m−1 − 1);

∑6
i=2w

2
iAwi = 22m−2(22m−2 + 2m−1 − 1);

∑6
i=2w

3
iAwi = 23m−3(22m−2 + 3 · 2m−1 − 1);

∑6
i=2w

4
iAwi = 23m−5

(

(2m−1 + 1)(22m−2 + 5 · 2m−1 − 2)− (2m−2 − 1)(2ℓ − 1)
)

− 24(m−1).

(14)

Solving the linear equations in (14), we get the desired values of Awi in Table 5. If ℓ > 1, by Lemma

4.1, A⊥
4 > 0. Consequently, the dual distance of the code equals 4. If ℓ = 1, by Lemma 4.1, A⊥

4 = 0.

Since all weights in (C(f)D̄)⊥ are even, the minimum distance of (C(f)D̄)⊥ is at least 6. By the
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Table 7: The weight distribution of C(f)D̄ in Theorem 4.2

Weight Multiplicity

0 1

2m−2 2
3m
2

−1 + 2m−1 − 2

2m−2 ± 2
m−2

2 2
3m
2

−2 − 2m−2

2m−1 1

sphere packing bound, the minimum distance of (C(f)D̄)⊥ cannot be 8 or more. Consequently, the

minimum distance of (C(f)D̄)⊥ is equal to 6. This completes the proof of the conclusions in Case (1).

Next, we prove the conclusions for Case (3). Assume that k = m
2 and f(x) = x2

m/2+1, then

W 2
f (a, b) =

∑

x0∈F2m

(−1)Tr(ax
2m/2+1
0 +bx0)

∑

x∈F2m

(−1)Tr(ax
2m/2+1+bx)

=
∑

x,y∈F2m

(−1)Tr(a(x+y)2
m/2+1+b(x+y)+ax2m/2+1+bx)

=
∑

x,y∈F2m

(−1)Tr(a(y
2m/2+1+xy2

m/2
+x2m/2

y)+by)

=
∑

y∈F2m

(−1)Tr(ay
2m/2+1+by)

∑

x∈F2m

(−1)Tr(a(xy
2m/2

+x2m/2
y))

= 2m
∑

y ∈ F2m

(a+ a2
m/2

)y = 0

(−1)Tr(ay
2m/2+1+by)

=

{

2mWf (a, b), if a ∈ F
2
m
2
,

2m, otherwise.

(15)

If a ∈ F
2
m
2
, then Tr(ay2

m/2+1) = 0 and the possible values of Wf (a, b) are as follows:

Wf (a, b) =
∑

y∈F2m

(−1)Tr(ay
2m/2+1+by) =

∑

y∈F2m

(−1)Tr(by) =

{

2m, if b = 0,

0, otherwise.

Hence,

Wf (a, b) =















2m, if a ∈ F
2
m
2

and b = 0,

0, if a ∈ F
2
m
2

and b 6= 0,

±2
m
2 , otherwise.

When (a, b) runs through F2
2m , we know that Wf (a, b) − Wf (a, b + 1) ∈ {0,±2

m+2
2 ,±2m} and the

value 2m occurs 2
m
2 times. Then wtH(c(a, b)) ∈ {0, 2m−2 ± 2

m−2
2 , 2m−1} and wtH(c(a, b)) = 0 occurs

2
m
2 times by (15). So, C(f)D̄ has dimension 3m

2 and we obtain the weight distribution in Table 7
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from the first three Pless power moments. From the sphere packing bound and Lemma 4.1, the

desired conclusions on C(f)D̄ then follow. In this case, ℓ = m/2 > 1. It then follows from Lemma

4.1, A⊥
4 > 0. Consequently, the dual distance of the code equals 4. �

Example 4.3 Let C(f)D̄ be the linear code in Theorem 4.2.

(1) Let m = 5, k = 1, then C(f)D̄ has parameters [16, 10, 4] and its dual has parameters [16, 6, 6].

(2) Let m = 8, k = 4, then C(f)D̄ has parameters [128, 12, 56] and its dual has parameters

[128, 116, 4].

All the four codes are optimal according to the tables of best codes known in [22].

4.2 The case that f(x) = xt1 + xt2

In this subsection, we investigate the weight distribution of the punctured code C(f)D̄ and the

parameters of its dual for f(x) = xt1+xt2 , where 3 |m, m ≥ 9 and t1, t2 ∈ {2
m
3 +1, 2

2m
3 +1, 2

2m
3 +2

m
3 }

with t1 6= t2. We first determine all possible Hamming weights in C(f)D̄.

Lemma 4.4 Let C(f)D̄ be the linear code defined in (2) with the position set D in (4). Let 3 |m,

m ≥ 9 and f(x) = xt1 + xt2 , where t1, t2 ∈ {2
m
3 + 1, 2

2m
3 + 1, 2

2m
3 + 2

m
3 } with t1 6= t2. Then C(f)D̄

is a [2m−1, 5m3 ] code with nonzero weights in the set {2m−2, 2m−1, 2m−2 ± 2
2m
3

−1}.

