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Abstract—We study a distributed sampling problem where a
set of processors want to output (approximately) independent and
identically distributed samples from a given joint distribution
with the help of a common message from a coordinator. Each
processor has access to a subset of sources from a set of
independent sources of “shared” randomness. We consider two
cases – in the “omniscient coordinator setting”, the coordinator
has access to all these sources of shared randomness, while in the
“oblivious coordinator setting”, it has access to none. In addition,
all processors and the coordinator may privately randomize.
In the omniscient coordinator setting, when the subsets at the
processors are disjoint (individually shared randomness model),
we characterize the rate of communication required from the
coordinator to the processors over a multicast link. For the
two-processor case, the optimal rate matches a special case of
relaxed Wyner’s common information proposed by Gastpar and
Sula (2019), thereby providing an operational meaning to the
latter. We also give an upper bound on the communication
rate for the “randomness-on-the-forehead” model where each
processor observes all but one source of randomness and present
an achievable strategy for the general case where the processors
have access to arbitrary subsets of sources of randomness. Also,
we consider a more general model where the processors observe
components of correlated sources (with the coordinator observing
all the components), where we characterize the communication
rate when all the processors wish to output the same random
sequence. In the oblivious coordinator setting, we completely
characterize the trade-off region between the communication and
shared randomness rates for the general case where the proces-
sors have access to arbitrary subsets of sources of randomness.

Index Terms—Shared randomness, strong coordination,
Wyner’s common information, optimal transmission rate, random
binning.

I. INTRODUCTION

In a coordination problem [1], a set of users communicate
over a network to ensure that their outputs follow a joint
behaviour specified by a prescribed joint distribution of outputs.
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Fig. 1. Omniscient coordinator setting: (Top) Individually shared randomness
model. (Bottom) Randomness-on-the-forehead model. Blue, purple and green
colors represent shared random variables W1,W2 and W3, respectively.
Coordinator K sends a common message M to the processors P1, P2,
and P3 so that they may output Xn

1 , X
n
2 , and Xn

3 , respectively, where
(X1i, X2i, X3i), i = 1, . . . , n, are (approximately) i.i.d. with qX1X2X3 .

A fundamental question here is to characterize the optimal rate
of communication among the users. There are many different
ways to mathematically formalize this problem depending
on the information available to the users, the nature of the
communication, and the type of behaviour sought by the system
designer.

An early work of this kind is due to Wyner [2] who char-
acterized the minimum rate of common randomness required
by two processors to produce (approximately) independent
and identically distributed (i.i.d.) samples from a given joint
distribution qXY ; this rate is known as Wyner’s common
information. Bennett et al. [3], Winter [4], Cuff [5], Bennett
et al. [6], and Wilde et al. [7] studied a processor observing
i.i.d. Xn that sends a message over a noiseless link to another
processor to approximate a noisy channel qY |X between them.
The non-asymptotic version of this problem was studied by
Harsha et al. [8]. Satpathy and Cuff [9], and Vellambi et al. [10]
studied the cascade network with more than two processors.
Cuff et al. [1] studied several two-node and three-node networks
in which the nodes try to produce correlated random variables.
Non-interactive distributed sampling relying on correlated
sources was studied by Kamath and Anantharam [11]. Exact
distributed sampling was studied by Anantharam and Borkar
[12], Kumar et al. [13], and Vellambi and Kliewer [14], [15].
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Coordination in the finite-length regime was studied by Cervia
et al. [16]. The form of coordination discussed above has
been called strong coordination to contrast with a weaker
form called empirical coordination. In strong coordination, the
distribution of the sequence of samples need to be close to that
of independent and identically distributed (i.i.d.) copies of the
desired distribution, whereas in empirical coordination only the
empirical distribution of the sequence of samples is required to
be close to the desired distribution [1]. Empirical coordination
has also been extensively investigated [1], [17]–[24].

Non-interactive common randomness (CR) generation was
first studied by Gács and Körner [25] and a companion result
was later shown by Witsenhausen [26]. See Mossel et al. [27],
Yang [28], and Bogdanov and Mossel [29] for more recent
works on this. CR generation with interactive communication
was studied by Ahlswede and Csiszár [30]. CR generation with
a helper was studied by Csiszár and Narayan [31]. Generation
of CR by keeping it secret from an eavesdropper, i.e., secret
key agreement, has been studied by several authors [31]–[37].
Privacy amplification, where two users extract a secret key
from a common random variable about which an eavesdropper
has partial information, has also been studied [38]–[41].

A source of common randomness available to all the users is
a potentially useful resource for coordination. It is known that
common randomness (significantly) helps reduce the amount
of communication required for strong coordination, but not
for empirical coordination [1]. The focus of the present paper
is on strong coordination. In general, a common source of
randomness may not always be available to all users, e.g.,
in a decentralized network. However, some subsets of users
may share randomness. We shall call this form of randomness
“shared randomness” in contrast to common randomness which
is accessible to all the users. Also, the communication links may
be available only between certain users or may be shared (e.g.,
in a wireless network). Motivated by this, we study the settings
below which model these aspects while being simple enough to
be tractable. We note here an earlier work [42] on coordination
using shared randomness and incomplete communication graph
which studied a three-user cascade network where only two
users share randomness.

Consider t processors, a coordinator K, and a rate limited
communication link from the coordinator to the processors.
First, we study the omniscient coordinator setting. Here, the
coordinator has access to h independent random variables
W1,W2, . . . ,Wh and each processor has access to a subset of
these random variables. In addition, all processors and the
coordinator can privately randomize. The processors want
to generate approximately (in the sense of asymptotically
vanishing total variation distance) i.i.d. samples from a given
joint distribution qX1X2...Xt . Notice that, in the absence of
shared random variables W1,W2, . . . ,Wh, this setting reduces
to Wyner’s common information problem [2], whose multi-
user generalization, among other things, was studied by Xu et
al. [43].

In the general problem, the structure of the collection of
subsets of the variables W1,W2, . . . ,Wh is arbitrary. However,
we can identify two extreme cases which are interesting and
provide some insight into the types of achievability strategies

that may be effective. In particular, we give special attention
to two models in which h = t: (i) the individually shared
randomness model where processor Pi has access to random
variable Wi, i ∈ [1 : t] and (ii) the randomness-on-the-
forehead model1 where processor Pi has access to all random
variables except Wi, i ∈ [1 : t]. Figure 1 shows these two
models for t = 3.

In the omniscient coordinator setting with t = 2 proces-
sors, note that the individually shared randomness model
and the randomness-on-the-forehead model are equivalent.
It is easy to infer from the literature [2]–[4] that a rate of
min{0.5C(X1;X2), I(X1;X2)} is achievable under unlimited
shared randomness, where

C(X1;X2) := min
X1−U−X2

I(X1, X2;U) (1)

is Wyner’s common information [2]. Firstly, note that shared
randomness can be converted to common randomness using a
simple network coding technique, In particular, the coordinator
can send the XOR of two individually shared random strings
producing 2 bits of common randomness for every bit sent.
Then, Wyner’s result [2] shows that 0.5C(X1;X2) is achievable
(see Figure 4). On the other hand, note that using their shared
randomness, coordinator and processor P1 can sample Xn

1 i.i.d.
with distribution qX1

. We can treat coordinator and processor
P1 as a single entity (encoder) having an input i.i.d. Xn

1 , which
sends a message M to processor P2 (decoder), which has to
produce Xn

2 according to the desired distribution, implying
that I(X1;X2) is achievable using channel simulation [3], [4]
(see Figure 5).

These ideas illustrate different aspects relevant to our
problem. However, it turns out that neither of these ideas are
optimal, in general. The novelty of our optimal achievable
scheme is that it builds on these ideas treating them as
guideposts while strictly improving over them. It uses shared
randomness in two different ways: some part is turned into
common randomness using network coding and the remaining
part is used jointly between the coordinator the respective
processor. Our scheme builds upon a non-trivial synthesis of the
above two ideas making optimal use of the shared randomness.
Please refer Section III for details. The former and the latter
schemes arise as extreme cases in our scheme bridging the gap
between these two schemes. Our proofs for the multi-processor
setting generalize the ideas from the proofs of the omniscient
coordinator setting with two processors.

The optimal rate of communication from the coordinator
to the two processors who want to output approximately i.i.d.
samples from a given joint distribution qX1X2

under unlimited
individually shared randomness is given by (Theorem 2)

min
pU|X1,X2

max {I(X1;X2|U), I(X1, X2;U)} . (2)

A more general form of the optimization problem in (2)
was studied independently by Wang et al. [44] and Gastpar
and Sula [45], which they defined as the relaxed Wyner’s
common information (see Remark 1 for details). Our result

1The metaphor is that each processor Pi is like a person at a party who is
wearing a hat labeled with Wi. They can see all hats except the one they are
wearing.
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(Theorem 2) can be thought of as giving an alternative
operational interpretation to the optimization problem in (2).

We also study the oblivious coordinator setting which is
similar to the omniscient coordinator setting except that the
coordinator does not have access to any of the shared random
variables W1,W2, . . . ,Wh. Figure 2 shows the oblivious
coordinator setting for t = 3 and a specific shared randomness
structure. One extreme in the problem space is when the random
variables W1,W2, . . . ,Wh are not present. In this case, the
oblivious coordinator setting also reduces to Wyner’s common
information problem [2], [43]. The oblivious coordinator
setting is similar to Wyner’s common information problem [2],
[43]. Coordinators in both Wyner’s common information
problem and the oblivious coordinator setting send a uniformly
distributed common random message to all the processors
in order to produce approximately i.i.d. samples. However,
because the processors have access to subsets of the shared
random variables, the communication rate required by the
coordinator is potentially smaller in the oblivious coordinator
setting. In that sense, the oblivious coordinator setting can
be seen as an extension of Wyner’s common information
problem [2], [43]. In fact, our results recover the multi-user
generalization of Wyner’s common information [43].
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Fig. 2. Oblivious coordinator setting. Blue, purple, and green colors represent
shared random variables W1,W2, and W3, respectively. Coordinator K sends
common randomness W to the processors P1, P2, and P3 so that they may
output Xn

1 , X
n
2 , and Xn

3 , respectively, where (X1i, X2i, X3i), i = 1, . . . , n,
are (approximately) i.i.d. with qX1X2X3 .

The oblivious coordinator setting is closely related to
channel resolvability [2] in the sense that the coordinator
sends uniformly distributed common random message to all the
processors as in Wyner’s common information problem where
an application of channel resolvability is inherent. However,
we additionally have shared random variables here. Taking
this shared randomness also into account, our proof technique
builds on the use of versions of channel resolvability in recent
works [46], [5], [47].

In brief, the main contributions of this work are as follows:
• In the omniscient coordinator setting, for the individually

shared randomness model, we characterize the optimal
transmission rate under unlimited shared randomness
(Theorem 6). Our characterization is in terms of a notion
of multivariate mutual information (namely, Watanabe’s
total correlation [48]).

• In the omniscient coordinator setting, for the randomness-
on-the-forehead model, we give an upper bound on
the optimal transmission rate under unlimited shared
randomness, which turns out to be tight for some special

cases (Theorem 8). Our upper bound is in terms of another
notion of multivariate mutual information (Han’s dual total
correlation [49]). We also give an achievable strategy in
the omniscient coordinator setting for the general case
where the processors have access to arbitrary subsets of
sources of randomness.

• In the omniscient coordinator setting, for the general case
where the processors have access to arbitrary subsets
of sources of randomness, we characterize the trade-off
region between the communication and shared randomness
rates when all the processors wish to output the same
random sequence (Theorems 7, 9 and 10). Indeed, we
consider a more general model, i.e., omniscient coordi-
nator with correlated shared randomness model, where
the processors observe components of correlated sources
(with the coordinator observing all the components), and
characterize the optimal transmission rate when all the
processors wish to output the same random sequence
(Theorem 11).

• In the oblivious coordinator setting, we completely char-
acterize the trade-off region between the communication
and shared randomness rates for the general case where
the processors have access to arbitrary subsets of sources
of randomness (Theorem 13).

The remainder of this paper is organized as follows.
We present our problem definition in Section II. The two-
processor setting with an omniscient coordinator is presented
in Section III, the multi-processor setting (including the
individually shared randomness model and the randomness-
on-the-forehead model) is presented in Section IV, and the
omniscient coordinator with correlated shared randomness
model is presented in Section V. The Oblivious coordinator
setting is presented in Section VI.

II. PROBLEM DEFINITION

Notation: We use a capital letter (e.g., PX ) to denote a
random p.m.f. (see, e.g., [50], [5]) and a lower-case letter (like
pX ) to denote a non-random p.m.f. For any two sequences of
random p.m.f.’s {PX(n) : n ∈ N} and {QX(n) : n ∈ N} on a
sequence of sets {X (n) : n ∈ N} (where X (n) is arbitrary and
can differ from the Cartesian product Xn), we write PX(n) ≈
QX(n) if limn→∞E ‖PX(n) −QX(n)‖1 = 0.

We present definitions for the omniscient coordinator setting
here. Similar definitions for the oblivious coordinator setting
and the omniscient coordinator with correlated shared random-
ness model can be written down analogously (see Section V
and Section VI, respectively, for details). Our model consists
of a coordinator K, processors P1, . . . , Pt. The coordinator
has h independent sources of randomness W1, . . . ,Wh where
each Wj is uniformly distributed in [1 : 2nRj ] for j ∈ [1 : h]
and each processor has access to a subset of these random
variables. Let Vi denote the shared randomness accessible to Pi,
i.e., Vi = {j : Wj is accessible to Pi}, and V := (Vi)i∈[1:t].
Let Xi be a finite alphabet for each i ∈ [1 : t]. The goal is
to produce (Xn

1 , X
n
2 , . . . , X

n
t ) ∈ Xn1 × Xn2 × · · · × Xnt such

that they are approximately (in the sense of asymptotically
vanishing total variation distance) distributed according to



4

q
(n)
X1...Xt

:=
∏n
i=1 qX1...Xt(x1i, . . . , xti). When h = t, and

for all i ∈ [1 : t], Vi = {i}, we call this the individually
shared randomness model. When h = t, and for all i ∈ [1 : t],
Vi = [1 : t] \ {i}, we call this the randomness-on-the-forehead
model. On observing W1, . . . ,Wh, the coordinator K produces
a message M ∈ [1 : 2nR] according to p(m|w[1:h]) (with
wS := {wj : j ∈ S}) and sends it over a common communi-
cation link to t processors. Processor Pi produces Xn

i ∈ Xni
according to a random map p(xni |m,wVi), i ∈ [1 : t].

Definition 1. An (n, 2nR, 2nR1 , . . . , 2nRh) simulation code
consists of

(
p(m|w[1:t]), p(x

n
1 |m,wV1), . . . , p(xnt |m,wVt)

)
,

where m ∈ [1 : 2nR], wi ∈ [1 : 2nRi ], i ∈ [1 : h].

The joint distribution of (W[1:h],M,Xn
1 , . . . , X

n
t ) and in-

duced distribution on (Xn
1 . . . , X

n
t ) are given by

p(w[1:h],m, x
n
1 , . . . , x

n
t ) =

p(m|w[1:h])
∏t
i=1 p(x

n
i |m,wVi)

2n(R1+···+Rh)
,

p(xn1 , . . . , x
n
t ) =

∑
w[1:h],m

p(w[1:h],m, x
n
1 , . . . , x

n
t ).

Definition 2. A rate tuple (R,R1, . . . , Rh) is said to be
achievable for a p.m.f. qX1,...,Xt if there exists a sequence
of (n, 2nR, 2nR1 , . . . ,2nRh) simulation codes such that

lim
n→∞

‖p(induced)
Xn1 ,...,X

n
t
− q(n)

X1,...,Xt
‖1 = 0. (3)

The simulation rate region R(V) is the closure of the set
of all achievable rate tuples (R,R1, . . . , Rh). Let RIndv and
RForehead denote the simulation rate regions for the individually
shared randomness model and the randomness-on-the-forehead
model, respectively.

Definition 3. The optimal transmission rate Ropt(V) is the
infimum of all the rates R such that there exists R1, . . . , Rh so
that (R,R1, . . . , Rh) ∈ R(V). Let RIndv

opt and RForehead
opt denote

the respective infima for the individually shared randomness
model and the randomness-on-the-forehead model.

III. OMNISCIENT COORDINATOR SETTING: TWO
PROCESSORS

We start with the simplest setting: an omniscient coordinator
with two processors. This case will present the proof techniques
clearly and later we will discuss how the techniques can be
generalized to multiple-processor scenario. Recall that for t = 2
processors, the individually shared randomness model and
the randomness-on-the-forehead model are identical. We state
results for the individually shared randomness model and the
randomness-on-the-forehead results follow by switching R1 and
R2. Without loss of generality then we drop the superscripts and
refer to the simulation rate region R and optimal transmission
rate Ropt. To simplify the subscripts we define X = X1 and
Y = X2.

Let qX,Y = qX1,X2
, and Rach be the set of all non-negative

rate triplets (R,R1, R2) such that

R+R1 ≥ I(X,Y ;U,U1),

R+R2 ≥ I(X,Y ;U,U2),

R ≥ I(U1;U2|U),

R+R1 +R2 ≥ I(U1;U2|U) + I(X,Y ;U,U1, U2),

2R+R1 +R2 ≥ I(U1;U2|U) + I(X,Y ;U)

+ I(X,Y ;U,U1, U2),

2R ≥ I(U1;U2|U) + I(X,Y ;U), (4)

for some p.m.f. p(x, y, u, u1, u2) = q(x, y)p(u, u1, u2|x, y) s.t.
X − (U,U1)− (U,U2)− Y .

Theorem 1. For the two-processor simulation problem with
an omniscient coordinator, the set of rates Rach is achievable:
Rach ⊆ R.

