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Capacity-Achieving Input Distribution in

Per-Sample Zero-Dispersion Model of Optical Fiber
Jihad Fahs, Aslan Tchamkerten and Mansoor I. Yousefi

Abstract

The per-sample zero-dispersion channel model of the optical fiber is considered. It is shown that capacity is uniquely achieved
by an input probability distribution that has continuous uniform phase and discrete amplitude that takes on finitely many values.
This result holds when the channel is subject to general input cost constraints, that include a peak amplitude constraint and a
joint average and peak amplitude constraint.

Index terms: Capacity-achieving distributions, optical fiber, zero dispersion.

I. INTRODUCTION

Signal propagation in optical fibers can be modeled by the stochastic nonlinear Schrödinger (NLS) equation [1], capturing

chromatic dispersion, Kerr nonlinearity, and amplified spontaneous emission (ASE) noise. Finding the capacity and the spectral

efficiency of such a channel remains a formidable challenge, even in the special case of zero dispersion. The chief reason for

this is that the channel is nonlinear. To date the only non-asymptotic (in input power) capacity result states that the capacity

of the optical fiber is upper bounded by log(1 + SNR), where SNR is the signal-to-noise ratio [1], [2].

In this paper we consider the per-sample zero-dispersion (PZD) channel model of the optical fiber. This channel is obtained

by setting the dispersion coefficient to zero in the NLS equation and by sampling the output signal at the input signal bandwidth

rate [3, Sec. III]. These simplifications yield a discrete memoryless channel that maps a complex input x ∈ C to a complex

output y ∈ C through a conditional probability density function (pdf) pY |X(y|x). For this channel we show that capacity is

uniquely achieved by an input signal that has continuous uniform phase and discrete amplitude that takes on finitely many

values independently of the phase. This result holds whenever the input is subject to a peak amplitude constraint, a joint

peak amplitude and average cost constraint, or an average cost constraint with a cost function satisfying certain regularity

conditions. This proves a conjecture made in [3] and shows that multi-ring modulation formats that are popular in optical fiber

communication [4] are indeed optimal for the simplified PZD channel .

Related work

The conditional pdf in the PZD model can be expressed as an infinite series [3], [5], [6]. The asymptotic capacity of the

PZD model is 1
2 logP + o(1) as the average input power P → ∞ [3], [6]. Moreover, this asymptotic capacity is achieved by

continuous pdfs, up to the o(1) term [3], [5], [6].

Since the work of Smith [7], several authors have established the discreteness of the capacity-achieving input distributions

for a variety of channels and input constraints [7]–[17]. Examples include complex additive white Gaussian noise channel [9],

linear channels with additive noise [10], [12], [16], [17], and conditionally Gaussian channels [11], [13]–[15].

Contributions

We first show that the capacity of the PZD channel is uniquely achieved and that the optimal input has a uniform phase

that is independent of the amplitude. The main proof ingredient here is a symmetry argument. In a second part we show that

the optimal amplitude takes on a finite number of values, following the methodology established by Smith [7]. Although the

proof roadmap here is known, implementing it is far from straightforward; unlike channels considered so far where this proof

technique is used (see, e.g., [7], [9]–[17]) the PZD channel is non-additive—since the phase noise is a complex function of

the input amplitude—and non-conditionally Gaussian.

The paper is organized as follows. In Section II we recall the PZD channel model. In Section III we present the main result

and prove it in Section IV. Finally, in Section V we draw a few concluding remarks.
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and Mansoor I. Yousefi are with the Communications and Electronics Department, Télécom ParisTech, Université Paris-Saclay, 75013 Paris, France (e-mails:
{aslan.tchamkerten,yousefi}@telecom-paristech.fr).
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Notation

Random variables and their realizations are denoted by upper and lower case letters, respectively. Real, non-negative real,

integer, positive integer, non-negative integer, and complex numbers are respectively denoted by R, R+
0 , Z, N, N0 and C. The

real and imaginary parts of x ∈ C are denoted by ℜ(x) and ℑ(x), respectively. The cumulative distribution function (cdf)

and the pdf of a random variable X are denoted by FX(x) and pX(x), respectively. The expected value of a random variable

X is E(X). The uniform distribution on the interval [a, b) is denoted by U(a, b). Given two functions f(x) : R 7→ R and

g(x) : R 7→ R we use the following standard order notations. We write f(x) = ω(g(x)), or equivalently g(x) = o(f(x)), if

for any k > 0 there exists a c > 0 such that |f(x)| > k|g(x)| for all |x| ≥ c. We write f(x) = Ω(g(x)) if there exists a k > 0

and c > 0 such that |f(x)| > k|g(x)| for all |x| ≥ c. Finally, we write f(x) ≡ g(x) as x → x0 if limx→x0

f(x)
g(x) = 1.

II. THE PER-SAMPLE ZERO-DISPERSION CHANNEL

We briefly recall the PZD channel model derived in [3, Sec. III. A, Eq. 18]. The reader familiar with this model may move

on to the conditional pdf (3).

Let Q(t, z) denote the complex envelope of the signal as a function of time t and distance z along the fiber. The propagation

of the signal in the optical fiber is described by a partial differential equation known as the stochastic NLS equation [4,

Chap. 2,3]. Setting the dispersion to zero in equation [1, Eq. 7, with β2 = 0], we obtain the following stochastic ordinary

differential equation

dQ(t, z)

dz
= jγQ(t, z)|Q(t, z)|2 +N(t, z), 0 ≤ z ≤ L, (1)

where γ is the nonlinearity coefficient, L is the fiber length, and j
def
=

√
−1. Furthermore, N(t, z) is (zero-mean) circularly

symmetric complex Gaussian noise satisfying

E
(

N(t, z)N∗(t′, z′)
)

= σ2
0δW(t− t′)δ(z − z′),

where σ2
0 is the noise in-band power spectral density, δ(x) is the Dirac delta function, and δW(x)

def
= W sinc(Wx), in which

sinc(x)
def
= sin(πx)/(πx), and W is the noise bandwidth.

Equation (1) defines a continuous-time channel from the input Q(t, 0) to the output Q(t,L). To obtain an equivalent discrete-

time model we need to sample Q(t, 0) at rate W(0) and Q(t,L) at rate W(L), where W(z) denotes the signal bandwidth at

distance z. Because of the nonlinearity, the signal bandwidth changes along the fiber and therefore in general W(L) 6= W(0)
[3, Sec. VIII], [18]. How the bandwidth changes as a function of distance remains an important open problem in optical fiber

communication. The PZD channel arises by assuming a sub-optimal receiver that samples the output signal at the input rate

1/W , W = W(0). This channel is discrete-time, memoryless, and stationary and maps, at rate 1/W , an input X ∈ C to a

random output Y ∈ C. The input output relation is obtained by solving (1) [3, Eq. 30]

Y = [X +W (L)]ejγ
∫ L
0

|X+W (ℓ)|2dℓ, (2)

where W (ℓ) is a complex Wiener process with variance ℓσ2, σ2 = σ2
0W . Letting (R0,Φ0) and (R,Φ) denote the polar

coordinates of X and Y , respectively, equation (2) equivalently defines the conditional pdf (see [5], [6], [3, Eq. 18])

pR,Φ|R0,Φ0
(r, φ|r0, φ0)

def
= p(r, φ|r0, φ0) =

1

2π
pR|R0

(r|r0) +
1

π

+∞
∑

m=1

ℜ
(

Cm(r, r0)e
jm(φ−φ0−γr20L)

)

, (3)

where

pR|R0
(r|r0) def

=
2r

σ2Le−
r2+r20
σ2L I0

(

2rr0
σ2L

)

, (4)

Cm(r, r0)
def
= rbme−am(r2+r20)Im (2bmr0r) , (5)

where Im(·) is the modified Bessel function of the first kind and where

am
def
=

√
jmγ

σ
coth

(

√

jmγσ2L
)

, (6)

bm
def
=

√
jmγ

σ

1

sinh
(

√

jmγσ2L
) . (7)

Note that, because of the potentially sub-optimal discretization of the output, the capacity of the PZD channel (3) (measured

in bits/s) is at most equal to the capacity of the continuous-time zero-dispersion channel (1) [3].
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III. MAIN RESULT

We consider the PZD channel (3) when the input (R0,Φ0) is subject to one of the following constraints.