Proof. We prove the conclusions only for the case t1 = 2
2m
3 +1 and t2 = 2

2m
3 +2

m
3 . The conclusions

in the other two cases can be similarly proved. In this case, we have

Wf (a, b) =
∑

x∈F2m

(−1)Tr(a(x
22m/3+1+x22m/3+2m/3

)+bx).

If a ∈ F
2
m
3
, then a+ a2

m/3
= 0 and a+ a2

2m/3
= 0. In this case,

Wf (a, b) =
∑

x∈F2m

(−1)Tr(bx) =

{

2m, if b = 0,

0, if b 6= 0.

Hence, when (a, b) runs over F
2
m
3
× F2m , we obtain

Wf (a, b) −Wf (a, b+ 1) =











0, occuring 22m − 2
m
3
+1 times,

2m, occuring 2
m
3 times,

−2m, occuring 2
m
3 times.

(16)

If a ∈ F2m \ F
2
m
3
, similar to the calculations in (15), we have

W 2
f (a, b) =

∑

y∈F2m

(−1)Tr(a(y
22m/3+1+y2

2m/3+2m/3
)+by)

∑

x∈F2m

(−1)Tr((ay
2m/3

+a2
m/3

y+a2
2m/3

y2
m/3

+ay)x22m/3
)

= 2m
∑

y ∈ F2m

(a+ a2
2m/3

)y2
m/3

+ (a2
m/3

+ a)y = 0

(−1)Tr(a(y
22m/3+1+y2

2m/3+2m/3
)+by).

18



Let La(y) = (a+ a2
2m/3

)y2
m/3

+ (a2
m/3

+ a)y, then

Ker(La(y)) = { y ∈ F2m | La(y) = 0 } =
{

(a2
2m/3

+ a)z : z ∈ F
2
m
3

}

.

From (7) we get

W 2
f (a, b) =







2
4m
3 , if Tr

(

a(y2
2m/3+1 + y2

2m/3+2m/3
) + by

)

= 0 for all y ∈Ker(La(y)),

0, otherwise.

If Tr
(

a(y2
2m/3+1 + y2

2m/3+2m/3
) + by

)

= 0 for all y ∈Ker(La(y)), then

Tr
(

a(y2
2m/3+1 + y2

2m/3+2m/3
) + (b+ 1)y

)

= Tr(y) = Tr
m
3
1

(

Trmm
3
((a2

2m/3
+ a)t)

)

= 0

because t ∈ F
2
m
3
. Hence, Wf (a, b) −Wf (a, b + 1) ∈

{

0,±2
2m
3

+1
}

for a ∈ F2m\F2
m
3
. Combining this

with (16), when (a, b) runs through F2m × F2m , we have

Wf (a, b)−Wf (a, b+ 1) ∈
{

0,±2m,±2
2m
3

+1
}

and each of the values ±2m occurs 2
m
3 times. Then from (12) we know that wtH(c(a, b)) = 0

and wtH(c(a, b)) = 2m−1 both occur 2
m
3 times and the nonzero weights in C(f)D̄ belong to the set

{2m−2, 2m−1, 2m−2 ± 2
2m
3

−1}. It then follows that C(f)D̄ is degenerate and has dimension 5m
3 . This

completes the proof. �

Theorem 4.5 Follow the notation and conditions introduced in Lemma 4.4. Then C(f)D̄ is a

[2m−1, 5m3 , 2m−2 − 2
2m
3

−1] code with the weight distribution in Table 8. Its dual has parameters

[2m−1, 2m−1 − 5m
3 , 4], and is distance-optimal with respect to the sphere packing bound.

Table 8: The weight distribution of C(f)D̄ in Theorem 4.5

Weight Multiplicity

0 1

2m−2 2
5m
3 − 2

4m
3

−1 + 2
2m
3

−1 − 2

2m−2 ± 2
2m
3

−1 2
4m
3

−2 − 2
2m
3

−2

2m−1 1

Proof. From Lemma 4.4, we conclude that the dimension of C(f)D̄ is 5m
3 , the possible weights in

C(f)D̄ are given in the set {0, 2m−1, 2m−2, 2m−2 ± 2
2m
3

−1} and the weight 2m−1 occurs 1 time.

