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Abstract

Consider a battery limited energy harvesting communication system with online power control.

Assuming independent and identically distributed (i.i.d.) energy arrivals and the harvest-store-use archi-

tecture, it is shown that the greedy policy achieves the maximum throughput if and only if the battery

capacity is below a certain positive threshold that admits a precise characterization. Simple lower and

upper bounds on this threshold are established. The asymptotic relationship between the threshold and

the mean of the energy arrival process is analyzed for several examples.

Index Terms
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I. INTRODUCTION

The problem of power control for energy harvesting communications has received significant

attention in recent years [1]–[17]. Though the exact problem formulation varies depending on

the system model and the performance metric, the essential challenge remains the same, which

is, roughly speaking, to deal with random energy availability. In this paper we consider online

power control for a battery limited energy harvesting communication system with the goal of

maximizing the long-term average throughput. The aforementioned challenge is arguably most

pronounced in this setting. Indeed, it is known that the impact of random energy arrivals can

be smoothed out if the system is equipped with a battery of unlimited capacity [6], [16], and

offline power control can achieve the same effect to a certain extent. The standard approach to the

problem under consideration is based on the theory of Markov decision processes [18]. Although

in principle the maximum throughput and the associated optimal online power control policy can
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be found by solving the relevant Bellman equation, it is often very difficult to accomplish this

task analytically. To the best of our knowledge, there is no exact characterization of the maximum

throughput except for Bernoulli energy arrivals [14]. To circumvent this difficulty, we tackle the

problem from a different angle. Specifically, instead of directly solving the Bellman equation to

get the optimal power control policy, we use it to check whether a given power control policy

is optimal. This strategy effectively turns a hard optimization problem into a simple decision

problem for which more conclusive results can be obtained (see [19] for the application of a

similar strategy in a different context). In particular, it enables us to establish a sufficient and

necessary condition for the optimality of the greedy policy, yielding an exact characterization of

the maximum throughput in the low-battery-capacity regime.

The rest of the paper is organized as follows. We state the main results in Section II and present

the proofs in Section III. Section IV contains the asymptotic analysis for several illustrative

examples. We conclude the paper in Section V. Throughout this paper, little-o notation f(x) =

ox↓0(ψ(x)) (f(x) = ox↑∞(ψ(x))) means limx↓0
f(x)
ψ(x)

= 0 (limx↑∞
f(x)
ψ(x)

= 0), and the base of the

logarithm function is e.

II. MAIN RESULTS

Consider a discrete-time energy harvesting communication system equipped with a battery

of capacity c. Let X(t) denote the amount of energy harvested at time t, t = 1, 2, · · · , where

{Xt}∞t=1 are assumed to be i.i.d. copies of a nonnegative random variable X . An online power

control policy is a sequence of mappings {ft}∞t=1 specifying the level of energy consumption Gt

in time slot t based on X t , (X1, · · · , Xt) for all t:

Gt = ft(X
t), t = 1, 2, · · · .

Let Bt denote the amount of energy stored in the battery at the beginning of time slot t. We

have1

Bt = min{Bt−1 −Gt−1 +Xt, c}, t = 1, 2, · · · ,

where B0 , 0 and G0 , 0. An online power control policy is said to be admissible if

Gt ≤ Bt, t = 1, 2, · · · .

1Here we adopt the popular harvest-store-use architecture, which should be contrasted with the harvest-use-store architecture

in [11].
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The throughput induced by policy {ft}∞t=1 is defined as

γ(c) , lim inf
n↑∞

1

n
E

[
n∑
t=1

r(ft(X
t))

]
,

where r : [0,∞) → [0,∞) is a reward function that specifies the instantaneous rate achievable

with the given level of energy consumption. The maximum throughput is defined as

γ∗(c) , sup γ(c),

where the supremum is taken over all admissible online power control policies.

In this paper, we assume that r is a monotonically increasing concave function with continuous

first-order derivative r′. Special attention is paid to the case

r(x) =
1

2
log(1 + x), x ≥ 0, (1)

which is relevant to the scenario where the underlying communication system is capacity-

achieving for additive Gaussian noise channels.

An online power control policy {ft}∞t=1 is said to be stationary if the resulting {Gt}∞t=1 and

{Bt}∞t=1 satisfy Gt = f(Bt), t = 1, 2, · · · , for some time-invariant function f . The following

Bellman equation provides an implicit characterization of the maximum throughput and the

associated optimal power control policy.

Proposition 1 (Bellman Equation [14]): If there exist a nonnegative scalar γ and a bounded

function h : [0, c]→ [0,∞) that satisfy

γ + h(b) = sup
g∈[0,b]

{r(g) + E[h(min{b− g +X, c})]} (2)

for all b ∈ [0, c], then γ∗(c) = γ; moreover, every stationary policy f such that f(b) attains the

supremum in (2) for all b ∈ [0, c] is throughput-optimal.

The greedy policy is a simple stationary policy of the form

Gt = Bt, t = 1, 2, · · · .

The throughput induced by the greedy policy can serve as a lower bound on γ∗(c):

γ∗(c) ≥ γ(c) , E[r(min{X, c})].

On the other hand, the concavity of the reward function implies the following upper bound on

γ∗(c) [14]:

γ∗(c) ≤ γ(c) , r(E[min{X, c}]).
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Let ρ(x) , P(X < x), x , max{x ≥ 0 : ρ(x) = 0}, x , inf{x ≥ 0 : ρ(x) = 1}, and µ , E[X].

We shall assume2 r′(x) > r′(x) since otherwise γ(c) = γ(c) for all c ≥ 0. It is clear that

lim
c↓0

γ(c)

γ(c)
= 1.

In other words, the greedy policy is asymptotically optimal when c ↓ 0. To gain a better

understanding, we plot3 γ∗(c), γ(c), and γ(c) associated with the reward function defined in

(1) for various distributions4 of X . It can be seen from the examples in Fig. 1 that, somewhat

surprisingly, γ(c) coincides with γ∗(c) when c is below a certain positive threshold c∗ (as a

consequence, the greedy policy is in fact exactly optimal in that regime). This turns out to be

a general phenomenon, as shown by the following result, which also provides an analytical

characterization of c∗.

Fig. 1. Illustrations of γ∗(c), γ(c), and γ(c) for several different distributions.

2We let r′(∞) , limx↑∞ r
′(x), which is well-defined since r′ is a monotonically decreasing function.

3Here γ∗(c) is obtained by numerically solving the Bellman equation (i.e., (2)).
4The definition of these distributions can be found in Section IV.
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Theorem 1 (Threshold c∗): The greedy policy is optimal, i.e., γ∗(c) = γ(c), if and only if

c ≤ c∗, where

c∗ , max{c ≥ 0 : r′(c) ≥ ρ(c)E[r′(X)|X < c]}.