Peak amplitude constraint: The cdf of R0 belongs to the set

P def
=
{

FR0(r0) :

∫ ρ

0

dFR0(r0) = 1
}

, (8)

for some 0 < ρ < ∞.

Average cost constraint. The cdf of R0 belongs to the set

A def
=
{

FR0(r0) :

∫ +∞

0

C(r0) dFR0(r0) ≤ A
}

, (9)

for some 0 < A < ∞ and cost function C(r0) : R+
0 7→ R

+
0 that satisfies the following conditions:

C1. C(r0) is lower semi-continuous, non-decreasing, C(0) = 0 and limr0→+∞ C(r0) = +∞;

C2. C(r0) can be analytically extended from [0,∞) to a horizontal strip in the complex plane

Sδ =
{

z ∈ C : |ℑ(z)| < δ, , δ > 0
}

,

for some δ > 0;

C3. C(r0) = ω(r20).

Joint peak amplitude and average cost constraint. The cdf of R0 belongs to the set P ∩A′, where A′ is defined as A but

with condition C3 replaced by the weaker condition C3: C(r0) = ω(ln r0).

An example of a family of cost functions satisfying conditions C1-C2 is C(r0) = rq0 for q ∈ N.

Abusing slightly notation, we will use X and Y to denote both the complex values and their representations in polar

coordinates. With this convention, the channel capacity is

C = sup
FX :FR0(r0)∈F

I (X ;Y ) , (10)

where I (X ;Y ) denotes the mutual information and F represents any of the sets P , A, or P ∩ A′.

Theorem 1 The channel capacity in (10) is finite and is achieved by a unique cdf FR∗
0 ,Φ

∗
0
(r0, φ0) where the phase Φ∗

0 is

uniform over [0, 2π) and where the amplitude R∗
0 takes on a finite number of values independently of Φ∗

0.

Hence, under fairly general conditions the support of the optimal input consists of a finite number of concentric rings in the

complex plane. Without a peak constraint, the same result holds provided that the cost function grows faster than r20 . Whether

the conclusion extends to a strict average power constraint, that is with cost function C(r0) = r20 , remains an open problem.

Remark 1 Theorem 1 still holds when the input is subject to a finite number of constraints given by cost functions Ci(r0),
1 ≤ i ≤ M < ∞, satisfying C1–C2, and such that Ci(r0) = ω(r20) for at least one cost constraint. For example, we may

consider a joint second and a fourth moment constraint as in the non-coherent Rician fading channel [14].

IV. PROOF OF THEOREM 1

To prove Theorem 1 we first show that capacity is finite and achieved by a unique cdf. Then, we show that the optimal

input phase is uniform and independent of the optimal input amplitude. Finally, we prove that the optimal input amplitude

takes on a finite number of values.

Lemma 1 The capacity (10) is finite and achieved by a unique cdf.

Proof: It is known that that the the set of input distributions satisfying an input constraint in Section III is compact [19,

Thm. 3], [7, Prop. 1]. Further, in Appendix I we prove that mutual information I(X ;Y ) is continuous in FX . Therefore, from

the extreme value theorem [20, Thm. 4.16], the supremum in (10) is finite and achieved.

For uniqueness, it suffices to prove that I(X ;Y ) = h(Y )−h(Y |X) is a strictly concave function of FX . The term h(Y |X)
as a function of FX is linear hence concave. The term h(Y ) is strictly concave in FY . Below, we prove that the linear mapping

FX 7→ FY is injective which then implies that h(Y ), and therefore I(X ;Y ), is strictly concave in FX .

Changing variable z′ = L − z in (1), X is obtained from Y according to (1) with γ 7→ −γ and N(t, z) 7→ −N(t,L− z′).
Since −N and N are identically distributed, we obtain the symmetry relation pX|Y (x|y; γ) = pY |X(x|y;−γ). The channel is

therefore invertible and injective.
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A. Optimal input phase

In this section we show that the optimal input phase is uniform, independently of the optimal input amplitude.

Lemma 2 The following properties hold:

1) the output amplitude R is independent of the input phase Φ0;

2) the capacity-achieving input in (10) has uniform phase Φ∗
0 ∼ U(0, 2π) independent of the amplitude R∗

0, i.e.,

dF(R∗
0 ,Φ

∗
0)
(r0, φ0) =

1

2π
dφ0dFR∗

0
(r0).

Proof: 1) From (2)

R =
∣

∣R0e
jΦ0 +W (L)

∣

∣

= |R0 +W ′(L)|
d
= |R0 +W (L)| ,

where W ′(L) def
= e−jΦ0W (L). The last equality is in distribution where we used the fact that W ′(L) and W (L) are identically

distributed from the circularly symmetry property.

2) From (2) and by the circularly symmetry of the complex Wiener process, if output Y corresponds to input X then output

ejθY corresponds to input ejθX , for any fixed θ ∈ [0, 2π). Therefore, the mutual information is invariant under an input

rotation. Hence, if X∗ is capacity-achieving, so is ejθX∗ for any θ ∈ [0, 2π). By Lemma 1, the capacity-achieving input

distribution is unique. This implies that X∗ has a uniform phase Φ∗
0 ∼ U(0, 2π), that is independent of the amplitude.

Lemmas 1 and 2 yield:

Proposition 1 The capacity (10) simplifies to

C = max
FR0∈F

I (FR0) , (11)

where

I (FR0)
def
= I (R0,Φ

∗
0;R,Φ)

= h (R) + ln(2π)− h (R,Φ|R0,Φ
∗
0) ,

with Φ∗
0 ∼ U(0, 2π).

From Proposition 1, finding capacity reduces to maximizing the strictly concave function I(FR0 ). The set F is linear, and

thus weakly differentiable, in FR0 . Extending a result in [17] for additive noise channels to the PZD channel, it can be shown

that I(FR0) is weakly differentiable. As a result, the KKT conditions characterize the optimal input FR∗
0

in terms of necessary

and sufficient conditions.

B. KKT conditions.

The derivation of the KKT conditions can be found in [7, Corollary 1] for the peak amplitude constraint, and in [15, Theorem

15] for the average cost constraint. We present their final forms below.

Peak amplitude constraint. An input amplitude R∗
0 with cdf F ∗

0 ∈ P achieves the capacity C in (11) if and only if

LHSρ(r0)
def
= C − ln(2π) +

∫ +∞

0

p (r|r0) ln p(r;F ∗
0 ) dr +

1

2π

∫ 2π

0

h (R,Φ|r0, φ0) dφ0

≥ 0, (12)

for all 0 ≤ r0 ≤ ρ, with equality if r0 is a point of increase of F ∗
0 .

Average cost constraint. An input amplitude R∗
0 with cdf F ∗

0 ∈ A achieves the capacity C in (11) if and only if there exists

ν ≥ 0 such that

LHSA(r0)
def
= C − ln(2π) +

∫ +∞

0

p (r|r0) ln p(r;F ∗
0 ) dr + ν(C(r0)−A) +

1

2π

∫ 2π

0

h (R,Φ|r0, φ0) dφ0

≥ 0, (13)

for all r0 ≥ 0, with equality if r0 is a point of increase of F ∗
0 .

Joint peak amplitude and average cost constraint. The KKT condition in this case is same as (13), but for all 0 ≤ r0 ≤ ρ.
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C. Discreteness of optimal input

Following Smith [7], we apply the identity theorem [21, Thm. 10.26] to the KKT conditions. The first part of the argument

is to show that LHSρ(r0) and LHSA(r0) in (12)–(13) can be analytically extended from r0 ∈ R
+
0 to an open connected region

Oδ , δ > 0, in the complex plane. This is established in Lemma 9 in Appendix II. The second part of the argument consists

in deriving the optimality of discrete inputs by way of contradiction in the identity theorem.

Peak amplitude constraint. Suppose that the points of increase of F ∗
0 have an accumulation point in the interval [0, ρ]. Then,

since LHSρ(z) is analytic on Oδ, it is identically zero on Oδ from the identity theorem [21, Thm. 10.26]. Therefore the

KKT condition (12) is satisfied with equality for all r0 ≥ 0.