Denote w1 = 2m−2, w2 = 2m−2 − 2
2m
3

−1 and w3 = 2m−2 + 2
2m
3

−1. Let Awi be the number of

the codewords with weight wi in C(f)D̄. Note that the all-one vector is a codeword of C(f)D̄. It then

follows that all codewords in (C(f)D̄)⊥ have even weights. It is easily seen that the minimum weight
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in (C(f)D̄)⊥ cannot be 2. Consequently, the minimum weight in (C(f)D̄)⊥ is at least 4. From the

first three Pless power moments, we have















∑3
i=1 Awi = 2

5m
3 − 2;

∑3
i=1 wiAwi = 2

8m
3

−2 − 2m−1;
∑3

i=1 w
2
iAwi = 2

8m
3

−2(2m−1 + 1)− 22m−2.

Solving this system of equations, we obtain Aw1 = 2
5m
3 − 2

4m
3

−1 +2
2m
3

−1 − 2, Aw2 = Aw3 = 2
4m
3

−2 −

2
2m
3

−2.

We now consider the minimum distance of (C(f)D̄)⊥. We have already proved that

dH

(

(C(f)D̄)⊥
)

≥ 4.

If there exists a [2m−1, 2m−1 − 5m
3 ] binary code with Hamming distance at least 5, then

2
∑

i=0

(

2m−1

i

)

= 1 + 2m−1 + 2m−2 · (2m−1 − 1) > 2
5m
3 ,

which contradicts the sphere packing bound. Hence, dH

(

(C(f)D̄)⊥
)

= 4 and (C(f)D̄)⊥ is distance-

optimal to the sphere packing bound. �

Example 4.6 Let C(f)D̄ be the linear code in Theorem 4.5. Let m = 9, then C(f)D̄ has parameters

[256, 15, 96] and its dual has parameters [256, 241, 4].

We settled the weight distribution of the punctured code C(f)D̄ in Theorem 4.5, but do not

know if the corresponding code C(f) was studied in the literature or not.

4.3 The case that f(x) = Trmk (x
2k+1)

In this subsection, we study the weight distribution of the punctured code C(f)D̄ and the parameters

of its dual for f(x) = Trmk (x2
k+1), where k divides m. It is easy to see that f(x) = 0 if k = m

2 . In

the following, we just consider the case that k 6∈ {m, m2 }. We begin with the following lemma.

Lemma 4.7 Let C(f)D̄ be the punctured code defined in (2) with the position set D in (4). Let

f(x) = Trmk (x2
k+1), where k divides m and k 6∈ {m, m2 }. Let t = 2

m+2k−2
2 if v2(m) > v2(k) + 1, and

t = 2
m+2k−4

2 if v2(m) = v2(k) + 1, and t = 2
m+k−4

2 if v2(m) = v2(k). Then C(f)D̄ is a [2m−1, k +m]

code whose nonzero weights are in the set
{

2m−2, 2m−1, 2m−2 ± t
}

.

Proof. We prove the conclusions only for the case v2(m) > v2(k) + 1. The conclusions for the other

two cases can be similarly proved. We first determine the possible values of Wf (a, b) for (a, b) ∈ F2
2m ,

where Wf (a, b) was defined in (5). Note that Tr(aTrmk (x2
k+1)) = Tr(Trmk (a)x2

k+1). If Trmk (a) = 0,

then

Wf (a, b) =
∑

x∈F2m

(−1)Tr(bx) =

{

2m, if b = 0,

0, if b 6= 0.
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Let L = {a ∈ F2m : Trmk (a) = 0}, then |L| = 2m−k. Hence, when (a, b) runs over L× F2m , we have

Wf (a, b) −Wf (a, b+ 1) =











0, occuring 2m+k − 2m−k+1 times,

2m, occuring 2m−k times,

−2m, occuring 2m−k times.

(17)

If Trmk (a) 6= 0, similar to the discussions in (15), we have

W 2
f (a, b) =

∑

x∈F2m

(−1)Tr(aTr
m
k (x2k+1)+bx)

∑

y∈F2m

(−1)Tr(aTr
m
k (xy2

k
+x2ky))

= 2m
∑

x ∈ F2m

x+ x2k = 0

(−1)Tr(aTr
m
k (x2k+1)+bx)

= 2m ·
∑

x∈F
22k

(−1)Tr(aTr
m
k (x2k+1)+bx),

as v2(m) > v2(k) + 1. Then by (7) we obtain

W 2
f (a, b) =







2m+2k, if Tr
(

aTrmk (x2
k+1) + bx

)

= 0 for all x ∈ F22k ,

0, otherwise.

Clearly, if Tr(aTrmk (x2
k+1) + bx) = 0 for all x ∈ F22k , then Tr(aTrmk (x2

k+1) + (b+ 1)x) = Tr (x) =
m
2kTr

2k
1 (x). Hence, Wf (a, b) − Wf (a, b + 1) ∈ {0,±2

m+2k+2
2 } for Trmk (a) 6= 0. Combining this with

(17), when (a, b) runs through F2
2m , we have

Wf (a, b)−Wf (a, b+ 1) ∈
{

0, 2m,−2m,±2
m+2k+2

2

}

and each of the values ±2m occurs 2m−k times. Then wtH(c(a, b)) = 0 and wtH(c(a, b)) = 2m−1 both

occur 2m−k times and every nonzero weight in C(f)D̄ belongs to the set {2m−2, 2m−1, 2m−2±2
m+2k−2

2 }

by (12) . Hence, C(f)D̄ is degenerate and has dimension m+ k. This completes the proof. �

Using Lemma 4.7 and similar discussions in the proof of Theorem 4.2, one can prove the

following theorem.