The proofs of this theorem and the subsequent theorems are
presented in Section III-A. We show the above result to be
tight in some settings. When the shared randomness rates R1

and R2 are sufficiently large, we can characterize the optimal
transmission rate.

Theorem 2. The optimal transmission rate for the omniscient
coordinator setting with two processors is given by the
following expression:

Ropt = min max
{
I(X;Y |U), I(X,Y ;U)

}
= min max

{
I(X;Y |U),

1

2

(
I(X,Y ;U) + I(X;Y |U)

)}
,

where the minimum is over all probability mass functions

p(x, y, u) = q(x, y)p(u|x, y)

such that

|U| ≤ |X ||Y|+ 2.

Remark 1. An optimization problem closely related to the first
expression of Ropt in Theorem 2 was studied in the context of
information-theoretic caching [44], [45]. In particular, Gastpar
and Sula [45] defined relaxed Wyner’s common information as

Cγ(X;Y ) := min
pU|XY :I(X;Y |U)≤γ

I(X,Y ;U), γ > 0.

The optimal transmission rate Ropt of Theorem 2 can be
expressed in terms of Cγ := Cγ(X;Y ) as follows.

Ropt = min
γ

max{γ,Cγ}

= Cγ∗ ,

where γ∗ is the fixed point of the function Cγ , i.e., the solution
to Cγ = γ.

A discussion of the intuition behind our achievable scheme
by focusing on Theorem 2 is in order. Based on the literature [2],
[3], [5], we first make some quick observations. In Figure 4,
we may use network coding to turn shared randomness into
common randomness and then employ Wyner’s scheme [2]
for coordination when common randomness is available. This
gives an achievable rate of 0.5C(X;Y ) for our problem, where



5

C(X;Y ) is Wyner’s common information 1. In Figure 5, we
use the channel simulation problem [3], [5] and argue that a
rate of I(X;Y ) is achievable for our problem. Our achievable
scheme builds on the ideas behind these. While the complete
technical details are in Section III-A, an intuitive explanation
is given in Figure 3.

...
...

un(m0, 1) un(m0, 2
nR∗

)

Un codebook
2nR0 bins

xn(m0, 1, b1) yn(m0, 1, b2)

...

xn(m0, 2
nR∗

, b1) yn(m0, 2
nR∗

, b2)

2nR
∗

code-
words in a
bin

“Conditional codebooks”,
Xn

un(m0,j)
, j ∈ [1 : 2nR

∗
]

“Conditional codebooks”,
Yn
un(m0,j)

, j ∈ [1 : 2nR
∗
]

Fig. 3. A schematic diagram of the coding scheme for the achievability part
of Theorem 2 (when the shared randomness rates are large enough): Indices
m0, b1 and b2 are determined by the shared randomness in the following way:
Index m0 which is uniformly distributed on [1 : 2nR0 ] is a concatenation
of two nR0

2
length bit strings m01 and m02, where m0i is obtained from

shared randomness wi, for i = 1, 2. Index bi which is independent of m0 and
uniformly distributed on [1 : 2nR̃i ] is also obtained from shared randomness
wi, for i = 1, 2. Note that m0, b1, b2 are mutually independent of each
other. The coordinator finds an m∗ inside the bin indexed by m0, such that
(un(m0,m∗), xn(m0,m∗, b1), yn(m0,m∗, b2)) is consistent with high
probability. Loosely, R∗ > I(X;Y |U) ensures that there exists such an m∗.
The coordinator then sends (m01 ⊕m02,m∗) as a common message to the
processors at a rate R = R0

2
+R∗. Note that Pi has access to m0i and recovers

m0. The processors P1 and P2 output xn(m0,m∗, b1) and yn(m0,m∗, b2),
respectively. Roughly, R0 + R∗ > I(X,Y ;U) ensures that the output is
according to the desired distribution. Since R = R0

2
+ R∗, the above rate

constraints imply that max
{
I(X;Y |U), 1

2

(
I(X;Y |U) + I(U ;X,Y )

)}
is

achievable when the shared randomness rates are large enough.

The main new ingredient in proving the converse is an upper
bound on I(Xn;Y n|M), the conditional mutual information
of the outputs of the processors conditioned on the message
from the coordinator. In the absence of any shared randomness
(i.e., the setup for Wyner’s common information problem), this
quantity is zero, i.e., the outputs are conditionally independent
conditioned on the message from the coordinator. However, in
our setup, this no longer need be true due to the presence of
shared randomness. Nevertheless, we show that I(Xn;Y n|M)
cannot be arbitrarily large, and in particular, is upper bounded
by the size of common message. We have the following upper
and lower bounds on Ropt.

Theorem 3.

0.5I(X;Y ) ≤ Ropt ≤ min{0.5C(X;Y ), I(X;Y )}. (5)

Furthermore, the lower bound is tight if and only if there exists
a PU |XY such that U −X − Y and U − Y −X are Markov
chains and I(X;Y ) ≤ I(X;U) + I(Y ;U). The upper bound
Ropt ≤ I(X;Y ) is tight if and only if X is independent of
Y . The upper bound Ropt ≤ 0.5C(X;Y ) is tight if X =

(X ′, V ) and Y = (Y ′, V ), where X ′ and Y ′ are conditionally
independent given V .

Next, we present an example where the upper bound in (5)
is strict.

Example 1. Consider a doubly symmetric binary source
DSBS(a) on {0, 1}2 with joint distribution

q(x, y) =

[
a
2

1−a
2

1−a
2

a
2

]
where a ∈ [0, 0.5]. For this distribution I(X;Y ) = 1− h(a),
where h(·) is the binary entropy function defined by h(t) :=
−t log t−(1−t) log (1− t). Define pt(u|x, y) := tp⊥(u|x, y)+
(1− t)p∗(u|x, y), t ∈ [0, 1], where

p⊥(0|x, y) = 0.5 = p⊥(1|x, y) ,∀ x, y,
p∗(u|x, y) = arg min

p(u|x,y):X−U−Y
I(X,Y ;U).

The distribution p∗(u|x, y) was found by Wyner [2]:

p∗(0|0, 1) = p∗(1|1, 0) = 0.5,

p∗(0|1, 1) = p∗(1|0, 0) = b2/(1− a),

where b = 1
2

(
1−
√

1− 2a
)

and the common information
C(X;Y ) = Ip∗(X,Y ;U) = 1 + h(a) − 2h(b). Let f(t) =
max

{
Ipt(X;Y |U), 1

2

(
Ipt(X,Y ;U) + Ipt(X;Y |U)

)}
, where

Ipt(X;Y |U) and Ipt(X,Y ;U) are calculated under pt(u|x, y):

Ipt(X,Y ;U) = 1 + h(a)− h
(
α,
a

2
,
a

2
, 1− a− α

)
Ipt(X;Y |U) = 2h

(
α+

a

2

)
− h

(
α,
a

2
,
a

2
, 1− a− α

)
,

where α = (1− t) b2 + t
2 (1− a). We can verify that the

two endpoints are f(0) = 0.5C(X;Y ) and f(1) = I(X;Y )
(See Appendix E-A). We find a t∗ such that Ipt∗ (X,Y ;U) =
Ipt∗ (X;Y |U), i.e., t∗ such that

1 + h(a) = 2h

(
(1− t∗) b2 +

t∗

2
(1− a) +

a

2

)
⇒ t∗ =

1(
1−a

2 − b2
) (h−1

(
1 + h(a)

2

)
− a

2
− b2

)
.

For any a ∈ (0, 0.5), we can numerically see that f(t∗) <
min {f(0), f(1)} = min {0.5C(X;Y ), I(X;Y )} (Figure 6
illustrates this fact for a = 0.1 and a = 0.2) implying
that Ropt < min {0.5C(X;Y ), I(X;Y )} since Ropt ≤ f(t∗).
Moreover, we conjecture that pt

∗
(u|x, y) (with t∗ as identified

above) is an optimizer for the expressions of Ropt in Theorem 2.
The conjecture is supported by the fact that, it can be
numerically checked that pt

∗
(u|x, y) is a minimizer among all

the conditional p.m.f.’s p(u|x, y) with |U| = 2.

Remark 2. Independently, Wang et al. [44], and Sula and
Gastpar [51] addressed the problem of computing the relaxed
Wyner common information, Cγ , of DSBS. Unbeknownst to
us, the same choice of auxiliary random variable was proposed
in [44] which preceded our work, but it was expressed in a
different form. The optimality of this choice remains open. In
[51], the authors also conjecture that it is indeed optimal.
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K

P1 P2

Xn Y n

W2

W
1
⊕

W
2

K

P1 P2

Xn Y n

W1

M

(a) (b)

Fig. 4. A rate of 0.5C(X;Y ) is achievable. (a) The model on the left is the setup for Wyner’s common information problem [2]. The coordinator sends
a uniformly distributed common message to both the processors who may output i.i.d. samples from a given joint distribution. The infimum of achievable
common randomness rates is called Wyner’s common information C(X;Y ). (b) The model on the right is for our problem. Consider W1,W2 each to
be uniformly distributed on [1 : 2nR]. We treat W1 and W2 each as an nR-length bit string. Let the coordinator transmit the bit string M = W1 ⊕W2

(‘⊕’ denotes bit-wise XOR) over common communication link to both the processors. Note that rate of transmission is R. From this both the processors
can recover (W1,W2) which is a common random variable uniformly distributed on [1 : 2n(2R)]. Then, Wyner’s result [2] shows that 2R ≥ C(X;Y ) is
achievable, i.e., R ≥ 0.5C(X;Y ) is achievable.

Enc Dec Y n

W

R

K

P1 P2

Xn Y n

W1 W2

R
Xn

∼i.i.d. qX

(a) (b)

Fig. 5. A rate of I(X;Y ) is achievable. (a) The model on the left is the setup for the channel simulation problem of Bennett et al. [3] and Winter [4]. An
encoder observing i.i.d. Xn sends a message of rate R to decoder to approximate a noisy channel qY |X between them. Common randomness W assists them
in this. A rate of R = I(X;Y ) is achievable in this model under unlimited shared randomness [3], [4]. (b) The model on the right is our problem. Using their
shared randomness W1, the coordinator K and the processor P1 sample Xn i.i.d. with distribution qX . We can treat the coordinator K and the processor P1

as a single entity (encoder) which treats the sampled Xn as an input and sends a message M of rate R to the processor P2 (decoder). The encoder and
decoder share randomness W2. The decoder P2 produces Y n according to the desired distribution, implying that I(X;Y ) is achievable [3], [5].

As expected, when the shared randomness rates approach
zero, the optimal transmission rate is equal to Wyner’s common
information, C(X;Y ) as stated in the following theorem. Note
that this will not directly follow from [2] due to the presence
of rate triples with shared randomness rate that are non-zero
but approaching zero.

Theorem 4. Let RNO−SR
opt = inf{R : (R, 0, 0) ∈ R} be the

smallest transmission rate with no shared randomness. Then
RNO−SR

opt = C(X;Y ).

For the case when X and Y are equal, we can completely
characterize the simulation rate region as follows.

Theorem 5. Suppose the output random variables X and Y
are identical: X = Y almost surely. Then the simulation rate

region is given by the set of all non-negative rate triplets
(R,R1, R2) such that

R+ min {R1, R2} ≥ H(X),

R ≥ H(X)

2
.

A. Proofs
Proof of Theorem 1: The proof employs the Output

Statistics of Random Binning (OSRB) framework developed
by Yassaee et al. [50]. We first consider a random bin-
ning scheme as follows (this is along the lines of what
Yassaee et al. [50] call the “source coding side” of the
problem). Let (Un, Un1 , U

n
2 , X

n, Y n) be i.i.d. with distribu-
tion p(u, u1, u2, x, y) = q(x, y)p(u, u1, u2|x, y) such that
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0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

t

f
(t

) a = 0.1
a = 0.2

Fig. 6. In both the plots (t∗, f(t∗)) is the minimum point which illustrates that
f(t∗) < min{f(0), f(1)}, where (0, f(0)) and (1, f(1)) are the respective
corner points. (Top) Case when f(0) = 0.5C(X;Y ) < I(X;Y ) = f(1).
t∗ = 0.343436 for a = 0.1. (Bottom) Case when f(0) = 0.5C(X;Y ) >
I(X;Y ) = f(1). t∗ = 0.442523 for a = 0.2.

X − (U,U1) − (U,U2) − Y is a Markov chain. Now, we
consider the following random binning:

• To each un, assign uniformly and independently three
random bin indices m0 ∈ [1 : 2nR0 ], f ∈ [1 : 2nR̂0 ] and
m∗ ∈ [1 : 2nR

∗
].

• To each pair (un, uni ), assign uniformly and independently
two random bin indices fi ∈ [1 : 2nR̂i ] and bi ∈ [1 : 2nR̃i ]
for i = 1, 2.

Further, we use Slepian-Wolf decoders to estimate (un, uni )
as (ûn(i), ûi) from fi, bi,m0, f,m

∗ for i = 1, 2. We denote a
Slepian-Wolf decoder by PSW (x̂n[1,T ]|z

n, b[1:T ]), which equals
1 if x̂n[1,T ] is the only jointly typical sequence [52, Chapter 2]
with zn in the bin b[1:T ], where bi is the bin index corresponding
to random binning of Xni , i ∈ [1 : T ]. Otherwise, x̂n[1,T ] is
taken to be a fixed arbitrary sequence. Then the random p.m.f.
induced by the binning can be expressed as follows:

P (un,un1 , u
n
2 , x

n, yn,m0, f,m
∗, f1, b1, f2, b2,

ûn1 , û
n
2 , û

n
(1), û

n
(2))

= p(un, un1 , u
n
2 )p(xn|un, un1 )p(yn|un, un2 )P (m0, f |un)

× P (m∗|un)P (f1, b1|un, un1 )P (f2, b2|un, un2 )

× PSW (ûn(1), û
n
1 |f1, b1,m0, f,m

∗)

× PSW (ûn(2), û
n
2 |f2, b2,m0, f,m

∗) (6)

= p(un, un1 , u
n
2 )P (m0, f, f1, b1, f2, b2|un, un1 , un2 )

× P (m∗|un)PSW (ûn(1), û
n
1 |f1, b1,m0, f,m

∗)

× PSW (ûn(2), û
n
2 |f2, b2,m0, f,m

∗)

× p(xn|un, un1 )p(yn|un, un2 ) (7)
= P (b1, b2, f1, f2,m0, f)P (un, un1 , u

n
2 |b1, b2, f1, f2,m0, f)

× P (m∗|un)PSW (ûn(1), û
n
1 |f1, b1,m0, f,m

∗)

× PSW (ûn(2), û
n
2 |f2, b2,m0, f,m

∗)

× p(xn|un, un1 )p(yn|un, un2 ), (8)

where (6) follows from Markov chain X−(U,U1)−(U,U2)−Y
and binning, (7) follows from binning.

Now consider a random coding scheme as follows (analogous
to what Yassaee et al. [50] call the “main problem assisted with
extra shared randomness”). We generate b1, b2, f1, f2,m0, f
independently and uniformly from the sets [1 : 2nR̃1 ], [1 :

2nR̃2 ], [1 : 2nR̂1 ], [1 : 2nR̂2 ], [1 : 2nR0 ] and [1 : 2nR̂0 ]
respectively. We treat ‘m0’ as an nR-length string of bits i.e.,
a concatenation of two messages m01,m02, each consisting
of nR0

2 bits. For i = 1, 2, we treat m0i and bi together
as the shared randomness wi that is shared between the
coordinator and processor Pi. In addition, we have extra shared
randomness f, f1 and f2 which we will eliminate later, where
f is shared among coordinator and both the processors, fi
is shared between coordinator and processor Pi, for i = 1, 2.
The coordinator on observing b1, b2, f1, f2,m0, f produces
un, un1 , u

n
2 according to P (un, un1 , u

n
2 |b1, b2, f1, f2,m0, f) of

(8) and sends (m01⊕m02,m
∗(un)) as a common message m

to both the processors, where m∗(un) is produced according
to P (m∗|un) of (8). Thus, both the processors can recover
‘m0’ exactly since P1 already has m01 and finds m02 =
(m01 ⊕ m02) ⊕ m01 and similarly does P2. Then processor
P1 uses Slepian-Wolf decoder PSW (ûn(1), û

n
1 |f1, b1,m0, f,m

∗)
of (8) to obtain (ûn(1), û

n
1 ) as an estimate of (un, un1 ) and

produces xn according to p(xn|ûn(1), û
n
1 ). Similarly, processor

P2 uses PSW (ûn(2), û
n
2 |f2, b2,m0, f,m

∗) of (8) and produces
yn according to p(yn|ûn(2), û

n
2 ). This scheme induces the

following random p.m.f.

P̂ (un,un1 , u
n
2 , x

n, yn,m0, f,m
∗, f1, b1, f2, b2,

ûn1 , û
n
2 , û

n
(1), û

n
(2))

= pUnif(b1)pUnif(f1)pUnif(b2)pUnif(f2)pUnif(m0)pUnif(f)

× P (un, un1 , u
n
2 |b1, b2, f1, f2,m0, f)P (m∗|un)

× PSW (ûn(1), û
n
1 |f1, b1,m0, f,m

∗)p(xn|ûn(1), û
n
1 )

× PSW (ûn(2), û
n
2 |f2, b2,m0, f,m

∗)p(yn|ûn(2), û
n
2 ) (9)

Recall that we write PX(n) ≈ QX(n) to denote that
limn→∞E ‖PX(n) −QX(n)‖1 = 0. We use Yassaee et al. [50,
Theorem 1]. By substituting T = 3, X1 = (U,U1), X2 =
(U,U2), X3 = U, and Z = ∅ in their result we have

P (b1, b2, f1, f2,m0, f)

≈ pUnif(b1)pUnif(b2)pUnif(f1)pUnif(f2)pUnif(m0)pUnif(f)

if the following conditions hold:

R̃1 + R̂1 < H(U1, U),

R̃2 + R̂2 < H(U2, U),

R0 + R̂0 < H(U),

R̃1 + R̂1 + R̃2 + R̂2 < H(U,U1, U2),

R̃1 + R̂1 +R0 + R̂0 < H(U,U1),

R̃2 + R̂2 +R0 + R̂0 < H(U,U2),

R̃1 + R̂1 + R̃2 + R̂2 +R0 + R̂0 < H(U,U1, U2).