Using the upper bound on LHSρ(r0) in Lemma 10 in Appendix III, there exists K > 0 such that

0 = LHSρ(r0)

≤ C + ln

(

1

K

)

+
r20
σ2L − ln (1− ξ(r0)) + (ρ− (1− ǫ)r0)

√

π

σ2LL 1
2

(

− r20
σ2L

)

, (14)

where L 1
2
(·) is a Laguerre polynomial, ξ(r0) → 0 as r → +∞, and ǫ ∈ (0, 1). Since Lλ(x) ≡ |x|λ

Γ(1+λ) as x → −∞ [22],

we have

lim
r0→+∞

r0
√

π
σ2LL 1

2

(

− r20
σ2L

)

r20
=

2

σ2L . (15)

Dividing (14) by r20 > 0 and taking the limit as r0 → +∞, we obtain

0 ≤ 1− 2(1− ǫ)

σ2L , ∀ǫ ∈ (0, 1), (16)

where we used the fact that limr0→+∞ ξ(r0) = 0 (see Lemma 4). Since (16) holds for any 0 < ǫ < 1, choosing ǫ < 1
2

yields a contradiction.

It follows that the points of increase of F ∗
0 are isolated. Since the interval [0, ρ] is bounded, there are a finite number of

mass points.

Average cost constraint. Consider the analytic extension LHSA(z) of LHSA(r0) in Oδ and suppose that F ∗
0 has an infinite

number of points of increase in a bounded interval in R
+
0 . Then, from the identity theorem, LHSA(z) is identically zero

on Oδ . As a result, the KKT condition (13) is satisfied with equality for all r0 ≥ 0 and we have

0 = LHSA(r0)

> ν(C(r0)−A) + C + ln

(

k1
2πku

)

+
1

σ2Lr20 − r0

√

π

σ2LL 1
2

(

− r20
σ2L

)

, (17)

where (17) follows from the lower bound on LHSA(r0) in Lemma 11 in Appendix III. Dividing (17) by r20 > 0 and

taking the limit r0 → +∞ gives

ν lim
r0→+∞

C(r0)
r20

− 1

σ2L < 0, (18)

where we used (15). The inequality (18) is impossible for C(r0) = ω(r20), unless ν = 0 which is ruled out in [17, Lemma

5].

We now prove that the number of mass points is finite. Suppose that F ∗
0 has an infinite number of points of increase with

only a finite number of them in any bounded interval in R
+
0 . Then, the points of increase tend to infinity. We establish

in Lemma 11 in Appendix III a lower bound on LHSA(r0) which diverges to +∞ as r0 → +∞. This implies that

LHSA(r0) 6= 0 at large values of r0 which contradicts the possibility of having arbitrarily large mass points. It follows

that F ∗
0 has a finite number of isolated points of increase in R

+
0 .

The above proof immediately generalize to the case with multiple average cost constraints, described in Remark 1.

Joint average cost and peak amplitude constraints. Suppose that F ∗
0 has an infinite number of points of increase in [0, ρ].

Then the KKT condition (13) implies that

LHSA(r0) = 0, ∀r0 ≥ 0. (19)

Thus (18) holds true and

ν lim
r0→+∞

C(r0)
r20

<
1

σ2L . (20)

On the other hand, since the support of F ∗
0 is restricted to [0, ρ], we can apply the upper bound in Lemma 10 to the KKT

condition (13) to obtain

ν (C(r0)−A) + C + ln

(

1

K

)

+
r20
σ2L − ln (1− ξ(r0)) + (ρ− (1− ǫ)r0)

√

π

σ2LL 1
2

(

− r20
σ2L

)

≥ 0.
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Dividing by r20 > 0 and letting r0 → +∞ gives

ν lim
r0→+∞

C(r0)
r20

≥ 2(1− ǫ)− 1

σ2L , ∀ǫ ∈ (0, 1).

Taking the limit ǫ → 0

ν lim
r0→+∞

C(r0)
r20

≥ 1

σ2L . (21)

Equations (20) and (21) establish a contradiction. It follows that F ∗
0 has a finite number of isolated points of increase in

[0, ρ].

V. CONCLUSIONS

We studied the capacity-achieving input distribution in the per-sample zero-dispersion model of the optical fiber, subject to

a peak amplitude, an average cost, or a joint cost constraint. We proved that the capacity-achieving input distribution in this

channel is unique, has a uniform phase that is independent of the amplitude, and the distribution of the amplitude is discrete

with a finite number of mass points. In other words, multi-ring modulation formats commonly used in optical communication

can achieve channel capacity—potentially with non-uniform ring spacing and probabilities. Whether such constellations are

optimal for the dispersive optical fiber is an interesting open problem.

APPENDIX I

CONTINUITY OF THE MUTUAL INFORMATION

In this appendix we prove that I(X ;Y ) in the channel (3) is continuous in FX ∈ F . First, we establish upper and lower

bounds on the conditional pdf in Lemma 4, upper and lower bounds on the output pdf in Lemma 5, and an upper bound on

the conditional entropy density in Lemma 6. These bounds are then used to prove the continuity of the conditional entropy in

Lemma 7 and the continuity of the output entropy in Lemma 8. Lemmas 7 and 8 yield the desired result.

Note that, since the function i(p) = −p ln(p) has opposite signs when 0 < p < 1 and p > 1, to upper-bound entropies, we

need both upper and lower bounds on the probability distributions.

We begin by recalling a few properties of the modified Bessel function.

Lemma 3 (Bounds on the Bessel Functions) The modified Bessel functions of the first kind Im(x) satisfy the following

properties:

1) I0(x) ≥ 1 when x ≥ 0, with equality iff x = 0. Furthermore, Im(x) ≥ 0 when x ≥ 0, m ∈ N0;

2) |Im(z)| ≤ |I0(ℜ(z))| when z ∈ C, m ∈ N0. Furthermore, Im(x) ≤ e|x| when x ∈ R, m ∈ N0;

3) If m ∈ N0 and z → 0

Im(z) ≡
(

1
2z
)m

m!
;

4) For any 0 < ǫ < 1, there exists a K > 0 such that I0(x) ≥ Ke(1−ǫ)x, when x ≥ 0;

5) Im(x) is monotonically increasing for x ≥ 0 and m ∈ N0;

6) Im(z) is an analytic function of z in the entire complex plane for m ∈ Z.

Proof: The proof of the well-known inequalities in 1) and 2) is straightforward using the integral definition of Im(x),
m ∈ N0 [22, Prop. 9.6.19]. Property 3) can be found in [22, Prop. 9.6.7]. For the inequality in 4), note that e(ǫ−1)xI0(x) ≡ eǫx√

2πx

as x → +∞ [22, Prop. 9.7.1]. Therefore the positive and continuous function e(ǫ−1)xI0(x) is lower bounded by some K > 0.

The proof of 5) is due to 1) in this Lemma, and because dIm(x)/dx = Im+1(x) +
m
x
Im(x) [22, Prop. 9.6.26]. Property 6)

can be found in [22, Prop. 9.6.1].

Lemma 4 (Bounds on the Conditional pdf) The conditional pdf (3) satisfies the following inequalities.

1) Upper bound:

p(r, φ|r0, φ0) < kupR|R0
(r|r0), (22)

where

ku
def
=

1

2π

(

1 +
√
2

+∞
∑

m=1

βm

sinh(βm)

)

< ∞, (23)
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in which βm
def
=
√

mγ
2 σL, m > 0. The conditional pdf of the amplitude is upper bounded as

pR|R0
(r|r0) ≤

2r

σ2Le−
(r−r0)2

σ2L (24)

≤ 2r

σ2L . (25)

2) Lower bound:

p(r, φ|r0, φ0) ≥
1

2π
pR|R0

(r|r0) (1− ξ(r0)) , (26)

where

ξ(r0) =
√
2e−(ℜ(a1)− 1

σ2L
)r20

+∞
∑

m=1

βm

sinh(βm)
. (27)

We have ξ(r0) → 0 as r0 → +∞.