In particular, for the reward function defined in (1),

c∗ = max

{
c ≥ 0 :

1

1 + c
≥ ρ(c)E

[
1

1 +X

∣∣∣∣X < c

]}
. (3)

Remark 1: It is easy to see that r′(c) is a monotonically decreasing continuous function of c,

and ρ(c)E[r′(X)|X < c] is a monotonically increasing left-continuous function of c; moreover,

r′(x) > P(X = x)r′(x) = lim
c↓x

ρ(c)E[r′(X)|X < c],

r′(x) < E[r′(X)] = lim
c↓x

ρ(c)E[r′(X)|X < c], x <∞,

r′(x) < E[r′(X)] = lim
c↑x

ρ(c)E[r′(X)|X < c], x =∞.

These facts imply that c∗ is well-defined and more generally

{c ≥ 0 : r′(c) ≥ ρ(c)E[r′(X)|X < c]} = [0, c∗]

with x < c∗ ≤ x (the second inequality is strict if x =∞).

Fig. 2. Characterization of c∗ for the case where X has a discrete distribution and the case where X has a continuous distribution.

Remark 2: To gain a deeper understanding of (3), it is instructive to consider the following

two cases separately (see also Fig. 2).
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1) Let X be a discrete random variable with probability mass function pX . For simplicity, we

assume the support of pX is a countable set {ξ1, ξ2, · · · } with 0 ≤ ξ1 < ξ2 < · · · . In this case,

c∗ is the unique positive number satisfying one of the following two conditions.

i) c∗ ∈ (ξj, ξj+1) for some j and

1

1 + c∗
=

j∑
i=1

1

1 + ξi
pX(ξi).

ii) c∗ = ξj+1 for some j and
j∑
i=1

1

1 + ξi
pX(ξi) ≤

1

1 + c∗
≤

j+1∑
i=1

1

1 + ξi
pX(ξi).

2) Let X be a continuous random variable with probability density function fX . In this case,

c∗ is the unique positive number satisfying

1

1 + c∗
=

∫ c∗

0

1

1 + x
fX(x)dx. (4)

Proof: See Section III-A. Note that for the reward function defined in (1),

r′(x) =
1

2(1 + x)
, x ≥ 0,

from which (3) follows immediately.

Next we establish bounds on c∗ that are in general easier to evaluate than c∗ itself. For c > x,

let r′[x,c] (r′[x,c]) denote the upper concave envelope (the lower convex envelope) of r′ over [x, c].

Proposition 2 (Lower Bound on c∗):

c∗ ≥ c , sup{c ∈ (x, x) : r′(c) ≥ ρ(c)r′[x,c](ξ)}, (5)

where

ξ , max

{
µ− (1− ρ(c))x

ρ(c)
, x

}
.

In particular, for the reward function defined in (1),

c = sup{c ∈ (x, x) : c ≤ ζ(c)}, (6)

where

ζ(c) ,
(1− ρ(c))(1 + x) + ρ(c)ξ

ρ(c)
.
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Remark 3: It is clear that

r′(x) > P(X = x)r′(x) = lim
c↓x

ρ(c)r′[x,c](ξ),

r′(x) < r′(x) = lim
c↑x

ρ(c)r′[x,c](ξ), x =∞.

Therefore, we must have x < c ≤ x (the second inequality is strict if x =∞).

Proof: See Section III-B. Note that for the reward function defined in (1),

r′[x,c](x) =
1 + x+ c− x
2(1 + x)(1 + c)

, x ∈ [x, c],

from which (6) follows immediately.

Proposition 3 (Upper Bound on c∗):

c∗ ≤ c , sup{c ∈ (x, x) : r′(c) ≥ ρ(c)r′[x,c](ξ)}, (7)

where

ξ , min

{
µ− (1− ρ(c))c

ρ(c)
, c

}
.

In particular, for the reward function defined in (1),

c = sup
{
c ∈ (x, x) : c ≤ ζ(c)

}
, (8)

where

ζ(c) ,
1− ρ(c) + ξ

ρ(c)
.

Remark 4: It is clear that

r′(µ) > P(X ≤ µ)r′(µ) = lim
c↓µ

ρ(c)r′[x,c](ξ).

Therefore, we must have µ < c ≤ x. This implies that “c ∈ (x, x)” in (7) and (8) can be replaced

by “c ∈ (µ, x)”. In particular, we can write (8) equivalently as

c = sup

{
c ∈ (µ, x) : c ≤ µ+ ρ(c)− ρ2(c)

1− ρ(c) + ρ2(c)

}
.

Note that c = x may hold even if x = ∞. As shown in Appendix A, c = ∞ if x = ∞ and

r′(µ− ε) = r′(x) for some ε > 0; on the other hand, if x =∞ and r′(µ) > r′(x), then c <∞.

Proof: See Section III-C. Note that for the reward function defined in (1),

r′[x,c](x) =
1

2(1 + x)
, x ∈ [x, c],

from which (8) follows immediately.
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We further establish semi-universal bounds on c∗ that depend only on x, x, and µ.

Proposition 4 (Semi-Universal Lower Bound on c∗):

c∗ ≥ c , sup{c ∈ (x, x) : r′(c) ≥ χ(c)}, (9)

where

χ(c) ,


sup

ρ(c)∈(0,x−µx−c )
ρ(c)r′[x,c](ξ), c ∈ (x, µ],

sup
ρ(c)∈( c−µc−x ,1)

ρ(c)r′[x,c](ξ), c ∈ (µ, x).

In particular, for the reward function defined in (1),

c =


(1+x)(x−x)

x−µ − 1, µ ≤ x− x− 1,

µ, µ > x− x− 1.
(10)

Remark 5: We let c , x if {c ∈ (x, x) : r′(c) ≥ χ(c)} = ∅.

Proof: See Section III-D.

Proposition 5 (Semi-Universal Upper Bound on c∗):

c∗ ≤ c , sup{c ∈ (x, x) : r′(c) ≥ χ(c)}, (11)

where

χ(c) ,


inf

ρ(c)∈(0,x−µx−c )
ρ(c)r′[x,c](ξ), c ∈ (x, µ],

inf
ρ(c)∈( c−µc−x ,1)

ρ(c)r′[x,c](ξ), c ∈ (µ, x).

In particular, for the reward function defined in (1),

c =

min{c1, x}, µ ≤ 3
2
x+ 1

2
,

min{c2, x}, µ > 3
2
x+ 1

2
,

(12)

where

c1 ,
µ+ x+

√
(µ+ x)2 − 4(x2 + x− µ)

2
,

c2 ,
4

3
µ+

1

3
.