Note that the first, second and fourth constraints above are
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redundant.

R0 + R̂0 < H(U),

R̃1 + R̂1 +R0 + R̂0 < H(U,U1),

R̃2 + R̂2 +R0 + R̂0 < H(U,U2),

R̃1 + R̂1 + R̃2 + R̂2 +R0 + R̂0 < H(U,U1, U2). (10)

Hence, when (10) is satisfied,

P (un, un1 , u
n
2 ,m0, f,m

∗, f1, b1, f2, b2, û
n
1 , û

n
2 , û

n
(1), û

n
(2))

≈ P̂ (un, un1 , u
n
2 ,m0, f,m

∗, f1, b1, f2, b2, û
n
1 , û

n
2 , û

n
(1), û

n
(2)).

(11)

Now, for the Slepian-Wolf decoder at processor P1 to succeed
applying Lemma 1 of Yassaee et al. [50] (with T = 2, X1 =
(U,U1), X2 = U,Z = ∅), it suffices if the following conditions
hold:

R̃1 + R̂1 ≥ H(U,U1|U) = H(U1|U),

R0 + R̂0 +R∗ ≥ H(U |U,U1) = 0,

R̃1 + R̂1 +R0 + R̂0 +R∗ ≥ H(U,U1).

Note that the second constraint above is redundant. And
similarly for the other decoder.

R̃1 + R̂1 ≥ H(U,U1|U) = H(U1|U),

R̃1 + R̂1 +R0 + R̂0 +R∗ ≥ H(U,U1),

R̃2 + R̂2 ≥ H(U,U2|U) = H(U2|U),

R̃2 + R̂2 +R0 + R̂0 +R∗ ≥ H(U,U2). (12)

Hence, when the conditions in (12) are met,

P (un, un1 , u
n
2 ,m0, f,m

∗, f1, b1, f2, b2, û
n
1 , û

n
2 , û

n
(1), û

n
(2))

≈ P (un, un1 , u
n
2 ,m0, f,m

∗, f1, b1, f2, b2)

× 1{ûn(1) = un = ûn(2), û
n
1 = un1 , û

n
2 = un2}. (13)

Now, we have

P̂ (un,un1 , u
n
2 , x

n, yn,m0, f,m
∗, f1, b1, f2, b2,

ûn1 , û
n
2 , û

n
(1), û

n
(2))

= P̂ (un, un1 , u
n
2 ,m0, f,m

∗, f1, b1, f2, b2, û
n
1 , û

n
2 , û

n
(1), û

n
(2))

× p(xn|ûn(1), û
n
1 )p(yn|ûn(2), û

n
2 ) (14)

≈ P (un, un1 , u
n
2 ,m0, f,m

∗, f1, b1, f2, b2)

× 1{ûn(1) = un = ûn(2), û
n
1 = un1 , û

n
2 = un2}

× p(xn|ûn(1), û
n
1 )p(yn|ûn(2), û

n
2 ) (15)

= P (un, un1 , u
n
2 ,m0, f,m

∗, f1, b1, f2, b2)

× 1{ûn(1) = un = ûn(2), û
n
1 = un1 , û

n
2 = un2}

× p(xn|un, un1 )p(yn|un, un2 )

= P (un, un1 , u
n
2 , x

n, yn,m0, f,m
∗, f1, b1, f2, b2)

× 1{ûn(1) = un = ûn(2), û
n
1 = un1 , û

n
2 = un2}.

where (14) follows from (9), (15) follows from (11) & (13).

Thus, we have

P̂ (un,un1 , u
n
2 , x

n, yn,m0, f,m
∗, f1, b1, f2, b2,

ûn1 , û
n
2 , û

n1

, ûn
2

)

≈ P (un, un1 , u
n
2 , x

n, yn,m0, f,m
∗, f1, b1, f2, b2, )

× 1{ûn(1) = un = ûn(2), û
n
1 = un1 , û

n
2 = un2}. (16)

Marginalizing (un, un1 , u
n
2 ,m0,m

∗, b1, b2, û
n
(1), û

n
(2), û

n
1 , û

n
2 )

from (16), we have

P̂ (xn, yn, f1, f2, f) ≈ P (xn, yn, f1, f2, f). (17)

We need (Xn, Y n) to be independent of the extra shared
randomness (F, F1, F2) to eliminate them without actually
disturbing the desired i.i.d. distribution. For this, we again
use [50, Theorem 1] (with T = 3, X1 = (U,U1), X2 =
(U,U2), X3 = U,Z = (X,Y )) which states that,

P (xn, yn, f1, f2, f) ≈ pUnif(f1)pUnif(f2)pUnif(f)p(xn, yn),
(18)

if the following conditions hold:

R̂1 < H(U,U1|X,Y ),

R̂2 < H(U,U2|X,Y ),

R̂0 < H(U |X,Y ),

R̂1 + R̂2 < H(U,U1, U2|X,Y ),

R̂1 + R̂0 < H(U,U1|X,Y ),

R̂2 + R̂0 < H(U,U2|X,Y ),

R̂1 + R̂2 + R̂0 < H(U,U1, U2|X,Y ).

Note that the first, second and fourth constraints above are
redundant.

R̂0 < H(U |X,Y ),

R̂1 + R̂0 < H(U,U1|X,Y ),

R̂2 + R̂0 < H(U,U2|X,Y ),

R̂1 + R̂2 + R̂0 < H(U,U1, U2|X,Y ). (19)

Now from (17) & (18), if the constraints in (10), (12) and (19)
are satisfied,

P̂ (xn, yn, f1, f2, f) ≈ pUnif(f1)pUnif(f2)pUnif(f)p(xn, yn).
(20)

Condition (20) implies the existence of a particular realization
of the random binning with corresponding p.m.f. p so that we
can replace P with p in (9) and denote the resulting p.m.f. by
p̂. Then (20) implies

p̂(xn, yn, f1, f2, f) ≈ pUnif(f1)pUnif(f2)pUnif(f)p(xn, yn)

which, by second part of [50, Lemma 4], implies that there
exists instances f∗, f∗1 , f

∗
2 of F, F1, F2 such that,

p̂(xn, yn|f∗1 , f∗2 , f∗) ≈ p(xn, yn). (21)
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Note that the rate of common message R, and respective rates
of shared randomness R1, R2 are given by,

R =
R0

2
+R∗,

R1 = R̃1 +
R0

2
,

R2 = R̃2 +
R0

2
. (22)

We gather all the constraints from (10), (12), (19) and (22),

R0 + R̂0 < H(U),

R̃1 + R̂1 +R0 + R̂0 < H(U,U1),

R̃2 + R̂2 +R0 + R̂0 < H(U,U2),

R̃1 + R̂1 + R̃2 + R̂2 +R0 + R̂0 < H(U,U1, U2), (23)

R̃1 + R̂1 ≥ H(U1|U),

R̃1 + R̂1 +R0 + R̂0 +R∗ ≥ H(U,U1),

R̃2 + R̂2 ≥ H(U2|U),

R̃2 + R̂2 +R0 + R̂0 +R∗ ≥ H(U,U2), (24)

R̂0 < H(U |X,Y ),

R̂1 + R̂0 < H(U,U1|X,Y ),

R̂2 + R̂0 < H(U,U2|X,Y ),

R̂1 + R̂2 + R̂0 < H(U,U1, U2|X,Y ), (25)

R =
R0

2
+R∗,

R1 = R̃1 +
R0

2
,

R2 = R̃2 +
R0

2
. (26)

In addition, we need to impose non-negativity constraints
on all the rates to eliminate all but R,R1, R2. But it turns
out that the non-negativity constraints on R̂0, R̂1, R̂2 are
redundant. To see this, along similar lines as Yassaee et al. [50,
Remark 4], we show that if R̂0, R̂1, R̂2 (not necessarily all
positive) along with the other rates satisfy (23)-(26) for some
random variables U,U1, U2 with X − (U,U1)− (U,U2)− Y ,
then there exists random variables Unew, U1new, U2new with
X−(Unew, U1new)−(Unew, U2new)−Y and R̂0new ≥ 0, R̂1new ≥
0, R̂2new ≥ 0, such that R̂0new, R̂1new, R̂2new along with the
same other rates satisfy (23)-(26) for Unew, U1new, U2new in-
stead of U,U1, U2. We consider an extreme case, i.e., when
R̂0 < 0, R̂1 < 0, R̂2 < 0 (other cases can be dealt
similarly). Let W,W1,W2 be random variables such that
H(W ) > |R̂0|, H(W1) > |R̂1| and H(W2) > |R̂2|. Further,
we assume that W,W1,W2 are independent of each other
and independent of all other random variables. Let R̂0new =
R̂0 +H(W ), R̂1new = R̂1 +H(W1) and R̂2new = R̂2 +H(W2)
and Unew = (U,W ), U1new = (U1,W1) and U2new = (U2,W2).
Now clearly, R̂0new ≥ 0, R̂1new ≥ 0, R̂2new ≥ 0 and it can be
easily shown that R̂0new, R̂1new, R̂2new along with other rates
satisfy (23)-(26) for Unew, U1new, U2new using the independence
of each of W,W1,W2 with all the other random variables and

the fact that R̂0, R̂1, R̂2 along with other rates satisfy (23)-(26)
(See Appendix E-B).

Notice that we can assume that the constraints in (24) hold
with equality, because we can reduce the rates R̂0, R̂1, R̂2 to
get equalities in (24) without disturbing the other constraints.
Rate elimination becomes simpler with this observation. This
leads to,

R̂1 = H(U1|U)− R̃1,

R̂0 = H(U)−R0 −R∗,
R̂2 = H(U2|U)− R̃2. (27)

Substituting (27) in (23) and (25) gives the following con-
straints after ignoring the redundant inequalities.

R∗ > I(U1;U2|U),

R0 +R∗ > I(X,Y ;U),

R0 + R̃1 +R∗ > I(X,Y ;U,U1),

R0 + R̃2 +R∗ > I(X,Y ;U,U2),

R0 + R̃1 + R̃2 +R∗ > I(U1;U2|U) + I(X,Y ;U,U1, U2).
(28)

Also, from (26) we get

R∗ = R− R0

2
,

R̃1 = R1 −
R0

2
,

R̃2 = R2 −
R0

2
. (29)

Non-negativity constraints on R∗, R̃1, R̃2 imply from (29) that

R ≥ R0

2
,

R1 ≥
R0

2
,

R1 ≥
R0

2
. (30)

Substituting (29) in (28) gives the following constraints on
R,R1, R2 and R0.

R− 0.5R0 > H(U) +H(U1|U) +H(U2|U)

−H(U,U1, U2),

R+ 0.5R0 > I(X,Y ;U),

R+R1 > I(X,Y ;U,U1),

R+R2 > I(X,Y ;U,U2),

R+R1 +R2 − 0.5R0 > H(U) +H(U1|U) +H(U2|U)

−H(U,U1, U2|X,Y ). (31)

Now, notice that R0 is the only variable which needs to
be eliminated from (30), (31) along with a non-negativity
constraint, R0 ≥ 0. We use Fourier-Motzkin elimination (FME)
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to eliminate R0 to get the following:

R+R1 > I(X,Y ;U,U1),

R+R2 > I(X,Y ;U,U2),

R > I(U1;U2|U),

R+R1 +R2 > I(U1;U2|U) + I(X,Y ;U,U1, U2),

2R+R1 +R2 > I(U1;U2|U) + I(X,Y ;U)

+ I(X,Y ;U,U1, U2),

2R > I(U1;U2|U) + I(X,Y ;U). (32)

Thus, when the conditions in (32) are met, there exists
a sequence of (n, 2nR, 2nR1 , 2nR2) simulation codes with
coordinator and processors as described in the random coding
scheme above with the particular realization of random binning
along with fixed instances of f∗, f∗1 , f

∗
2 resulting in desired

vanishing total variation distance.
Proof of Theorem 2: For achievability, when rates

R1, R2 are large enough, Theorem 1 implies that a rate of
max{I(U1;U2|U), 1

2

(
I(U1;U2|U) + I(U ;X,Y )

)
} is achiev-

able when X − (U,U1) − (U,U2) − Y . It is easy to see
that U1 = X,U2 = Y satisfy the Markov chain X −
(U,U1)− (U,U2)−Y for any U . So, for any p(u|x, y), if R =
max

{
I(X;Y |U), 1

2

(
I(X,Y ;U) + I(X;Y |U)

)}
, then there

exists R1 and R2 so that (R,R1, R2) ∈ R. Hence, Ropt ≤
min max

{
I(X;Y |U), 1

2

(
I(X,Y ;U) + I(X;Y |U)

)}
=: RU ,

where the minimum is over all conditional p.m.f.’s p(u|x, y).
For the converse, suppose a rate triplet (R,R1, R2) is

achievable for q(x, y). Fix an ε ∈ (0, 1
4 ). Then there exists an

(n, 2nR, 2nR1 , 2nR2) simulation code such that

‖pXnY n − q(n)
XY ‖1 < ε (33)

for large enough n. First, we show that there exists a p.m.f.
γX,Y,U with |U| ≤ |X ||Y|+ 2 such that ‖γX,Y − qX,Y ‖1 < ε
and

R ≥ I(X;Y |U), (34)
R ≥ I(X,Y ;U)− g(ε), (35)

where limε↓0 g(ε) = 0. We will show (35) along the lines
of Wyner [2]. To obtain (34), we will first show that nR ≥
I(Xn;Y n|M). In Wyner’s model [2], the term I(Xn;Y n|M)
is precisely zero. This is not the case here, in general, because
of the presence of shared random variables W1 and W2. We
will further lower bound the term I(Xn;Y n|M) by a single-
letter form to obtain (34):

I(Xn;Y n|M) ≤ I(Xn,W1;Y n,W2|M)

= I(W1;Y n,W2|M) (36)
= I(W1;W2|M) (37)
≤ I(W1;M) + I(W1;W2|M)

− I(W1;W2) (38)
= I(W1;M |W2)

≤ H(M |W2)

≤ H(M)

≤ nR, (39)

where (36) and (37) follow from the Markov chain Xn −
(M,W1) − (M,W2) − Y n, (38) follows because W1 is
independent of W2 and I(W1;M) ≥ 0.

Let T be a random variable uniformly distributed over [1 : n]
and independent of all other variables. Then, by continuing
(39), we have

nR ≥ I(Xn;Y n|M)

=

n∑
i=1

I(Xi;Y
n|M,Xi−1)

=

n∑
i=1

I(Xi;Y
i−1|M,Xi−1)

+

n∑
i=1

I(Xi;Y
n
i |M,Xi−1, Y i−1)

≥
n∑
i=1

I(Xi;Y
n
i |M,Xi−1, Y i−1)

=

n∑
i=1

I(Xi;Yi|M,Xi−1, Y i−1)

+

n∑
i=1

I(Xi;Y
n
i+1|M,Xi−1, Y i)

≥
n∑
i=1

I(Xi;Yi|M,Xi−1, Y i−1)

=

n∑
i=1

I(Xi;Yi|Ui) (40)

= nI(XT ;YT |UT , T ), (41)

where (40) follows by defining Ui = (M,Xi−1, Y i−1).
Following Wyner [2], we lower bound R in another fashion,

nR ≥ H(M)

≥ I(Xn, Y n;M)

= H(Xn, Y n)−H(Xn, Y n|M)

≥
n∑
i=1

[H(Xi, Yi)− ε′]−
n∑
i=1

H(Xi, Yi|M,Xi−1, Y i−1)

(42)

≥
n∑
i=1

[I(Xi, Yi;M,Xi−1, Y i−1)− ε′]

=

n∑
i=1

[I(Xi, Yi;Ui)− ε′]

= n[I(XT , YT ;UT |T )− ε′]
= n[I(XT , YT ;UT , T )− I(XT , YT ;T )− ε′]
≥ n[I(XT , YT ;UT , T )− ε′ − δ] (43)
= nI(XT , YT ;UT , T )− ng(ε). (44)

In (42) and (43), ε′, δ → 0 as ε → 0. We show these steps
using (33) (details are in Appendix A). In (44), g(ε) := ε′+ δ,
so g(ε) → 0 as ε → 0. Now, we claim that we can find a
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γX,Y,U such that

γXY = pXTYT , (45)
Iγ(X;Y |U) = Ip(XT ;YT |UT , T ), (46)
Iγ(X,Y ;U) = Ip(XT , YT ;UT , T ), (47)

|U| ≤ |X ||Y|+ 2. (48)

This directly follows from an application of Convex Cover
Method [52, Appendix C] along the same lines as Cuff [5,
Lemma VI.1]. Note that

‖γXY − qXY ‖1 = ‖pXTYT − qXY ‖1
≤ ‖pXnY n − q(n)

XY ‖1 (49)
< ε,

where (49) follows from [5, Lemma VI.2]. Let Sε, for ε ≥ 0
be defined as the set of all non-negative rates R such that

R ≥ I(X;Y |U), (50)
R ≥ I(X,Y ;U)− g′(ε), (51)

for some p.m.f. p(x, y, u) satisfying (48) and ‖pXY −qXY ‖1 ≤
ε with g′(ε) = g(ε), for ε > 0 and g′(0) = 0. Thus, for every
ε > 0, it follows from (41), (44) and (45)-(49) that, R ∈ Sε.
Using the continuity of total variation distance and mutual
information in the probability simplex, we can show that that⋂
ε>0
Sε = S0 along the same lines as Yassaee et al. [53, Lemma

6]. Hence Ropt ≥ min max
{
I(X;Y |U), I(X,Y ;U)

}
=: RL,

where the minimum is over all conditional p.m.f.’s p(u|x, y)
with |U| ≤ |X ||Y|+ 2. So, achievability and converse give us
RL ≤ Ropt ≤ RU . And since it is trivial to see that RL ≥ RU ,
we have Ropt = RL = RU (RL = RU can be proved directly
also as shown in Lemma 1 in Appendix A).

