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Abstract—This paper studies a memoryless state-dependent
multiple access channel (MAC) where two transmitters wish to
convey a message to a receiver under the assumption of causal
and imperfect channel state information at transmitters (CSIT)
and imperfect channel state information at receiver (CSIR). In
order to emphasize the limitation of transmitter cooperation
between physically distributed nodes, we focus on the so-called
distributed CSIT assumption, i.e., where each transmitter has
its individual channel knowledge, while the message can be
assumed to be partially or entirely shared a priori between
transmitters by exploiting some on-board memory. Under this
setup, the first part of the paper characterizes the common
message capacity of the channel at hand for arbitrary CSIT
and CSIR structure. The optimal scheme builds on Shannon
strategies, i.e., optimal codes are constructed by letting the
channel inputs be a function of current CSIT only. For a
special case when CSIT is a deterministic function of CSIR, the
considered scheme also achieves the capacity region of a common
message and two private messages. The second part addresses an
important instance of the previous general result in a context of
a cooperative multi-antenna Gaussian channel under i.i.d. fading
operating in frequency-division duplex mode, such that CSIT is
acquired via an explicit feedback of perfect CSIR. The capacity
of the channel at hand is achieved by distributed linear precoding
applied to Gaussian codes. Surprisingly, we demonstrate that it
is suboptimal to send a number of data streams bounded by
the number of transmit antennas as typically considered in a
centralized CSIT setup. Finally, numerical examples are provided
to evaluate the sum capacity of the binary MAC with binary
states as well as the Gaussian MAC with i.i.d. fading.

Index Terms—Cooperative MAC, capacity, distributed CSIT,
Shannon strategies, distributed precoding

I. INTRODUCTION

W IRELESS communication networks can substantially
benefit from transmitter cooperation via joint process-

ing among multiple transmitters (TX), as it enables to mitigate
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S1i

S2i

Si SRi

Fig. 1: Cooperative multiple-access channel with causal and
distributed CSIT S1, S2 and imperfect CSIR SR.

interference and enhance the network performance. Although
the benefits of TX cooperation have been identified in terms
of coverage, throughput scaling, spectral efficiency, and en-
ergy efficiency, most of the existing cooperative schemes and
performance analysis build on the common assumption that
perfect, or at least perfectly shared, channel state information
at the transmitters (CSIT), referred to centralized CSIT, is
available (see e.g. [1]–[3] and references therein). While such
an assumption is convenient for analysis, it is however being
challenged in a number of practical wireless scenarios. In
fact, the acquisition of centralized CSIT always entails direct
communication between transmitters or feedback from the re-
ceivers so that a given transmitter can collect the CSIT of other
transmitters. This inevitably induces impairments and delays,
which can be represented as a transmitter-specific distortion
added to the channel state information. In order to capture
such a limitation, we focus on the so-called distributed CSIT
such that each transmitter has its own channel knowledge.
On the other hand, we assume that messages are partially
or entirely shared between transmitters prior to the actual
data transmission. This assumption is justified for instance
in cache-aided networks where parts of delay-tolerant web
content (video files) can be pre-fetched at transmitters typically
during off-peak hours [4], [5]. More generally, our setup can
be thought as representing service situations where the CSIT
time sensitivity is high in relation to that of the data contents.
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By taking into account both practical CSIT limitation
and inherent message-sharing opportunity, we study a state-
dependent multiple access channel (MAC) illustrated in Fig. 1.
Namely, two transmitters with respective state knowledge
S1, S2 wish to cooperatively convey a message W through
inputs X1, X2 to a single receiver (RX) with state knowledge
SR. We do not consider direct communication links between
transmitters that enable further online interactions such as con-
ferencing [6], [7]. Rather, we aim to design the transmission
strategy for a predefined CSI distribution mechanism described
by the joint distribution of (S, S1, S2, SR) and a given mes-
sage cooperation defined by the rate of (W0,W1,W2). More
precisely, the a priori cooperation among the TXs is modeled
by the following two components:

• State cooperation, modeled by the distribution of the
CSIT (S1, S2). Perfect state cooperation corresponds to a
centralized CSIT configuration where the TXs share the
same state information, i.e., S1 = S2 (note that this does
not necessarily correspond to perfect CSIT).

• Message cooperation, modeled by splitting W into 3
sub-messages (W0,W1,W2), where W0 is the portion
of W available at both TXs, and where Wk, k = 1, 2,
is the portion available only at TX k. Perfect message
cooperation corresponds to W0 = W or W1 = W2 = ∅.

Distributed CSIT gives rise to many interesting, yet challeng-
ing, problems because TXs must cooperate on the basis of
uncertainties about each other’s state information. There are
roughly two classes of works. The first class focuses on signal
processing methods [8] such as particular precoders optimiza-
tion, and asymptotic ergodic rate analysis in the regime of
high signal-to-noise ratio [9], [10] for cooperative multi-user
networks with interference. The second class is based on the
information theoretic models. These include the MAC with
partial CSIT S1, S2 and full CSIR S = SR = (S1, S2) [11],
the slow-fading Gaussian MAC with partial CSIT S1, S2 [11],
the MAC with conferencing encoders under noncausal partial
CSIT S1, S2 and full CSIR S = SR = (S1, S2) [7], the MAC
with partial and strictly causal state information Sk at TX k
and no CSIR [12], and the cooperative MAC with non-causal
CSIT at one TX and strictly causal at the other [13]. Although
useful system design and performance analysis are obtained
from these two frameworks individually, they are disconnected
each other in the sense that insights obtained from one class
cannot be useful for another.

Motivated by such an observation, we wish to close the
gap between these two approaches by designing a simple yet
information theoretically optimal cooperative scheme under
distributed channel state information. To the best of our
knowledge, such a result was not reported before. In particular,
we study the capacity of a common message and the capacity
region of three messages over a memoryless state-dependent
MAC with causal distributed CSIT. Before summarizing the
main contributions of the current work in Section I-B, we first
review the existing results on coding with causal CSIT under
various network models.

A. Coding with causal CSIT

In [14], Shannon characterized the capacity of a memory-
less state-dependent point-to-point channel with causal state
knowledge at the transmitter S = ST ∈ S and no CSIR
SR = ∅. The capacity of the channel at hand can be
alternatively given by [15]

C = max
p(u), x=f(u,s)

I(U ;Y ),

where U ∈ U is an auxiliary random variable of finite
cardinality and independent of S, and f is a deterministic
function. Notice that U can be seen as an index for the family
of functions S → X , also known as Shannon strategies. This
result has a practical impact to the design of modern wireless
communication systems as it suggests that capacity is achieved
by encoding the message through a function f depending only
on the current CSIT.

In the following, we briefly summarize the existing re-
sults exploiting Shannon strategies. Shannon strategies were
generalized to more general setups with imperfect CSIT ST
and imperfect CSIR SR [16], and to particular cases of state
process with memory in [16]. Shannon strategies were also
extended to more general network models, including degraded
broadcast channels [17], [18], degraded relay channels [18],
[19], as well as multiple access channels [12], [13], [17], [18],
[20]–[27]. By focusing on the MAC literature, the capacity
region of the state-dependent MAC was studied by Das and
Narayan in [20], where multi-letter formulas are given for very
general channel and CSI models. Unfortunately the multi-
letter expressions provide very little insights and cannot be
easily computed. In contrast, single-letter expressions on an
achievable rate region (R1, R2) have been derived for the case
of a common state S1 = S2 = S in [18]. When the two states
(S1, S2) are independent, Shannon strategies are proved to
achieve the sum capacity [21]. In practical wireless systems
operating in frequency division duplexing (FDD) mode, it is
typical to assume that the CSIT is a deterministic function
of the CSIR as CSIT is acquired as an explicit feedback
from the receiver. Under this condition, the full capacity
region of the state dependent MAC has been characterized in
[21] for independent states and then generalized to arbitrarily
correlated states in [22]. For the case of degraded message
sets as a special case of Fig. 1 when W2 = ∅, the capacity
region has been characterized for the case of one-sided CSIT
(S2 = ∅) in [26, Section IV].

Interestingly, Shannon strategies are known to be suboptimal
in general state-dependent MAC. In particular, Lapidoth and
Steinberg demonstrated that Shannon strategies fail to achieve
some rate pairs in the state-dependent MAC with no CSIR
for the case of common state [24] and the case of indepen-
dent states [25], causally or strictly causally available at the
encoders. This is because block-Markov encoding can help
the TXs to provide some CSIR at the RX by compressing
and sending past CSIT cooperatively [24] or non-cooperatively
[25]. Clearly, this strategy is not useful when the CSIT is
already available at the RX, as in [22] and in parts of this
work. The scheme proposed in [24], [25] have been further
generalized in [12], where the TXs compress and send the
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past codewords along with past channel states. The idea of
sending the past codewords via block-Markov encoding has
been proposed for the MAC with feedback [6], [28], [29],
while the idea of sending the past state together with new
messages was also considered in the simultaneous state and
data communication (see e.g. [30] and references therein) and
in the cooperative MAC with strictly causal CSIT [27].