Proof: See Section III-E.
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Consider the reward function defined in (1) and assume that X is a Bernoulli random variable

with P(X = x) = 1−p and P(X = x) = p, where p ∈ (0, 1). For this special example, a simple

calculation shows that

c∗ = c =


x+p
1−p ,

x+p
1−p ≤ x,

x, x+p
1−p > x,

c =


(1−p)(x+p)+px

1−p+p2 , x+p
1−p ≤ x,

x, x+p
1−p > x,

c =


x+p
1−p ,

(2−p)x+1
1−p ≤ x,

(1− p)x+ px, (2−p)x+1
1−p > x,

c =

min{c1, x}, (1+2p)x+1
2p

≥ x,

min{c2, x}, (1+2p)x+1
2p

< x,

where

c1 =
(2− p)x+ px

2
+

√
((2− p)x+ px)2 − 4(x2 + p(x− x))

2
,

c2 =
4

3
((1− p)x+ px) +

1

3
.

Moreover, it can be verified that c = c∗ if x+p
1−p ≥ x, c = c∗ if (2−p)x+1

1−p ≤ x, and c = c∗ if

x ≤ min{ (1+2p)x+1
2p

, c1} or (3−4p)x−1
4(1−p) ≤ x ≤ 2px−1

1+2p
. Therefore, the bounds in Propositions 2, 3, 4,

and 5 are tight for non-trivial cases. Plots of c∗, c, c, c, and c against p with x = 0 and x = 5

can be found in Fig. 3.

III. PROOFS

A. Proof of Theorem 1

The main difficulty in solving the Bellman equation (i.e., (2)) is that the function h associated

with the optimal power control policy is in general unknown. However, since we only aim

to check the optimality of the greedy policy, it is easy to construct a candidate function h.

Specifically, in view of Proposition 1, the greedy policy is optimal if

sup
g∈[0,b]

{r(g) + E[h(min{b− g +X, c})]} = r(b) + E[h(min{X, c})] = γ(c) + h(b)
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Fig. 3. Plots of c∗, c, c, c, and c against p with x = 0 and x = 5.

for all b ∈ [0, c], and the second equality naturally suggests that h(x) = r(x) for x ∈ [0, c].

Therefore, it suffices to check whether the supremum of φ(g) , r(g)+E[r(min{b− g+X, c})]

over [0, b] is attained at g = b for all b ∈ [0, c]. We show in Appendix B that for g ∈ (0, b],

lim
ε↓0

1

ε
(φ(g)− φ(g − ε)) = r′(g)− ρ(c− b+ g)E[r′(b− g +X)|X < c− b+ g], (13)

and for g ∈ [0, b),

lim
ε↓0

1

ε
(φ(g + ε)− φ(g))

= r′(g)− ρ(c− b+ g)E[r′(b− g +X)|X < c− b+ g]− P(X = c− b− g)r′(c). (14)

Therefore, φ is semi-differentiable and consequently is continuous over [0, b]. Note that for

c ∈ [0, c∗], b ∈ [0, c], and g ∈ [0, b],

r′(g)− ρ(c− b+ g)E[r′(b− g +X)|X < c− b+ g] ≥ r′(c)− ρ(c)E[r′(X)|X < c] ≥ 0.

So φ is a monotonically increasing function5 over [0, b] for all b ∈ [0, c] when c ≤ c∗. This

proves the “if” part of Theorem 1.

5Here we have invoked the fact that a continuous function f with nonnegative left derivative must be monotonically increasing.

This fact can be proved as follows. Assume there exist α < β such that f(α) > f(β). Let κ , f(α)−f(β)
2(β−α) and τ , max{x ∈

[α, β] : f(x)−f(β) > κ(β−x) for all x′ ∈ [α, x)}. It follows by the continuity of f that τ ∈ (α, β] and f(τ)−f(β) = κ(β−τ).

Since the left derivative of f is nonnegative at τ , there exists τ ′ ∈ [α, τ) such that f(τ ′) − f(τ) ≤ κ(τ − τ ′). Therefore, we

have f(τ ′)− f(β) = f(τ ′)− f(τ) + f(τ)− f(β) ≤ κ(β − τ ′), which is contradictory to the definition of τ .
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To prove the “only if” part of Theorem 1, we shall construct an online power control policy

that outperforms the greedy policy when c > c∗. To this end, we modify the greedy policy as

follows: for t = 1, 2, · · · ,

G2t−1 =

B2t−1 − ε, X2t−1 ≥ min{x, c} − ε,

B2t−1, otherwise,

G2t = B2t,

where ε ∈ (0, 1
2
min{x, c}]. As compared to the greedy policy, the modified policy incurs a rate

loss E[r(min{X2t−1, c})]−E[r(G2t−1)] in time slot 2t−1, but gains E[r(G2t)]−E[r(min{X2t, c})]

in time slot 2t. It can be verified that

E[r(min{X2t−1, c})]− E[r(G2t−1)]

= P(X2t−1 ≥ min{x, c} − ε)E[r(min{X2t−1, c})− r(min{X2t−1, c} − ε)|X2t−1 ≥ min{x, c} − ε]

= P(min{x, c} − ε ≤ X2t−1 < c)E[r(X2t−1)− r(X2t−1 − ε)|min{x, c} − ε ≤ X2t−1 < c]

+ P(X2t−1 ≥ c)E[r(c)− r(c− ε)|X2t−1 ≥ c]

≤ P(min{x, c} − ε ≤ X2t−1 < c)E[r′(min{x, c} − 2ε)ε|min{x, c} − ε ≤ X2t−1 < c]

+ P(X2t−1 ≥ c)E[r′(min{x, c} − 2ε)ε|X2t−1 ≥ c]

= P(X ≥ min{x, c} − ε)r′(min{x, c} − 2ε)ε,

and

E[r(G2t)]− E[r(min{X2t, c})]

= P(X2t−1 ≥ min{x, c} − ε)E[r(min{X2t + ε, c})− r(min{X2t, c})]

= P(X2t−1 ≥ min{x, c} − ε)(P(X2t < c− ε)E[r(X2t + ε)− r(X2t)|X2t < c− ε]

+ P(c− ε ≤ X2t < c)E[r(c)− r(X2t)|c− ε ≤ X2t < c])

≥ P(X2t−1 ≥ min{x, c} − ε)P(X2t < c− ε)E[r(X2t + ε)− r(X2t)|X2t < c− ε]

≥ P(X2t−1 ≥ min{x, c} − ε)P(X2t < c− ε)E[r′(X2t + ε)ε|X2t < c− ε]

= P(X ≥ min{x, c} − ε)ρ(c− ε)E[r′(X + ε)|X < c− ε]ε.