Proof:

We apply the following inequalities to the conditional pdf (3)

− |Cm(r, r0)| ≤ ℜ
(

Cm(r, r0)e
jm(φ−φ0−γr20L)

)

≤ |Cm(r, r0)| , (28)

where the expression of Cm(r, r0) is given by equation (5). First, we upper-bound Cm(r, r0) as follows

∣

∣Cm(r, r0)
∣

∣ =
∣

∣

∣rbme−am(r2+r20)Im (2bmr0r)
∣

∣

∣

≤ r|bm|e−ℜ(am)(r2+r20)I0 (2ℜ(bm)r0r) . (29)

We upper-bound |bm| and ℜ(bm), and lower-bound ℜ(am), in (29).

Using the expression for am in (6), we have ℜ(am)
def
= 1

σ2L t(βm) where βm
def
=
√

mγ
2 σL, m > 0, and where

t(x) =
x (sinh(2x) + sin(2x))

2
(

sinh2(x) + sin2(x)
) . (30)

It can be verified that t(x) is increasing for x > 0 and limx→0 t(x) = 1. Thus, t(βm) ≥ t(β1) > t(β0) = 1 when m ≥ 1, and

we obtain two lower bounds

ℜ(am) ≥ ℜ(a1) (31)

>
1

σ2L . (32)

Similarly, using the expression for bm in (7), we obtain

ℜ(bm) =
βm

σ2L
sinh(βm) cos(βm) + cosh(βm) sin(βm)

sinh2(βm) + sin2(βm)

≤ 1

σ2L , (33)

and

|bm| =
√
2βm

σ2L
√

sinh2(βm) + sin2(βm)

≤
√
2βm

σ2L sinh(βm)
. (34)

Substituting (31)–(34) into (29), we obtain two upper bounds on Cm(r, r0)

|Cm(r, r0)| ≤
√
2r

σ2L
βm

sinh(βm)
e−ℜ(a1)(r

2+r20)I0

(

2r0r

σ2L

)

(35)

<

√
2r

σ2L
βm

sinh(βm)
e−

r2+r20
σ2L I0

(

2r0r

σ2L

)

. (36)

Upper Bound.



8

Applying the upper bound in (28) to the conditional pdf (3) and using the second upper bound on Cm(r, r0) in (36)

p(r, φ|r0, φ0) ≤
1

2π
pR|R0

(r|r0) +
1

π

+∞
∑

m=1

|Cm(r, r0)|

<
1

2π
pR|R0

(r|r0) +
1

π

√
2r

σ2L e−
(r2+r20)

σ2L I0

(

2r0r

σ2L

) +∞
∑

m=1

βm

sinh(βm)

= kupR|R0
(r|r0),

where ku is defined in (23). It can be verified that ku < ∞.

The upper bound on pR|R0
(r|r0) follows from applying the inequality in Lemma 3-2 to the conditional pdf (4).

Lower Bound.

Applying the lower bound in (28) to the conditional pdf (3) and using the first upper bound on Cm(r, r0) in (35)

p(r, φ|r0, φ0) ≥
1

2π
pR|R0

(r|r0)−
1

π

+∞
∑

m=1

|Cm(r, r0)|

≥ 1

2π
pR|R0

(r|r0)−
1

π

√
2r

σ2L e−ℜ(a1)(r
2+r20)I0

(

2r0r

σ2L

) +∞
∑

m=1

βm

sinh(βm)
(37)

(a)

≥ pR|R0
(r|r0)

2π

(

1−
√
2e−(ℜ(a1)− 1

σ2L
)r20

+∞
∑

m=1

βm

sinh(βm)

)

=
1

2π
pR|R0

(r|r0) (1− ξ(r0)) ,

where ξ(r0) is defined in (27). Step (a) follows from (4) and

e−(ℜ(a1)− 1
σ2L

)(r2+r20) ≤ e−(ℜ(a1)− 1
σ2L

)r20 ,

which holds because, from (31)–(32), ℜ(a1) > 1
σ2L . Finally, since ℜ(a1) > 1

σ2L , ξ(r0) → 0 as r0 → +∞.

Lemma 5 (Bounds on the Output pdf) Consider the conditional pdf (3). Let F0(r0, φ0)
def
= FX(r0, φ0) be an input cdf and

denote by p(r, φ;F0) the corresponding output pdf:

p(r, φ;F0) =

∫

p(r, φ|r0, φ0)dF0(r0, φ0).

1) If FR0(r0) ∈ P , then

p(r, φ;F0) ≤
2kur

σ2L e−
r2−2rρ

σ2L ,

where recall that ρ is the peak amplitude defined in (8).

2) If FR0(r0) ∈ A, then

p(r, φ;F0) ≤
2kur

σ2L

(

e−
r2

4σ2L +
A

C
(

r
2

)

)

, (38)

where ku is defined in (23), and recall that A is the average cost defined in (9).

3) If FR0(r0) ∈ F , then for large values of r

p(r, φ;F0) ≥
k1r

πσ2Le−
r2

σ2L (1− ξ(r)) ,

where ξ(·) is defined in Lemma 4 and k1 =
∫ +∞
0 e−

r20
σ2L dFR0(r0). Recall that F is any of the sets P , A or P ∩ A′

defined in Section III. Furthermore, for r ≥ 0

p(r;FR0) ≥
2k1r

σ2L e−
r2

σ2L ,

where p(r;FR0 ) =
∫

pR|R0
(r|r0)dFR0(r0) and
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Proof: We have

p(r, φ;F0) =

∫

p(r, φ|r0, φ0)dF0(r0, φ0)

≤ ku

∫

pR|R0
(r|r0)dFR0 (r0)

= ku p(r;FR0 ),

where we used the upper bound (22) in Lemma 4. We bound p(r;FR0 ) for the three cases below.

Case 1) FR0(r0) ∈ P . We have

p(r;FR0 ) =

∫

pR|R0
(r|r0)dFR0 (r0)

=
2r

σ2L

∫ ρ

0

e−
r2+r20
σ2L I0

(

2rr0
σ2L

)

dFR0(r0)

≤ 2r

σ2Le−
r2−2rρ

σ2L , (39)

where ρ is the peak amplitude in (8) and we used the inequality in Lemma 3-2, as well as the inequality (r− r0)
2 ≥ r2 − 2rρ

when r0 ∈ [0, ρ].
Case 2) FR0(r0) ∈ A. The average cost constraint upper bounds the tail of the input distribution as follows. For any a ≥ 0

A ≥
∫ +∞

0

C(r0) dFR0(r0)

≥
∫ +∞

a

C(r0) dFR0(r0)

≥ C(a)
∫ +∞

a

dFR0(r0),

where we used the properties C1-C2 of the cost function C(r0) in Section III. Therefore
∫ +∞

a

dFR0 (r0) ≤
A

C(a) . (40)

Note that, since C(a) = ω(a2), C(a) grows faster than a2 as a → ∞.

We have:

p(r;FR0) =
2r

σ2L

∫ +∞

0

e−
r2+r20
σ2L I0

(

2rr0
σ2L

)

dFR0(r0)

(a)

≤ 2r

σ2L

∫ +∞

0

e−
(r−r0)2

σ2L dFR0(r0)

=
2r

σ2L

(

∫ r
2

0

e−
(r−r0)2

σ2L dFR0(r0) +

∫ +∞

r
2

e−
(r−r0)2

σ2L dFR0(r0)

)

(b)

≤ 2r

σ2L

(

e−
r2

4σ2L +

∫ +∞

r
2

dFR0(r0)

)

(c)

≤ 2r

σ2L

(

e−
r2

4σ2L +
A

C
(

r
2

)

)

.