Proof of Theorem 3: Consider the second expression for
Ropt in Theorem 2. To see the lower bound, notice that

I(X,Y ;U)+I(X;Y |U)

= I(X;Y ) + I(X;U |Y ) + I(Y ;U |X)

≥ I(X;Y ).

For the upper bound, choosing U to be a minimizer in
(1) gives us Ropt ≤ 0.5C(X;Y ). Choosing U = ∅ gives us
Ropt ≤ I(X;Y ).

If X and Y are independent, it is easy to see that Ropt = 0
by choosing U = ∅. Recall from Remark 1 that Ropt = Cγ∗ ,
where γ∗ is such that Cγ∗ = γ∗, where Cγ is relaxed Wyner’s
common information. For the other direction, suppose that
Ropt = I(X;Y ). Then, Cγ∗ = γ∗ = I(X;Y ). However, from
the definition of Cγ , if γ = I(X;Y ), it is easy to see that
Cγ = 0 by choosing U = ∅. Therefore, Cγ∗ = 0 = I(X;Y ),
which implies that X is independent of Y .

Notice that

I(X;Y |U) =
I(X;Y ) + I(U ;X|Y ) + I(U ;Y |X)

2

+
I(X;Y )− I(X;U)− I(Y ;U)

2
,

I(X,Y ;U) + I(X;Y |U)

= I(X;Y ) + I(U ;X|Y ) + I(U ;Y |X).

If there exists a PU |XY such that U −X − Y and U − Y −
X are Markov chains and I(X;Y ) ≤ I(X;U) + I(Y ;U),
then Ropt = I(X;Y )

2 . For the other direction, suppose that for
every PU |XY , we have I(U ;Y |X) > 0 or I(U ;X|Y ) > 0 or
I(X;Y ) > I(X;U) + I(Y ;U). In that case, it is easy to see
that Ropt >

I(X;Y )
2 .

For X = (X ′, V ) and Y = (Y ′, V ), where X and Y
are conditionally independent given V , we have C(X;Y ) =

I(X;Y ) = H(V ). Now since I(X;Y )
2 ≤ Ropt ≤ C(X;Y )

2 , we
have Ropt = C(X;Y )

2 .
Proof of Theorem 4: For the achievability, it is easy to see

from Theorem 1 that (C(X;Y ), 0, 0) ∈ R by identifying that
for any U satisfying X−U−Y , we have (I(X,Y ;U), 0, 0) ∈
R with the corresponding other auxiliary random variables
defined by U1 = ∅, U2 = ∅. Hence, RNO−SR

opt ≤ C(X;Y ).
For the converse, suppose R is such that (R, ε, ε) is

achievable for every ε > 0. This implies that for a fixed
ε > 0, there exists an (n, 2nR, 2nε, 2nε) simulation code such
that

‖pXnY n − q(n)
XY ‖1 < ε, (52)

for large enough n. R can be bounded using (52) along the
similar lines as (44), which gives us

R ≥ I(XT , YT ;UT , T )− g(ε), (53)

where limε↓0 g(ε) = 0, UT = (M,XT−1, Y T−1) and T is
a random variable uniformly distributed over [1 : n] and
independent of everything else.

Next, we lower bound nε in the following fashion.

nε ≥ H(W1)

≥ I(W1;W2|M)

= I(Xn,W1;Y n,W2|M) (54)
≥ I(Xn;Y n|M)

≥ nI(XT ;YT |UT , T ), (55)

where (54) follows from Xn− (M,W1)− (M,W2)−Y n, and
(55) follows along similar lines as (41).

Now from (53) and (55) and using arguments similar to
(45)-(49) one can show that R ∈ Mε, where Mε is defined
to be the set of all rates R such that

R ≥ I(X;Y |U)− g(ε),

ε ≥ I(X;Y |U),

where limε↓0 g(ε) = 0 for some p.m.f. p(x, y, u) satisfying
|U| ≤ |X ||Y|+ 2 and ‖pXY − qXY ‖1 ≤ ε.

Using the continuity of total variation distance and mutual
information in the probability simplex, we can show that⋂
ε>0
Mε = M along the same lines as Yassaee et al. [53,

Lemma 6], where M is defined to be the set of all rates R
such that

R ≥ I(X,Y ;U), (56)

for some conditional p.m.f. p(u|x, y) satisfying X − U − Y
and |U| ≤ |X ||Y|+ 2. Hence, RNO−SR

opt ≥ C(X;Y ).
The proof of Theorem 5 is subsumed by the proof of

Theorem 7 proved in Section IV-B.
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IV. OMNISCIENT COORDINATOR SETTING: MULTIPLE
PROCESSORS

We now turn to the omniscient coordinator setting with t > 2
processors. The proof techniques for the multiple-processor
setting use similar methods as for two processors. In this
setting, however, the individually shared randomness model
and the randomness-on-the-forehead model are not identical.
We show a number of results for these two models as well as
an achievable scheme for the general model where Vi’s are
arbitrary subsets of [1 : h].

A. Results

We provide results for the individually shared randomness
model and randomness-on-the-forehead model. Results for
the former and the latter models involve Watanabe’s total
correlation [48] and Han’s dual total correlation [49] measures,
respectively.

1) Individually Shared Randomness Model: When the shared
randomness rates are sufficiently large, we characterize the
optimal rate of communication. Let I(X1; . . . ;Xt|U) denote
Watanabe’s total correlation [48].

I(X1; . . . ;Xt|U) :=

(
t∑
i=1

H(Xi|U)

)
−H(X1, . . . , Xt|U).

(57)

Theorem 6. The optimal transmission rate for the individually
shared randomness model is given by

RIndv
opt = min max

{
I(X1; . . . ;Xt|U), I(X1, . . . , Xt;U)

}
,

where the minimum is over all probability mass functions

p(x[1:t], u) = q(x[1:t])p(u|x[1:t])

with

|U| ≤

(
t∏
i=1

|Xi|

)
+ t.

For the case when all Xi are equal, we can completely
characterize the simulation rate region RIndv.

Theorem 7. Suppose qX1...Xt is such that X1 = · · · = Xt =
X . Then the simulation rate region RIndv for the individually
shared randomness model is the set of all non-negative rate
tuples (R,R1, . . . , Rh) such that

R+ min{R1, . . . , Rt} ≥ H(X), (58)

R ≥ (t− 1)H(X)

t
. (59)

2) Randomness-on-the-Forehead Model: We give an upper
bound on RForehead

opt . Let Ĩ(X1; . . . ;Xt|U) denote Han’s dual
total correlation [49]:

Ĩ(X1; . . . ;Xt|U) := H(X[1:t]|U)−
t∑
i=1

H(Xi|U,X[1:t]\{i}).

(60)

Theorem 8. The optimal transmission rate for the randomness-
on-the-forehead model is upper bounded as follows:

RForehead
opt ≤ min max

i∈[1:t]

{ri
i

}
, (61)

where

ri = max
{l1,...,li+1}⊆[1:t]

Ĩ(Ul1 ; . . . ;Uli+1 |U,U[1:t]\{l1,...li+1}),

for i ∈ [1 : t−1], and rt = Ĩ(U1; . . . ;Ut|U)+I(X[1:t];U). The
minimum in (61) is taken over all probability mass functions
of the form

p(x[1:t], u, u[1:t]) = q(x[1:t])p(u, u[1:t]|x[1:t])

such that

p(u, u[1:t], x[1:t]) = p(u, u[1:t])

t∏
m=1

p(xm|u, u[1:t]\{m}).

(62)

Special cases: We identify several special cases of the above
result to help illustrate the structure of the problem.
(a) When X1 is independent of (X2, . . . , Xt), clearly a rate of

zero is achievable because processor P1 samples i.i.d. X1

using Wt and other processors sample i.i.d. (X2, . . . , Xt)
using W1. We recover this by taking U = U2 = · · · =
Ut−1 = ∅, U1 = (X2, . . . , Xt), Ut = X1 in Theorem 8.
So, RForehead

opt = 0.
(b) When qX1,...,Xt is such that X1 = · · · = Xt = X , a rate

of H(X)
t is achievable by taking U1 = · · · = Ut = ∅ and

U = X in Theorem 8. The converse follows from the
converse of Theorem 9 (in particular, by substituting i = t
in (63)). So, RForehead

opt = H(X)
t .

For the case when all Xi are equal, we can completely
characterize the simulation rate region RForehead.

Theorem 9. Suppose qX1...Xt is such that X1 = · · · =
Xt = X . Then the simulation rate region RForehead for the
randomness-on-the-forehead model is given by the set of all
non-negative rate tuples (R,R1, . . . , Rt) such that

iR+
∑
j∈S

Rj ≥ H(X), (63)

for i ∈ [1 : t],S ( [1 : t] s.t. |S| = t− i.

3) The general case: For the general model (i.e., when Vi’s
are arbitrary subsets of [1 : h]), we can completely characterize
the simulation rate region R(V) when all Xi are equal.

Theorem 10. Suppose qX1...Xt is such that X1 = · · · =
Xt = X . The simulation rate region R(V) for the omniscient
coordinator setting is the set of all non-negative rate tuples
(R,R1, . . . , Rh) s.t. there exists non-negative r, r1, . . . , rh
satisfying

R ≥

 ∑
j:j /∈Vi

rj

+ r, i ∈ [1 : t], (64)

H(X) ≤ r +

h∑
j=1

rj , (65)

Rj ≥ rj , j ∈ [1 : h]. (66)
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Remark 3. Even though Theorems 7 & 9 can be recovered
from Theorem 10 by eliminating r’s (see Section III-A), they
are of independent interest because their proofs give an optimal
choice of r’s for explicitly constructing an achievable scheme
and the rate regions have nice closed form expressions in terms
of rates R,R1, . . . , Rt (as in (58) and (59), and (63)).

B. Proofs
1) Individually Shared Randomness Model: Proof of

Theorem 6: The achievability proof is based on generalization
of the idea behind the proof of Theorem 1. The intuition
is as follows. Fix a conditional p.m.f. p(u|x1, . . . , xt), gen-
erate a binned codebook {un(j, k)}j,k ∼ pu i.i.d., where
j ∈ [1 : 2nR0 ] denotes the number of bins and k ∈ [1 : 2nR

∗
]

specifies a particular un sequence inside a bin. For each
un(j, k), generate an Xi−conditional codebook ∼ p(xi|u)
i.i.d., where each codeword is represented as xni (i, j, bi)
(here bi is assumed to be of sufficiently large rate), for
i ∈ [1 : t]. We treat shared randomness as bit strings. Indices
m0, bi, i ∈ [1 : t] are determined by the shared randomness in
the following way: Index m0 which is uniformly distributed
on [1 : 2nR0 ] is a concatenation of ‘t’ nR0

t −length bit strings
m0i, i ∈ [1 : t], where m0i is obtained from shared randomness
wi. Index bi which is independent of m0 is also obtained
from shared randomness wi, for i ∈ [1 : t]. Note that
m0, bi, i ∈ [1 : t] are mutually independent of each other. The
coordinator finds an m∗ inside the bin indexed by m0 such that
(un(m0,m

∗), xn1 (m0,m
∗, b1), . . . , xnt (m0,m

∗, bt)) is consis-
tent with high probability. Loosely, R∗ > I(X1; . . . ;Xt|U)
ensures that there exists such an m∗. The coordinator then
sends (m01⊕m02, . . . ,m01⊕m0t,m

∗) as a common message
to the processors at a rate R = t−1

t R0 + R∗. Note that
processor Pi has access to m0i and recovers m0.Then, the
processors Pi, i ∈ [1 : t] output xni (m0,m

∗, bi), i ∈ [1 : t],
respectively. Roughly, R0 + R∗ > I(X1, . . . , Xt;U) en-
sures that the output is according to the desired distribution.
Since R = t−1

t R0 + R∗, the above rate constraints im-
ply that max

{
I(X1; . . . ;Xt|U), 1

t

(
(t−1)I(X1, . . . , Xt;U)+

I(X1; . . . ;Xt|U)
)}

is achievable. A formal proof can be
written down along similar lines as that of Theorem 1
employing the proof technique of OSRB framework [50] (the
proof is outlined in Appendix B).

The converse argument is broadly along the lines of
the converse in Theorem 2. The key step is to show that
nR ≥ I(Xn

1 ; . . . ;Xn
t |M), where I(Xn

1 ; . . . ;Xn
t |M) is the

Watanabe total correlation in (57). Notice that the notion of
multivariate mutual information in the R.H.S. of this inequality
can be viewed as a generalization of a corresponding mutual
information term in the converse of Theorem 2. Following the
chain of inequalities:

I(X1
n; . . . ;Xn

t |M)

=

(
t∑
i=1

H(Xn
i |M)

)
−H(Xn

1 , . . . , X
n
t |M)

=

t∑
i=1

[
H(Xn

i |M)−H(Xn
i |M,Xn

1 , . . . , X
n
i−1)

]

=

t∑
i=2

I(Xn
1 , . . . , X

n
i−1;Xn

i |M)

≤
t∑
i=2

I(W1, . . . ,Wi−1;Wi|M) (67)

=

(
t∑
i=1

H(Wi|M)

)
−H(W1, . . . ,Wt|M)

=

t∑
i=1

[
H(Wi|M)−H(Wi)

]
−H(W1, . . . ,Wt|M)

+H(W1, . . . ,Wt) (68)

= I(M ;W1, . . . ,Wt)−
n∑
i=1

I(M ;Wi)

≤ H(M)

≤ nR, (69)

where (67) follows from the Markov chains Xn
i − (M,Wi)−

(M,W1, . . . ,Wi−1) − (Xn
1 , . . . , X

n
i−1), for i ∈ [2 : t], (68)

follows because W1, . . . ,Wt are mutually independent random
variables.

Let Q be a random variable uniformly distributed over [1 : n]
and independent of all other random variables. Then, by
continuing (69), we have

nR ≥ I(Xn
1 ; . . . ;Xn

t |M)

=

(
t∑
i=1

H(Xn
i |M)

)
−H(Xn

1 , . . . , X
n
t |M)

=

 t∑
i=1

n∑
j=1

H(Xij |M,X1:j−1
i )


−

n∑
j=1

H(X1j , . . . , Xtj |M,X1:j−1
1 , . . . , X1:j−1

t )

=

n∑
j=1

[ t∑
i=1

H(Xij |M,X1:j−1
i )

−H(X1j , . . . , Xtj |M,X1:j−1
1 , . . . , X1:j−1

t )

]
≥

n∑
j=1

[ t∑
i=1

H(Xij |M,X1:j−1
1 , . . . , X1:j−1

t )

−H(X1j , . . . , Xtj |M,X1:j−1
1 , . . . , X1:j−1

t )

]
=

n∑
j=1

I(X1j ; . . . ;Xtj |M,X1:j−1
1 , . . . , X1:j−1

t )

=

n∑
j=1

I(X1j ; . . . ;Xtj |Uj) (70)

= nI(X1Q; . . . ;XtQ|UQ, Q),

where (70) follows by defining Uj =
(M,X1:j−1

1 , . . . , X1:j−1
t ). Following Wyner [2],

we lower bound R in another fashion as R ≥
I(X1Q, . . . , XtQ;UQ, Q) − g(ε), where g(ε) → 0
as ε → 0 (details are in Appendix B). Note that
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‖pX1Q...XtQ − qX1...Xt‖ < ε, which follows from
Cuff [5, Lemma VI.2]. Using the continuity of total
variation distance and mutual information in the
probability simplex, it follows along the same lines
as Theorem 2 and Yassaee et al. [53, Lemma 6] that
RIndv

opt ≥ min max
{
I(X1; . . . ;Xt|U), I(X1, . . . , Xt;U)

}
,

where the minimum is over all conditional p.m.f.’s
p(u|x1, . . . , xt) with |U| ≤

(∏t
i=1 |Xi|

)
+ t. Note that this

cardinality bound on U follows from an application of Convex
Cover Method [52, Appendix C]. This completes the proof of
Theorem 6.

Proof of Theorem 7: This is a special case of Theorem 10
where Vi = {i}. The rate region RIndv is given by the set of
all non-negative rate tuples (R,R1, . . . , Rt) such that there
exist non-negative r, r1, . . . , rt satisfying

R ≥

 ∑
j:j∈[1:t]\{i}

rj

+ r, i ∈ [1 : t], (71)

H(X) ≤ r +

t∑
i=1

ri, (72)

Ri ≥ ri, i ∈ [1 : t]. (73)

LetR′ be the set of all non-negative rate tuples (R,R1, . . . , Rt)
satisfying (58) and (59), the region given in the theorem. To
show that R′ ⊆ RIndv, let (R,R1, . . . , Rt) ∈ R′. Without loss
of generality, let R1 ≤ · · · ≤ Rt. Consider two cases.

Case (i)
(
R1 ≥ H(X)

t

)
: Choose ri = H(X)

t for i ∈ [1 : t]
and r = 0.

Case (ii)
(
R1 <

H(X)
t

)
: Choose ri = R1 for i ∈ [1 : t] and

r = H(X)− tR1 (note that r > 0 since tR1 < H(X)).
In both the cases, it is easy to see that the choice of

r, r1, . . . , rt ensures that (R,R1, . . . , Rt) ∈ RIndv.
To show that RIndv ⊆ R′, let (R,R1, . . . , Rt) ∈ RIndv.