Clearly, we have

P(X ≥ min{x, c} − ε) > 0, ε > 0.
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Moreover,

lim
ε↓0

r′(min{x, c} − 2ε) = r′(min{x, c}),

and it follows by the monotone convergence theorem that

lim
ε↓0

ρ(c− ε)E[r′(X + ε)|X < c− ε] = ρ(c)E[r′(X)|X < c].

If c ≤ x,

r′(min{x, c}) = r′(c)

< ρ(c)E[r′(X)|X < c], (15)

where (15) is due to the assumption that c > c∗. If c > x,

r′(min{x, c}) = r′(x)

< E[r′(X)] (16)

= ρ(c)E[r′(X)|X < c],

where (16) is due to the assumption that r′(x) > r′(x). Therefore, when ε is sufficiently close

to 0,

E[r(min{X2t−1, c})]− E[r(G2t−1)] < E[r(G2t)]− E[r(min{X2t, c})]

and the overall throughput is improved. This proves the “only if” part of Theorem 1.

Remark 6: The proof of the “if” part can be slightly modified to show that as long as r′ is

continuous and positive (or constantly zero) over [0, ν] for some ν > 0, the greedy policy is

optimal when c is sufficiently close to 0. Characterizing the sufficient and necessary condition

for the optimality of the greedy policy under relaxed assumptions on the reward function is left

for future work.

Remark 7: Intuitively, it makes sense to save energy only when the expected future return

exceeds the current loss; with a small battery, one has no impetus to keep some energy for

later because there is a good chance that the next energy arrival by itself will get the battery

fully charged, rendering the saved energy wasted. This intuitive explanation also suggests that

the optimality of the greedy policy is specific to online power control. Indeed, for offline power

control or, more generally, power control with the knowledge of future energy arrivals in a look-

ahead window [20], one can effectively avoid the situation that the saved energy gets wasted due

to battery overflow and consequently the greedy policy is in general strictly suboptimal (even in

the low-battery-capacity regime).
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B. Proof of Proposition 2

For c ∈ (x, x),

E[r′(X)|X < c] ≤ E[r′[x,c](X)|X < c]

≤ r′[x,c](E[X|X < c]), (17)

where (17) is due to Jensen’s inequality. Note that

µ = ρ(c)E[X|X < c] + (1− ρ(c))E[X|X ≥ c] ≤ ρ(c)E[X|X < c] + (1− ρ(c))x,

which implies

E[X|X < c] ≥ µ− (1− ρ(c))x
ρ(c)

.

Moreover, we have E[X|X < c] ≥ x. Since r′[x,c](x) is a monotonically decreasing function of

x over [x, c], it follows that

r′[x,c](E[X|X < c]) ≤ r′[x,c](ξ). (18)

Combining (17) and (18) gives

E[r′(X)|X < c] ≤ r′[x,c](ξ).

Therefore,{
c ∈ (x, x) : r′(c) ≥ ρ(c)r′[x,c](ξ)

}
⊆ {c ∈ (x, x) : r′(c) ≥ ρ(c)E[r′(X)|X < c]} ,

which, together with the fact (see Remark 1) that

sup {c ∈ (x, x) : r′(c) ≥ ρ(c)E[r′(X)|X < c]} = c∗,

proves (5).

C. Proof of Proposition 3

For c ∈ (x, x),

E[r′(X)|X < c] ≥ E[r′[x,c](X)|X < c]

≥ r′[x,c](E[X|X < c]), (19)

where (19) is due to Jensen’s inequality. Note that

µ = ρ(c)E[X|X < c] + (1− ρ(c))E[X|X ≥ c] ≥ ρ(c)E[X|X < c] + (1− ρ(c))c,
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which implies

E[X|X < c] ≤ µ− (1− ρ(c))c
ρ(c)

.

Moreover, we have E[X|X < c] ≤ c. Since r′[x,c](x) is a monotonically decreasing function of

x over [x, c], it follows that

r′[x,c](E[X|X < c]) ≥ r′[x,c](ξ). (20)

Combining (19) and (20) gives

E[r′(X)|X < c] ≥ r′[x,c](ξ).

Therefore,{
c ∈ (x, x) : r′(c) ≥ ρ(c)r′[x,c](ξ)

}
⊇ {c ∈ (x, x) : r′(c) ≥ ρ(c)E[r′(X)|X < c]} ,

which, together with the fact (see Remark 1) that

sup {c ∈ (x, x) : r′(c) ≥ ρ(c)E[r′(X)|X < c]} = c∗,

proves (7).

D. Proof of Proposition 4

For c ∈ (x, x), we have ρ(c) ∈ (0, 1) and

ρ(c)x+ (1− ρ(c))c < µ < ρ(c)c+ (1− ρ(c))x,

which can be written equivalently as

c− µ
c− x

< ρ(c) <
x− µ
x− c

.

Therefore, we have

{c ∈ (x, x) : r′(c) ≥ χ(c)} ⊆ {c ∈ (x, x) : r′(c) ≥ ρ(c)r′[x,c](ξ)}

and consequently c ≤ c. Invoking Proposition 2 proves (9).

Now we proceed to prove (10). It suffices to consider the case x <∞ since otherwise c = x

and (10) is obviously true. Clearly, r′(c) ≥ χ(c) if and only if

c ≤


inf

ρ(c)∈(0,x−µx−c )
ζ(c), c ∈ (x, µ],

inf
ρ(c)∈( c−µc−x ,1)

ζ(c), c ∈ (µ, x),
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where

ζ(c) =


1+x
ρ(c)
− 1, ρ(c) ∈

(
0, x−µ

x−x

]
,

µ−x+x+1
ρ(c)

+ x− x− 1, ρ(c) ∈
(
x−µ
x−x , 1

)
.