B. Contributions and Paper Outline

This paper provides the following contributions:
1) We demonstrate that the common message capacity of the

memoryless state-dependent MAC under distributed CSIT
is achieved by Shannon strategies for any CSI distribution
p(s, s1, s2, sR) in Theorem 1. The exact characterization
of the common message capacity complements the ex-
isting results in [21], [24], [25], which consider only
two private messages, the results in [26] which assumes
S2 = ∅ and W2 = ∅, and it extends the single-user results
in [14], [16] to two distributed TXs.

2) For the special case when the CSIT of each TX k is a
deterministic function qk of the CSIR, i.e., Sk = qk(SR)
for k = 1, 2, we prove that Shannon strategies achieve
the full capacity region on three messages (W0,W1,W2)
in Theorem 2. This extends the existing result [22]
to the case when a common message is present. The
contribution of Theorem 2 lies in our converse proof
based on a standard information inequality chain, which
overcomes the technique used in [21] restricted to the
case of independent states while significantly simplifying
the approach in [22].

3) By specializing the model of Theorem 2, we establish the
common message capacity of the multiple-input multiple-
output (MIMO) Gaussian fading channel operating in
frequency-division-duplexing (FDD) mode in Theorem 3.
We demonstrate that distributed linear precoding over
Gaussian codewords based on Shannon strategies is op-
timal. The difference with respect to centralized CSIT
is that each TX shall choose its precoding vector as a
function of its channel knowledge, rather than global
CSIT. As a key ingredient for the achievability proof,
we allow the number of data streams conveying W0

to grow large up to a given upper bound that depends
on the CSIT cardinalities. Furthermore, as a non-trivial
extension, Theorem 4 characterizes the entire capacity
region of the aforementioned channel. The converse proof
exploits the underlying channel structure and functional
dependencies, while achievability builds on superposition
encoding and the distributed precoding technique devel-
oped for Theorem 3.

4) By letting the number of precoded data streams be the
maximum dimension, in Proposition 2 and Proposition 3
we prove that the optimal distributed precoding design,
belonging to the well-known class of difficult problems
called team decision problems [8], can be cast into a
convex form. Moreover, in Proposition 4 and Proposi-
tion 5 we provide a more in-depth analysis on the optimal
number of common data streams. Surprisingly, we prove

that the common wisdom of limiting the number of
precoded data streams by the number of transmit antennas
is strictly suboptimal under a distributed CSIT setup. This
is in sharp contrast to the case of centralized CSIT.

The paper is organized as follows. In Section II, we provide
the formal system model and the main results for general MAC
with distributed CSIT. Section III presents the results for the
specific cooperative MIMO MAC at hand. The insights given
by the above sections are then further illustrated via numerical
examples in Section IV. For readability purposes, most of the
proofs are moved to appendices.

II. COOPERATIVE MULTIPLE-ACCESS CHANNELS WITH
CAUSAL AND DISTRIBUTED CSIT

This section first provides the general channel model and
the basic definitions adopted throughout this work. Then, we
present general results on the cooperative multiple access
channel (MAC) with causal and distributed CSIT illustrated
in Fig. 1. Hereafter, we follow the standard notation of [15].

A. System Model and Problem Statement

a) Channel Model: Consider the state-dependent MAC
in Fig. 1, with a common message W0, two private messages
W1,W2, inputs X1 ∈ X1, X2 ∈ X2, output Y ∈ Y , state
S ∈ S, memoryless channel law p(y|x1, x2, s), distributed
CSIT (S1, S2) ∈ S1 × S2, and imperfect CSIR SR ∈ SR.
The sequence of tuples {(Si, S1i, S2i, SRi)}ni=1 is assumed
to follow a generic memoryless law p(s, s1, s2, sR). An n-
sequence of inputs, output and states is then governed by

p(yn|xn1 , xn2 , sn) =

n∏
i=1

p(yi|x1i, x2i, si),

p(sn, sn1 , s
n
2 , s

n
R) =

n∏
i=1

p(si, s1i, s2i, sRi).

We assume that three messages W0,W1,W2 are independently
and uniformly distributed over the setsWj

∆
= {1, . . . , 2dnRje},

j = 0, 1, 2, where Rj ≥ 0 is the rate of the message Wj . All
alphabets are assumed to be finite, unless otherwise stated.

b) Encoding and Decoding: A block code
(2nR0 , 2nR1 , 2nR2 , n) of length n with causal CSIT is
defined by a set of encoding functions

φki :W0 ×Wk × Sik → Xk, k = 1, 2, i = 1, . . . , n,

yielding the transmitted symbols xki = φki(w0, wk, s
i
k), as

well as a decoding function

ψ : Yn × SnR →W0 ×W1 ×W2,

yielding the decoded messages (ŵ0, ŵ1, ŵ2) = ψ(yn, snR).
Each encoder k = 1, 2 is subject to an average input cost
constraint

E [bn(Xn
k )] ≤ Pk, bn(xnk )

∆
=

1

n

n∑
i=1

bk(xki),

where bk : Xk → R+ is a single-letter cost function upper-
bounded by bk,max. A rate-cost tuple (R0, R1, R2, P1, P2) is
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said to be achievable if, for the considered channel, there
exists a family of block codes of length n defined as before
such that the average probability of error satisfies P

(n)
e

∆
=

Pr((Ŵ0, Ŵ1, Ŵ2) 6= (W0,W1,W2))→ 0 as n→∞.
c) Figure of Merit: For a given cost pair (P1, P2), the

closure of the set of all achievable rates (R0, R1, R2) is the
capacity-cost region C (P1, P2) of the considered channel. In
this work, we are mostly interested in two operating points in
C (P1, P2). Namely, the common message capacity, defined by
C0(P1, P2)

∆
= max{R0 ∈ C (P1, P2)} and the sum capacity

Csum(P1, P2)
∆
= max{Rsum : (R0, R1, R2) ∈ C (P1, P2)},

where Rsum
∆
= R0 +R1 +R2 denotes the rate of the aggregate

message W ∆
= (W0,W1,W2) in Fig. 1.

B. General Results

As a non-trivial extension of [26, Corollary 3] with the one-
sided CSIT (S2 = ∅) and of [14], [16] for the centralized CSIT
case S1 = S2 to a general CSI structure, we provide the main
result of this section.

Theorem 1. The common message capacity of the channel in
Fig. 1 is given by

C0(P1, P2) = max
p(u)

xk=fk(u,sk)
E[bk(Xk)]≤Pk ∀k

I(U ;Y |SR), (1)

where U ∈ U is an auxiliary random variable of finite
cardinality, independent of (S, S1, S2, SR), and where fk is
a deterministic functions U × Sk → Xk for k = 1, 2.

Proof: The proof is given in Appendix A.

Remark 1. By replacing W0 by the triple (W0,W1,W2) in
the converse proof of Theorem 1, it immediately follows that
Csum(P1, P2) ≡ C0(P1, P2).

The main finding of Theorem 1 is that the common message
capacity (or equivalently, the sum capacity) can be achieved
by Shannon strategies, i.e., by coding over the current CSIT
S1i, S2i only while neglecting the past CSIT sequences. In
fact, the converse proof also shows that providing the strictly
causal sequence (Si−1

1 , Si−1
2 ) to both TXs does not increase

the common message capacity.
It is also worth emphasizing the difference with respect to

the centralized CSIT where both TXs share S1 = S2
∆
= ST . In

such case, by omitting for simplicity the input cost constraints,
we recover in fact the classical result of [14], [16]

C0 = max
p(u)

(x1,x2)=f(u,sT )

I(U ;Y |SR).

Although Shannon strategies are optimal in both both dis-
tributed and centralized CSIT cases, the distributed CSIT
assumption imposes the design of two different functions
f1, f2 depending on the local CSIT only each, rather than a
single f as in the (virtually) centralized case.

In order to prove the achievability part of Theorem 1, we
obtain an achievable region for the MAC with a common
message and two private messages as a byproduct. Specifically,

we obtain the following result by combining Slepian-Wolf
coding [31] for the state-less MAC with common message
and Shannon strategies [14].

Lemma 1. For the channel in Fig. 1, C (P1, P2) includes the
convex hull of all rate triples (R0, R1, R2) such that

R1 ≤ I(U1;Y |U2, U0, SR),

R2 ≤ I(U2;Y |U1, U0, SR),

R1 +R2 ≤ I(U1, U2;Y |U0, SR),

R0 +R1 +R2 ≤ I(U1, U2;Y |SR),

for some auxiliary variables (U0, U1, U2) ∈ U0 × U1 × U2

of finite cardinality, independent of the CSI (S, S1, S2, SR),
with pmf factorizing as p(u0)p(u1|u0)p(u2|u0), and for some
deterministic functions fk : Uk × Sk → Xk, xk = fk(uk, sk),
satisfying E[bk(Xk)] ≤ Pk for k = 1, 2.