Step (a) follows from Lemma 3-2. Step (b) follows because exp
(

− (r−r0)
2

σ2L

)

increases with r0 ∈ [0, r2 ], and exp
(

− (r−r0)
2

σ2L

)

≤
1. Step (c) follows from (40) with a = r/2.
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Case 3) We have for large values of r

p(r, φ;F0) =

∫

p(r, φ|r0, φ0)dF0(r0, φ0)

(a)

≥
∫

(

1

2π
pR|R0

(r|r0)−
1

π

√
2r

σ2L e−ℜ(a1)(r
2+r20)I0

(

2r0r

σ2L

) +∞
∑

m=1

βm

sinh(βm)

)

dFR0(r0)

(b)
=

r

πσ2Le−
r2

σ2L

∫

I0

(

2r0r

σ2L

)

e−
r20

σ2L

(

1−
√
2 e−(ℜ(a1)− 1

σ2L
)(r2+r20)

+∞
∑

m=1

βm

sinh(βm)

)

dFR0(r0)

(c)

≥ r

πσ2Le−
r2

σ2L

(

1−
√
2 e−(ℜ(a1)− 1

σ2L
)r2

+∞
∑

m=1

βm

sinh(βm)

)

∫

I0

(

2r0r

σ2L

)

e−
r20

σ2L dFR0(r0)

(d)

≥ k1r

πσ2Le−
r2

σ2L (1− ξ(r)) ,

where ξ(·) is defined in Lemma 4 and k1 is defined in the statement of the lemma. Step (a) follows from (37) and step (b)

follows from (4). Step (c) holds true since e−(ℜ(a1)− 1
σ2L

)r20 < 1 which is true by virtue of (32). Finally, step (d) is justified

by virtue of Lemma 3-1 and the fact that ξ(r) → 0 as r → +∞. Also we have for r ≥ 0

p(r;FR0) =

∫ +∞

0

pR|R0
(r|r0)dFR0 (r0)

(a)
=

2r

σ2Le−
r2

σ2L

∫ +∞

0

e−
r20

σ2L I0

(

2rr0
σ2L

)

dFR0(r0)

(b)

≥ 2k1r

σ2L e−
r2

σ2L ,

Step (a) follows from (4). Step (b) follows from Lemma 3-1.

Define the conditional entropy density

i(r, φ, r0, φ0)
def
=

{

−p(r, φ|r0, φ0) ln p(r, φ|r0, φ0), if p(r, φ|r0, φ0) > 0,

0, if p(r, φ|r0, φ0) = 0.
(41)

Let F0(r0, φ0)
def
= FX(r0, φ0) be an input cdf and denote by p(r, φ;F0) the corresponding output pdf, i.e.,

p(r, φ;F0) =

∫

p(r, φ|r0, φ0)dF0(r0, φ0).

We prove that i(r, φ, r0, φ0) is continuous, bounded and its average is upper bounded by an integrable function.

Lemma 6 We have:

1) i(r, φ, r0, φ0) is continuous and bounded in (r, φ, r0, φ0), for all r, r0 ≥ 0 and φ, φ0 ∈ [0, 2π).
2) For any FR0(r0) ∈ F ,

∣

∣

∣

∣

∫

i(r, φ, r0, φ0) dF0(r0, φ0)

∣

∣

∣

∣

≤ d(r, φ),

where d(r, φ) is independent of F0(r0, φ0) and
∫

r,φ
d(r, φ)dr dφ < ∞.

Proof: The continuity of i(r, φ, r0, φ0) follows from the definition of the conditional pdf (3). The boundedness is due to

upper and lower bounds on p(r, φ|r0, φ0) established in Lemma 4. This completes Part 1) of the lemma.

For Part 2), since p ln(p) < 0 when p ∈ (0, 1), we break down the integral into two parts:
∣

∣

∣

∣

∫

i(r, φ, r0, φ0) dF0(r0, φ0)

∣

∣

∣

∣

≤ I+(r, φ) + I−(r, φ),

where

I+(r, φ)
def
=

∫

p(r,φ|r0,φ0)≤1

i(r, φ, r0, φ0) dF0(r0, φ0),

I−(r, φ)
def
= −

∫

p(r,φ|r0,φ0)>1

i(r, φ, r0, φ0) dF0(r0, φ0).

We upper bound I±(r, φ) for the peak amplitude and average cost constraints separately. The upper bound on I−(r, φ) is

based on the upper bound on the conditional pdf in Lemma 4-1. The upper bound on I+(r, φ) is based on the lower bound

on the conditional pdf in Lemma 4-2.
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Case 1) Peak amplitude constraint.: Suppose that F0(r0, φ0) is subjected to a peak amplitude constraint, i.e., FR0(r0) ∈ P .

From the lower bound (26) in Lemma 4, there exists a finite c > 0 for which ξ(c) < 1
2 such that

ln
1

p(r, φ|c, φ0)
≤ ln

1
1
2πpR|R0

(r|c) (1− ξ(c))

≤ ln
4π

pR|R0
(r|c) . (42)

On the other hand, choosing c large enough and finite, we obtain

ln
1

p(r, φ|r0, φ0)
≤ ln

1

p(r, φ|c, φ0)
, (43)

for 0 ≤ r0 ≤ ρ. This holds true since p(r, φ|c, φ0) → 0 as c → +∞.

Inequalities (42) and (43) imply

I+(r, φ) ≤
∫

0<p(r,φ|r0,φ0)≤1

p(r, φ|r0, φ0) ln
4π

pR|R0
(r|c) dF0(r0, φ0)

≤
(

ln(4π)− ln pR|R0
(r|c)

)

p(r, φ;F0)

≤
(

ln(4π)− ln
2r

σ2L +
r2 + c2

σ2L

)

p(r, φ;F0), (44)

where we used the bound pR|R0
(r|c) ≥ 2r

σ2Le
− r2+c2

σ2L .

Similarly, for I−(r, φ) we have

I−(r, φ) ≤
∫

p(r,φ|r0,φ0)>1

p(r, φ|r0, φ0) ln kupR|R0
(r|r0) dF0(r0, φ0) (45)

≤
(

ln ku + ln
2r

σ2L

)

p(r, φ;F0), (46)

where we used Lemma 4-1 in (45) and (46) follows from (25).

Finally, adding (44) and (46)

I+(r, φ) + I−(r, φ) ≤
(

ln(4π)− ln
2r

σ2L +
r2 + c2

σ2L

)

p(r, φ;F0) +

(

ln ku + ln
2r

σ2L

)

p(r, φ;F0)

≤
(

ln(4πku) +
r2 + c2

σ2L

)

2kur

σ2L e−
r2−2rρ

σ2L (47)

def
= d(r, φ),

where we used Lemma 5-1 to obtain (47). Clearly, d(r, φ) is is an integrable function of (r, φ).
Case 2) Average cost constraint: Suppose that F0(r0, φ0) is subject to an average cost constraint, i.e., FR0(r0) ∈ A. The

inequality (46) holds true and

I−(r, φ) ≤
(

ln ku + ln
2r

σ2L

)

p(r, φ;F0)

≤
(

ln ku + ln
2r

σ2L

)

2kur

σ2L

(

e−
r2

4σ2L +
A

C
(

r
2

)

)

, (48)

where we used Lemma 5-2 in obtaining the last inequality. The right hand side of (48) is integrable because C(r) = ω(r2).
Finally, we obtain an upper bound on I+(r, φ). We apply the inequality

|x ln x| ≤ 1

1− δ
xδ, (49)
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which is valid for all 0 < x ≤ 1 and 0 < δ < 1. We obtain

I+(r, φ) = −
∫

0<p(r,φ|r0,φ0)≤1

p(r, φ|r0, φ0) ln p(r, φ|r0, φ0) dF (r0, φ0)

≤ 1

1− δ

∫

0<p(r,φ|r0,φ0)≤1

(p(r, φ|r0, φ0))
δ dF (r0, φ0)

≤ 1

1− δ
kδu

∫

(pR|R0
(r|r0))δ dF (r0) (50)

≤ 1

1− δ
kδu

(

2r

σ2L

)δ ∫

e−δ
(r−r0)2

σ2L dF (r0) (51)

≤ 1

1− δ

(

2kur

σ2L

)δ
(

e−
δr2

4σ2L +
A

C
(

r
2

)

)

. (52)

The inequality (50) follows from the upper bound in Lemma 4. Inequality (51) follows from (24). The last inequality can be

justified using the same set of inequalities that yielded inequality (38). Clearly, the right hand side in (52) is integrable because

C(r) = ω(r2).
The inequalities (48) and (52) prove the desired inequality in the Part 2) of the lemma.

Lemma 7 (Continuity of the Conditional Entropy) Let FX(r0, φ0) be an input cdf such that FR0(r0) ∈ F . The conditional

entropy h(Y |X) in the channel (3) is continuous function of FX .