For c ∈ (x, µ],

inf
ρ(c)∈(0,x−µx−c )

ζ(c) = min

{
inf

ρ(c)∈(0,x−µx−x ]

1 + x

ρ(c)
− 1, inf

ρ(c)∈(x−µx−x ,
x−µ
x−c )

µ− x+ x+ 1

ρ(c)
+ x− x− 1

}

= inf
ρ(c)∈(x−µx−x ,

x−µ
x−c )

µ− x+ x+ 1

ρ(c)
+ x− x− 1 (21)

=


(1+x)(x−x)

x−µ − 1, µ ≤ x− x− 1,

(µ−x+x+1)(x−c)
x−µ + x− x− 1, µ > x− x− 1,

(22)

where (21) is due to the fact that

inf
ρ(c)∈(0,x−µx−x ]

1 + x

ρ(c)
− 1 =

µ− x+ x+ 1

ρ(c)
+ x− x− 1

∣∣∣∣
ρ(c)=x−µ

x−x

. (23)

For c ∈ (µ, x),

inf
ρ(c)∈( c−µc−x ,1)

ζ(c) = min

{
inf

ρ(c)∈( c−µc−x ,
x−µ
x−x ]

1 + x

ρ(c)
− 1, inf

ρ(c)∈(x−µx−x ,1)

µ− x+ x+ 1

ρ(c)
+ x− x− 1

}

= inf
ρ(c)∈(x−µx−x ,1)

µ− x+ x+ 1

ρ(c)
+ x− x− 1 (24)

=


(1+x)(x−x)

x−µ − 1, µ ≤ x− x− 1,

µ, µ > x− x− 1,
(25)

where (24) is due to (23). One can readily prove (10) given (22) and (25).

E. Proof of Proposition 5

We shall only prove (12) since the proof of (11) is similar to that of (9). Clearly, r′(c) ≥ χ(c)

if and only if

c ≤


sup

ρ(c)∈(0,x−µx−c )
ζ(c), c ∈ (x, µ],

sup
ρ(c)∈( c−µc−x ,1)

ζ(c), c ∈ (µ, x),
(26)
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where

ζ(c) =


1+c
ρ
− 1, c ∈ (x, µ],

µ+(1−ρ(c))(ρ(c)−c)
ρ2(c)

, c ∈ (µ, x).

For c ∈ (x, µ],

sup
ρ(c)∈(0,x−µx−c )

ζ(c) =∞

and consequently (26) trivially holds. For c ∈ (µ, x), we have

sup
ρ(c)∈( c−µc−x ,1)

ζ(c) =


(c−x)(1+x)

c−µ − 1, c ≤ 2x+ 1,

(1+c)2

4(c−µ) − 1, c ∈ (2x+ 1, 2µ+ 1],

µ, c > 2µ+ 1,

which is a monotonically decreasing function of c. For c > µ,

c =
(c− x)(1 + x)

c− µ
− 1

has a unique solution c = c1, and

c =
(1 + c)2

4(c− µ)
− 1

has a unique solution c = c2. Note that

(c− x)(1 + x)

c− µ
≤ (1 + c)2

4(c− µ)
, c ∈ (µ, 2µ+ 1].

Therefore, c2 ≤ 2x + 1 (i.e., µ ≤ 3
2
x + 1

2
) implies c1 ≤ 2x + 1. Now one can readily complete

the proof of (12).

IV. ASYMPTOTIC RELATIONSHIP BETWEEN c∗ AND µ

We shall focus on the reward function defined in (1) and provide a detailed analysis of c∗

for a few examples, with a particular interest in understanding how c∗ scales with µ as µ ↓ 0

or µ ↑ ∞. In the sequel we write c∗ ∼0 ψ(µ) (c∗ ∼∞ ψ(µ)) to indicate that limµ↓0
c∗

ψ(µ)
= 1

(limµ↑∞
c∗

ψ(µ)
= 1).



17

A. Discrete Distribution

• Geometric distribution:

pX(k) = (1− p)kp, k = 0, 1, · · · , p ∈ (0, 1).

Note that µ = 1−p
p

. Clearly,

c∗ = µ, µ ∈ (0, 1],

which implies c∗ ∼0 µ.

For any a > 0,

lim
µ↑∞

(
1 +

aµ

log µ

) b aµ
log µ
c∑

k=0

(1− p)kp
1 + k

= lim
µ↑∞

(
1 +

aµ

log µ

) b aµ
log µ
c∑

k=0

(
µ

1+µ

)k
(1 + µ)(1 + k)

= lim
µ↑∞

(
1 +

aµ

log µ

) b aµ
log µ
c∑

k=0

1

(1 + µ)(1 + k)
(27)

= lim
µ↑∞

(
1 +

aµ

log µ

)
1

1 + µ
log

(
1 +

⌊
aµ

log µ

⌋)
= lim

µ↑∞

a

log µ
log

(
aµ

log µ

)
= a,

where (27) is due to the fact that

1 ≥
(

µ

1 + µ

)k
≥
(

µ

1 + µ

) aµ
log µ

, k = 0, 1, · · · ,
⌊
aµ

log µ

⌋
,

and

lim
µ↑∞

(
µ

1 + µ

) aµ
log µ

= 1.

Therefore, we must have c∗ ∼∞ µ
log µ

.

• Poisson distribution:

pX(k) =
e−λλk

k!
, k = 0, 1, · · · , λ > 0.

Note that µ = E[(X − µ)2] = λ. Clearly,

c∗ = eµ − 1, µ ∈ (0, log 2],

which implies c∗ ∼0 µ.
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It is shown in Appendix C that for any a > 0,

lim
µ↑∞

(1 + aµ)

bµ+µ
2
3 c∑

k=dµ−µ
2
3 e

e−λλk

(1 + k)(k!)
= a, (28)

lim
µ↑∞

(1 + aµ)
∞∑

k=bµ+µ
2
3 c+1

e−λλk

(1 + k)(k!)
= 0, (29)

lim
µ↑∞

(1 + aµ)

dµ−µ
2
3 e−1∑

k=0

e−λλk

(1 + k)(k!)
= 0. (30)

Therefore, we have

lim
µ↑∞

(1 + aµ)

baµc∑
k=0

e−λλk

(1 + k)(k!)
=

0, a < 1,

a, a > 1,

which implies c∗ ∼∞ µ.

Fig. 4. The relationship between c∗ and µ for some discrete distributions

We plot c∗ against µ in Fig. 4 for the geometric distribution and the Poisson distribution,

which confirms our asymptotic analysis.

B. Continuous Distribution

• Uniform distribution:

fX(x) =


1
ω
, x ∈ [0, ω],

0, x /∈ [0, ω],
ω > 0.
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We can write (4) equivalently as

1 + c∗

ω
log(1 + c∗) = 1.

Note that µ = ω
2

. For any a > 0,

lim
µ↓0

1 + aµ

ω
log (1 + aµ) = lim

µ↓0

1 + aµ

2µ
log (1 + aµ) =

a

2
.

Therefore, we must have c∗ ∼0 2µ.

For any a > 0,

lim
µ↑∞

1 + aµ
log µ

ω
log

(
1 +

aµ

log µ

)
= lim

µ↑∞

1 + aµ
log µ

2µ
log

(
1 +

aµ

log µ

)
= lim

µ↑∞

a

2 log µ
log

(
aµ

log µ

)
=
a

2
.