For any i ∈ [1 : t], adding (71) and (73) gives R + Ri ≥∑t
j=1 rj + r ≥ H(X), where the last inequality follows from

(72). This gives (58). Adding (71) over respective i ∈ [1 : t]

gives tR ≥ (t− 1)
(∑t

i=1 rj + r
)

+ r ≥ (t− 1)H(X), where
the last inequality follows from (72) and the fact that r ≥ 0.
This gives (59) and thus (R,R1, . . . , Rt) ∈ R′. This completes
the proof of Theorem 7.

2) Randomness-on-the-Forehead Model: Proof sketch
of Theorem 8: Here we give a proof sketch for
t = 3 (a detailed proof can be found in Ap-
pendix C). The proof employs the OSRB framework [50].
Let (Un, Un1 , U

n
2 , U

n
3 , X

n
1 , X

n
2 , X

n
3 ) be i.i.d. with distribu-

tion p(u, u[1:3], x[1:3]) = q(x[1:3])p(u, u[1:3]|x[1:3]) satisfy-
ing (62). Bin indices f,m∗, b1, b2, b3 with respective rates
R̂0, R

∗, R̃1, R̃2, R̃3 are created from (Un, Un1 , U
n
2 , U

n
3 ) in a

way that can be understood from the following joint probability
distribution:

P (un, un1 , u
n
2 , u

n
3 , x

n
1 , x

n
2 , x

n
3 , f,m

∗, b1, b2, b3)

= p(un, un1 , u
n
2 , u

n
3 )P (f |un)P (m∗|un)P (b1|un, un1 )

× P (b2|un, un2 )P (b3|un, un3 )p(xn1 |un, un2 , un3 )

× p(xn2 |un, un1 , un3 )p(xn3 |un, un1 , un2 )

= P (b1, b2, b3, f)P (un, un1 , u
n
2 , u

n
3 |b1, b2, b3, f)P (m∗|un)

× p(xn1 |un, un2 , un3 )p(xn2 |un, un1 , un3 )p(xn3 |un, un1 , un2 ).
(74)

Further, we use Slepian-Wolf decoders to estimate (un, u(i)3+1)
from b(i+2)3+1, f,m

∗, i = 0, 1, 2, where (i)3 = i mod 3.
Now we impose a series of constraints on the rates (for
details see Appendix C). The first set of constraints ensure
that b1, b2, b3, f are approximately (i.e., with vanishing total
variation distance) uniformly distributed and mutually inde-
pendent of each other [50, Theorem 1]. The second set of
constraints guarantees the success of Slepian-Wolf decoders
with high probability [50, Lemma 1]. Under these two sets
of rate constraints, the above p.m.f. becomes approximately
close to the p.m.f. described below, which is related to our
original problem. We generate b1, b2, b3, f independently and
uniformly from the respective alphabets. For i ∈ [1 : 3],
we treat bi as the shared randomness wi that is not avail-
able to processor Pi. In addition, we have extra shared
randomness f (to be eliminated later), which is shared among
coordinator and all the three processors. The coordinator on
observing b1, b2, b3, f produces un, un1 , u

n
2 , u

n
3 according to

the random p.m.f. P (un, un1 , u
n
2 , u

n
3 |b1, b2, b3, f) of (74) and

sends (m∗(un)) as a common message m to the processors,
where m∗(un) is produced according to P (m∗|un) of (74).
The processors use (random) Slepian-Wolf decoders mentioned
below (74) to produce their respective estimates. Then they
generate xn1 , x

n
2 , x

n
3 according to respective p.m.f.’s mentioned

in the last line of (74). We need a third set of rate constraints
so that Xn

i , i ∈ [1 : 3] becomes approximately independent of
F (for details see Appendix C). All these three sets of rate
constraints ensures the correctness of the output distribution
with a particular realization of the binning. Noting that R = R∗

and eliminating all the other rates gives us (61) for t = 3.
Proof of Theorem 9: This is a special case of Theorem 10

where Vi = [1 : t] \ {i}. The rate region RForehead is given by
the set of all non-negative rate tuples (R,R1, . . . , Rt) such
that there exists non-negative r, r1, . . . , rt satisfying

R ≥ ri + r, i ∈ [1 : t], (75)

H(X) ≤ r +

t∑
i=1

ri, (76)

Ri ≥ ri, i ∈ [1 : t]. (77)

LetR′ be the set of all non-negative rate tuples (R,R1, . . . , Rt)
satisfying (63), the region given in the theorem. To show that
R′ ⊆ RForehead, let (R,R1, . . . , Rt) ∈ R′. Without loss of
generality, let R1 ≤ · · · ≤ Rt. We consider two cases.

Case (i)
(
H(X) ≤

∑t
i=1Ri

)
: Let i ∈ [1 : t] such that∑i−1

j=1Rj < H(X) ≤
∑i
j=1Rj . Choose rj = Rj , j ∈ [1 :

i− 1], rj =
(H(X)−

∑i−1
k=1 Rk)

(t−(i−1)) , j ∈ [i : t] and r = 0.
Case (i)

(
H(X) >

∑t
i=1Ri

)
: Choose rj = Rj , i ∈ [1 : t]

and r = H(X)−
∑t
i=1Ri.

It is easy to see that, in both the cases, the choice of
r, r1, . . . , rt ensures that (R,R1, . . . , Rt) ∈ RForehead.

To show thatRForehead ⊆ R′, let (R,R1, . . . , Rt) ∈ RForehead.
Fix a set S ( [1 : t]. Adding (75) over i ∈ [1 : t] \ S and (77)
over i ∈ S gives (t−|S|)R+

∑
j∈S Ri ≥ (t−|S|− 1)r+ r+



15

∑t
i=1 ri ≥ H(X), where the last inequality follows from (76)

and the facts that |S| ≤ t− 1 and r ≥ 0. Considering this over
all the possible sets S gives us (R,R1, . . . , Rt) ∈ R′. This
completes the proof of Theorem 9.

3) The general case: In the general case we can only prove
results when all of the output variables are equal.

Proof of Theorem 10: Suppose for a rate tuple
(R,R1, . . . , Rh), there exist r, r1, . . . , rh such that (64), (65)
and (66) hold. For each i ∈ [1 : h], from randomness Wi

only a randomness of rate ri is utilised in the achievability.
For i ∈ [1 : h], since ri ≤ Ri, without loss of generality,
assume that Wi is of rate Ri. The coordinator sends a message
which consists of two parts. Since coordinator has access to
all Wi’s, by network coding [54], [55], a multicast message
of rate at least maxi

∑
j:j /∈Vi rj can be used to deliver all the

sources of randomness to all the processors. This constitutes
the first part of the common message. The second part of
the message is a uniform randomness of rate r which might
be required additionally so that a common randomness of
rate of atleast H(X) is available to all the processors. This
gives an achievable scheme for the rate tuple (R,R1, . . . , Rh)
satisfying (64), (65) and (66), since a common randomness of
rate H(X) is sufficient for sampling the same i.i.d. sequence
approximately according to qX by all the processors.

For the converse, suppose a rate tuple (R,R1, . . . , Rh) is
achievable. Consider

nR ≥ H(M)

≥ H(M |WVi)
≥ I(M ;Xn

i |WVi)
= I(M,W[1:h]\Vi ;X

n
i |WVi) (78)

= I(W[1:h]\Vi ;X
n
i |WVi) + I(M ;Xn

i |W[1:h]), (79)

where (78) follows from the Markov chain Xn
i − (M,WVi)−

W[1:h]\Vi . For the first term in (79) with i = 1, note that

I(W[1:h]\V1 ;Xn
1 |WV1)

=
∑
j:j /∈V1

I(Wj ;X
n
1 |W[1:j−1]∩([1:h]\V1),WV1)

(80)

=
∑
j:j /∈V1

I(Wj ;X
n
1 ,W[1:j−1]∩([1:h]\V1),WV1)

(81)

≥
∑
j:j /∈V1

I(Wj ;X
n
1 ,W

j−1),

where (80) follows from chain rule of mutual information,
(81) follows because, for j /∈ V1, Wj is independent of(
W[1:j−1]∩([1:h]\V1),WV1

)
. For j ∈ [1 : h], let rj =

n−1I(Wj ;X
n
1 ,W

j−1).
For i > 1, note that

I(W[1:h]\Vi ;X
n
i |WVi)

= I(W[1:h]\Vi ;X
n
1 , X

n
i |WVi)− I(W[1:h]\Vi ;X

n
1 |Xn

i ,WVi)

≥ I(W[1:h]\Vi ;X
n
1 |WVi)−H(Xn

1 |Xn
i )

≥ I(W[1:h]\Vi ;X
n
1 |WVi)− nε1, (82)

where (82) follows from the correctness of the output
distribution with ε1 → 0 as ε → 0. For the second
term in (79), I(M ;Xn

i |W[1:h]) = I(M ;Xn
i , X

n
1 |W[1:h]) −

I(M ;Xn
1 |Xn

i ,W[1:h]) ≥ I(M ;Xn
1 |W[1:h])− nε′, where ε′ →

0 as ε → 0. Let r = n−1I(M ;Xn
1 |W[1:h]). This gives (64).

Consider

nr +

h∑
j=1

nrj = I(M ;Xn
1 |W[1:h]) +

h∑
j=1

I(Wj ;X
n
1 ,W

j−1)

= I(M ;Xn
1 |W[1:h]) +

h∑
j=1

I(Wj ;X
n
1 |W j−1)

= I(M ;Xn
1 |W[1:h]) + I(W[1:h], X

n
1 )

= I(M,W[1:h];X
n
1 )

≥ I(M,WV1 ;Xn
1 )

≥ I(Xn
2 ;Xn

1 ) (83)
≥ nH(X)− nε2, (84)

where (83) follows from the Markov chain Xn
1 − (M,WV1)−

Xn
2 , and (84) follow from the correctness of the output

distribution with ε2 → 0 as ε→ 0. This gives (65). For (66),
note that rj = n−1I(Wj ;X

n
1 ,W

j−1) ≤ n−1H(Wj) = Rj .
This completes the proof of Theorem 10.

C. An Achievable Strategy for General Model

We remark that the idea behind the achievabilities of
Theorems 1, 2, 6 and 8 is not confined only to either
individually shared randomness model or randomness-on-the-
forehead model. A similar achievable strategy can be written
down along the same lines for the general model where Vi’s
are arbitrary subsets of [1 : h] even though its not direct to
attain closed form expression(s). We outline this achievable
strategy here.

Let (Un, Un1 , . . . , U
n
h , X

n
1 , . . . , X

n
t ) be i.i.d. with distribu-

tion p(u, u[1:h], x[1:t]) = q(x[1:t])p(u, u[1:h]|x[1:t]) satisfying

p(u, u[1:h], x[1:t]) = p(u, u[1:h])

t∏
i=1

p(xi|u, uVi).

Bin indices f,m∗, b[1:h] with respective rates
R̂0, R

∗, R̃1, . . . , R̃h are created from (Un, Un1 , . . . , U
n
h )

in a way that can be understood from the following joint
probability distribution:

P (un, un1 , . . . , u
n
h, x

n
1 , . . . , x

n
t , f,m

∗, b1, . . . , bh)

= p(un, un1 , . . . , u
n
h)P (f |un)P (m∗|un)

 h∏
j=1

P (bj |un, unj )


×

(
t∏
i=1

p(xni |un, unVi)

)
= P (b1, . . . , bh, f)P (un, un1 , . . . , u

n
h|b1, . . . , bh, f)P (m∗|un)

×

(
t∏
i=1

p(xni |un, unVi)

)
. (85)

Further, we use Slepian-Wolf decoders to estimate (un, uVi)
from bVi , f,m

∗, i ∈ [1 : t]. Now we impose a series of
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constraints on the rates as in the proofs of Theorems 1, 2,
6 and 8. The first set of constraints can be written down
as in (170) so that b1, . . . , bh, f are approximately (i.e., with
vanishing total variation distance) uniformly distributed and
mutually independent of each other [50, Theorem 1]. The
second set of constraints can be written down as in (171) to
guarantee the success of Slepian-Wolf decoders with high
probability [50, Lemma 1]. Under these two sets of rate
constraints, the above p.m.f. becomes approximately close
to the p.m.f. described below, which is related to our orig-
inal problem. We generate b1, . . . , bh, f independently and
uniformly from the respective alphabets. For j ∈ [1 : h], we
treat bj as jth shared randomness. In addition, we have extra
shared randomness f (to be eliminated later), which is shared
among coordinator and all the n processors. The coordinator on
observing b1, . . . , bh, f produces un, un1 , . . . , u

n
h according to

the random p.m.f. P (un, un1 , . . . , u
n
h|b1, . . . , bh, f) of (85) and

sends (m∗(un)) as a common message m to the processors,
where m∗(un) is produced according to P (m∗|un) of (85).
The processors use (random) Slepian-Wolf decoders mentioned
below (85) to produce their respective estimates. Then they
generate xn1 , . . . , x

n
t according to respective p.m.f.’s mentioned

in the last line of (85). We need a third set of rate constraints
so that Xn

i , i ∈ [1 : t] becomes approximately independent of
F as in (173). All these three sets of rate constraints ensures
the correctness of the output distribution with a particular
realization of the binning. Noting that R = R∗ and eliminating
all the other rates will give us an achievable rate.

V. OMNISCIENT COORDINATOR WITH CORRELATED
SHARED RANDOMNESS MODEL

In this section, we study the model where the shared random
variables are arbitrarily correlated instead of being independent
as assumed in previous sections. In particular, the coordinator
has access to (Sn1 , . . . , S

n
t ), where (S1i, . . . , Sti), i = 1, . . . , n,

are i.i.d with distribution qS1,...,St , and processor Pi has access
to Sni , for i ∈ [1 : t] (see Figure 7). A simulation code and
an achievable rate (note that in this setting, there is only one
rate involved, the rate of message communicated from the
coordinator to all the processors) can be defined analogously
to Definitions 1 and 2. We are interested in characterizing
the infimum of all the achievable rates, i.e., the optimal
communication rate. In this section, we prove results for the
case when qX1...Xt is such that X1 = · · · = Xt. The following
theorem characterizes the optimal communication rate for this
model.

Theorem 11. Suppose qX1...Xt is such that X1 = · · · = Xt =
X . Then the optimal communication rate for the correlated
shared randomness model is given by

min
r≥0,pU|S1,...,St :

I(U ;S[1:t])+r≥H(X)

max
i

(
I(U ;S[1:t]\{i}|Si) + r

)
. (86)

Proof: Fix a conditional p.m.f. pU |S1,...,St . For the achiev-
ability, it suffices to show that an uniform common randomness
of rate I(U ;S1, . . . , St) is recovered at all the processors if
R > I(U ;S[1:t]\{i}|Si), for i ∈ [1 : t]. This is because if in
case I(U ;S1, . . . , St) < H(X), then an additional randomness

Xn Xn Xn

P1 P2 P3

K
Sn
1 S

n
2 S

n
3

∼ i.i.d. qS1S2S3

Sn
1 Sn

2 Sn
3

R

Fig. 7. Omniscient coordinator with correlated shared randomness model.
t = 3 case is shown. Coordinator K having access to (Sn

1 , S
n
2 , S

n
3 ) ∼

i.i.d. qS1S2S3
sends a common message of rate R to the processors, where

processor Pi has access to Sn
i , for i ∈ [1 : 3], so that each of them outputs

(approximately) the same random sequence Xn ∼ i.i.d. qX .

of rate r such that I(U ;S1 . . . , St)+r ≥ H(X) can be sent by
the coordinator giving us (86), as atleast uniform randomness
of rate H(X) is sufficient to produce i.i.d. Xn at all the
processors [2]. Let (Un, Sn1 , . . . , S

n
t ) be i.i.d. with distribution

p(u, s1, . . . , st) = q(s1 . . . , st) × p(u|s1 . . . , st). To each un

sequence, assign uniformly and independently three bin indices
m ∈ [1 : 2nR], m′ ∈ [1 : 2nR

′
] and f ∈ [1 : 2nR̂]. The induced

random p.m.f. will be

P (un, sn[1:t],m,m
′, f) = p(un, sn[1:t])P (m,m′, f |un)

= P (sn[1:t], f)P (un|sn[1:t], f)P (m|un)P (m′|un). (87)

Also, for each i ∈ [1 : n], there is a Slepian-Wolf decoder to
reconstruct un from (m, f, sni ). Now, using [50, Theorem 1],
if

R̂ < H(U |S1 . . . , St), (88)

we have

P (f, sn[1:t]) ≈ p
Unif(f)p(sn[1:t]). (89)

For the success of Slepian-Wolf decoders with high probability,
using [50, Lemma 1] we need

R+ R̂ > H(U |Si), (90)

for i ∈ [1 : t]. Now, the p.m.f. in (87) becomes approximately
close to the protocol corresponding to the main problem with
additional shared randomness F , i.e., the coordinator produces
message m according to (P (un|sn[1:t], f)× P (m|un)) and the
processors implement the Slepian-Wolf decoders mentioned
before. After all the processors recover un correctly with high
probability, they find index m′ according to P (m′|un). Using
[50, Theorem 1], if

R′ + R̂ < H(U), (91)

we have

P (m′, f) ≈ pUnif(m′)pUnif(f). (92)

Conditions (89) and (92) imply the existence of a particular
realization of the random binning with corresponding p.m.f. p
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so that we can replace P with p. This implies

p(f, sn[1:t]) ≈ p
Unif(f)p(sn[1:t])

p(m′, f) ≈ pUnif(m′)pUnif(f). (93)