Theorem 4.8 Follow the notation and conditions introduced in Lemma 4.7. Then C(f)D̄ is a

[2m−1,m + k, 2m−2 − t] code with the weight distribution in Table 9. Its dual has parameters
[

2m−1, 2m−1 −m− k, 4
]

, and is distance-optimal with respect to the sphere packing bound.

Example 4.9 Let C(f)D̄ be the linear code in Theorem 4.8. Let m = 5 and k = 1. Then C(f)D̄ has

parameters [16, 6, 6] and its dual has parameters [16, 10, 4]. Both codes are optimal according to the

tables of best codes known in [22].

We settled the parameters and weight distribution of the punctured code C(f)D̄ in Theorem 4.8,

but do not know if the corresponding code C(f) was studied in the literature or not.
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Table 9: The weight distribution of C(f)D̄ in Theorem 4.8

Weight Multiplicity

0 1

2m−2 2m+k − 2 + 22m−3 · (1− 2k)/t2

2m−2 ± t 22m−4 · (2k − 1)/t2

2m−1 1

5 Some punctured codes of binary linear codes from cyclotomic

classes

In this section, we settle the weight distribution of the punctured code C(f)D̄ and the parameters of

its dual, where the position set D is a cyclotomic class and f(x) = xd for some integer d. Let γ be a

primitive element of F2m and let t be a positive integer dividing 2m − 1. Let D = 〈γt〉, which is the

subgroup of F∗
2m generated by γt. The multiplicative cosets of D are called the cyclotomic classes of

order t in F∗
2m . Recall that the binary punctured code is

C(f)D̄ = {c(a, b) = (Tr(axd + bx))x∈D : a, b ∈ F2m} (18)

if f(x) = xd. Since |D| = 2m−1
t , the length n of C(f)D̄ is 2m−1

t . It is easily seen that the Hamming

weight of the codeword c(a, b) is given by

wtH(c(a, b)) = n−
∣

∣

∣

{

x ∈ D : Tr
(

axd + bx
)

= 0
}∣

∣

∣ =
1

2

(

n−
∑

x∈D

(−1)Tr(ax
d+bx)

)

. (19)

To determine the weight distribution of C(f)D̄, we need to determine the value distribution of

T (a, b) =
∑

x∈D

(−1)Tr(ax
d+bx) (20)

for (a, b) running through F2
2m . In the following, we propose several classes of linear codes with few

weights by choosing proper d and t.

5.1 The case that d = 2m−1
3

and lcm(3, t) | (2
m
2 + 1)

In this subsection, we always assume that v2(m) = 1, d = 2m−1
3 and t is a positive integer satisfying

lcm(3, t) | (2
m
2 + 1). If 3 | t, then x

2m−1
3 = 1 for any x ∈ D. From (20) we have

T (a, b) =
∑

x∈D

(−1)Tr(a+bx). (21)
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If 3 ∤ t, then

T (a, b) =
∑

x∈〈γ3t〉

(−1)Tr(a+bx) +
∑

x∈〈γ3t〉

(−1)Tr(aγ
t(2m−1)

3 +bγtx) +
∑

x∈〈γ3t〉

(−1)Tr(aγ
2t(2m−1)

3 +bγ2tx)

=
1

3t





∑

x∈F∗

2m

(−1)Tr(a+bx3t) +
∑

x∈F∗

2m

(−1)Tr(aγ
t(2m−1)

3 +bγtx3t) +
∑

x∈F∗

2m

(−1)Tr(aγ
2t(2m−1)

3 +bγ2tx3t)





=
1

3t





∑

x∈F2m

(−1)Tr(a+bx3t) +
∑

x∈F2m

(−1)Tr(aγ
t(2m−1)

3 +bγtx3t) +
∑

x∈F2m

(−1)Tr(aγ
2t(2m−1)

3 +bγ2tx3t)





−
1

3t

(

(−1)Tr(a) + (−1)Tr(aγ
t(2m−1)

3 ) + (−1)Tr(aγ
2t(2m−1)

3 )

)

.

(22)

In order to obtain the possible values of T (a, b) for 3 ∤ t, we need the following lemma.

Lemma 5.1 Let N be the number of zeros in the sequence
(

Tr(a), Tr(aγ
t(2m−1)

3 ), Tr(aγ
2t(2m−1)

3 )
)

.