Therefore, we must have c∗ ∼∞ 2µ
log µ

.

• Exponential distribution:

fX(x) =

ηe
−ηx, x ≥ 0,

0, x < 0,
η > 0.

We can write (4) equivalently as

(1 + c∗)

∫ c∗

0

ηe−ηx

1 + x
dx = 1.

Note that µ = 1
η
. For any a > 0,

(1− aµ log µ)
∫ −aµ log µ

0

ηe−ηx

1 + x
dx = (1− aµ log µ)

∫ −aµ log µ

0

e−
x
µ

µ(1 + x)
dx

= (1− aµ log µ)
∫ −aµ log µ

0

e−
x
µ

µ
(1− x+ ox↓0(x))dx.

(31)

It can be verified that ∫ −aµ log µ

0

e−
x
µ

µ
dx = 1− µa, (32)

and ∫ −aµ logµ

0

xe−
x
µ

µ
dx = aµa+1 log µ− µa+1 + µ. (33)

Substituting (32) and (33) into (31) gives

(1− aµ log µ)
∫ −aµ log µ

0

ηe−ηx

1 + x
dx = 1− aµ log µ− µa + oµ↓0(µ log µ).
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When µ is sufficiently close to 0,

1− aµ log µ− µa + oµ↓0(µ log µ)

< 1, a < 1,

> 1, a > 1.

Therefore, we must have c∗ ∼0 −µ log µ.

For any a > 0,

lim
µ↑∞

(
1 +

aµ

log µ

)∫ aµ
log µ

0

ηe−ηx

1 + x
dx = lim

µ↑∞

(
1 +

aµ

log µ

)∫ aµ
log µ

0

e−
x
µ

µ(1 + x)
dx

= lim
µ↑∞

(
1 +

aµ

log µ

)∫ aµ
log µ

0

1

µ(1 + x)
dx (34)

= lim
µ↑∞

(
1 +

aµ

log µ

)
1

µ
log

(
1 +

aµ

log µ

)
= lim

µ↑∞

a

log µ
log

(
aµ

log µ

)
= a,

where (34) is due to the fact that

1 ≥ e−
x
µ ≥ e−

a
log µ , x ∈

[
0,

aµ

log µ

]
,

and

lim
µ↑∞

e−
a

log µ = 1.

Therefore, we must have c∗ ∼∞ µ
log µ

.

• Rayleigh distribution:

fX(x) =


x
θ
e−

x2

2θ , x ≥ 0,

0, x < 0,
θ > 0.

We can write (4) equivalently as

(1 + c∗)

∫ c∗

0

xe−
x2

2θ

θ(1 + x)
dx = 1.
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Note that µ =
√

πθ
2

. For any a > 0,

(1 + aµ
√
− log µ)

∫ aµ
√
− logµ

0

xe−
x2

2θ

θ(1 + x)
dx

= (1 + aµ
√
− log µ)

∫ aµ
√
− log µ

0

πxe
−πx

2

4µ2

2µ2(1 + x)
dx

= (1 + aµ
√
− log µ)

∫ aµ
√
− log µ

0

πe
−πx

2

4µ2

2µ2
(x− x2 + ox↓0(x

2))dx. (35)

It can be verified that ∫ aµ
√
− logµ

0

πxe
−πx

2

4µ2

2µ2
dx = 1− µ

πa2

4 , (36)

and ∫ aµ
√
− log µ

0

πx2e
−πx

2

4µ2

2µ2
dx = −aµ

πa2

4
+1
√
− log µ+ µ

∫ a
√
− log µ

0

e−
πy2

4 dy. (37)

Substituting (36) and (37) into (35) gives

(1 + aµ
√
− log µ)

∫ aµ
√
− logµ

0

xe−
x2

2θ

θ(1 + x)
dx = 1 + aµ

√
− log µ− µ

πa2

4 + oµ↓0(µ
√
− log µ).

When µ is sufficiently close to 0,

1 + aµ
√
− log µ− µ

πa2

4 + oµ↓0(µ
√
− log µ)

< 1, a < 2√
π
,

> 1, a > 2√
π
.

Therefore, we must have c∗ ∼0
2√
π
µ
√
− log µ.

For any a > 0,

lim
µ↑∞

(1 + aµ)

∫ aµ

0

xe−
x2

2θ

θ(1 + x)
dx

= lim
µ↑∞

(1 + aµ)

∫ aµ

0

πxe
−πx

2

4µ2

2µ2(1 + x)
dx

= lim
µ↑∞

(1 + aµ)

∫ log µ

0

πxe
−πx

2

4µ2

2µ2(1 + x)
dx+ lim

µ↑∞
(1 + aµ)

∫ aµ

log µ

πxe
−πx

2

4µ2

2µ2(1 + x)
dx. (38)

It can be verified that

0 ≤ lim
µ↑∞

(1 + aµ)

∫ log µ

0

πxe
−πx

2

4µ2

2µ2(1 + x)
dx ≤ lim

µ↑∞
(1 + aµ)

∫ log µ

0

π

2µ2
dx = lim

µ↑∞

π(1 + aµ) log µ

2µ2
= 0,
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which implies

lim
µ↑∞

(1 + aµ)

∫ log µ

0

πxe
−πx

2

4µ2

2µ2(1 + x)
dx = 0. (39)

Moreover,

lim
µ↑∞

(1 + aµ)

∫ aµ

log µ

πxe
−πx

2

4µ2

2µ2(1 + x)
dx = lim

µ↑∞
(1 + aµ)

∫ aµ

log µ

πe
−πx

2

4µ2

2µ2
dx (40)

= lim
µ↑∞

(1 + aµ)

∫ a

log µ
µ

πe−
πy2

4

2µ
dy

=
πa

2

∫ a

0

e−
πy2

4 dy, (41)

where (40) is due to the fact that

log µ

1 + log µ
≤ x

1 + x
≤ aµ

1 + aµ
, x ∈ [log µ, aµ],

and

lim
µ↑∞

log µ

1 + log µ
= lim

µ↑∞

aµ

1 + aµ
= 1.

Substituting (39) and (41) into (38) gives

lim
µ↑∞

(1 + aµ)

∫ aµ

0

xe−
x2

2θ

θ(1 + x)
dx =

πa

2

∫ a

0

e−
πy2

4 dy.

Therefore, we must have c∗ ∼∞ a∗µ, where a∗ ≈ 0.875 is the unique positive number

satisfying

πa∗

2

∫ a∗

0

e−
πy2

4 dy = 1.