The conditions in (93) implies that there exists an instance f∗

such that

p(sn[1:t]|f
∗) ≈ p(sn[1:t]),

p(m′|f) ≈ pUnif(m′). (94)

This ensures that after fixing the instance f∗, the shared random
sequences are according to i.i.d. with the distribution qS1,...,St

and all the processors are able to recover uniform randomness
of rate R′ under the conditions (88), (90) and (91). Conditions
(88) and (90) imply that

R > I(U ;S[1:i]\{i}|Si), (95)

for i ∈ [1 : t]. Conditions (90) and (91) imply that

R′ −R < I(U ;Si), (96)

for i ∈ [1 : t]. Choosing R′ and R such that R′ − R =
I(U ;Si) − ε, where ε is arbitrarily small in (96) and using
(95), it can be seen that an uniform common randomness of
rate R′ > I(U ;S[1:t])− ε is available to all the processors if
R > max

i
I(U ;S[1:t]\{i}|Si), for i ∈ [1 : t]. This completes

the achievability.
For the converse, suppose a rate R is achievable. For i > 1,

consider

nR ≥ H(M)

≥ H(M |Sn1 )

= I(M ;Sn[1:t]\{i}|S
n
i ) +H(M |Sn1 , . . . , Snt )

= I(M,Xn
i ;Sn[1:t]\{i}|S

n
i ) +H(M |Sn1 , . . . , Snt ) (97)

≥ I(Xn
i ;Sn[1:t]\{i}|S

n
i ) +H(M |Sn1 , . . . , Snt ) (98)

where (97) follows from the Markov chain Xn
i − (M,Sni )−

Sn[1:t]\{i}. Let Q be a random variable uniformly distributed
over [1 : n] and independent of all other random variables. For
the first term in (98) with i = 1, note that

I(Xn
1 ;Sn2 , . . . , S

n
t |Sn1 ) (99)

=

n∑
j=1

I(Xn
1 ;S2j , . . . , Stj |S1:j−1

2 , . . . , S1:j−1
t , Sn1 )

=

n∑
j=1

I(Xn
1 , S

1:j−1
1 , Sj+1:n

1 , S1:j−1
[2:t] ;S2j , . . . , Stj |S1j)

(100)

≥
n∑
j=1

I(Xn
1 , S

1:j−1
[1:t] ;S2j , . . . , Stj |S1j)

= nI(Xn
1 , S

1:Q−1
[1:t] ;S2Q, . . . , StQ|S1Q, Q)

≥ n[I(Xn
1 , S

1:Q−1
[1:t] , Q;S2Q, . . . , StQ|S1Q)− ε1] (101)

= n[I(U ;S2Q, . . . , StQ|S1Q)− ε1], (102)

where (100) follows since (Sn1 , . . . , S
n
t ) are i.i.d., (101) follows

along similar lines as (43) with ε1 → 0 as ε→ 0, (101) follows
by defining U = (Xn

1 , S
1:Q−1
[1:t] , Q). For i > 1, note that

I(Xn
i ;Sn[1:t]\{i}|S

n
i )

= I(Xn
i , X

n
1 ;Sn[1:t]\{i}|S

n
i )− I(Xn

1 ;Sn[1:t]\{i}|S
n
i , X

n
i )

≥ I(Xn
i , X

n
1 ;Sn[1:t]\{i}|S

n
i )−H(Xn

1 |Xn
i )

≥ I(Xn
1 ;Sn[1:t]\{i}|S

n
i )− nε2 (103)

where (103) follows from the correctness of the output
distribution with ε2 → 0 as ε → 0. For the second term
in (98), note that

H(M |Sn1 , . . . , Snt )

≥ I(M ;Xn
1 |Sn1 , . . . , Snt )

= H(Xn
1 |Sn1 , . . . , Snt )−H(Xn

1 |M,Sn1 , . . . , S
n
t )

≥ H(Xn
1 |Sn1 , . . . , Snt )−H(Xn

1 |M,Sn1 )

≥ H(Xn
1 |Sn1 , . . . , Snt )−H(Xn

1 |Xn
2 ) (104)

≥ H(Xn
1 |Sn1 , . . . , Snt )− nε3, (105)

where (104) follows from the Markov chain Xn
1 − (M,Sn1 )−

Xn
2 , (105) follows from the correctness of the output dis-

tribution with ε3 → 0 as ε → 0. By defining r =
n−1H(Xn

1 |Sn1 , . . . , Snt ), consider

nH(X)

≤ H(Xn
1 ) + nε4 (106)

= I(Xn
1 ;Sn1 , . . . , S

n
t ) +H(Xn

1 |Sn1 , . . . , Snt ) + nε4

=

n∑
j=1

I(Xn
1 ;S1j , . . . , Stj |S1:j−1

1 , . . . , S1:j−1
t ) + nr + nε4

≤
n∑
j=1

I(Xn
1 , S

1:j−1
[1:t] ;S1j , . . . , Stj) + nr + nε4

≤ nI(U ;S1Q, . . . , StQ) + nr + nε4 (107)

where (106) follows from the correctness of the output
distribution with ε4 → 0 as ε → 0. From (98), (102), (103),
(105) and (107), using the continuity of total variation distance
and mutual information in the probability simplex, it follows
along the same lines as Theorem 2, [53, Lemma 6] that

R ≥ I(U ;S[1:t]\{i}) + r, i ∈ [1 : t]

where I(U ;S[1:t]) + r ≥ H(X), for some r ≥ 0 and p.m.f.
pU |S1,...,St . This completes the converse.

VI. OBLIVIOUS COORDINATOR SETTING

In this section we study a variant of our problem where
instead of having access to all shared random variables, the
coordinator does not have access to any shared random variables
(See Figure 2). We call this the oblivious coordinator setting.
A simulation code, an achievable rate tuple, and simulation
rate region can be defined analogously to the omniscient
coordinator setting. Note that the common message M sent
by the coordinator is independent of the shared randomness
here. We treat it as a uniformly distributed random variable
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on [1 : 2nR] and denote it by W for the oblivious coordinator
setting. Notice that this problem is similar to Wyner’s common
information problem [2], whose multi-user generalization,
among other things, was studied by Xu et al. [43]. Even though
the coordinator sends uniformly distributed common random
message to all the processors in both the problems, the main
difference here is that the processors have access to some of the
shared random variables, which can potentially reduce the rate
of common message. Thus, this problem reduces to Wyner’s
common information problem in the absence of shared random
variables. In this model, when Vi’s are arbitrary subsets of
[1 : h], we completely characterize the simulation rate-region,
i.e., the trade-off region between shared randomness rates and
the rate of uniform message communicated from coordinator
to all the processors. We first present and prove the rate-region
for the case when t = h = 3 and Vi = [1 : 3] \ {i} which
essentially illustrates the proof idea behind more general rate
region where there are t processors and Vi’s are arbitrary
subsets of [1 : h].

Theorem 12. For the oblivious coordinator setting, when t =
h = 3 and Vi = [1 : 3] \ {i}, the simulation rate region is
given by the set of all non-negative rate tuples (R,R1, R2, R3)
such that

R+RS ≥ I(X1, X2, X3;U,US), S ⊆ [1 : 3], (108)

for some probability mass function

p(u, u[1:3], x[1:3]) = q(x[1:3])p(u, u[1:3]|x[1:3])

such that

p(u, u[1:3], x[1:3]) = p(u)

(
3∏
i=1

p(ui)

)
(

3∏
i=1

p(xi|u, u[1:3]\{i})

)
.

Proof: The proof of achievability is in the spirit of versions
of channel resolvability that appear in recent works [5], [46],
[47]. Fix a p.m.f. p(u, u[1:3], x[1:3]) as given in the theorem.
We generate four codebooks randomly in the following way.
• Randomly and independently generate 2nR sequences
un(m), m ∈ [1 : 2nR], each according to i.i.d. pU .

• For each un(w), randomly and independently generate
2nRi sequences uni (w,wi), wi ∈ [1 : 2nRi ], each
according to i.i.d. pUi , for i ∈ [1 : 3].

Processor P1 on observing w,w2, w3 produces xn1 according
to P (xn1 |Un(w), Un2 (w,w2), Un3 (w,w3)), which is a random
p.m.f. as Un(w), Un2 (w,w2), Un3 (w,w3) are random code-
words. In a similar manner, processors P2 and P3 also
produce xn2 and xn3 , respectively. In the sequel of this proof,
whenever we need not treat xn1 , x

n
2 , x

n
3 separately, we denote

an := (xn1 , x
n
2 , x

n
3 ). The induced output random p.m.f. can be

written as

P (an) = 2−n(R+R1+R2+R3)×∑
w,w1,w2,w3

P (an|Un(w), Un1 (w,w1), Un2 (w,w2), Un3 (w,w3)).

(109)

We denote by T ε1 and T ε2 the ε-typical sets with distributions
pA and pUU[1:3]A, respectively. Note that P (an) can be written
as

P (an) = P1(an) + P2(an)

where

P1(an) = 2−n(R+R1+R2+R3)×∑
w,w[1:3]

[
P (an|Un(w), Un1 (w,w1), Un2 (w,w2), Un3 (w,w3))

1{(Un(w), Un1 (w,w1), Un2 (w,w2), Un3 (w,w3), an) ∈ T ε2 }
]
,

P2(an) = 2−n(R+R1+R2+R3)×∑
w,w[1:3]

[
P (an|Un(w), Un1 (w,w1), Un2 (w,w2), Un3 (w,w3))

1{(Un(w), Un1 (w,wi), U
n
2 (w,w2), Un3 (w,w3), an) /∈ T ε2 }

]
.

Notice that EP (an) = q(an), where the expectation is over the
randomness of codebooks. Now, we analyse the total variation
distance. Using the triangle inequality, we have

E‖P (an)−EP (an)‖1 ≤
∑
an∈T ε1

E|P1(an)−EP1(an)|

+
∑
an∈T ε1

E|P2(an)−EP2(an)|

+
∑
an /∈T ε1

E|P (an)−EP (an)|

It can be easily seen that the second and third terms vanishes
asymptotically as shown below.∑
an∈T ε1

E|P2(an)−EP2(an)|

≤
∑
an

2EP2(an)

= 2
∑
an

2−n(R+R1+R2+R3)×∑
w,w[1:3]

E

[
P (an|Un(w), Un1 (w,w1), Un2 (w,w2), Un3 (w,w3))

1{(Un(w), Un1 (w,wi), U
n
2 (w,w2), Un3 (w,w3), an) /∈ T ε2 }

]
= 2

∑
an

E

[
P (an|Un(1), Un1 (1, 1), Un2 (1, 1), Un3 (1, 1))

1{(Un(1), Un1 (1, 1), Un2 (1, 1), Un3 (1, 1), an) /∈ T ε2 }
]

(110)

= 2
∑

(un,un1 ,u
n
2 ,u

n
3 ,a

n)/∈T ε2

p(un, un1 , u
n
2 , u

n
3 , a

n)

→ 0 as n→∞.

where (110) follows from the symmetry of the codebook
construction.∑

an /∈T ε1

E|P (an)−EP (an)| ≤ 2
∑
an /∈T ε1

EP (an)

= 2
∑
an /∈T ε1

q(an)

→ 0 as n→∞.
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Using Jensen’s inequality, the first term can be upper bounded
as ∑

an∈T ε1

E|P1(an)−EP1(an)|

≤
∑
an∈T ε1

√
E(P1(an)−EP1(an))

2

=
∑
an∈T ε1

√
E(P1(an))

2 − (EP1(an))
2 (111)

E(P1(an))
2 can be precisely written as

E(P1(an))
2

=
∑

w,w1,w2,w3,
w′,w′1,w

′
2,w
′
3

Tw,w1,w2,w3,w′,w′1,w
′
2,w
′
3
,

where

Tw,w1,w2,w3,w′,w′1,w
′
2,w
′
3

= 2−2n(R+R1+R2+R3)×

E

(
P (an|Un(w), Un1 (w,w1), Un2 (w,w2), Un3 (w,w3))

P (an|Un(w′), Un1 (w′, w′1), Un2 (w′, w′2), Un3 (w′, w′3))

1{(Un(w), Un1 (w,w1), Un2 (w,w2), Un3 (w,w3), an) ∈ T ε2 }

1{(Un(w′), Un1 (w′, w′1), Un2 (w′, w′2), Un3 (w′, w′3), an) ∈ T ε2 }
)
.

We divide the above summation into 9 parts each part specified
by a case as below.
Case (1): w 6= w′

Case (2): w = w′, w1 = w′1, w2 = w′2, w3 = w′3
Case (3): w = w′, w1 = w′1, w2 = w′2, w3 6= w′3
Case (4): w = w′, w1 = w′1, w2 6= w′2, w3 = w′3
Case (5): w = w′, w1 6= w′1, w2 = w′2, w3 = w′3
Case (6): w = w′, w1 6= w′1, w2 6= w′2, w3 = w′3
Case (7): w = w′, w1 = w′1, w2 6= w′2, w3 6= w′3
Case (8): w = w′, w1 6= w′1, w2 = w′2, w3 6= w′3
Case (9): w = w′, w1 6= w′1, w2 6= w′2, w3 6= w′3

Consider case (1). It can be seen that∑
w=w′,w1,w2,w3,

w′1,w
′
2,w
′
3

Tw,w1,w2,w3,w′,w′1,w
′
2,w
′
3
≤ (EP1(an))

2
.

(112)

Consider case (2). The corresponding part equals

2−2n(R+R1+R2+R3)
∑

w,w1,w2,w3

E

(
P 2(an|Un(w), Un1 (w,w1), Un2 (w,w2), Un3 (w,w3))

1{(Un(w), Un1 (w,wi), U
n
2 (w,w2), Un3 (w,w3), an) ∈ T ε2 }

)
= 2−n(R+R1+R2+R3)×

E

(
P 2(an|Un(1), Un1 (1, 1), Un2 (1, 1), Un3 (1, 1))

1{(Un(1), Un1 (1, 1), Un2 (1, 1), Un3 (1, 1), an) ∈ T ε2 }
)

(113)

= 2−n(R+R1+R2+R3)×∑
(un,un1 ,u

n
2 ,u

n
3 ):

(un,un1 ,u
n
2 ,u

n
3 ,a

n)∈T ε2

p2(an|un, un1 , un2 , un3 )p(un, un1 , u
n
2 , u

n
3 )

≤ 2−n(R+R1+R2+R3)2−n(H(A|U,U1,U2,U3)−δ1(ε))×∑
(un,un1 ,u

n
2 ,u

n
3 )

p(an|un, un1 , un2 , un3 )p(un, un1 , u
n
2 , u

n
3 ) (114)

= 2−n(R+R1+R2+R3)2−n(H(A|U,U1,U2,U3)−δ1(ε)) × p(an)

≤ 2−n(R+R1+R2+R3+H(A|U,U1,U2,U3)+H(A)−δ1(ε)−δ2(ε))

(115)

where (113) follows from the symmetry of the codebook
construction, (114) and (115) follow from the properties of the
typical sequences with δ1(ε), δ2(ε) → 0 as ε → 0 (note that
(115) holds only for typical an sequences). Now, consider case
(3). Using the symmetry of the codebook construction and
noting that the corresponding part contains 2n(R+R1+R2+2R3)

number of terms, it equals

2−n(R+R1+R2)×

E

(
P (an|Un(1), Un1 (1, 1), Un2 (1, 1), Un3 (1, 1))

P (an|Un(1), Un1 (1, 1), Un2 (1, 1), Un3 (1, 2))

1{(Un(1), Un1 (1, 1), Un2 (1, 1), Un3 (1, 1), an) ∈ T ε2 }

1{(Un(1), Un1 (1, 1), Un2 (1, 1), Un3 (1, 2), an) ∈ T ε2 }
)
.