When a runs over F2m , we have

N =

{

3, occuring 2m−2 times,

1, occuring 3 · 2m−2 times.

Proof. Obviously, the possible values of N are 0, 1, 2 or 3. Let Ni denote the number of times that

N = i when a runs over F2m , where i ∈ {0, 1, 2, 3}. Then

N3 =
1

23

∑

a∈F2m

∑

y0∈F2

(−1)Tr(y1a)
∑

y1∈F2

(−1)Tr(y1aγ
2m−1

3 )
∑

y2∈F2

(−1)Tr(y2aγ
2(2m−1)

3 )

=
1

23

∑

a∈F2m

∑

y0∈F2

∑

y1∈F2

∑

y2∈F2

(−1)
Tr

(

a(y0+y1γ
2m−1

3 +y2γ
2(2m−1)

3 )

)

.

Note that y0 + y1γ
2m−1

3 + y2γ
2(2m−1)

3 = 0 if and only if y0 = y1 = y2 = 0 or y0 = y1 = y2 = 1. Then

N3 =
1

23
(2m + 2m) = 2m−2.

Due to symmetry, we have

N2 =
3

23

∑

a∈F2m

∑

y0∈F2

(−1)y0(Tr(a)−1)
∑

y1∈F2

(−1)Tr(y1aγ
2m−1

3 )
∑

y2∈F2

(−1)Tr(y2aγ
2(2m−1)

3 )

=
3

23

∑

a∈F2m

∑

y1∈F2

∑

y0∈F2

∑

y2∈F2

(−1)Tr(a(y0+y1γ
2m−1

3 +y2γ
2(2m−1)

3 )−y0)

=
3

23

∑

a∈F2m

∑

y1∈F2

∑

y2∈F2

(−1)
Tr

(

a(y1γ
2m−1

3 +y2γ
2(2m−1)

3 )

)

−

3

23

∑

a∈F2m

∑

y1∈F2

∑

y2∈F2

(−1)
Tr

(

a(1+y1γ
2m−1

3 +y2γ
2(2m−1)

3 )

)

.

23



Note that y1γ
2m−1

3 + y2γ
2(2m−1)

3 = 0 if and only if y1 = y2 = 0, and 1 + y1γ
2m−1

3 + y2γ
2(2m−1)

3 = 0 if

and only if y1 = y2 = 1. Then

N2 =
1

23
(2m − 2m) = 0.

Similarly, we can prove that N1 = 3 · 2m−2 and N0 = 0. �

Theorem 5.2 Let v2(m) = 1, d = 2m−1
3 and t be a positive integer satisfying lcm(3, t) | (2

m
2 +1). Let

C(f)D̄ be the linear code defined in (18) and D = 〈γt〉. If t 6= 2
m
2 + 1, then the following statements

hold.

(1) If 3 | t, then C(f)D̄ is a [2
m−1
t ,m+1] code with the weight distribution in Table 10. Its dual has

parameters [2
m−1
t , 2

m−1
t −m− 1, 4], and is distance-optimal with respect to the sphere packing

bound.

Table 10: Weight distribution of the code C(f)D̄ for 3 | t in Theorem 5.2

Weight Multiplicity

0 1
1
2t

(

2m − 2− 2
m
2

)

(t−1)(2m−1)
t

1
2t

(

2m + 2
m
2

)

(t−1)(2m−1)
t

1
2t

(

2m − 2 + (t− 1)2
m
2

)

(2m−1)
t

1
2t

(

2m − (t− 1)2
m
2

)

(2m−1)
t

2m−1
t 1

(2) If 3 ∤ t, then C(f)D̄ is a [2
m−1
t ,m + 2] code with the weight distribution in Table 11. Its dual

has parameters [2
m−1
t , 2

m−1
t −m− 2, 3].

Table 11: Weight distribution of the code C(f)D̄ for 3 ∤ t in Theorem 5.2

Weight Multiplicity

0 1
2m−1
2t − 1

2t

(

(t− 1)2
m
2 − 1

)

2m−1
t

2m−1
2t + 1

6t

(

(3t− 1)2
m
2 − 1

)

2m+1−2
t

1
2t

(

2m + 2
m
2

)

(t−1)(2m−1)
t

2m−1
2t − 1

6t

(

2
m
2 + 1

)

3(t−1)(2m−1)
t

2m−1
2t − 1

6t

(

(3t+ 1)2
m
2 + 1

)

2m−1
t

2(2m−1)
3t 3
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Proof. We prove this theorem case by case as follows.

Case 1: 3 | t. From (21) we have

T (a, b) = (−1)Tr(a)
∑

x∈E

(−1)Tr(bx) =
1

t
(−1)Tr(a)

∑

x∈F∗

2m

(−1)Tr(bx
t)

=
1

t
(−1)Tr(a) −

1

t
(−1)Tr(a)

∑

x∈F2m

(−1)Tr(bx
t).