It is well known that Shannon strategies, i.e., the
scheme of Lemma 1, fail to achieve C (P1, P2) for general
p(s, s1, s2, sR), as observed for a special case of a common
CSIT S1 = S2 = S and no CSIR SR = ∅ in [24]. This is
because block-Markov encoding enables two TXs to compress
past state information and send it as a common message
to provide possibly useful CSIR to the RX. Nevertheless,
Theorem 1 shows that such a scheme based on block-Markov
encoding is not necessary for achieving the sum capacity of the
considered setup. Namely, provided that R0 is large enough
(in the worst case, equal to Csum(P1, P2)), the sum capacity
is indeed achievable by the scheme in Lemma 1.

In the following we focus on the particular case where each
CSIT is a deterministic function of CSIR. This assumption is
highly relevant to frequency-division duplex (FDD) systems,
where each transmitter acquires channel knowledge via an
explicit quantized feedback from the receiver. As a straight-
forward extension of [22, Theorem 4] and [21, Theorem
5] restricted to two private messages1, we characterize the
capacity region for three messages as follows.

Theorem 2. By assuming that S1 = q1(SR) and S2 =
q2(SR), where q1, q2 are two deterministic functions, the
capacity region C (P1, P2) of the channel in Fig. 1 is given by
the convex hull of all rate triples satisfying

R1 ≤ I(X1;Y |X2, U, SR),

R2 ≤ I(X2;Y |X1, U, SR),

R1 +R2 ≤ I(X1, X2;Y |U, SR),

R0 +R1 +R2 ≤ I(X1, X2;Y |SR),

(2)

for some pmf p(x1|s1, u)p(x2|s2, u)p(u), where U ∈ U is
an auxiliary variable of finite cardinality and independent of
(S, S1, S2, SR), satisfying E[bk(Xk)] ≤ Pk for k = 1, 2.

Proof: The proof is given in Appendix B.
Our main contribution lies in the converse proof, which

solves the issue highlighted in [21] through an appropriate
identification of the auxiliary variable U , thus allowing to
greatly simplify the non-traditional, yet innovative, converse

1 [22, Theorem 4] generalized the case of independent states (S1, S2) to
arbitrarily correlated states (S1, S2).
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proof given by [22]. Note that Theorem 2 refers to a setup
where the RX is fully informed about (S1, S2), hence there is
no need for the TXs to convey (S1, S2) through block-Markov
schemes as in [24], [25]. In contrast to the general CSI setup
in Lemma 1, the private messages W1,W2 can be directly
encoded into the input alphabets X1,X2 as observed already
in [21, Theorem 5]. In light of Theorem 2 we highlight the
following expression for the common message capacity, which
will be used to prove the main result of the second part of this
paper.

Remark 2. Under the assumption S1 = q1(SR) and S2 =
q2(SR), the expression in (1) is equivalently given by

C0(P1, P2) = max
p(u)

xk=fk(u,sk)
E[bk(Xk)]≤Pk ∀k

I(X1, X2;Y |SR), (3)

where U ∈ U is an auxiliary random variable of finite
cardinality, independent of (S, S1, S2, SR), and where fk is
a deterministic functions U × Sk → Xk for k = 1, 2.

We conclude the first part of this paper by providing the
following outer bound.

Proposition 1. Under the Markov chain S1 → SR → S2,
C (P1, P2) is included in the convex hull of all rate triples
satisfying

R1 +R2 ≤ I(U1, U2;Y |U0, SR),

R0 +R1 +R2 ≤ I(U1, U2;Y |SR),

for some auxiliary variables (U0, U1, U2) ∈ U0 × U1 × U2

of finite cardinality, independent of the CSI (S, S1, S2, SR),
with pmf factorizing as p(u0)p(u1|u0)p(u2|u0), and for some
deterministic functions fk : Uk × Sk → Xk, xk = fk(uk, sk),
satisfying E[bk(Xk)] ≤ Pk for k = 1, 2.

Proof. The proof is given in Appendix C. �

Propostion 1 shows that, for (S1, S2) conditionally indepen-
dent given SR, Shannon strategies may be sub-optimal only
in terms of individual rates (indeed, [25] proves that higher
individual rates are achievable for independent (S1, S2) and
SR = ∅). This extends [21, Theorem 4], which considered
independent (S1, S2) and no common message. The bound on
R1 + R2 was already reported in [23] and references therein
by using the same technique as [22]. Similarly to Theorem 2,
our contribution lies in a simpler converse proof.

III. FDD COOPERATIVE MIMO CHANNEL WITH FADING

In this section, we specialize the channel in Fig. 1 to a
practical 2 × 2 cooperative Gaussian MIMO channel with
fading operating in FDD mode, illustrated in Fig. 2. The goal
of this section is to particularize the general results of Section
II and derive operational rules for encoding in the Gaussian
MIMO setting. We point out that the results can be generalized
to more general antenna configurations and number of TXs as
discussed in Section III-E.

Channel
matrix

S

TX 1

TX 2

RX

s1 = q1(S)

s2 = q2(S)

Fig. 2: Illustration of a cooperative MIMO channel with fading
state matrix S known at the RX and distributed CSIT s1, s2

obtained from asymmetric feedback links.

A. Channel Model and Notation

For this second part of the article, we extend our notations
to better highlight multi-dimensional quantities. In particular,
we denote deterministic matrices, column vectors and scalars
by X, x, and x respectively. We denote by Xi,j the entry
of X in the i-th column and j-th row. Random matrices,
column vectors and scalars are denoted instead by X, X ,
and X respectively. The operators (·)H and ‖ · ‖F denote
respectively the Hermitian transpose and the Frobenius norm.
We denote by ei ∈ {0, 1}d a standard column selector, i.e.,
with the i-th element set to 1 and all the other elements set
to 0. The identity matrix of dimension n is denoted by In,
or simply by I when the dimension is clear from the context.
Finally, C, R+, and Sn+ denote respectively the set of complex
numbers, non-negative real numbers, and Hermitian positive-
semidefinite matrices of dimension n.

We consider a classical Gaussian MIMO channel law
p(y|x1, x2,S) and let the RX signal Y ∈ C2×1 for a given
channel use be given by:

Y = SX + Z = S
[
X1

X2

]
+ Z,

where the state S ∈ C2×2 is a matrix of random fading
coefficients, Xk ∈ C is the signal transmitted by TX k, subject
to an average power constraint E[|Xk|2] ≤ Pk, and where
Z ∼ CN (0, I2) is independent of S. Furthermore, we focus
on CSI distributions p(S, s1, s2,SR) where the RX has perfect
CSIR SR = S, and where the CSIT is a quantized version of
the CSIR, i.e.,

Sk = qk(S), k = 1, 2

qk : C2×2 → Sk
∆
= {1, . . . , |Sk|}, |Sk| <∞.

If q1 6= q2, for example in the case of different feedback rates,
we clearly fall into a distributed CSIT configuration. Note
that, consistently with the definitions in Section II-A with S
replaced by S, we consider coding over a large number of i.i.d.
fading realizations. By using classical wireless terminology,
we recall that this corresponds to the so-called fast-fading
regime.
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B. Optimality of Distributed Linear Precoding with an Un-
conventional Number of Data Streams

In what follows, we establish the capacity region of the
considered distributed setting and show that distributed linear
precoding over Gaussian codewords is optimal. As we will
see, the main novelty lies in an unconventional joint encoding
technique for the common message W0. For the sake of clarity,
we present this technique by focusing on the common message
capacity first.

Theorem 3. The common message capacity of the channel in
Section III-A is given by C0(P1, P2) =

max
gk(Sk)∈Cd

′

E[‖gk(Sk)‖2]≤Pk ∀k

E
[
log det

(
I + SΣ(S1, S2)SH

)]
, (4)

where

Σ(S1, S2)
∆
=

[
gH

1 (S1)
gH

2 (S2)

] [
g1(S1) g2(S2)

]
,

and where
d′ ≤ d ∆

= |S1|+ |S2|.

Furthermore C0(P1, P2) can be achieved by letting[
X1

X2

]
=

[
gH

1 (S1)
gH

2 (S2)

]
U , U ∼ CN (0, Id′), (5)

where U is the encoded common message.

Proof: We first apply the well-known maximum differ-
ential entropy lemma [15, p. 21] to the mutual information
in (3) using the conditional input covariance Σ(S1, S2) =
E[XXH|S1, S2], obtaining the upper bound

R0 ≤ E
[
log det

(
I + SΣ(S1, S2)SH

)]
.

For the achievability part, it suffices to show that every feasible
Σ(S1, S2) can be obtained via distributed linear precoders of
dimension d = |S1| + |S2|. To this end, we first define the
random vectors

X̃k
∆
=

 fk(U, 1)
...

fk(U, |Sk|)

 , k = 1, 2,

collecting the random inputs Xk conditioned on each of the
|Sk| realizations of Sk, and the covariance matrix

Q
∆
= E

[[
X̃1

X̃2

] [
X̃H

1 X̃H
2

]]
∈ Sd×d+ .