Proof:

Let {Xm = (Rm,Φm)}m≥1 be a sequence of input variables whose cdfs are denoted respectively by {Fm(r0, φ0)}m≥1 and

such that FRm
(r0) ∈ F . Suppose that {Fm(r0, φ0)}m≥1 converges weakly to FX(r0, φ0)

def
= F0(r0, φ0). We have

h(Y |X) =

∫

h(Y |r0, φ0) dF0(r0, φ0)

= −
∫ ∫

r,φ

p(r, φ|r0, φ0) ln p(r, φ|r0, φ0) dr dφ dF0(r0, φ0)

=

∫

r,φ

∫

i(r, φ, r0, φ0) dF0(r0, φ0) dr dφ (53)

=

∫

r,φ

lim
m→+∞

∫

i(r, φ, r0, φ0) dFm(r0, φ0) dr dφ (54)

= lim
m→+∞

∫

r,φ

∫

i(r, φ, r0, φ0) dFm(r0, φ0) dr dφ (55)

= lim
m→+∞

∫ ∫

r,φ

i(r, φ, r0, φ0) dr dφ dFm(r0, φ0) (56)

= lim
m→+∞

h(Y |Xm).

The order of the integrals in (53) and (56) can be exchanged by applying the Fubini’s theorem and using Lemma 6-2.

Equation (54) is due to the weak convergence and to the fact that i(r, φ, r0, φ0) is continuous and bounded using Lemma 6-1.

The order of the limit and the integral in (54)–(55) can be exchanged by applying the dominated convergence theorem and

using Lemma 6-2.

Lemma 8 (Continuity of the Output Entropy) The output entropy h(Y ) in the channel (3) is continuous function of the

input cdf FX(r0, φ0), where FR0(r0) ∈ F .

Proof:

Let FX(r0, φ0)
def
= F0(r0, φ0) be such that FR0(r0) ∈ F and let p(r, φ;F0) =

∫

p(r, φ|r0, φ0)dF0(r0, φ0) be the corre-

sponding output pdf in the channel (3). From (3), p(r, φ|r0, φ0) is a continuous bounded function of (r0, φ0). Thus, from

the definition of the weak convergence, p(r, φ;F0) is continuous in F0. Hence p(r, φ;F0)
∣

∣ln(p(r, φ;F0)
∣

∣ is continuous in F0.

Second, from Lemma 5-3, p(r, φ;F0)
∣

∣ln(p(r, φ;F0)
∣

∣ is dominated by an integrable function of (r, φ), that is independent of

F0. Hence h(Y ) is continuous in output pdf. Combining these two results proves the lemma.



13

APPENDIX II

ANALYTICITY OF THE KKT CONDITIONS

Consider LHSρ(r0) and LHSA(r0) in the KKT conditions defined in (12) and (13) respectively.

Lemma 9 (Analytic Extensions of LHSρ(r0) and LHSA(r0)) There exists a δ > 0 and a non-empty open connected region

Oδ in the complex plane containing the non-negative real line R
+
0 = {z ∈ R : z ≥ 0} such that LHSρ(r0) and LHSA(r0) can

be analytically extended from r0 ∈ R
+
0 to z ∈ Oδ.

Proof:

We break down the proof into five steps.

1) Analyticity of p(r, φ|z, φ0): Let

s(z; r, φ, φ0) =
1

2π



pR|R0
(r|z) +

+∞
∑

m=−∞,m 6=0

Cm(r, z)ejm(φ−φ0−γz2L)



 , (57)

be an extension of p(r, φ|r0, φ0) defined by (3) from r0 ∈ R
+
0 to the complex plane r0 ∈ C. We note that after straightforward

manipulations of equations (5), (6), and (7), it can be shown that a−m = a∗m, b−m = b∗m and C−m(r, r0) = C∗
m(r, r0), m ∈ N.

We prove that s(z; r, φ, φ0) is an entire function.

From Lemma 3-6, Im(z) is an entire function of z for m ∈ Z. Thus, pR|R0
(r|z) and each term in the sum in (57) are

entire functions. Below, we show that |Cm(r, z)ejm(φ−φ0−γz2L)| can be upper bounded in C for large values of m by an

absolutely summable sequence of m that is independent of z. Thus the series (57) converges uniformly over z ∈ C. The sum

of a uniformly convergent sequence of analytic functions is analytic. Therefore, s(z; r, φ, φ0) is an analytic function on C.

We have
∣

∣

∣Cm(r, z)ejm(φ−φ0−γz2L)
∣

∣

∣ =
∣

∣

∣rbme−am(r2+z2)Im (2bmzr) e−jmγz2L
∣

∣

∣

= r|b|m|| |Im (2bmzr)| e−ℜ(am)r2e−ℜ(am)ℜ(z2)e(ℑ(am)+mγL)ℑ(z2), (58)

where we used the fact that |bm| = |b|m|| since b−m = b∗m. Recall from the proof of Lemma 4 that ℜ(am)
def
= 1

σ2L t(βm) where

t(x) is given by equation (30) and βm
def
=
√

mγ
2 σL, m > 0. Also, the imaginary part of am in (6) is ℑ(am)

def
= 1

σ2Lτ(βm),
where

τ(x) =
x (sinh(2x)− sin(2x))

2
(

sinh2(x) + sin2(x)
) .

Notice that t(x) ≡ x and τ(x) ≡ x as x → +∞. Let ǫ > 0, then there exists an M > 0 such that whenever |m| > M , we

have

0 < (1 − ǫ)
β|m|
σ2L < ℜ(am) < (1 + ǫ)

β|m|
σ2L (59)

0 < (1 − ǫ)
β|m|
σ2L < |ℑ(am)| < (1 + ǫ)

β|m|
σ2L , (60)

where we used the fact that a−m = a∗m. Now, let B(z0, ζ) = {z : |z − z0| < ζ} be a neighborhood of z0 ∈ C. If z ∈ B(z0, ζ),
then |z2| < (|z0|+ ζ)2 and

−ℜ(am)ℜ(z2) < (1 + ǫ)
β|m|
σ2L (|z0|+ ζ)2 (61)

ℑ(am)ℑ(z2) < (1 + ǫ)
β|m|
σ2L (|z0|+ ζ)2 (62)

−ℜ(am)r2 < − r2

σ2L , (63)

for |m| > M , where we used inequalities (59), (60), and (32). Also, for |m| large enough, we have |b|m|| < 1 as |m| → +∞
as inferred by equation (34) and

|Im (2bmzr)| =
∣

∣I|m| (2bmzr)
∣

∣ ≤ (1 + ǫ)
(2|bm||z|r)|m|

|m|! ≤ (1 + ǫ)
(2(|z0|+ ζ)r)|m|

|m|! , (64)
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where we used Lemma 3-3. Using the bounds in (61), (62), (63), and (64), we obtain from (58) for |m| > M

∣

∣

∣Cm(r, z)ejm(φ−φ0−γz2L)
∣

∣

∣ ≤ (1 + ǫ) re−
r2

σ2L
(2(|z0|+ ζ))|m|r|m|

|m|! e2(1+ǫ)
β|m|(|z0|+ζ)2

σ2L e|m|γL(|z0|+ζ)2

≤ (1 + ǫ) re−
r2

σ2L

(

2 r(|z0|+ ζ)e
√
2γ(1+ǫ)

(|z0|+ζ)2

σ eγL(|z0|+ζ)2
)|m|

|m|! , (65)

where we replaced β|m| by its expression and we used the fact that
√

|m| < |m| for large values of |m|. It can be seen that the

z-independent upper bound in (65) is summable over m. Thus the infinite sum in (57) is uniformly convergent for all z ∈ C

and s(z; r, φ, φ0) is an entire function.