If b = 0, it is clear that

T (a, 0) =

{

(1−2m)
t , if Tr(a) = 0,

(2m−1)
t , if Tr(a) = 1.

(23)

If b 6= 0, then b can be written as b = γi, where γ is a primitive element of F2m and 1 ≤ i ≤ 2m − 1.

From Lemma 2.4 we have

T (a, γi) =

{

1
t (−1)Tr(a) − 1

t (−1)Tr(a)(−1)s2
m
2 , if i 6≡ 0 (mod t),

1
t (−1)Tr(a) − 1

t (−1)Tr(a)(−1)s−1(t− 1)2
m
2 , if i ≡ 0 (mod t),

(24)

as t is a positive integer such that lcm(3, t) | (2m/2 + 1). Hence, when (a, b) runs over F2
2m , by (23)

and (24), the value distribution of T (a, b) is given as follows:

T (a, b) =















































(1−2m)
t , occuring 2m−1 times,

(2m−1)
t , occuring 2m−1 times,

1
t

(

2
m
2 + 1

)

, occuring 2m−1(t−1)(2m−1)
t times,

−1
t

(

2
m
2 + 1

)

, occuring 2m−1(t−1)(2m−1)
t times,

1
t −

1
t (t− 1)2

m
2 , occuring 2m−1(2m−1)

t times,

−1
t +

1
t (t− 1)2

m
2 , occuring 2m−1(2m−1)

t times.

(25)

From (19) and (25), we know that the Hamming weight 0 occurs 2m−1 times when (a, b) runs

through F2
2m . Hence, in this case, C(f)D̄ is degenerate and has dimension m + 1. Dividing each

frequency by 2m−1 in (25), we get the weight distribution in Table 10 from (19). From the first five

Pless power moments and the weight distribution of C(f)D̄, we deduce that the dual of C(f)D̄ is a

[2
m−1
t , 2

m−1
t − m − 1, 4] code. If there exists a [2

m−1
t , 2

m−1
t − m − 1] binary code with Hamming

distance at least 5, then we have

2
∑

i=0

(

2m−1
t

i

)

= 1 +
2m − 1

t
+

2m − 1

2t
· (

2m − 1

t
− 1) > 2m+1

as t 6= 2
m
2 + 1, which is contrary to the sphere packing bound. Hence, the dual code (C(f)D̄)⊥ is

distance-optimal with respect to the sphere packing bound.

Case 2: 3 ∤ t. From (22) we have

T (a, b) =
1

3t

(

(−1)Tr(a)
(

∑

x∈F2m

(−1)Tr(bx
3t) − 1

)

+ (−1)Tr(aγ
t(2m−1)

3 )
(

∑

x∈F2m

(−1)Tr(bγ
tx3t) − 1

)

+ (−1)Tr(aγ
2t(2m−1)

3 )
(

∑

x∈F2m

(−1)(bγ
2tx3t) − 1

)

)

.
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If b = 0, it is clear that

T (a, 0) =
2m − 1

3t

(

(−1)Tr(a) + (−1)Tr(aγ
t(2m−1)

3 ) + (−1)Tr(aγ
2t(2m−1)

3 )

)

.

From Lemma 5.1 we have

T (a, 0) =

{

(2m−1)
t , occuring 2m−2 times,

− (2m−1)
3t , occuring 3 · 2m−2 times.

(26)

If b 6= 0, then b can be written as b = γi, where γ is a primitive element of F2m and 1 ≤ i ≤ 2m − 1.

From Lemma 2.4 we have

T (a, γi) =











































































1
3t +

1
3t

∑

x∈F2m

(

(−1)Tr(γ
ix3t) − (−1)Tr(γ

i+tx3t) − (−1)Tr(γ
i+2tx3t)

)

,

if Tr(a) = 0, Tr(aγ
t(2m−1)

3 ) = 1 and Tr(aγ
2t(2m−1)

3 ) = 1,
1
3t +

1
3t

∑

x∈F2m

(

−(−1)Tr(γ
ix3t) + (−1)Tr(γ

i+tx3t) − (−1)Tr(γ
i+2tx3t)

)

,

if Tr(a) = 1, Tr(aγ
t(2m−1)

3 ) = 0 and Tr(aγ
2t(2m−1)

3 ) = 1,
1
3t +

1
3t

∑

x∈F2m

(

−(−1)−Tr(γix3t) − (−1)Tr(γ
i+tx3t) + (−1)Tr(γ

i+2tx3t)
)

,

if Tr(a) = 1, Tr(aγ
t(2m−1)

3 ) = 1 and Tr(aγ
2t(2m−1)

3 ) = 0,

−1
t +

1
3t

∑

x∈F2m

(

(−1)Tr(γ
ix3t) + (−1)Tr(γ

i+tx3t) + (−1)Tr(γ
i+2tx3t)

)

,

if Tr(a) = Tr(aγ
t(2m−1)

3 ) = Tr(aγ
2t(2m−1)

3 ) = 0.