It is easy to see that Q contains all the elements of Σ(s1, s2),
∀(s1, s2) ∈ S1 × S2. Note that, due to the power con-
straint

∑
sk∈Sk E[|fk(U, sk)|2]p(sk) ≤ Pk < ∞, any feasible

(f1, f2, pU ) must satisfy E[|fk(U, sk)|2] < ∞ ∀sk ∈ Sk,
hence Q has finite entries. Since Q is Hermitian positive semi-
definite, there exists a square matrix F ∈ Cd×d such that
FHF = Q. We denote its column vectors by

F
∆
=
[
g1(1) . . . g1(|S1|) g2(1) . . . g2(|S2|)

]
. (6)

Finally, simple calculations show that the scheme in (5) with
distributed linear precoders designed using the above proce-
dure, i.e., selected from (6), preserves the desired Σ(S1, S2),
and attains the maximum entropy upper bound.

The main result of Theorem 3 is that distributed linear
precoding [8] of shared Gaussian codewords achieves the per-
formance limits of the considered cooperative MIMO setting.
However, as a sufficient condition to prove achievability, The-
orem 3 considers the transmission of possibly d = |S1|+ |S2|
independent data streams. This unconventional design choice
appears to be in sharp contrast with the centralized CSIT
configuration (i.e., S1 = S2

∆
= ST ), where the capacity of the

2×2 MIMO channel is achieved by encoding d′ ≤ 2 streams in
the presence of perfect message cooperation. In this latter case,
by considering the per-antenna power constraint, the capacity
takes the well-known expression given for example by [32]

C0(P1, P2) = max
Σ(ST )∈S2

+, ∀k
E[Σk,k(ST )]≤Pk

E
[
log det

(
I + SΣ(ST )SH

)]
,

(7)
where Σ(sT )

∆
= E[XXH|ST ] is the conditional input covari-

ance. Clearly, the capacity in (7) can be achieved by taking the
matrix square-root G(ST )

∆
= Σ

1
2 (ST ) ∈ C2×2 and by letting[

X1

X2

]
= GH(ST )U , U ∼ CN (0, I2),

or, in other words, by precoding d′ = 2 data streams only. Such
an approach cannot be used for general distributed settings, as
it generally leads to unfeasible linear precoders violating the
functional dependencies xk = fk(u, sk).

The proof of Theorem 3 addresses this issue by increasing
the dimensionality d′ of the linear precoders up to d� 2, i.e.,
beyond conventional design choices. We now show that this
unconventional linear precoding technique can be applied to
extend Theorem 3 to the full capacity region.

Theorem 4. The capacity region C (P1, P2) of the channel
in Section III-A is given by the union of all rate triples
(R0, R1, R2) such that

R1 ≤ E
[
log
(
1 + γ1(S1)‖Se1‖2

)]
R2 ≤ E

[
log
(
1 + γ2(S2)‖Se2‖2

)]
R1 +R2 ≤ E

[
log det

(
I + Sdiag(γ1(S1), γ2(S2))SH

)]
R0 +R1 +R2 ≤ E

[
log det

(
I + SΣ(S1, S2)SH

)]
where

Σ(S1, S2) =

[
gH

1 (S1)
gH

2 (S2)

]
[g1(S1) g2(S2)]+

[
γ1(S1) 0

0 γ2(S2)

]
,

for some gk(Sk) ∈ Cd′ and γk(Sk) ∈ R+ such that

d′ ≤ d ∆
= |S1|+ |S2|

and E
[
‖gk(Sk)‖2

]
+ E [γk(Sk)] ≤ Pk for k = 1, 2. Further-

more any point in C (P1, P2) can be achieved by letting[
X1

X2

]
=

[
gH

1 (S1)
√
γ1(S1) 0

gH
2 (S2) 0

√
γ2(S2)

]UV1

V2

 , (8)
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where (U , V1, V2) ∼ CN (0, Id′+2) are the encoded common
and private messages, respectively.

Proof. The proof is given in Appendix D. �

Theorem 4 shows that superposition of jointly and indepen-
dently encoded Gaussian codes achieves the capacity region.
However, while encoding of the private messages W1,W2

follows traditional approaches (one power-controlled stream
per TX), the joint encoding of W0 may require a larger number
of precoded data streams (beyond two streams in our case) as
already seen for Theorem 3. A more detailed analysis of the
role played by d′ in terms of optimal distributed precoding is
provided in the following sections.

C. Convex Reformulation for Optimal Distributed Precoding
Design

The distributed precoding design problem (4) belongs to the
class of static team decision problems [8], [33], for which no
efficient solutions are known in general. However, in contrast
to the traditional precoding design with d′ ≤ NT , where NT =
2 is the total number of TX antennas, by letting d′ ≤ d we are
able to recast the optimal precoding design problem (4) into
an equivalent convex problem.

Proposition 2. Problem (4) is equivalent to the following
convex problem

maximize
Q∈Sd+

E
[
log det

(
I + SeqQSH

eq

)]
subject to

|S1|∑
i=1

Qi,iPr(S1 = i) ≤ P1,

|S1|+|S2|∑
j=|S1|+1

Qj,jPr(S2 = j − |S1|) ≤ P2,

(9)

where we defined Seq
∆
= SEH(S1, S2) ∈ C2×d, and

E(S1, S2)
∆
=

[
eS1 0
0 eS2

]
∈ Cd×2,

where eS1
∈ {0, 1}|S1| and eS2

∈ {0, 1}|S2| are standard
column selectors.

Proof: The proof follows by simply rewriting (4) in
light of the technique used for the proof of Theorem 3.
Specifically, we let d′ = d and use SΣ(S1, S2)SH =
SEH(S1, S2)FHFE(S1, S2)SH = SeqQSH

eq, where F is given
by (6) and Q = FHF. The power constraints correspond to
linear constraints on the diagonal elements of Q.

Problem (9) corresponds to the capacity of a virtual d ×
2 MIMO channel with state Seq, perfect CSIR, no CSIT,
and (fixed) transmit covariance Q. The capacity achieving
distributed precoders for the original channel can be then
designed from the optimal Q? in Problem (9) as follows:[

g?1(S1) g?2(S2)
]

= (Q?)
1
2 E(S1, S2) ∈ Cd×2. (10)

An important remark here is that if the constraint d′ ≤ d of
Problem (4) is replaced by d′ < d, the technique of Proposition
2 does not lead to a convex reformulation. This is because

the d × d matrix F is replaced by a d′ × d matrix F′, hence
introducing a non-convex constraint rank(Q) ≤ d′ < d to
Problem (9). However, note that if the optimal Q? for the
unconstrained problem has rank r < d, then we can reduce
with no loss of optimality the dimensionality of g?k(Sk) in (10)
down to d′ = r.

Mirroring the previous section, the above result on common
message capacity can be extended to the following weighted
sum-rate maximization problem

maximize
(R0,R1,R2)∈C (P1,P2)

α0R0 + α1R1 + α2R2, (11)

where αk ≥ 0, k = 0, 1, 2 are non-negative weights identifying
rate priorities. We recall that the above problem can be used
to characterize the boundary of C (P1, P2), since the weights
can be interpreted as coefficients of a supporting hyperplane
to such boundary (see e.g. [15], [34] and references therein).

Proposition 3. Problem (11) is equivalent to the following
convex problem

maximize
Rk∈R+, Q∈Sd+

γ1(S1),γ2(S2)∈R+

α0R1 + α1R1 + α2R2 subject to

R1 ≤ E
[
log
(
1 + γ1(S1)‖Se1‖2

)]
,

R2 ≤ E
[
log
(
1 + γ2(S2)‖Se2‖2

)]
,

R1 +R2 ≤ E
[
log det

(
I + Sdiag(γ1(S1), γ2(S2))SH

)]
,

R0 +R1 +R2 ≤
E
[
log det

(
I + SeqQSH

eq + Sdiag(γ1(S1), γ2(S2))SH
)]
,

|S1|∑
i=1

(Qi,i + γ1(i))Pr(S1 = i) ≤ P1,

|S1|+|S2|∑
j=|S1|+1

(Qj,j + γ2(j − |S1|))Pr(S2 = j − |S1|) ≤ P2,

(12)
where Seq is given as in Proposition 2.

Proof: The proof follows by the same technique as in the
proof of Proposition 2. The details are omitted.

Problems (9) and (12) can be solved numerically via known
convex optimization tools. A comprehensive discussion on
the efficiency of various competing approaches is out of the
scope of this work. Here, we point out two critical issues that
should be taken into account in a practical system design.
First, advanced stochastic optimization techniques may be
required if the fading distribution p(S) is continuous2. Sec-
ond, classical second-order methods as interior-point methods
for semi-definite optimization typically scale badly with the
dimension d of Q. Hence, first-order methods may be more
suitable whenever the cardinality of the CSIT alphabets |Sk|
is large. As a result of the algorithmic complexity stemming
out of the above considerations (which are still very active
research topics), we envision that feasible implementations of
the proposed distributed precoding design should operate in
an offline fashion. Specifically, Problems (9) and (12) could
be solved in a preliminary codebook design phase, while in

2Note that all the results presented in this section do not require S to be a
discrete set, but only |Sk| <∞ for k = 1, 2.
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the data transmission phase TX k simply selects the precoder
from the pre-designed codebook based on the received CSIT
index Sk.