We plot c∗ against µ in Fig. 5 for the uniform distribution, the exponential distribution, and

the Rayleigh distribution, which confirms our asymptotic analysis.

V. CONCLUSION

We have studied the problem of online power control for battery limited energy harvesting

communications. The main finding of this work is that the greedy policy achieves the maximum

throughput if and only if the battery capacity is below a certain threshold. It is worth noting

that this threshold depends on the distribution of the energy arrival process although the greedy

policy itself does not. In fact, there does not exist a positive threshold on the battery capacity

below which the greedy policy (or any other universal policy) is throughput-optimal for all energy
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Fig. 5. The relationship between c∗ and µ for some continuous distributions.

arrival processes. Nevertheless, as shown in [14], it is possible to define certain weakened notion

of universality and optimality, and construct the associated online power control poicy. Further

progress along this line of research can be found in [21].

APPENDIX A

PROOF OF A STATEMENT IN REMARK 4

We assume x =∞ throughout this proof.

First consider the case r′(µ− ε) = r′(x) for some ε > 0, which implies

r′(x) = r′(x), x ≥ µ− ε. (42)

Note that for c ≥ µ,

r′(c) = r′(x), (43)

ρ(c)r′[x,c](ξ) ≤ r′
(
µ− (1− ρ(c))c

ρ(c)

)
. (44)

Moreover, in view of (42) and the fact that

lim
c↑x

µ− (1− ρ(c))c
ρ(c)

= µ,

we have

r′
(
µ− (1− ρ(c))c

ρ(c)

)
= r′(x) (45)
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for all sufficiently large c. Combining (43), (44), and (45) proves c =∞.

Next consider the case r′(µ) > r′(x). There must exist ε > 0 such that r′(µ+ ε) > r′(x). For

c > x and x ∈ [x,min{µ, c}], it is easy to establish the following uniform lower bound:

r′[x,c](x) ≥ min

{
ε

µ+ ε− x
r′(µ) +

µ− x
µ+ ε− x

r′(x), r′(µ+ ε)

}
.

Clearly, we have ξ ∈ [x,min{µ, c}] for c > x. Now it can be readily verified that

lim
c↑x

ρ(c)r′[x,c](ξ) ≥ min

{
ε

µ+ ε− x
r′(µ) +

µ− x
µ+ ε− x

r′(x), r′(µ+ ε)

}
> r′(x),

which implies x <∞.

APPENDIX B

PROOF OF (13) AND (14)

Note that

φ(g)− φ(g − ε)

= r(g)− r(g − ε) + ρ(c− b+ g)E[r(b− g +X)|X < c− b+ g]

− ρ(c− b+ g − ε)E[r(b− g + ε+X)|X < c− b+ g − ε]− P(c− b+ g − ε ≤ X < c− b+ g)r(c)

= r(g)− r(g − ε) + ρ(c− b+ g)E[r(b− g +X)|X < c− b+ g]

− ρ(c− b+ g)E[r(b− g + ε+X)|X < c− b+ g] + ρ(c− b+ g)E[r(b− g + ε+X)|X < c− b+ g]

− ρ(c− b+ g − ε)E[r(b− g + ε+X)|X < c− b+ g − ε]− P(c− b+ g − ε ≤ X < c− b+ g)r(c)

= r(g)− r(g − ε) + ρ(c− b+ g)E[r(b− g +X)− r(b− g + ε+X)|X < c− b+ g]

+ P(c− b+ g − ε ≤ X < c− b+ g)E[r(b− g + ε+X)− r(c)|c− b+ g − ε ≤ X < c− b+ g].

Therefore,

lim
ε↓0

1

ε
(φ(g)− φ(g − ε))

= lim
ε↓0

1

ε
(r(g)− r(g − ε)) + lim

ε↓0

1

ε
ρ(c− b+ g)E[r(b− g +X)− r(b− g + ε+X)|X < c− b+ g]

+ lim
ε↓0

1

ε
P(c− b+ g − ε ≤ X < c− b+ g)E[r(b− g + ε+X)− r(c)|c− b+ g − ε ≤ X < c− b+ g].

(46)

Clearly, we have

lim
ε↓0

1

ε
(r(g)− r(g − ε)) = r′(g). (47)
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Moreover, in light of [22, Theorem 9.1, p. 481],

lim
ε↓0

1

ε
ρ(c− b+ g)E[r(b− g +X)− r(b− g + ε+X)|X < c− b+ g]

= −ρ(c− b+ g)E[r(b− g +X)|X < c− b+ g]. (48)

It can also be verified that

0 ≤ lim inf
ε↓0

1

ε
P(c− b+ g − ε ≤ X < c− b+ g)E[r(b− g + ε+X)− r(c)|c− b+ g − ε ≤ X < c− b+ g]

≤ lim sup
ε↓0

1

ε
P(c− b+ g − ε ≤ X < c− b+ g)E[r(b− g + ε+X)− r(c)|c− b+ g − ε ≤ X < c− b+ g]

≤ lim sup
ε↓0

1

ε
P(c− b+ g − ε ≤ X < c− b+ g)E[r′(c)(b− g + ε+X − c)|c− b+ g − ε ≤ X < c− b+ g]

≤ lim sup
ε↓0

P(c− b+ g − ε ≤ X < c− b+ g)r′(c)

= 0,

which implies

lim
ε↓0

1

ε
P(c− b+ g − ε ≤ X < c− b+ g)E[r(b− g + ε+X)− r(c)|c− b+ g − ε ≤ X < c− b+ g]

= 0. (49)

Substituting (47), (48), and (49) into (46) proves (13).

Note that

φ(g + ε)− φ(g)

= r(g + ε)− r(g) + ρ(c− b+ g + ε)E[r(b− g − ε+X)|X < c− b+ g + ε]

− ρ(c− b+ g)E[r(b− g +X)|X < c− b+ g]− P(c− b+ g ≤ X < c− b+ g + ε)r(c)

= r(g + ε)− r(g) + ρ(c− b+ g + ε)E[r(b− g − ε+X)|X < c− b+ g + ε]

− ρ(c− b+ g)E[r(b− g − ε+X)|X < c− b+ g] + ρ(c− b+ g)E[r(b− g − ε+X)|X < c− b+ g]

− ρ(c− b+ g)E[r(b− g +X)|X < c− b+ g]− P(c− b+ g ≤ X < c− b+ g + ε)r(c)

= r(g + ε)− r(g) + ρ(c− b+ g)E[r(b− g − ε+X)− r(b− g +X)|X < c− b+ g]

+ P(c− b+ g ≤ X < c− b+ g + ε)E[r(b− g − ε+X)− r(c)|c− b+ g ≤ X < c− b+ g + ε]