2) Analyticity of s(z; r, φ, φ0) ln (s(z; r, φ, φ0)): We show that there exists an open covering O of R+
0 such that the function

s(z; r, φ, φ0) ln (s(z; r, φ, φ0)) is analytic in z ∈ O. We proved in the previous part that s(z; r, φ, φ0) is analytic in z ∈ C. As

for the analyticity of s(z; r, φ, φ0) ln (s(z; r, φ, φ0)):

– We have

p(r, φ|r0, φ0) = p(r|r0, φ0)p(φ|r, r0, φ0)

= p(r|r0)p(φ|r, r0, φ0), (66)

where (66) follows because p(r|r0, φ0) = p(r|r0) from (2). From (3), p(r|r0) > 0 for r ∈ (0,∞) and r0 ≥ 0. For the

phase conditional pdf in (66), we apply the Karhunen-Loéve expansion in [3, Sec. V], to write the phase Φ as Φ0 plus

a weighted sum S of M → ∞ independent non-central chi-squared random variables with two degrees-of-freedom and a

centrality parameter depending on r0. The PDF pS(s;M) is a generalized chi-squared random variable. It can be verified

that pS(s;M) > c for s ∈ (0,∞), where c is independent of M , so that pS(s;∞) > 0. The p(φ|r0, φ0) is the wrapped

distribution of pS(s;∞), thus p(φ|φ0, r0) > 0, r0 ∈ [0,∞), ∀φ0 ∈ [0, 2π). Finally, using [23, Eq. 7], fixing R fixes only

one term in S, leaving M − 1 independent terms. Thus p(φ|φ0, r0, r) > 0. Summarizing, if r ∈ (0,∞), then

p(r, φ|r0, φ0) > 0, ∀r0 ∈ [0,∞), ∀φ0.

– For any zl ∈ R
+
0 , there exits an open ball Bl(zl, ζl) such that ℜ (s(z; r, φ, φ0)) > 0, when z ∈ Bl. This is true because

s(r0; r, φ, φ0) = p(r, φ|r0, φ0) is positive in 0 ≤ r0 < ∞ (up to a set of Lebesgue measure zero) and continuous on C.

– Therefore, there exists a sequence {zi}i≥1 of real non-negative numbers and an open covering {O = ∪i≥1Bi} ⊂ C of the

non-negative real line such that ℜ (s(z; r, φ, φ0)) > 0.

– Taking the principal branch of the logarithm, log(z) is analytic in C\R+
0 . Since ℜ (s(z; r, φ, φ0)) > 0, we obtain that

s(z; r, φ, φ0) ln (s(z; r, φ, φ0)) is analytic in z ∈ O.

It follows that s(z; r, φ, φ0) ln (s(z; r, φ, φ0)) is analytic in z ∈ O.

3) Analyticity of
∫ 2π

0
h(R,Φ|z, φ0) dφ0: We now prove that

u(z) =

∫ 2π

0

h(R,Φ|z, φ0) dφ0

=

∫ 2π

0

∫ 2π

0

∫ +∞

0

s(z; r, φ, φ0) ln (s(z; r, φ, φ0)) dr dφ dφ0,

is analytic in z ∈ O. The proof is based on the Morera’s theorem.

Morera’s Theorem [21]. If f(z) is continuous in an open region O ⊆ C and
∫

γ
f(z)dz = 0 for any closed triangular contour

γ in O, then f(z) is analytic on O. �

We first show that u(z) is continuous in z ∈ O. If z0 ∈ O, then

lim
z→z0

u(z) = lim
z→z0

∫ 2π

0

∫ 2π

0

∫ +∞

0

s(z; r, φ, φ0) ln (s(z; r, φ, φ0)) dr dφ dφ0

=

∫ 2π

0

∫ 2π

0

∫ +∞

0

lim
z→z0

s(z; r, φ, φ0) ln (s(z; r, φ, φ0)) dr dφ dφ0 (67)

=

∫ 2π

0

∫ 2π

0

∫ +∞

0

s(z0; r, φ, φ0) ln (s(z0; r, φ, φ0)) dr dφ dφ0 (68)

= u(z0), (69)

where equation (68) holds since s(z; r, φ, φ0) ln(s(z; r, φ, φ0)) is continuous in z, considering the convention (41) when s =
0. We justify changing the order of the limit and the sum in (67) by finding, for large values of r, an upper bound on

|s(z; r, φ, φ0) ln s(z; r, φ, φ0)| that is integrable in (r, φ, φ0) and independent of z. Let B(z0, ζ) ∈ O be a neighborhood of
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z0 and consider z ∈ B(z0, ζ). The bound in (65) implies that
∑+∞

m=−∞,m 6=0Cm(r, z)ejm(φ−φ0−γz2L) = o
(

1
r2

)

. Furthermore,

using (4)
∣

∣pR|R0
(r|z)

∣

∣ =
2r

σ2L

∣

∣

∣

∣

e−
r2+z2

σ2L

∣

∣

∣

∣

∣

∣

∣

∣

I0

(

2rz

σ2L

)∣

∣

∣

∣

≤ 2r

σ2Le−
r2

σ2L e
(|z0|+ζ)2

σ2L e
2(|z0|+ζ)r

σ2L = o

(

1

r2

)

,

where we used Lemma 3-2 to write the inequality. Hence, equation (57) implies

|s(z; r, φ, φ0)| = o

(

1

r2

)

, (70)

Note that, if x ∈ C, then, since ln(x) = ln |x| + jarg(x), | ln(x)| ≡ | ln |x|| as x → 0. Thus
∣

∣s(z; r, φ, φ0) ln(s(z; r, φ, φ0)
∣

∣ ≡
∣

∣

∣
|s(z; r, φ, φ0)| ln |s(z; r, φ, φ0)|

∣

∣

∣
as r → +∞. We find an integrable upper bound on

∣

∣

∣
|s(z; r, φ, φ0)| ln |s(z; r, φ, φ0)|

∣

∣

∣
. When

r is large, |s(z; r, φ, φ0)| < 1 and we apply the inequality (49) to obtain

||s(z; r, φ, φ0)| ln |s(z; r, φ, φ0)|| ≤
1

1− δ
|s(z; r, φ, φ0)|δ, (71)

for any δ ∈ (0, 1). Choosing δ ∈ (1/2, 1) and using (70), we obtain an upper bound on (71) that is integrable in (r, φ, φ0) and

independent of z.

For the second part of Morera’s theorem, we consider the integral of u(z) over the boundary ∂∆ of a compact triangle

∆ ⊂ O. We have
∫

∂∆

u(z) dz =

∫ 2π

0

∫ 2π

0

∫ +∞

0

∫

∂∆

s(z; r, φ, φ0) ln (s(z; r, φ, φ0)) dz dr dφ dφ0

= 0. (72)

Exchanging the integration order is justified from (70) and (71) by Fubini’s theorem. It is shown in part 2) that s(z; r, φ, φ0) ln (s(z; r, φ, φ0))
is analytic in z ∈ O. Hence, its integral over a closed contour in O is zero which justifies (72).

Equations (69) and (72) imply that u(z) is analytic on O by Morera’s theorem.

4) Analyticity of
∫ +∞
0 pR|R0

(r|z) ln (pR(r;F ∗
0 )) dr: The function

pR|R0
(r|z) = 2r

σ2Le−
r2+z2

σ2L I0

(

2rz

σ2L

)

,

is analytic in z ∈ C. Consider

w(z) =

∫ +∞

0

pR|R0
(r|z) ln (pR(r;F ∗

0 )) dr.

Applying the Morera’s theorem and using the exponential decay of pR|R0
(r|z) in r along with its analyticity in z, it can be

shown that w(z) is analytic on C. The steps are similar to the proof of analyticity in part 3) above.

5) Analyticity of LHSA(z) and LHSρ(z): Let LHSA(z) be an extension of LHSA(r0) (defined in (13)) to the complex plane:

LHSA(z) = ν(C(z)−A) + C +

∫ +∞

0

p (r|z) ln p(r;F ∗
0 ) dr +

1

2π

∫ 2π

0

h (R,Φ|z, φ0) dφ0.

From the results of the parts 3) and 4) above, and the property C2 of C(r0) stated in Section III, we obtain that LHSA(z)

is analytic when z ∈ Oδ
def
= O ∩ Sδ . In a similar manner, we have that LHSρ(z) (defined in (12)) is analytically extendable to

O, hence to Oδ.

APPENDIX III

BOUNDS ON THE KKT CONDITIONS

Lemma 10 (Upper Bound on LHSρ(r0)) Consider LHSρ(r0) (defined in (12)) for large r0. For any 0 < ǫ < 1, there exists

a K > 0 such that

LHSρ(r0) ≤ C + ln

(

1

K

)

+
r20
σ2L − ln (1− ξ(r0)) + (ρ− (1 − ǫ)r0)

√

π

σ2LL 1
2

(

− r20
σ2L

)

,

where ξ(r0) is defined in Lemma 4 and L 1
2
(·) is a Laguerre polynomial.