D. Further Comments on the Optimal Number of Data
Streams

In this section we further elaborate on the optimal number
of data streams d′ by addressing two important questions left
open by Section III-B. Theorem 3 shows that using a number
of precoded data streams d′ = d is a sufficient condition for
achievability of the common message capacity. However, we
know that for some CSIT configurations (e.g., for centralized
CSIT, as already discussed), d′ > 2 is not necessary. A first
crucial question is whether there exists some distributed CSIT
configuration for which such a condition is indeed necessary.
In the next proposition we answer positively to this question.

Proposition 4. For some p(S, s2, s2) and power constraints
(P1, P2), restricting d′ ≤ NT in problem (4), where NT = 2 is
the total number of TX antennas, leads to strictly suboptimal
rates.

Proof: The proof is given in Appendix E, by showing the
existence of a CSI distribution p(S, s2, s2) with binary CSIT
|S1| = |S2| = 2 such that d′ ≥ 3 is necessary for achieving
C0(P1, P2).

A second natural question is whether the developed upper
bound d′ ≤ d = |S1| + |S2| is tight, for some p(S, s1, s2).
In the following we answer negatively to this question, by
showing that indeed we can consider a slightly tighter upper
bound. However, we firstly remark that obtaining tighter
bounds is not trivial and is in fact related to the well-known
low-rank matrix completion problem [35]. Let us consider
the matrix Q ∈ Sd+ defined in the proof of Theorem 3, or
equivalently in Proposition 2, and its partition into blocks

Q =

[
Q1 Q12

QH
12 Q2

]
, Qk ∈ S|Sk|+ . (13)

Informally, we recall that Q collects the elements of the
conditional input covariances Σ(S1, S2) for all realizations of
(S1, S2). By direct inspection of the capacity expression (4),
or equivalently of the objective in Problem (9), we observe
that the off-diagonal elements of the sub-matrices Qk do not
contribute to the achievable rate, since they do not correspond
to any element of any realization of Σ(S1, S2). Hence, by
letting Q̃ be any optimal solution of (9), the solution Q? of
the (non-convex) problem

minimize
Q∈Sd+

rank(Q)

subject to Q12 = Q̃12

Qi,i = Q̃i,i, i = 1, . . . , d

(14)

is also an optimal solution of (9), but where the off-diagonal
elements of Qk have been optimized such that the rank is
minimized. Since we have seen that the rank r ≤ d of
Q? corresponds to the dimension d′ of optimal distributed
precoders (see Section III-C), establishing a tighter upper-
bound on d′ can be cast into finding an upper-bound on the

solution of (14), which is an instance of a low-rank (semi-
definite) matrix completion problem (see, e.g., [35]).

To the best of the authors knowledge, non-trivial upper-
bounds to problems of the type (14) remain elusive. Nev-
ertheless, in the following proposition we provide a simple
result showing the existence of a tighter upper-bound than
d = |S1|+ |S2|.

Proposition 5. The common message capacity C0(P1, P2)
(resp. capacity region C (P1, P2)) given by Theorem 3 (resp.
Theorem 4) is also achievable by letting

d′ ≤ |S1|+ |S2| − 1.

Proof. The proof is given in Appendix F. �

The above result is by no means satisfactory, since the
dimensionality reduction is marginal for large CSIT alphabets.
Informally, the main limitation of the above bound is that the
proof optimizes only one of the (coupled) variables in (14).
However, note that the above bound is tight for the toy example
considered in the proof of Proposition 4.

E. Extension to Arbitrary Users and Antenna Configurations

Theorem 3 can be readily extended to K TXs and arbitrary
antenna configuration. By letting Nk and M be respectively
the number of antennas at the k-th TX and at the RX, and
by considering a fading state matrix S ∈ CM×(

∑K
k=1Nk) and

distributed CSIT (S1, . . . , SK), Sk = qk(S) ∈ Sk, |Sk| <∞,
it can be shown that the common message capacity is given
by C0(P1, . . . , PK) =

max
Gk(Sk)∈Cd

′×Nk

E[‖Gk(Sk)‖2F]≤Pk, ∀k

E
[
log det

(
I + SΣ(S1, . . . , SK)SH

)]
,

(15)
where

Σ(S1, . . . , SK) =

 GH
1 (S1)

...
GH
K(SK)

 [G1(S1) . . . GK(SK)
]
,

and where d′ ≤ d
∆
=
∑K
k=1Nk|Sk|, and it is achievable by

distributed linear precoding of d′ i.i.d. Gaussian codewords.
The formal proof of the above statement follows from the

same lines as for the proof of Theorem 3, by considering
K functions fk : U × Sk → CNk×1. The detailed steps do
not provide additional intuitions, hence they are omitted. The
convex reformulation of Proposition 2 can be also similarly
extended. Finally, as for Theorem 4, the full-capacity region
for K private messages and a single common message can
be achieved by superimposing standard MIMO MAC codes
for W1, . . . ,WK to the non-traditional distributed precoding
technique achieving (15).

IV. NUMERICAL EXAMPLES

A. Channel with Additive Binary Inputs and State

We consider the following channel

Y = X1 +X2 + S,
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with binary inputs and state, i.e., X1 = X2 = S = {0, 1},
and where Y = {0, 1, 2, 3}. We do not consider input cost
constraints. We further assume S ∼ Bernoulli(q), no CSIR
(SR = ∅), and distributed CSIT p(s1, s2|s) = p(s1|s)p(s2|s),
where p(sk|s) is a binary symmetric channel with transition
probability εk ∈ [0, 0.5]. Under the above model, the common
message capacity (which coincides with the sum capacity) is
given by

C0 = max
p(u)

xk=fk(u,sk)

I(U ;Y ).

A (non-scalable) method for optimally solving the above
optimization problem is to adapt to the considered distributed
setting the original idea of coding over the alphabet of
Shannon strategies [14], [15], combined with classical results
on the computation of the capacity of point-to-point channels
[36]. More precisely, we proceed as follows:
1) We build the alphabet of distributed Shannon strategies by

enumerating all the functions

tu(s1, s2) = [t1,u(s1), t2,u(s2)], tk,u : Sk → Xk,

where each function is indexed by U . There are |U| =
|X1||S1||X2||S2| = 16 such functions.

2) We set xk = fk(u, sk) = tk,u(sk) and compute the
equivalent state-less point-to-point channel

p(y|u) =∑
x1,x2
s,s1,s2

p(y|x1, x2, s)p(x1|u, s1)p(x2|u, s2)p(s, s1, s2).

3) We run the Blahut-Arimoto algorithm for computing the
capacity of the equivalent channel p(y|u) [36].

Note that the above procedure is similar to the one outlined
in [37] for centralized settings. Furthermore, it can be read-
ily generalized to arbitrary CSIR by simply considering an
augmented output Ỹ ∆

= (Y, SR).
In Fig. 3 we plot the capacity C0 versus the CSIT quality

at TX 2, for various choices of CSIT quality at TX 1, and for
q = 0.5. Note that εk = 0 and εk = 0.5 model respectively
perfect and no CSIT at the k-th TX. Interestingly, the capacity
of the system decreases with ε2 down to a flat regime in which
any further decrease in quality does not matter, and the turning
point depends on ε1. This can be interpreted as a regime in
which the quality at one TX is so degraded that, although some
CSIT is available, it does not allow for proper coordination
with the better informed TX. Intuitively, it is important for
the less informed TX to not act as unknown noise for the
other TX. In fact, in the aforementioned regime it turns out
that the optimal scheme at the less informed TX is to throw
away completely its CSIT, making its behaviour not adaptive
to the channel conditions but completely predictable by the
more informed TX.

B. Cooperative AWGN MIMO with Rayleigh Fading and
Quantized Feedback

In this section we simulate a practical cooperative MIMO
channel with Rayleigh fading and with limited feedback rates.
In particular, we let each element of S to be i.i.d. CN (0, 1), and

0 0.1 0.2 0.3 0.4 0.5
0.9

1

1.1

1.2

1.3

1.4
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1.6

1
 = 0

1
 = 0.03

1
 = 0.1

1
 = 0.5

Fig. 3: Capacity vs. CSIT distortion ε2 at TX 2, for various
choices of CSIT distortion ε1 at TX 1.

we set for simplicity P1 = P2
∆
= SNR. The distributed CSIT

configuration p(S, s1, s2) is given by two random quantizers
with different rates β1, β2.

More precisely, let Sk = {1, . . . , 2βk} be the index set of a
codebook {Ŝk,i}2

βk

i=1 of randomly and independently generated
codewords distributed as p(S). We then let qk(S) to be a
simple nearest neighbour vector quantizers in the Frobenius
norm, i.e., qk(S) = arg mini∈Sk ‖S − Ŝk,i‖F. This scenario
corresponds to an error-free feedback link from the RX to the
k-th TX with limited rate of βk bits per channel realization. We
set β1 = 4 and β2 = 3, which implies d = |S1|+ |S2| = 24.
We recall that the RX is assumed to have perfect CSIR.