(27)

Clearly, one of 3t | i, 3t | (i + t) and 3t | (i + 2t) holds if and only if t | i for any positive integer t and

1 ≤ i ≤ 2m − 1. Otherwise, 3t ∤ i, 3t ∤ (i + t) and 3t ∤ (i + 2t). Then combining Lemma 2.4, (26)

and (27), it is not hard to see that when (a, b) runs over F2
2m , the value distribution of T (a, b) is

given as follows:

T (a, b) =































































(2m−1)
t , occuring 2m−2 times,

− (2m−1)
3t , occuring 3 · 2m−2 times,

−1
t +

1
t

(

(t− 1)2
m
2

)

, occuring (2m−1)2m−2

t times,

1
3t

(

1− 3 · 2
m
2

)

, occuring (t−1)(2m−1)2m−2

t times,

1
3t

(

1− (3t− 1)2
m
2

)

, occuring (2m−1)2m−1

t times,

1
3t

(

2
m
2 + 1

)

, occuring 3(t−1)(2m−1)2m−2

t times,

1
3t

(

(3t+ 1)2
m
2 + 1

)

, occuring (2m−1)2m−2

t times.

(28)

By a similar analysis to Case 1, we obtain the weight distribution of C(f)D̄ and the parameters of

its dual. This completes the proof. �

Example 5.3 Let C(f)D̄ be the linear code in Theorem 5.2. Let m = 6 and t = 3, then C(f)D̄ has

parameters [21, 7, 8] and its dual has parameters [21, 14, 4]. The two codes are optimal according to

the tables of best codes known in [22].
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Remark 5.4 If t = 2
m
2 + 1, it is easy to check that C(f)D̄ is a [2

m
2 − 1, m2 + 1, 2

m
2
−1 − 1] code with

the weight enumerator

1 + (2
m
2 − 1)(x2

m
2 −1−1 + x2

m
2 −1

) + x2
m
2 −1,

which is optimal with respect to the Griesmer bound. Its dual has parameters [2
m
2 −1, m2 +1, 4], which

is distance-optimal with respect to the sphere packing bound. By the Assmus-Mattson theorem [2],

the code C(f)D̄ and its dual support 2-designs [13, Chapter 4]. The reader is informed that in the

special case t = 2
m
2 + 1, the code C(f)D̄ is permutation-equivalent to a singly punctured code of the

first-order Reed-Muller code [37].

5.2 The case that d(2k + 1) ≡ 2
m
2 + 1 (mod 2m − 1) and t = 2k + 1

In this subsection, we always assume that m is even, d(2k+1) ≡ 2
m
2 +1 (mod 2m−1) and t = 2k+1.

From (20) it follows that

T (a, b) =
∑

x∈D

(−1)Tr(ax
d+bx) =

1

2k + 1

∑

x∈F∗

2m

(−1)Tr(ax
2m/2+1+bx2k+1)

=
1

2k + 1

∑

x∈F2m

(−1)Tr(ax
2m/2+1+bx2k+1) −

1

2k + 1
.

(29)

If k = m
2 , by Lemma 2.4, (19) and (29), C(f)D̄ is a one-weight code with parameters [2

m
2 −1, m2 , 2

m
2
−1],

and is permutation-equivalent to a Simplex code. In the following, we determine the parameters and

the weight distribution of C(f)D̄ and the parameters of the dual code (C(f)D̄)⊥ for k 6= m
2 .

Theorem 5.5 Let d satisfy the condition d(2k + 1) ≡ 2
m
2 + 1 (mod 2m − 1). Let t = 2k + 1 and

k 6= m
2 . Let C(f)

D̄ be the linear code defined in (18). Then C(f)D̄ is a [2
m−1
t , 3m2 , 2

m−1−2
m
2 +k−1

t ] code

with the weight distribution in Table 12. If k > 1, its dual has parameters [2
m−1
t , 2

m−1
t − 3m

2 , 3]. If

k = 1 and m 6= 6, its dual has parameters [2
m−1
t , 2

m−1
t − 3m

2 , 4], and is distance-optimal with respect

to the sphere packing bound. If k = 1 and m = 6, its dual has parameters [21, 12, 5], and is optimal

according to the tables of best codes known in [22].