= r(g + ε)− r(g) + ρ(c− b+ g)E[r(b− g − ε+X)− r(b− g +X)|X < c− b+ g]

+ P(c− b+ g < X < c− b+ g + ε)E[r(b− g − ε+X)− r(c)|c− b+ g < X < c− b+ g + ε]

+ P(X = c− b+ g)(r(c− ε)− r(c)).
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Therefore,

lim
ε↓0

1

ε
(φ(g + ε)− φ(g))

= lim
ε↓0

1

ε
(r(g + ε)− r(g)) + lim

ε↓0

1

ε
ρ(c− b+ g)E[r(b− g − ε+X)− r(b− g +X)|X < c− b+ g]

+ lim
ε↓0

1

ε
P(c− b+ g < X < c− b+ g + ε)E[r(b− g − ε+X)− r(c)|c− b+ g < X < c− b+ g + ε]

+ lim
ε↓0

1

ε
P(X = c− b+ g)(r(c− ε)− r(c)). (50)

Similarly to (47), (48), and (49), we have

lim
ε↓0

1

ε
(r(g + ε)− r(g)) = r′(g), (51)

lim
ε↓0

1

ε
ρ(c− b+ g)E[r(b− g − ε+X)− r(b− g +X)|X < c− b+ g]

= −ρ(c− b+ g)E[r′(b− g +X)|X < c− b+ g], (52)

lim
ε↓0

1

ε
P(c− b+ g < X < c− b+ g + ε)E[r(b− g − ε+X)− r(c)|c− b+ g < X < c− b+ g + ε]

= 0. (53)

Moreover,

lim
ε↓0

1

ε
P(X = c− b+ g)(r(c− ε)− r(c)) = −P(X = c− b+ g)r′(c). (54)

Substituting (51), (52), (53), and (54) into (50) proves (14).

APPENDIX C

PROOF OF (28), (29), AND (30)

We have

P(dµ− µ
2
3 e ≤ X ≤ bµ+ µ

2
3 c) ≥ P(|X − µ| < µ

2
3 )

= 1− P(|X − µ| ≥ µ
2
3 )

≥ 1− E[(X − µ)2]
µ

4
3

(55)

= 1− µ−
1
3 ,

where (55) is due to Chebyshev’s inequality. Therefore,

lim
µ↑∞

P(dµ− µ
2
3 e ≤ X ≤ bµ+ µ

2
3 c) = 1.
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It can be verified that

lim
µ↑∞

(1 + aµ)

bµ+µ
2
3 c∑

k=dµ−µ
2
3 e

e−λλk

(1 + k)(k!)
= lim

µ↑∞
a

bµ+µ
2
3 c∑

k=dµ−µ
2
3 e

e−λλk

k!
(56)

= lim
µ↑∞

aP(dµ− µ
2
3 e ≤ X ≤ bµ+ µ

2
3 c)

= a,

where (56) is due to the fact that

1 + aµ

1 + bµ+ µ
2
3 c
≤ 1 + aµ

1 + k
≤ 1 + aµ

1 + dµ− µ 2
3 e
, k = dµ− µ

2
3 e, · · · , bµ+ µ

2
3 c,

and

lim
µ↑∞

1 + aµ

1 + bµ+ µ
2
3 c

= lim
µ↑∞

1 + aµ

1 + dµ− µ 2
3 e

= a.

This proves (28).

It can also be verified that

lim
µ↑∞

(1 + aµ)
∞∑

k=bµ+µ
2
3 c+1

e−λλk

(1 + k)(k!)
≤ lim

µ↑∞
a

∞∑
k=bµ+µ

2
3 c+1

e−λλk

k!
(57)

= lim
µ↑∞

aP(X ≥ bµ+ µ
2
3 c+ 1)

≤ lim
µ↑∞

a(1− P(dµ− µ
2
3 e ≤ X ≤ bµ+ µ

2
3 c))

= 0,

where is (57) due to the fact that

1 + aµ

1 + k
≤ 1 + aµ

bµ+ µ
2
3 c+ 2

, k ≥ bµ+ µ
2
3 c+ 1,

and

lim
µ↑∞

1 + aµ

bµ+ µ
2
3 c+ 2

= a.

This proves (29).
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Finally, note that

lim
µ↑∞

(1 + aµ)

dµ−µ
2
3 e−1∑

k=0

e−λλk

(1 + k)(k!)
= lim

µ↑∞
(1 + aµ)

dµ−µ
2
3 e−1∑

k=0

e−µµk

(1 + k)(k!)

≤ lim
µ↑∞

(1 + aµ)

bµ−µ
2
3 c−1∑

k=0

e−µµk

k!

≤ lim
µ↑∞

(1 + aµ)bµ− µ
2
3 ce

−µµbµ−µ
2
3 c

bµ− µ 2
3 c!

, (58)

where (58) is due to the fact that

µk

k!
≤ µbµ−µ

2
3 c

bµ− µ 2
3 c!
, k = 0, 1, · · · , bµ− µ

2
3 c − 1.

Let δ , µ−bµ−µ
2
3 c

µ
. We have

lim
µ↑∞

(1 + aµ)bµ− µ
2
3 ce

−µµbµ−µ
2
3 c

bµ− µ 2
3 c!

= lim
µ↑∞

(1 + aµ)µ(1− δ) e
−µµµ(1−δ)

(µ(1− δ))!

= lim
µ↑∞

(1 + aµ)µ(1− δ)e
−µδ(1− δ)−µ(1−δ)− 1

2

√
2πµ

, (59)

where (59) is a consequence of Stirling’s approximation (µ(1−δ))! ∼∞
√

2πµ(1− δ)e−µ(1−δ)(µ(1−

δ))µ(1−δ). Since

log((1− δ)µ(1−δ)+
1
2 ) = (µ(1− δ) + 1

2
) log(1− δ)

= (µ(1− δ) + 1

2
)(−δ − δ2

2
+ oδ↓0(δ

2))

= −µδ + µδ2

2
+ oµ↑∞(µ

1
3 ),

it follows that

(1− δ)−µ(1−δ)−
1
2 = eµδ−

µδ2

2
+oµ↑∞(µ

1
3 ). (60)

Substituting (60) into (59) and taking the limit gives

lim
µ↑∞

(1 + aµ)bµ− µ
2
3 ce

−µµbµ−µ
2
3 c

bµ− µ 2
3 c!

= lim
µ↑∞

(1 + aµ)µ(1− δ)e
−µδ

2

2
+oµ↑∞(µ

1
3 )

√
2πµ

= 0,

which, together with (58), proves (30).
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