We approximately solve Problem (9) through an off-the-
shelf numerical solver for convex problems, by substituting
p(S, s1, s2) with its empirical distribution p̂(S, s1, s2)

∆
=

1
L

∑L
l=1 1[(S, s1, s2) = (Sl, q1(Sl), q2(Sl))] obtained from

L = 1000 i.i.d. samples {Sl}Ll=1. This allows us to replace
the expectation in (9) with a finite sum of L convex functions.
The capacity obtained is exact for a channel with state dis-
tribution equal to the empirical distribution p̂(S, s1, s2), and
approximates the capacity for p(S, s1, s2) as L grows large.
Furthermore, we repeat the above simulations by considering
instead a single antenna at the RX, a setting denoted here as
cooperative MISO.

In Fig. 4 we plot the common message capacity versus SNR
of a given instance of the considered channel model. We also
plot the common message capacity for perfect CSIT at both
TXs

C
(perf. CSIT)
0 = max

Σ(S)∈S2
+:

E[Σk,k(S)]≤Pk ∀k

E
[
logdet

(
I + SΣ(S)SH

)]
,

and for no CSIT

C
(no CSIT)
0 = max

Σ∈S2
+: Σk,k≤Pk ∀k

E
[
logdet

(
I + SΣSH

)]
.

We recall that these CSIT configurations are equivalent to a
centralized 2×2 MIMO system, hence we can simply use the
classical MIMO results summarized e.g. in [32], adapted to
a per-antenna power constraint. For a fair comparison, these
capacities are computed over the same empirical marginal dis-
tribution p̂(S). As expected, for the MIMO case, the capacity
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(a) 2× 2 Cooperative MIMO
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(b) 2× 1 Cooperative MISO

Fig. 4: Common message capacity (4) vs SNR for (a) 2 RX
antennas and (b) single RX antenna.

gain given by distributed CSIT w.r.t no CSIT follows the well-
known beamforming gain trend of the perfect CSIT case, i.e.,
it vanishes in the high SNR regime. Similarly, for the MISO
case, this gain converges to a constant power offset.

V. CONCLUSION

In this paper, we studied a two-user memoryless state-
dependent multiple access channel under the assumption that
causal and distributed CSIT is available and messages can be
partly or entirely shared prior to the data transmission. We
characterized the common message capacity of this channel
and demonstrated that it is optimal to encode the message as
a function of current CSIT only based on Shannon strategies.
We provide an insightful example over an additive binary-
input quaternary-output channel with binary states showing
that, interestingly, in some cases there is a threshold in terms
of CSIT quality below which one encoder shall not use
its channel knowledge. For a special case when CSIT is
a deterministic function of CSIR, the full capacity region
of a common message and two private messages is also
characterized. This last result is specialized to a practically
relevant cooperative MIMO fading channel operating in FDD
mode such that CSIT is acquired via an explicit feedback from
the receiver. The cooperative MIMO example surprisingly

reveals that in a distributed CSIT setup the optimal number of
data streams shall not be restricted to the minimum number of
transmit antennas. This is in contrast to the classical MIMO
design under the centralized CSIT assumption.

Interesting open problems include the evaluation of the
minimum message cooperation (i.e., the minimum rate R0)
required such that the sum capacity is achievable via Shannon
strategies, and the extension of the coding ideas derived for the
cooperative MIMO case to systems with multiple receivers.

APPENDIX

A. Proof of Theorem 1

Converse: Let us define Ui = (W0, S
i−1
1 , Si−1

2 ). We con-
struct an upper-bound by assuming that past CSIT realizations
(Si−1

1 , Si−1
2 ) are available at both encoders. Hence, we assume

that X1i and X2i are functions of (W0, S
i
1, S

i−1
2 ) = (Ui, S1i)

and (W0, S
i
2, S

i−1
1 ) = (Ui, S2i) respectively. Note that Ui

is independent of (Si, S1i, S2i, SRi). Consider for brevity
Ỹi = (Yi, SRi). We then have:

nR0 =H(W0)

=I(W0; Ỹ n) +H(W0|Ỹ n)

(a)

≤ I(W0; Ỹ n) + nεn

=

n∑
i=1

I(W0; Ỹi|Ỹ i−1) + nεn

=

n∑
i=1

H(Ỹi|Ỹ i−1, )−H(Ỹi|W0, Ỹ
i−1) + nεn

≤
n∑
i=1

H(Ỹi|Ỹ i−1)−H(Ỹi|Ui, Ỹ i−1) + nεn

(b)
=

n∑
i=1

H(Ỹi|Ỹ i−1)−H(Ỹi|Ui) + nεn

≤
n∑
i=1

H(Ỹi)−H(Ỹi|Ui) + nεn

=

n∑
i=1

I(Ui; Ỹi) + nεn

(c)
=

n∑
i=1

I(Ui;Yi|SRi) + nεn

(16)

where (a) follows from Fano’s inequality (limn→∞ εn =
0), (b) follows from the Markov chain Ỹ i−1 →
(W0, S

i−1
1 , Si−1

2 )→ Ỹi, and (c) is because SRi is independent
of Ui. The code must also satisfy the input cost constraints

P1 ≥ E
[

1

n

n∑
i=1

b1(X1i)

]
, P2 ≥ E

[
1

n

n∑
i=1

b2(X2i)

]
.

(17)
We combine the bounds in (16) and (17) by means of a time-
sharing variable Q uniformly distributed in {1, . . . , n} and
independent of everything else, and by letting U = (UQ, Q),
X1 = X1Q, X2 = X2Q Y = YQ, S = SQ, S1 = S1Q,
S2 = S2Q, SR = SRQ. Note that the resulting distri-
bution pY,X1,X2,S,S1,S2,SR,U factors as p(y|x1, x2, s)1[x1 −
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f1(u, s1)]1[x2 − f2(u, s2)]p(s, s1, s2, sR)p(u), where 1[·] is
an indicator function. With these identifications, we obtain

R0 ≤ I(U ;Y |SR, Q) + εn

≤ H(Y |SR)−H(Y |U, SR, Q) + εn
(c)
= H(Y |SR)−H(Y |U, SR) + εn

= I(U ;Y |SR) + εn,

where (c) follows from the Markov chain Q→ (U, SR)→ Y ,
and P1 ≥ E[b1(X1)], P2 ≥ E[b2(X2)]. Hence, we finally have
R0 ≤ C0(P1, P2) + εn. �

Achievability: Achievability follows from standard argu-
ments, hence a formal proof is omitted. An informal yet
intuitive proof can be obtained by the classical physical device
argument of Shannon [14], [15]. More precisely, by fixing the
functions fk(uk, sk), we can consider a new state-less and
memoryless MAC with messages W0,W1,W2, inputs U1, U2,
and output (Y, SR). For a given fk(uk, sk), the capacity region
of this auxiliary channel is simply achievable by Slepian-Wolf
coding for the MAC with common and independent messages
[31], which gives the achievable region in Lemma 1.

The finite cardinality of U1, U2 follows directly by Shan-
non argument, which states that using Shannon strategies
corresponds to coding over an augmented input alphabet of
functions Sk → Xk of size |Xk||Sk|, indexed by Uk [15].
Hence we can consider |Uk| ≤ |Xk||Sk|. The finite cardinality
of U0 follows by a simple application of the support lemma
[15, Appendix C] applied to the Slepian-Wolf region of the
auxiliary channel, which gives [15, p. 344]

|U0| ≤ min{|X1||S1||X2||S2| + 2, |Y||SR|+ 3}.

Finally, the expression in Theorem 1 can be obtained by
specializing the proof of Lemma 1 to the transmission of a
common message only, i.e. by letting R1 = R2 = 0, and by
identifying U0 = U1 = U2

∆
= U . �

B. Proof of Theorem 2

Achievability: The proof follows the same lines as in [21].
Achievability builds on Lemma 1, where we rewrite the mutual
information terms as follows. By focusing first on the sum-
rate, we observe that

I(U1, U2;Y |SR) =

= H(Y |SR)−H(Y |U1, U2, SR)

(a)
= H(Y |SR)−H(Y |U1, U2, S1, S2, SR)

(b)
= H(Y |SR)−H(Y |X1, X2, U1, U2, S1, S2, SR)

(c)
= H(Y |SR)−H(Y |X1, X2, SR)

= I(X1, X2;Y |SR),

where (a) comes from (S1, S2) = (q1(SR), q2(SR)), (b)
is because (X1, X2) is a function of (S1, S2, U1, U2),

and (c) because of the Markov chain (S1, S2, U1, U2) →
(X1, X2, SR)→ Y . Similarly, one can show

I(U1;Y |SR, U2, U0) = H(Y |X2, U2, U0, S2, SR)

−H(Y |X1, X2, U1, U2, U0, S1, S2, SR)

(a)
= H(Y |X2, U0, SR)−H(Y |X1, X2, U0, SR)

= I(X1;Y |X2, U0, SR),

where (a) follows from (S2, U2) → (U0, X2, SR) → Y and
(S1, S2, U1, U2)→ (U0, X1, X2, SR)→ Y , and

I(U2;Y |SR, U1, U0) = I(X2;Y |X1, U0, SR),

I(U1, U2;Y |SR, U0) = I(X1, X2;Y |U0, SR).