= 2−n(R+R1+R2)
∑

(un,un1 ,u
n
2 ,u

n
3 ,ū

n
3 ):

(un,un1 ,u
n
2 ,u

n
3 ,a

n)∈T ε2
(un,un1 ,u

n
2 ,ū

n
3 ,a

n)∈T ε2

[
p(an|un, un1 , un2 , un3 )

p(an|un, un1 , un2 , ūn3 )p(un, un1 , u
n
2 )p(un3 )p(ūn3 )

]
≤ 2−n(R+R1+R2)

∑
(un,un1 ,u

n
2 ):

(un,un1 ,u
n
2 ,a

n)∈T ε3

[
(∑
un3

p(an|un, un1 , un2 , un3 )p(un3 )
)

(∑
ūn3

p(an|un, un1 , un2 , ūn3 )p(ūn3 )
)
p(un, un1 , u

n
2 )

]
(116)

= 2−n(R+R1+R2)×[ ∑
(un,un1 ,u

n
2 ):

(un,un1 ,u
n
2 ,a

n)∈T ε3

p2(an|un, un1 , un2 )p(unun1 , u
n
2 )
]

≤ 2−n(R+R1+R2)2−n(H(A|U,U1,U2)−δ3(ε))×∑
(un,un1 ,u

n
2 )

p(an|un, un1 , un2 )p(un, un1 , u
n
2 ) (117)

= 2−n(R+R1+R2)2−n(H(A|U,U1,U2)−δ3(ε)) × p(an)

≤ 2−n(R+R1+R2+H(A|U,U1,U2)+H(A)−δ3(ε)−δ4(ε)), (118)

where (116) follows by defining T ε3 as the ε-typical set
with distribution pUU1U2A, (117) and (118) follow from the
properties of typical sequences with δ3(ε), δ4(ε)→ 0 as ε→ 0
(note that (118) hold only for typical an sequences). Other cases
can also be dealt similarly giving us that the parts corresponding
to cases (4), (5), (6), (7), (8), (9) are respectively less than or
equal to

2−n(R+R1+R3+H(A|U,U1,U3)+H(A)−δ(ε)), (119)

2−n(R+R2+R3+H(A|U,U2,U3)+H(A)−δ(ε)), (120)
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2−n(R+R1+H(A|U,U1)+H(A)−δ(ε)), (121)

2−n(R+R2+H(A|U,U2)+H(A)−δ(ε)), (122)

2−n(R+R3+H(A|U,U3)+H(A)−δ(ε)) and (123)

2−n(R+H(A|U)+H(A)−δ(ε)) (124)

with δ(ε)→ 0 as ε→ 0. Now, substituting (112), (115), (118)-
(124) in (111) and using the bounds |T ε1 | ≤ 2n(H(A)+δ′(ε)) and√
x+ y ≤

√
x+
√
y, it can be seen that if

R+RS > I(A;U,US), S ⊆ [1 : 3], (125)

then
∑
an∈T ε1

E|P1(an)−EP1(an)|1 → 0 as n→ 0.
For the converse, suppose a rate tuple (R,R1, R2, R3) is

achievable for qX1X2X3
. For any S ⊆ [1 : 3], consider

n(R+RS)

≥ H(W,WS)

≥ I(W,WS ;Xn
1 , X

n
2 , X

n
3 )

= H(Xn
1 , X

n
2 , X

n
3 )−H(Xn

1 , X
n
2 , X

n
3 |W,WS)

≥
n∑
i=1

[H(X1i, X2i, X3i)− ε′]

−
n∑
i=1

H(X1i, X2i, X3i|W,WS , X1:i−1
1 , X1:i−1

2 , X1:i−1
3 )

(126)

=

n∑
i=1

[
I(X1i, X2i, X3i;W,WS , X

1:i−1
1 , X1:i−1

2 , X1:i−1
3 )

]
− nε′

≥
n∑
i=1

[I(X1i, X2i, X3i;W,WS)− ε′]

= n [I(X1Q, X2Q, X3Q;W,WS |Q)− ε′]
≥ n [I(X1Q, X2Q, X3Q;W,WS , Q)− ε′ − ε′′] (127)
= n[I(X1Q, X2Q.X3Q;U,US)− ε′ − ε′′] (128)

where (126) and (127) follow from the correctness of the output
distribution with ε′, ε′′ → 0 as ε → 0 along similar lines as
(42) and (43), respectively, and (128) follows by defining U =
(W,Q), Ui = Wi, for i ∈ [1 : 3]. Note that ‖pX1QX2QX3Q

−
qX1X2X3

‖ < ε, which follows from Cuff [5, Lemma VI.2].
Using the structure of the problem (i.e., oblivious coordinator
and that Vi = [1 : 3] \ {i}) and the continuity of total variation
distance and mutual information in the probability simplex,
it follows along the same lines as Theorem 2 and Yassaee et
al. [53, Lemma 6] that

R+RS ≥ I(X1, X2, X3;U,US), S ⊆ [1 : 3]

for some p.m.f.

p(u, u[1:3], x[1:3]) = q(x[1:3])p(u, u[1:3]|x[1:3])

s.t.

p(u, u[1:3], x[1:3]) = p(u)

(
3∏
i=1

p(ui)

)(
n∏
i=1

p(xi|u, u[1:3]\{i})

)
.

This completes the proof.

In the above proof, we remark that, the analysis of total
variation distance does not depend on how the processors share
random variables, i.e., the same part of the proof works even
for an arbitrary V = (Vi)i∈[1:3] as long as h = 3. In fact, the
above theorem can be readily extended to t > 3, h > 3 and
arbitrary V as follows.

Theorem 13. For the oblivious coordinator setting, the simu-
lation rate region is given by the set of all non-negative rate
tuples (R,R1, . . . , Rt) such that

R+RS ≥ I(X[1:t];U,US), S ⊆ [1 : h], (129)

for some p.m.f.

p(u, u[1:h], x[1:t]) = q(x[1:t])p(u, u[1:h]|x[1:t])

s.t.

p(u, u[1:h], x[1:t]) = p(u)

(
h∏
i=1

p(ui)

)(
t∏
i=1

p(xi|u, uVi)

)
.

Remark 4. Theorem 13 recovers multi-user Wyner’s common
information [43] in the absence of shared randomness.

The proof of Theorem 13 is similar to the proof of
Theorem 12. Appendix D contains a proof outline.

VII. CONCLUSION

We studied the role of shared randomness in coordination.
We considered various coordination problems involving shared
randomness and obtained tight expressions for optimal com-
munication and shared randomness rates. We confined our
attention only to the distributed sampling problem which is
a special case of the more general setting where some of the
users have inputs and all the users want to output samples from
a desired distribution conditioned on the inputs [5]. The two
main resources that aid users in achieving this coordination
are the shared randomness and the underlying communication
network. For the most part, we restricted our attention to
independent sources of shared randomness. Instead, it is of
interest to study settings with correlated sources of shared
randomness. In Section V, we studied one such model. Coming
to the communication network, we considered models where
only one user (i.e., coordinator) transmits a message to other
users (star topology). More generally, it might be interesting to
study generic network topologies (e.g., combination networks,
hybrid networks). Even more generally, we might consider
coordination/distributed computation over multiple-input and
multiple-output (MIMO) channels. With this generality, it might
be quite challenging to study coordination as is already evident
from the fact that source-channel separation does not necessarily
hold (see, e.g., Nazer and Gastpar [56]).

In the omniscient coordinator setting, we confined our atten-
tion mainly to the individually shared randomness model and
the randomness-on-the-forehead model. It would be interesting
to study if there are any other models in the omniscient
coordinator setting for which closed form rate expressions
can be obtained. One more limitation of our study of the
omniscient coordinator setting is that whenever the processors
have to output dependent random variables, we have assumed
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that shared randomness rates are sufficiently large and analyzed
only the communication rates. Characterizing the trade-off
between communication and shared randomness rates, as done
in the oblivious coordinator setting (Theorem 13), remains
open. In the omniscient coordinator with correlated shared
randomness model, we have studied only the scenario when
all the processors output equal random variables. It might be
more challenging to study these settings in the general scenario
where the processors may output dependent random variables
instead of equal random variables.

Also, it might be interesting to solve the optimization
problem for the optimal transmission rate in the individually
shared randomness model in Theorem 2 at least for the DSBS.
To that end, proving/disproving the conjecture presented at
the end of Example 1 might give some insights. Even though
the upper bound on the optimal communication rate for the
randomness-on-the-forehead model turns out to be tight for
some special case, it remains open whether it is tight in general.
Furthermore, obtaining closed form expressions for optimal
transmission rate in omniscient coordinator setting with general
shared randomness access structures may also be of interest.

APPENDIX A
DETAILS OMITTED FROM PROOF OF THEOREM 2

Explanation for (42).

H(Xn, Y n)−H(Xn, Y n|M)

= Hp(X
n, Y n)−Hp(X

n, Y n|M)

≥ Hq(X
n, Y n)− nε1 −Hp(X

n, Y n|M) (130)

=

n∑
i=1

[Hq(Xi, Yi)− ε1]−
n∑
i=1

Hp(Xi, Yi|M,Xi−1, Y i−1)

≥
n∑
i=1

[Hp(Xi, Yi)− ε1 − ε2]

−
n∑
i=1

Hp(Xi, Yi|M,Xi−1, Y i−1) (131)

=

n∑
i=1

[H(Xi, Yi)− ε1 − ε2]

−
n∑
i=1

H(Xi, Yi|M,Xi−1, Y i−1)

=

n∑
i=1

[H(Xi, Yi)− ε′]−
n∑
i=1

H(Xi, Yi|M,Xi−1, Y i−1).

(132)

We used the following fact in (130) and (131): if two
random variables A and A′ with same support set A satisfy
||pA − pA′ ||1 ≤ ε ≤ 1/4, then it follows from from standard
results [57, Theorem 17.3.3] that |H(A)−H(A′)| ≤ η log |A|,
where η → 0 as ε→ 0. Now (3) implies (130), where ε1 → 0
as ε → 0. Also, note that (3) implies ‖pXi,Yi − qX,Y ‖1 ≤ ε,
∀i ∈ [1 : n], which implies (131), where ε2 → 0 as ε→ 0. In
(132), ε′ := ε1 + ε2.

Explanation for (43).

I(XT , YT ;T ) = Hp(XT , YT )−Hp(XT , YT |T )

≤ Hq(XT , YT ) + δ1 −
1

n

n∑
i=1

Hp(Xi, Yi|T = i)

(133)

= Hq(XT , YT ) + δ1 −
1

n

n∑
i=1

Hp(Xi, Yi)

≤ Hq(XT , YT ) + δ1 −
1

n

n∑
i=1

[Hq(Xi, Yi)− δ2]

(134)
= Hq(XT , YT )−Hq(XT , YT ) + δ1 + δ2

= Hq(XT , YT )−Hq(XT , YT ) + δ (135)
≤ δ.

We used the following fact in (133) and (134): if two random
variables A and A′ with same support set A satisfy ||pA −
pA′ ||1 ≤ ε ≤ 1/4, then it follows from standard results [57,
Theorem 17.3.3] that |H(A) − H(A′)| ≤ η log |A|, where
η → 0 as ε → 0. Now using Cuff [5, Lemma VI.2], (3)
implies ‖pXT ,YT −qX,Y ‖1 ≤ ε, which implies (133) and (134).
In (135), we defined δ := δ1 + δ2, where δ → 0 as ε→ 0.

Lemma 1.

min max

{
I(X;Y |U),

1

2

(
I(X,Y ;U) + I(X;Y |U)

)}
= min max

{
I(X;Y |U), I(X,Y ;U)

}
,

where the minimum is over all conditional p.m.f.’s p(u|x, y)
with |U| ≤ |X ||Y|+ 2 in both the L.H.S and R.H.S.

Proof: Firstly, we define

RU :=

min
p(u|x,y)

max

{
I(X;Y |U),

1

2

(
I(X,Y ;U) + I(X;Y |U)

)}
,

(136)

RL : = min
p(u|x,y)

max
{
I(X;Y |U), I(X,Y ;U)

}
. (137)

It is trivial to see that RL ≥ RU . Since RL ≤ Ropt ≤ RU , we
have RL ≤ RU also and hence RL = RU . We can see the
inequality RL ≤ RU directly also in the following way. For
simplicity, we abbreviate p(u|x, y) by p, I(X;Y |U) by f1(p)
and I(X,Y ;U) by f2(p) in the following.

Assume without loss of generality that I(X;Y ) 6= 0, since
otherwise RL = RU = 0. Notice that there always exists
a minimizer for the minimization problem in (136) since a
continuous function (objective function of the minimization
problem in this case) attains its minimum on a compact set (the
set of all conditional p.m.f.s p(u|x, y) with |U| ≤ |X ||Y|+ 2
in this case). We argue that there must exist a minimizer
pmin := p(umin|x, y) for (136) such that

f1(pmin) ≥ f1(pmin) + f2(pmin)

2
. (138)
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Once we have such a minimizer, it follows that

RU = f1(pmin) (139)
= max {f1(pmin), f2(pmin)} (140)
≥ RL, (141)

where (139)-(140) follow from (138) and (141) follows from
definition of RL in (137).

To prove the claim made in (138) we start with a minimizer,
p∗ := p(u∗|x, y) of (136). Let Q be a binary random variable
independent of (X,Y, U∗) with pmf p(Q = 1) = θ = 1 −
p(Q = 0), where θ ∈ (0, 1] will be fixed later. Let U0 = U∗

and U1 = k (a constant random variable) and U ′ := (UQ, Q)
and denote p(u′|x, y) by p′. Note that |U ′| may be greater
than |X ||Y|+ 2 but, an application of Convex Cover Method
[52, Appendix C] guarantees us another such pmf with |U ′| ≤
|X ||Y|+ 2 preserving I(X;Y |U ′) and I(X,Y ;U ′). Now we
consider two cases.

Case (i) (I(X;U∗|Y ) + I(Y ;U∗|X) 6= 0) :
In this case, we show that p∗ itself must satisfy the condition,

f1(p∗) ≥ f1(p∗)+f2(p∗)
2 . We prove this by a contradiction.

Suppose f1(p∗) < f1(p∗)+f2(p∗)
2 . We have

f1(p′) + f2(p′)

2
(142)

=
1

2
[I(X;Y |U ′) + I(X,Y ;U ′)]

=
1

2
[I(X;Y ) + I(X;U ′|Y ) + I(Y ;U ′|X)] (143)

=
1

2
[I(X;Y ) + I(X;UQ, Q|Y ) + I(Y ;UQ, Q|X)]

=
1

2
[I(X;Y ) + I(X;UQ|Q,Y ) + I(Y ;UQ|Q,X)] (144)

=
1

2
[I(X;Y ) + (1− θ){I(X;U∗|Y ) + I(Y ;U∗|X)}]

(145)

<
1

2
[I(X;Y ) + I(X;U∗|Y ) + I(Y ;U∗|X)] (146)

=
1

2
[I(X;Y |U∗) + I(X,Y ;U∗)] (147)

=
f1(p∗) + f2(p∗)

2
,

where (143) and (147) follow from the fact that I(X;Y |W ) +
I(X,Y ;W ) = I(X;Y ) + I(X;W |Y ) + I(Y ;W |X), (144)
and (145) follow since Q is independent of (X,Y, U∗), (146)
follows since θ > 0 and I(X;U∗|Y ) + I(Y ;U∗|X) 6= 0.

Also,

f1(p′) = I(X;Y |UQ, Q)

= θI(X;Y ) + (1− θ)f1(p∗). (148)

Let f1(p∗)+f2(p∗)
2 − f1(p∗) = ∆ > 0 and we set θ =

min
{

∆
2I(X;Y , 1

}
. Now, (148) implies that

f1(p′) ≤ ∆

2
+ f1(p∗)

=
f1(p∗) + f2(p∗)

2
− ∆

2
(149)

<
f1(p∗) + f2(p∗)

2
, (150)

where (149) follows since f1(p∗)+f2(p∗)
2 − f1(p∗) = ∆, (150)

follows since ∆ > 0.
Now, (147) and (150) imply that,

max

{
f1(p′),

f1(p′) + f2(p′)

2

}
<
f1(p∗) + f2(p∗)

2
,

which is a contradiction since p∗ is assumed to be minimizer
for (136) such that f1(p∗) < f1(p∗)+f2(p∗)

2 . Hence, f1(p∗) ≥
f1(p∗)+f2(p∗)

2 .
Case(ii) (I(X;U∗|Y ) = 0 = I(Y ;U∗|X)) :

If f1(p∗) ≥ f1(p∗)+f2(p∗)
2 , there is nothing to prove.

Suppose f1(p∗) < f1(p∗)+f2(p∗)
2 . Then, we show that p′

defined before is also a minimizer and satisfies the condition,
f1(p′) ≥ f1(p′)+f2(p′)

2 . We have

I(X;Y |U∗) = f1(p∗)

<
f1(p∗) + f2(p∗)

2

=
1

2
[I(X;Y |U∗) + I(X,Y ;U∗)]

=
1

2
[I(X;Y ) + I(X;U∗|Y ) + I(Y ;U∗|X)]

(151)

=
I(X;Y )

2
, (152)

where (151) follows from the fact that I(X;Y |W ) +
I(X,Y ;W ) = I(X;Y ) + I(X;W |Y ) + I(Y ;W |X), (152)
follows since I(X;U∗|Y ) = 0 = I(Y ;U∗|X).

Let I(X;Y |U∗) = α I(X;Y )
2 , where α ∈ [0, 1). We select θ

such that f1(p′) = I(X;Y )
2 , i.e.,

I(X;Y |U ′) =
I(X;Y )

2

⇒ I(X;Y |UQ, Q) =
I(X;Y )

2

⇒ θI(X;Y ) + (1− θ)I(X;Y |U∗) =
I(X;Y )

2

⇒ θI(X;Y ) + (1− θ)αI(X;Y )

2
=
I(X;Y )

2
,

⇒ θ =
1− α
2− α

.

Now, we have

f1(p′) + f2(p′) (153)
= [I(X;Y |UQ, Q) + I(X,Y ;UQ, Q)]

= [I(X;Y ) + I(X;UQ, Q|Y ) + I(Y ;UQ, Q|X)] (154)
= I(X;Y ). (155)

where (154) follows from the fact that I(X;Y |W ) +
I(X,Y ;W ) = I(X;Y ) + I(X;W |Y ) + I(Y ;W |X), (155)
follows since I(X;UQ, Q|Y ) = 0 = I(Y ;UQ, Q|X).

Since f1(p′) = I(X;Y )
2 , (155) implies that f2(p′) = I(X;Y )

2 .
So, p′ is also a minimzer since

max

{
f1(p′),

f1(p′) + f2(p′)

2

}
= max

{
I(X;Y )

2
,
I(X;Y )

2

}
=
I(X;Y )

2
= RU , (156)
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where (156) holds because f1(p∗)+f2(p∗)
2 > f1(p∗) and

f1(p∗)+f2(p∗)
2 = I(X;Y )

2 .
Hence, p′ is also a minimizer and f1(p′) = f1(p′)+f2(p′)

2 .
This concludes the proof.