Proof:
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Let F ∗
0

def
= FR∗

0
(r0) ∈ P be the optimal input cdf. Using the upper bound on p(r, F ∗

0 ) given in (39), we have
∫ +∞

0

pR|R0
(r|r0) ln p(r;F ∗

0 ) dr

≤ ln

(

2

σ2L

)

+

∫ ∞

0

ln(r)pR|R0
(r|r0) dr −

1

σ2L

∫ ∞

0

r2pR|R0
(r|r0) dr +

2ρ

σ2L

∫ ∞

0

rpR|R0
(r|r0) dr

= ln

(

2

σ2L

)

+

∫ ∞

0

ln(r)pR|R0
(r|r0) dr −

1

σ2L
(

σ2L+ r20
)

+ ρ

√

π

σ2LL 1
2

(

− r20
σ2L

)

, (73)

where we used the fact that pR|R0
(r|r0) is a Rician pdf with parameters

(

r0,
σ2L
2

)

. The first two moments of this pdf are

∞
∫

0

rpR|R0
(r|r0)dr =

σ
√
πL
2

L 1
2

(−r20
σ2L

)

, (74)

∞
∫

0

r2pR|R0
(r|r0)dr = σ2L+ r20 . (75)

Furthermore, let r0 > 0 be a large number and let 0 < ǫ < 1. Using the lower bound on the conditional pdf in Lemma 4-2

we have

1

2π

∫ 2π

0

h (R,Φ|r0, φ0) dφ0

= − 1

2π

∫ 2π

0

∫ +∞

0

∫ 2π

0

p(r, φ|r0, φ0) ln p(r, φ|r0, φ0)dφdrdφ0

(a)

≤ ln(2π)− ln (1− ξ(r0))−
∫ +∞

0

pR|R0
(r|r0) ln

(

pR|R0
(r|r0)

)

dr

= − ln

(

1

πσ2L

)

−
∫ +∞

0

ln(r)pR|R0
(r|r0) dr +

1

σ2L

(

r20 +

∫ +∞

0

r2pR|R0
(r|r0) dr

)

−
∫ +∞

0

ln

(

I0

(

2rr0
σ2L

))

pR|R0
(r|r0) dr − ln (1− ξ(r0))

≤ ln
(

πσ2L
)

−
∫ +∞

0

ln(r)pR|R0
(r|r0) dr− ln (1− ξ(r0)) +

2r20 + σ2L
σ2L −

∫ +∞

0

ln
(

Ke(1−ǫ)
2rr0
σ2L

)

pR|R0
(r|r0) dr (76)

= ln

(

πσ2L
K

)

−
∫ +∞

0

ln(r)pR|R0
(r|r0) dr− ln (1− ξ(r0)) +

2r20 + σ2L
σ2L − (1− ǫ)

2r0
σ2L

∫ +∞

0

rpR|R0
(r|r0) dr

= ln

(

πσ2L
K

)

−
∫ +∞

0

ln(r)pR|R0
(r|r0) dr− ln (1− ξ(r0)) +

1

σ2L
(

2r20 + σ2L
)

− (1 − ǫ)r0

√

π

σ2LL 1
2

(

− r20
σ2L

)

, (77)

where step (a) is due to Lemma 4-2 and where we used Lemma 3-4 for some K > 0, and equations (74) and (75) in order

to write (77). Finally, combining (73) and (77), we have for sufficiently large r0:

LHSρ(r0) = C − ln(2π) +

∫ +∞

0

p (r|r0) ln p(r;F ∗
0 ) dr +

1

2π

∫ 2π

0

h (R,Φ|r0, φ0) dφ0

≤ C − ln(2π) + ln

(

2

σ2L

)

+

∫ ∞

0

ln(r)pR|R0
(r|r0) dr −

1

σ2L
(

σ2L+ r20
)

+ ρ

√

π

σ2LL 1
2

(

− r20
σ2L

)

+ ln

(

πσ2L
K

)

−
∫ +∞

0

ln(r)pR|R0
(r|r0) dr − ln (1− ξ(r0))

+
1

σ2L
(

2r20 + σ2L
)

− (1− ǫ)r0

√

π

σ2LL 1
2

(

− r20
σ2L

)

= C + ln

(

1

K

)

+
r20
σ2L − ln (1− ξ(r0)) + (ρ− (1− ǫ)r0)

√

π

σ2LL 1
2

(

− r20
σ2L

)

.

Lemma 11 (Lower Bound on LHSA(r0)) The LHS of (13) satisfies:

LHSA(r0) > ν(C(r0)−A) + C + ln

(

k1
2πku

)

+
1

σ2Lr20 − r0

√

π

σ2LL 1
2

(

− r20
σ2L

)

,
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where ku is defined in Lemma 4, k1 =
∫ +∞
0 e−

r20
σ2L dFR∗

0
(r0), and L 1

2
(·) is a Laguerre polynomial.

Proof:

Let F ∗
0

def
= FR∗

0
(r0) ∈ A be the optimal input cdf. The first integral in LHSA(r0) is lower bounded by

∫ +∞

0

pR|R0
(r|r0) ln p(r;F ∗

0 ) dr ≥
∞
∫

0

ln(r)pR|R0
(r|r0) dr + ln

(

2k1
σ2L

)

− σ2L+ r20
σ2L , (78)

where we used the lower bound on p(r, F ∗
0 ) in Lemma 5-3 and (75).

The second integral in LHSA(r0) is lower bounded as

2π
∫

0

h (R,Φ|r0, φ0) dφ0

(b)
> −

2π
∫

0

+∞
∫

0

2π
∫

0

p(r, φ|r0, φ0) ln
(

kupR|R0
(r|r0)

)

dφ dr dφ0

= −
+∞
∫

0

ln
(

kupR|R0
(r|r0)

)

dr

2π
∫

0

2π
∫

0

p(r, φ|r0, φ0) dφ dφ0

= −2π

+∞
∫

0

ln
(

kupR|R0
(r|r0)

)

pR|R0
(r|r0) dr

= 2π (h(R|r0)− ln(ku)) , (79)

where step (b) is due to Lemma 4-1. From (4), h(R|r0) can be lower-bounded as:

h(R|r0) = −
∫ +∞

0

pR|R0
(r|r0) ln

(

pR|R0
(r|r0)

)

dr

= − ln

(

2

σ2L

)

+
1

σ2L

(

r20 +

∫ +∞

0

r2pR|R0
(r|r0) dr

)

−
∫ +∞

0

ln

(

rI0

(

2rr0
σ2L

))

pR|R0
(r|r0) dr

≥ ln

(

σ2L
2

)

−
∫ +∞

0

ln(r)pR|R0
(r|r0) dr +

1

σ2L
(

2r20 + σ2L
)

− 2r0
σ2L

∫ +∞

0

rpR|R0
(r|r0) dr (80)

= ln

(

e σ2L
2

)

−
∫ +∞

0

ln(r)pR|R0
(r|r0) dr +

2

σ2Lr20 − r0

√

π

σ2LL 1
2

(

− r20
σ2L

)

, (81)

where we used Lemma 3-2 in (80) and (74) in (81). Substituting (81) into (79)

1

2π

∫ 2π

0

h (R,Φ|r0, φ0) dφ0 > ln

(

e σ2L
2ku

)

+
2

σ2Lr20 −
∫ +∞

0

ln(r)pR|R0
(r|r0) dr − r0

√

π

σ2LL 1
2

(

− r20
σ2L

)

. (82)

Finally, using lower bounds (78) and (82), we obtain

LHSA(r0) > ν(C(r0)−A) + C − ln(2π) + ln

(

2k1
σ2L

)

+ ln

(

e σ2L
2ku

)

+

∫ +∞

0

ln(r)pR|R0
(r|r0) dr −

∫ +∞

0

ln(r)pR|R0
(r|r0) dr

− 1

σ2L
(

σ2L+ r20
)

+
2

σ2Lr20 − r0

√

π

σ2LL 1
2

(

− r20
σ2L

)

= ν(C(r0)−A) + C + ln

(

k1
2πku

)

+
1

σ2Lr20 − r0

√

π

σ2LL 1
2

(

− r20
σ2L

)

.
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