Finally, by the functional representation lemma [15, Ap-
pendix B] and since U1 and U2 do not appear in the bounds
given by (2) and proven above, designing

p(u0)p(u1|u0)p(u2|u0)1[x1 − f1(s1, u1)]1[x2 − f2(s2, u2)],

where 1[·] is an indicator function, is equivalent to designing
p(u)p(x1|s1, u)p(x2|s2, u) (replacing U0 with U ). �

Converse: Let us define Ui = (W0, S
i−1
1 , Si−1

2 ). We con-
struct an outer bound by assuming that past CSIT realizations
(Si−1

1 , Si−1
2 ) are available at both encoders. Hence, we assume

that X1i and X2i are functions of (W0,W1, S
i
1, S

i−1
2 ) =

(W1, Ui, S1i) and (W0,W2, S
i
2, S

i−1
1 ) = (W2, Ui, S2i) respec-

tively. Note that Ui is independent of (Si, S1i, S2i, SRi). We
then bound

nR1

(a)

≤ I(W1;Y n, SnR|W0,W2) + nεn
(b)
=I(W1;Y n|W0,W2, S

n
R) + nεn

=

n∑
i=1

I(W1;Yi|Y i−1,W0,W2, S
n
R) + nεn

=

n∑
i=1

H(Yi|W0,W2, Y
i−1, SnR)

−H(Yi|W0,W1,W2, Y
i−1, SnR) + nεn

(c)
=

n∑
i=1

H(Yi|W0,W2, S
i−1
1 , Si2, Y

i−1, SnR)

−H(Yi|W0,W1,W2, S
i
1, S

i
2, Y

i−1, SnR) + nεn

(d)
=

n∑
i=1

H(Yi|W2, X2i, Ui, S2i, Y
i−1, SnR)

−H(Yi|X1i, X2i, Ui, SRi) + nεn

≤
n∑
i=1

H(Yi|X2i, Ui, SRi)

−H(Yi|X1i, X2i, Ui, SRi) + nεn

=

n∑
i=1

I(X1i;Yi|X2i, Ui, SRi) + nεn,

where (a) follows from Fano’s inequality (limn→∞ εn = 0),
(b) from the independence of W1 and SnR, (c) from (Si1, S2i)
being a function of SRi, and (d) from the Markov chain
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(W0,W1,W2, S
i
1, S

i
2, Y

i−1, {SRj}j 6=i) → (X1i, X2i, SRi) →
Yi. Similarly, we have

nR2 ≤
n∑
i=1

I(X2i;Yi|X1i, Ui, SRi) + nεn,

n(R1 +R2) ≤
n∑
i=1

I(X1i, X2i;Yi|Ui, SRi) + nεn,

nRsum ≤
n∑
i=1

I(X1i, X2i;Yi|SRi) + nεn.

The code must also satisfy the input cost constraints

P1 ≥ E
[

1

n

n∑
i=1

b1(X1i)

]
, P2 ≥ E

[
1

n

n∑
i=1

b2(X2i)

]
.

We combine all the bounds by means of a time-sharing vari-
able Q uniformly distributed in {1, . . . , n} and independent
of everything else, and by letting U = (UQ, Q), X1 = X1Q,
X2 = X2Q Y = YQ, S = SQ, S1 = S1Q, S2 = S2Q, SR =
SRQ. Note that the resulting distribution pY,X1,X2,S,S1,S2,SR,U

factors as

p(y|x1, x2, s)p(x1|s1, u)p(x2|s2, u)p(s, s1, s2, sR)p(u)

as required. With these identifications, we readily obtain

R1 ≤ I(X1;Y |X2, U, SR) + εn

R2 ≤ I(X2;Y |X1, U, SR) + εn

R1 +R2 ≤ I(X1, X2;Y |U, SR) + εn

Rsum ≤ I(X1, X2;Y |SR, Q) + εn

≤ I(X1, X2;Y |SR) + εn,

P1 ≥ E[b1(X1)], P2 ≥ E[b2(X2)].

�

C. Proof of Proposition 1

Let us define U0i := (W0, S
i−1
R ), U1i := (W1, S

i−1
1 , U0i),

and U2i := (W2, S
i−1
2 , U0i). Note that X1i and X2i are

functions of (U1i, S1i) and (U2i, S2i) respectively, and, due
to the Markov chain S1i → SRi → S2i, we also have
U1i → U0i → U2i as required. By Fano’s inequality
(limn→∞ εn = 0), and by following similar steps as in the
previous sections, we obtain

n(R1 +R2)

≤ I(W1,W2;Y n, SnR|W0) + nεn

= I(W1,W2;Y n|W0, S
n
R) + nεn

=

n∑
i=1

I(W1,W2;Yi|Y i−1,W0, S
n
R) + nεn

≤
n∑
i=1

I(W1,W2, S
i−1
1 , Si−1

2 ;Yi|Y i−1,W0, S
n
R) + nεn

=

n∑
i=1

I(U1i, U2i;Yi|Y i−1, U0i, S
n
Ri) + nεn

≤
n∑
i=1

I(U1i, U2i;Yi|U0i, SRi) + nεn,

where the last inequality comes from the memoryless property
of the channel. Following similar lines one can prove

nRsum ≤
n∑
i=1

I(U1i, U2i;Yi|SRi) + nεn,

which can be combined with the bound on R1 + R2 and the
power constraints by means of the usual time-sharing step.

D. Proof of Theorem 4

We construct an outer bound Co(P1, P2) by following
similar steps as in [34], but starting from the single-letter
formulation of C (P1, P2) given by Theorem 2 extended to
continuous alphabets similarly to [15], [16], [32]. We consider
the following applications of the maximum differential entropy
lemma [15, p. 21], adapted to the complex field. From the
rightmost bound in [15, Eq. 2.6], we have

h(Y |S = S) ≤ log
(
(πe)2det

(
E
[
Y Y H|S = S

]))
= log

(
(πe)2det

(
SΣ (q1(S), q2(S)) SH + I

))
,

where Σ(S1, S2) = E
[
XXH|S1, S2

]
. Then, from the bound

in [15, Eq. 2.7], we have

h(Y |U,S = S) ≤ log
(

(πe)2det
(
E
[
(Y − E[Y |U,S = S])

× (Y − E[Y |U,S = S])H|S = S
]))

= log
(

(πe)2det
(

SΓ (q1(S), q2(S)) SH + I
))

,

where Γ(S1, S2) =

Σ(S1, S2)− E
[
E[X|U, S1, S2]E[XH|U, S1, S2]|S1, S2

]
.

By the structure of the input distribution, we now observe
that Γ(S1, S2) = diag(γ1(S1), γ2(S2)) and that, ∀(s1, s2) ∈
S1 × S2,

Σ(s1, s2) =

[
γ1(s1) 0

0 γ2(s2)

]
+

[
E[|µ1(U, s1)|2] E[µ1(U, s1)µ?2(U, s2)]

E[µ2(U, s2)µ?1(U, s1)] E[|µ2(U, s2)|2]

]
,

(18)

where we define the functions

µk(U, Sk)
∆
= E[Xk|U, Sk]

γk(Sk)
∆
= E

[
|Xk|2|Sk

]
− E

[
|µk(U, Sk)|2|Sk

]
≥ 0.

By following similar steps for h(Y |X1, U, S = S) and
h(Y |X2, U,S = S), and by applying the resulting bounds
to the mutual information terms in Theorem 2, we obtain

R1 ≤ E
[
log
(
1 + γ1(S1)‖Se1‖2

)]
,

R2 ≤ E
[
log
(
1 + γ2(S2)‖Se2‖2

)]
,

R1 +R2 ≤ E
[
log det

(
I + Sdiag(γ1(S1), γ2(S2))SH

)]
,

R0 +R1 +R2 ≤ E
[
log det

(
I + SΣ(S1, S2)SH

)]
.

(19)
The outer bound Co(P1, P2) is then established by taking
the convex hull of the union of all rate triples (R0, R1, R2)
satisfying (19) for some p(x1|s1, u)p(x2|s2, u)p(u) such that
E[|Xk|2] ≤ Pk.
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Similarly to the proof of Theorem 3, it can be now
shown that every Σ(S1, S2) as in (18) induced by any
p(x1|s1, u)p(x2|s2, u)p(u) can also be obtained by the scheme
in (8), i.e., via superposition of linearly precoded Gaussian
codes. The key point is showing that the second term in the
RHS of (18) can be obtained via distributed linear precoders
of dimension d. This follows by the same technique used in
the proof of Theorem 3, by simply replacing the functions
fk(u, sk) with µk(u, sk). Finally, since the inputs are con-
ditionally Gaussian, standard arguments [15] show that (8)
attains the bound Co(P1, P2), without time sharing (i.e., we
can omit the convex hull operation).

E. Proof of Proposition 4

The proof is split for the sake of clarity in the following
three steps:
1) We fix a specific conditional input covariance matrix

Σ?(S1, S2), and we show that it is achievable via dis-
tributed linear precoding if and only if d′ > 2.

2) We construct a specific p(S, s1, s2) such that Σ?(S1, S2)
is the unique optimal solution to Problem (4).

3) We combine the above steps to show that there exists a
channel for which d′ ≤ 2 leads to strictly suboptimal rates.