Table 12: Weight distribution of C(f)D̄ in Theorem 5.5

Weight Multiplicity

0 1

2m−1+2
m
2 −1

t
23k(2

m
2 −1)(2m−2m−2k−2m−3k+2

m
2 −2

m
2 −k+1)

t2(2k−1)

2m−1−2
m
2 +k−1

t
2k(2m−1)(2

m
2 +2

m
2 −k+2

m
2 −2k+1)

t2

2m−1+2
m
2 +2k−1

t
(2

m
2 −k−1)(2m−1)
t2(2k−1)

Proof. It is clear that Tr
(

ax2
m/2+1

)

= Tr
m
2
1

(

(a+ a2
m/2

)x2
m/2+1

)

and a + a2
m/2

∈ F
2
m
2

for any

a ∈ F2m . Obviously, a + a2
m/2

runs through F
2
m
2

with multiplicity 2
m
2 when a runs through F2m .
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Let

K =
{

x ∈ F2m : x+ x2
m/2
}

.

Then c(a, b) = c(a, b+δ) for any δ ∈ K. Since t | (2m−1) and t = 2k+1, it is easy to prove that there

exists a positive integer ℓ such that ℓ(2k + 1) ≡ 2
m
2 + 1 (mod 2m − 1) if and only if v2(k) = v2(

m
2 )

and k | m2 . From Lemma 2.5, (19) and (29), the desired weight distribution of C(f)D̄ follows.

Let A⊥
i be the number of the codewords with weight i in (C(f)D̄)⊥. By the first four Pless

power moments, we get that A⊥
1 = A⊥

2 = 0 and

A⊥
3 =

1

48(2k + 1)5(22k − 1)

(

(27k + 26k+1 + 6 · 22k + 4 · 23k + 7 · 2k + 2− 3 · 25k − 10 · 24k − 9 · 23k) · 2
3m
2

+ (3 · 25k + 10 · 24k + 5 · 23k − 6 · 22k − 7 · 2k − 2) · 2
5m
2
)

.

We can check that A3 = 0 if k = 1 and A3 6= 0 if k > 1. If k = 1, by the fifth Pless power moment,

we obtain that

A⊥
4 =

1

64
(24m + 70 · 2

5m
2 − 6 · 2

7m
2 − 25 · 23m) +

22m

54
−

2
3m
2

+2

81
.

It is easy to check that A⊥
4 = 0 if and only if m = 6. Similarly to the proof of Theorem 5.2, we

can show that (C(f)D̄)⊥ is distance-optimal with respect to the sphere packing bound if k = 1 and

m 6= 6. By the sixth Pless power moment, we obtain A⊥
5 6= 0. This completes the proof. �

Example 5.6 Let C(f)D̄ be the linear code in Theorem 5.5. Let m = 10 and k = 1. Then C(f)D̄ has

parameters [341, 15, 160]. Its dual has parameters [341, 326, 4] and is distance-optimal with respect to

the sphere packing bound.

We settled the parameters and weight distribution of the code C(f)D̄ in Theorem 5.5, but do

not know if the corresponding code C(f) was studied in the literature or not.

6 Summary and concluding remarks

The main contributions of this paper are the following:

1. We obtained several classes of binary punctured codes with three weights, or four weights,

or five weights, or six weights, and determined their weight distributions (see Theorem 3.3,

Corollary 3.6, Theorem 4.2, Theorem 4.5, Theorem 4.8, Theorem 5.2 and Theorem 5.5).

2. We presented several classes of self-complementary linear codes. Almost all of their duals are

distance-optimal with respect to the sphere packing bound (see Theorem 3.3, Corollary 3.6,

Theorem 4.2, Theorem 4.5, Theorem 4.8, Theorem 5.2 and Theorem 5.5).

3. We got some distance-optimal codes with specific parameters (see Example 3.4, Example 3.7,

Example 4.3, Example 4.9 and Example 5.3).

A constructed binary linear code C is new if one of the following happens:

• No binary linear code with the same parameters was documented in the literature.
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• Some binary linear codes with the same parameters as C were documented in the literature,

but their weight distributions are different from the weight distribution of C.

• Some binary linear codes with the same parameters and weight distribution as those of C were

documented in the literature, but they are not permutation-equivalent to C.

Except the class of codes in Remark 5.4, every other class of binary codes presented in this paper

would be new, as we have not found a class of binary codes with the same parameters and weight

distributions in the literature as those codes documented in this paper.

Starting from Section 2, we restricted our discussions on finite fields with characteristic 2.

The position sets were constructed from some trace functions and cyclotomic classes. It would be

interesting to extend some of the results in this paper to the case that q ≥ 3.

Finally, we make some comments on the puncturing and shortening techniques. As mentioned

in the introductory section, every projective linear code over Fq is a punctured Simplex code over Fq

and a shortened code of a Hamming code over Fq. However, it is in general very hard to determine

the parameters of punctured codes of Simplex codes and shortened codes of Hamming codes [37,56].

Hence, we still need to study punctured and shortened codes of other families of linear codes. For

a given linear code C and a set T of coordinate positions in C, it may be possible to determine the

parameters of the punctured code CT when |T | is small, but it is very hard to do so in general if |T |

is large [45].
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