APPENDIX B
DETAILS OMITTED FROM THE PROOF OF THEOREM 6

We first outline the achievability proof of Theorem 6. It
generalizes the idea behind the proof of Theorem 1. Let
(Un, Un1 , . . . , U

n
t , Xn

1 , . . . , X
n
t ) be i.i.d. with distribution

p(u, u[1:t], x[1:t]) = q(x[1:t])p(u, u[1:h]|x[1:t]) satisfying

p(u, u[1:t], x[1:t]) = p(u, u[1:h])

t∏
i=1

p(xi|u, ui). (157)

Bin indices f,m∗, b[1:t] with respective rates
R̂0, R

∗, R̃1, . . . , R̃t are created from (Un, Un1 , . . . , U
n
t )

in a way that can be understood from the following joint
probability distribution:

P (un, un1 , . . . , u
n
t , x

n
1 , . . . , x

n
t , f,m

∗, b1, . . . , bt)

= p(un, un1 , . . . , u
n
t )P (f |un)P (m∗|un)

 h∏
j=1

P (bj |un, unj )


×

(
t∏
i=1

p(xni |un, uni )

)
= P (b1, . . . , bt, f)P (un, un1 , . . . , u

n
h|b1, . . . , bt, f)P (m∗|un)

×

(
t∏
i=1

p(xni |un, uni )

)
. (158)

Further, we use Slepian-Wolf decoders to estimate (un, ui)
from bi, f,m

∗, i ∈ [1 : t]. This can be seen as a generalization
of the random binning scheme in the proof of Theorem 1 to
multiple processors2. Now we impose a series of constraints
on the rates.

R̂0 + R̃S < H(U,US), S ⊆ [1 : t], (159)

R̃i ≥ H(Ui|U),

R̃i + R̂0 +R∗ ≥ H(U,Ui) for i ∈ [1 : t], (160)

R̂0 < H(U |X1, . . . , Xt), (161)

The first set of constraints (159) (analogous to (10) in the proof
of Theorem 1) ensure that b1, . . . , bh, f are approximately (i.e.,
with vanishing total variation distance) uniformly distributed
and mutually independent of each other [50, Theorem 1]. The
second set of constraints (160) (analogous to (12)) guarantees
the success of Slepian-Wolf decoders with high probability [50,
Lemma 1]. The third set of constraints (161) (analogous to (19))
implies that (Xn

1 , . . . , X
n
t ) is approximately independent of

F . All these three sets of rate constraints ensures the existence
of a sequence of simulation codes with a particular realization

2Notice that the bin indices corresponding to f1, f2,m0 of Theorem 1 does
not show up here. This is because it turns out that in the setting of unlimited
shared randomness, the bound on transmission rate does not get affected in
the absence of these bin indices.

of the binning resulting in desired vanishing total variation
distance as in the proof of Theorem 1. Now we eliminate the
rates R̂0, R̃i, for i ∈ [1 : t]. Notice that we can assume that
the constraints in (160) hold with equality, because we can
reduce the rates R̂0, R̃1, for i ∈ [1 : t], to get equalities in (24)
without disturbing the other constraints. This leads to

R̃i = H(Ui|U), for i ∈ [1 : t],

R∗ + R̂0 = H(U). (162)

Substituting (162) in (159) and (161) gives the following
constraints after ignoring the redundant inequalities.

R∗ > I(U1; . . . ;Ut|U),

R∗ > I(X1, . . . , Xt;U), (163)

where I(U1; . . . , Ut|U) is the Watanabe’s total correlation
in (57). Noticing that Ui = Xi for i ∈ [1 : t]
satisfies the condition (157) for any p.m.f. pU |X1,...,Xt

and using R = R∗, (163) gives us that RIndv
opt ≤

min max
{
I(X1; . . . ;Xt|U), I(X1, . . . , Xt;U)

}
, where the

minimum is over all p.m.f.’s p(u|x1, . . . , xt). This completes
the achievability.

Now we show that R ≥ I(X1Q, . . . , XtQ;UQ, Q) − g(ε),
whose proof is omitted from the converse.

nR ≥ H(M)

≥ I(Xn
1 , . . . , X

n
t ;M)

= H(Xn
1 , . . . , X

n
t )−H(Xn

1 , . . . , X
n
t |M)

≥ Hq(n)(Xn
1 , . . . , X

n
t )− nε1 −H(Xn

1 , . . . , X
n
t |M)

(164)

=

n∑
j=1

[Hq(n)(X1j , . . . , Xtj)− ε1]−

n∑
j=1

H(X1j , . . . , Xtj |M,X1:j−1
1 , . . . , X1:j−1

t )

≥
n∑
j=1

[H(X1j , . . . , Xtj)− ε1 − ε2]

−
n∑
j=1

H(X1j , . . . , Xtj |M,X1:j−1
1 , . . . , X1:j−1

t )

(165)

=

n∑
j=1

[I(X1j , . . . , Xtj ;M,X1:j−1
1 , . . . , X1:j−1

t )− ε′]

(166)

=

n∑
j=1

[I(X1j , . . . , Xtj ;Ui)− ε′]

= n[I(X1Q . . . , XtQ;UQ|Q)− ε′]
= n[I(X1Q . . . , XtQ;UQ, Q)

− I(X1Q, . . . , XtQ;Q)− ε′]
≥ n[I(X1Q . . . , XtQ;UQ, Q)− δ − ε′] (167)
= nI(X1Q . . . , XtQ;UQ, Q)− ng(ε). (168)

We have used the following fact in (164)-(167): if two random
variables A and A′ with same support set A satisfy ||pA −
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pA′ ||1 ≤ ε ≤ 1/4, then it follows from standard results [57,
Theorem 17.3.3] that |H(A) − H(A′)| ≤ η log |A|, where
η → 0 as ε → 0. Now (3) implies (164) and (165), where
ε1, ε2 → 0 as ε → 0. Also, using Cuff [5, Lemma VI.2], (3)
implies ‖pX1Q,...,XtQ − qX1,...,Xt‖ ≤ ε, which in turn implies
(167), where δ → 0 as ε→ 0. In (166) and (168), we defined
ε′ = ε1 + ε2 and g(ε) = δ + ε′, respectively.

APPENDIX C
PROOF OF THEOREM 8

The proof employs the OSRB framework [50]. We give a
proof for t = 3, but a similar proof can be written down for
any t.

Let (Un, Un1 , U
n
2 , U

n
3 , X

n
1 , X

n
2 , X

n
3 ) be i.i.d. with distri-

bution p(u, u[1:3], x[1:3]) = q(x[1:3])p(u, u[1:3]|x[1:3]) satisfy-
ing (62). Bin indices f,m∗, b1, b2, b3 with respective rates
R̂0, R

∗, R̃1, R̃2, R̃3 are created from (Un, Un1 , U
n
2 , U

n
3 ) in a

way that can be understood from the following joint probability
distribution:

P (un, un1 , u
n
2 , u

n
3 , x

n
1 , x

n
2 , x

n
3 , f,m

∗, b1, b2, b3)

= p(un, un1 , u
n
2 , u

n
3 )P (m0, f |un)P (m∗|un)P (b1|un, un1 )

× P (b2|un, un2 )P (b3|un, un3 )p(xn1 |un, un2 , un3 )

× p(xn2 |un, un1 , un3 )p(xn3 |un, un1 , un2 )

= p(b1, b2, b3, f)P (un, un1 , u
n
2 , u

n
3 |b1, b2, b3, f)P (m∗|un)

× p(xn1 |un, un2 , un3 )p(xn2 |un, un1 , un3 )p(xn3 |un, un1 , un2 ).
(169)

Further, we use Slepian-Wolf decoders to estimate (un, u(i)3+1)
from b(i+2)3+1, f,m

∗, i = 0, 1, 2, where (i)3 = i mod 3.
Now we impose a series of constraints on the rates.

R̂0 < H(U)

R̃1 + R̂0 < H(U,U1)

R̃2 + R̂0 < H(U,U2)

R̃3 + R̂0 < H(U,U3)

R̃1 + R̃2 + R̂0 < H(U,U1, U2)

R̃1 + R̃3 + R̂0 < H(U,U1, U3)

R̃3 + R̃2 + R̂0 < H(U,U2, U3)

R̃1 + R̃2 + R̃3 + R̂0 < H(U,U1, U2, U3) (170)

R̃2 > H(U2|U,U3)

R̃3 > H(U3|U,U2)

R̃2 + R̃3 > H(U2, U3|U)

R∗ + R̂0 + R̃2 + R̃3 > H(U,U2, U3)

R̃1 > H(U1|U,U3)

R̃3 > H(U3|U,U1)

R̃1 + R̃3 > H(U1, U3|U)

R∗ + R̂0 + R̃1 + R̃3 > H(U,U1, U3)

R̃1 > H(U1|U,U2)

R̃2 > H(U2|U,U1)

R̃1 + R̃2 > H(U1, U2|U)

R∗ + R̂0 + R̃1 + R̃2 > H(U,U1, U2) (171)

The first set of constraints (170) ensure that b1, b2, b3, f are
approximately (i.e., with vanishing total variation distance) uni-
formly distributed and mutually independent of each other [50,
Theorem 1]. The second set of constraints (171) guarantees the
success of Slepian-Wolf decoders with high probability [50,
Lemma 1]. Thus, under these two sets of rate constraints (170)
and (171), the random p.m.f. comprising (169) and Slepian-
Wolf decoders approximately close to the p.m.f. below.

P (un, un1 , u
n
2 , u

n
3 , x

n
1 , x

n
2 , x

n
3 , f,m

∗, b1, b2, b3,

ûn(1)2, û
n
(1)3, û

n
(2)1, û

n
(2)3, û

n
(3)1, û

n
(3)2, û

n
(1), û

n
(2), û

n
(3))

= pUnif(b1)pUnif(b2)pUnif(b3)pUnif(f)

× P (un, un1 , u
n
2 , u

n
3 |b1, b2, b3, f)P (m∗|un)

× PSW (ûn(1), û
n
(1)2, û

n
(1)3|b2, b3, f,m

∗)

× PSW (ûn(2), û
n
(2)1, û

n
(2)3|b1, b3, f,m

∗)

× PSW (ûn(3), û
n
(3)1, û

n
(3)2|b1, b2, f,m

∗)

× p(xn1 |ûn(1), û
n
(1)2, û

n
(1)3)p(xn2 |ûn(2), û

n
(2)1, û

n
(2)3)

× p(xn3 |ûn(3), û
n
(3)1, û

n
(3)2) (172)

The connection between above p.m.f. and the original problem
is described below. In p.m.f. (172) we generate b1, b2, b3, f
independently and uniformly from the respective alphabets.
For i ∈ [1 : 3], we treat bi as the shared randomness wi
that is not available to processor Pi. In addition, we have
extra shared randomness f (to be eliminated later), which is
shared among coordinator and all the three processors. The
coordinator on observing b1, b2, b3, f produces un, un1 , u

n
2 , u

n
3

according to the random p.m.f. P (un, un1 , u
n
2 , u

n
3 |b1, b2, b3, f)

of (169) and sends (m∗(un)) as a common message m
to the processors, where m∗(un) is produced according to
P (m∗|un) of (169). The processors use (random) Slepian-Wolf
decoders mentioned below (169) to produce their respective
estimates. Then the processors produce xn1 , x

n
2 and xn3 ac-

cording to p(xn1 |ûn(1), û
n
(1)2, û

n
(1)3), p(xn2 |ûn(2), û

n
(2)1, û

n
(2)3) and

p(xn3 |ûn(3), û
n
(3)1, û

n
(3)2), respectively.

To eliminate the extra shared randomness without disturbing
the desired i.i.d. distribution on X1, X2, X3, we need a third
set of constraints on rates. Under these constraints below,
(Xn

1 , X
n
2 , X

n
3 ) and F are approximately independent [50,

Theorem 1].

R̂0 < H(U |X1, X2, X3) (173)

All these three sets of rate constraints (170), (171) and (173)
guarantee the existence of a particular realization of random
binning (so that we can replace P with p in (172) and denote
the resulting p.m.f. by p̂) such that

p̂(xn1 , x
n
2 , x

n
3 , f) ≈ pUnif(f)p(xn1 , x

n
2 , x

n
3 ),

which further implies that there exists instance f∗ of F such
that

p̂(xn1 , x
n
2 , x

n
3 |f∗) ≈ p(xn1 , xn2 , xn3 ).
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Note that the above equation is the required correctness
condition. Noting that the transmission rate R = R∗ and
eliminating all the other rates from (170), (171) and (173)
gives us (61) for t = 3.

APPENDIX D
PROOF OUTLINE OF THEOREM 13

The proof follows along the same lines as that of Theorem 12.
Fix a p.m.f. p(u, u[1:h], x[1:t]) as given in the theorem. We
generate (h + 1) number of codebooks randomly in the
following way.
• Randomly and independently generate 2nR sequences
un(m), m ∈ [1 : 2nR], each according to i.i.d. pU .

• For each un(w), randomly and independently generate
2nRi sequences uni (w,wi), wi ∈ [1 : 2nRi ], each
according to i.i.d. pUi , for i ∈ [1 : h].

For i ∈ [1 : t], processor Pi on observing w,wVi produces
xni according to a (random) p.m.f. analogous to the proof of
Theorem 12. We denote an := (xn1 , . . . , x

n
t ). Let P (an) be

the induced random p.m.f. on An. It can be easily checked
that EP (an) = q(an). The analysis of total variation distance
follows the same steps as that of Theorem 12 by defining
P1(an) and P2(an) analogously. E(P1(an))

2 is divided in
to 2h + 1 parts, each part corresponding to a case as in the
proof of Theorem 12. Case (1) is when w 6= w′. Each of
the remaining 2h cases is specified by a set S ⊆ [1 : h], in
particular, by w = w′, wi 6= w′i, i ∈ S, wi = w′i, i ∈ [1 : h] \ S .
The part corresponding to case (1) is dealt similar to that

of Theorem 12. Using the bound
√∑l

i=1 xi ≤
∑l
i=1

√
xi,

the expression
∑
an∈T

√
E(P1(an))

2 − (EP1(an))
2 is upper

bounded by the summation of 2h corresponding parts as in
the proof of Theorem 12. The part corresponding to the set
S ⊆ [1 : h] asymptotically vanishes if R+RS > I(A;U,US).
This leads to asymptotically vanishing total variation distance
E‖P (an)−EP (an)‖1 using the properties of typicality and
Jensen’s inequality as in the proof of Theorem 12. This
completes the achievability.

For the converse, suppose a rate tuple (R,R1, . . . , Rh) is
achievable for qX1...Xt . For any S ⊆ [1 : h], consider

n(R+RS)

≥ H(W,WS)

≥ I(W,WS ;Xn
1 , . . . , X

n
t )

= H(Xn
1 , . . . , X

n
t )−H(Xn

1 , . . . , X
n
t |W,WS)

≥
n∑
i=1

[H(X1i, . . . , Xti)− ε′]

−
n∑
i=1

H(X1i, . . . , Xti|W,WS , X1:i−1
1 , . . . , X1:i−1

t )

(174)

=

n∑
i=1

[
I(X1i, . . . , , Xti;W,WS , X

1:i−1
1 , . . . , X1:i−1

t )− ε′
]

≥
n∑
i=1

[I(X1i, . . . , Xti;W,WS)− ε′]

= n [I(X1Q, . . . , XtQ;W,WS |Q)− ε′]
≥ n [I(X1Q, . . . , XtQ;W,WS , Q)− ε′ − ε′′] (175)
= n[I(X1Q, . . . .XtQ;U,US)− ε′ − ε′′] (176)

where (174) and (175) follow from the correctness of the
output distribution with ε′, ε′′ → 0 as ε→ 0 along similar lines
as (42) and (43), respectively, and (176) follows by defining
U = (W,Q), Ui = Wi, for i ∈ [1 : h]. Note that ‖pX1Q...XtQ−
qX1...Xt‖ < ε, which follows from [5, Lemma VI.2]. Using the
structure of the problem and the continuity of total variation
distance and mutual information in the probability simplex, it
follows along the same lines as Theorem 2, [53, Lemma 6]
that

R+RS ≥ I(X1, . . . , Xt;U,US), S ⊆ [1 : h]

for some p.m.f.

p(u, u[1:h], x[1:t]) = q(x[1t3])p(u, u[1:h]|x[1:t])

s.t.

p(u, u[1:h], x[1:t]) = p(u)

(
h∏
i=1

p(ui)

)(
t∏
i=1

p(xi|u, uVi)

)
.

This completes the proof.

APPENDIX E
SOME OTHER OMITTED DETAILS

A. Details Omitted from Example 1

Here we show that f(0) = 0.5C(X;Y ) and f(1) =
I(X;Y ).

f(0) = max{Ip∗(X;Y |U),
1

2
(Ip∗(X,Y ;U) + Ip∗(X;Y |U))}

= max{0, 0.5C(X;Y )}
= 0.5C(X;Y ).

f(1) = max{Ip⊥(X;Y |U),
1

2

(
Ip⊥(X,Y ;U) + Ip⊥(X;Y |U)

)
}

= max{I(X;Y ),
1

2
(0 + I(X;Y ))}

= I(X;Y ).

B. Details Omitted in Relaxing the Implicit Non-Negativity
Constraints on Rates from the Proof of Theorem 1

Here we argue that the new non-negative rates and the
auxiliary random variables defined in the achievability proof of
Theorem 1 satisfy (23)-(25). We argue this for one constraint
each from (23), (24), and (25). The other constraints can be
argued similarly. From (23), consider

R̃1 + R̂1 +R0 + R̂0 < H(U,U1),

⇒ R̃1 + R̂1 +H(W1) +R0 + R̂0 +H(W )

< H(U,U1) +H(W,W1),

⇒ R̃1 + R̂1new +R0 + R̂0new < H(Unew, U1new).
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From (24), consider

R̃1 + R̂1 ≥ H(U1|U)

⇒ R̃1 + R̂1 +H(W1) ≥ H(U1|U,W ) +H(W1)

⇒ R̃1 + R̂1new ≥ H(U1,W1|U,W )

⇒ R̃1 + R̂1new ≥ H(U1new|Unew).

From (25), consider

R̂0 + R̂1 < H(U,U1|X.Y )

⇒ R̂0 +H(W ) + R̂1 +H(W1)

< H(U,U1|X.Y ) +H(W,W1)

⇒ R̂0new + R̂1new < H(Unew, U1new).
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