Step 1: Consider binary D-CSIT alphabets, i.e., S1 = S2 =
{0, 1}, and let Σ?(S1, S2) be given by

Σ?(0, 0) = I, Σ?(1, 0) = I,

Σ?(0, 1) =
[

1 0.6
0.6 1

]
, Σ?(1, 1) =

[
1 0.8

0.8 1

]
.

(20)

Define the set G(d̃) of conditional input covariance matrices
Σ(S1, S2) which are achievable via distributed linear pre-
coders of maximal dimension d̃, i.e.,

G(d̃)
∆
=


Σ(S1, S2) ∈ S2

+ s.t.

Σ(S1, S2) =

[
gH

1 (S1)

gH
2 (S2)

] [
g1(S1) g2(S2)

]
,

g1(S1), g2(S2) ∈ Cd′ , d′ ≤ d̃
(21)

Clearly, G(d1) ⊆ G(d2), for d1 ≤ d2. The following lemma
holds:

Lemma 2. Σ?(S1, S2) ∈ G(3), and Σ?(S1, S2) /∈ G(2).

Proof: For Σ?(S1, S2) to be achievable, we need to find
precoders gk(Sk) s.t.

gH
1 (0)g2(0) = 0, gH

1 (0)g2(1) = 0.6,

gH
1 (1)g2(0) = 0, gH

1 (1)g2(1) = 0.8,

‖g1(0)‖ = ‖g1(1)‖ = ‖g2(0)‖ = ‖g2(1)‖ = 1.

For gk(Sk) of dimension d′ = 2, the above system has no
solution. In fact, we need to simultaneously satisfy

g1(0) ⊥ g2(0),

g1(1) ⊥ g2(0),

‖g1(0)‖ = ‖g1(1)‖ = 1,

which, for d′ = 2, implies g1(0) = ±g1(1), and hence
leads to the following contradiction 0.6 = gH

1 (0)g2(1) =

±gH
1 (1)g2(1) = ±0.8. Instead, one can check that Σ?(S1, S2)

is readily obtained by letting d′ = 3 and

g1(0) =
[
1 0 0

]
, g1(1) =

[
0 1 0

]
,

g2(0) =
[
0 0 1

]
, g2(1) =

[
0.6 0.8 0

]
.

Step 2: Consider the following rewriting of Problem (4), by
letting again S1 = S2 = {0, 1} (hence d = 4), and unitary
power constraint P1 = P2 = 1:

C0 = max
Σ∈P∩G(4)

E
[
log det

(
I + SΣ(S1, S2)SH

)]
, (22)

where G(4) is given by (21), and where

P ∆
= {Σ(S1, S2) ∈ S2

+ | E[Σk,k(S1, S2)] ≤ 1, k = 1, 2}

is the per-TX power constraint. Note that Σ?(S1, S2) belongs
to the feasible set, i.e. Σ?(S1, S2) ∈ P ∩ G(4).

Lemma 3. There exist some p(S, s1, s2) such that Σ?(S1, S2)
given by (20) is the unique optimal solution for problem (22).

Proof: The main idea is to build such CSI distribution
by “reversing” a spatio-temporal water-filling algorithm which
gives as unique optimal solution the conditional input covari-
ance Σ?(S1, S2). We now provide the details.

Define a uniformly distributed random state S taking values
in the finite alphabet S = {S1,S2,S3,S4}, and let the CSIT
be given by the functions

s1 = q1(S) =

{
0 for S ∈ {S1,S2}
1 otherwise

s2 = q2(S) =

{
0 for S ∈ {S1,S3}
1 otherwise

The capacity of such a channel can be upper bounded by

C0 = max
Σ∈P∩G(4)

E
[
log det

(
I + SΣ(S1, S2)SH

)]
, (23)

≤ max
Σ∈P

E
[
log det

(
I + SΣ(S1, S2)SH

)]
, (24)

≤ max
Σ∈P′

E
[
log det

(
I + SΣ(S1, S2)SH

)]
, (25)

where

P ′ ∆
= {Σ(S1, S2) ∈ S2

+ | tr{E[Σ(S1, S2)]} ≤ 2},

is the set obtained by relaxing the per-TX power constraint
P to a total power constraint (P ⊆ P ′). Inequalities (24) and
(25) are obtained respectively by relaxing the achievability via
distributed linear precoding and the power constraint.

Problem (25) turns out to be an instance of a classical
(centralized) MIMO capacity problem, where the optimal
solution is given by the well-known spatio-temporal water-
filling algorithm. More precisely, let us rewrite (25) as

max
Σ(S1,S2)∈P′

4∑
i=1

p(Si) log det
(

I + SiΣ(q1(Si), q2(Si))S
H
i

)
= max
{Σi}∈P̃′

1

4

4∑
i=1

log det
(

I + SiΣiS
H
)
,

(26)
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where we defined Σi
∆
= Σ(q1(Si), q2(Si)), and where

P̃ ′ =
{

Σi ∈ S2
+ |

1

4

4∑
i=1

tr{Σi} ≤ 2
}
.

A well-known application of the Hadamard’s inequality gives
the following upper bound in terms of the channel eigen-
decompositions SH

i Si = ViΛiV
H
i , Λi = diag(λi,1, λi,2)

max
{Σi}∈P̃′

1

4

4∑
i=1

log det
(

I + SiΣiS
H
i

)
≤ max

ξi,k≥0
1
4

∑
i,k ξi,k≤2

1

4

4∑
i=1

2∑
k=1

log(1 + λi,kξi,k),

where the optimal ξi,k are given by the water-filling conditions

ξi,k = max
{
ν − 1

λi,k
, 0
}
, i = 1, . . . , 4, k = 1, 2,

∑
i,k

max
{
ν − 1

λi,k
, 0
}

= 8,

and where equality is achieved for

Σi = ViΞiV
H
i , Ξi = diag(ξi,1, ξi,2), i = 1, . . . , 4.

Consider the conditional covariance Σ?(S1, S2) given by
(20). Note that Σ?(S1, S2) ∈ P ′, i.e., it satisfies the total
power constraint. We wish to construct S = {Si} such
that Σ?(S1, S2) is the unique optimal solution for (25).
This can be done by “reversing” the MIMO water-filling
algorithm described above. More precisely, let us consider
Σ?
i

∆
= Σ?(q1(Si), q2(Si)) and their eigen-decompositions

Σ?
i = V?

iΞ?
iV?H

i , Ξ?
i = diag(ξ?i,1, ξ

?
i,2).

We construct now S by letting

Si = (V?
iΛ?iV?H

i )
1
2 , i = 1, . . . , 4

where the eigenvalues Λ?i = diag(λ?i,1, λ
?
i,2) are given by

λ?i,k =
1

ν? − ξ?i,k
, i = 1, . . . , 4, k = 1, 2,

and any choice of ∞ > ν? > maxi,k ξ
?
i,k = 1.8.

By construction, Σ?(S1, S2) is an optimal solution for (25).
Uniqueness of the solution can be proven by contradiction as
in [38, Section III.A], or directly by the strict concavity of∑4
i=1 log det

(
I + SiΣiS

H
i

)
in {Σi � 0}, which is a direct

consequence of the strict concavity of log det(A) in A � 0
and of the positive definiteness of Si by construction. Finally,
since Σ?(S1, S2) ∈ P ∩G(4), (25) and (24) are satisfied with
equality.

Step 3: The proof is now concluded by combining Lemma
2 and Lemma 3, yielding ∃ p(S, s1, s2) such that

arg max
Σ(S1,S2)∈P∩G(4)

E
[
log det

(
I + SΣ(S1, S2)SH

)]
(a)
= {Σ?(S1, S2)}

(b)

/∈ G(2),

where (a) follows from Lemma 3, and (b) from Lemma 2,
which implies that ∃ p(S, s1, s2) such that

max
Σ∈P∩G(4)

E
[
log det

(
I + SΣ(S1, S2)SH

)]
> max

Σ∈P∩G(2)
E
[
log det

(
I + SΣ(S1, S2)SH

)]
.

F. Proof of Proposition 5

The proof follows by manipulating an off-diagonal entry
of the sub-matrices Q1,Q2 given by (13) until Q becomes
rank-deficient. We recall that varying these entries has no
influence on the achievable rates, provided that the positive
semi-definiteness of Q is maintained. Consider the symmetric
matrix

Q̃(t)
∆
= Q + t

[
0 1
1 0

0

0 0

]
, t ∈ R, Q ∈ Sd+.

Let λmin : Sd → R be the minimum eigenvalue of a Hermitian
symmetric matrix (not necessarily positive semi-definite). By
definition, λmin(Q̃(0)) ≥ 0. In addition, ∃t1 > 0 such that
λmin(Q̃(t1)) < 0. Furthermore, by the continuity of the map
λmin in the matrix entries [39, Theorem 5.2], λmin(Q̃(t)) is
a continuous function of t. Hence, by the intermediate value
theorem, ∃t0 ∈ [0, t1] such that λmin(Q̃(t0)) = 0, i.e., such
that Q̃(t0) is positive semi-definite, low rank, and achieves the
same rates as Q. �
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