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Subexponential and Linear Subpacketization Coded

Caching via Projective Geometry
Hari Hara Suthan Chittoor, Prasad Krishnan, K V Sushena Sree, and Bhavana MVN

Abstract

Large gains in the rate of cache-aided broadcast communication are obtained using coded caching, but to obtain this most

existing centralized coded caching schemes require that the files at the server be divisible into a large number of parts (this number

is called subpacketization). In fact, most schemes require the subpacketization to be growing asymptotically as exponential in
r
√
K for some positive integer r and K being the number of users. On the other extreme, few schemes having subpacketization

linear in K are known; however, they require large number of users to exist, or they offer only little gain in the rate. In this

work, we propose two new centralized coded caching schemes with low subpacketization and moderate rate gains utilizing

projective geometries over finite fields. Both the schemes achieve the same asymptotic subpacketization, which is exponential

in O((logK)2) (thus improving on the
r
√
K exponent). The first scheme has a larger cache requirement but has at most a

constant rate (with increasing K), while the second has small cache requirement but has a larger rate. As a special case of our

second scheme, we get a new linear subpacketization scheme, which has a more flexible range of parameters than the existing

linear subpacketization schemes. Extending our techniques, we also obtain low subpacketization schemes for other multi-receiver

settings such as distributed computing and the cache-aided interference channel. We validate the performance of all our schemes

via extensive numerical comparisons. For a special class of symmetric caching schemes with a given subpacketization level, we

propose two new information theoretic lower bounds on the optimal rate of coded caching.

Index Terms

Coded caching for broadcast channel, projective geometry, distributed computing, interference networks, subpacketization for

coded caching.

I. INTRODUCTION

Present and future wireless communication systems (4G,5G and beyond) are becoming more content-centric. The majority

of this content is video, which is generated well ahead of transmission. Further, it is predicted in [5] that by 2022, four-fifths

of all the internet traffic will be video. Therefore, we require new strategies to manage the data-heavy communication systems

while ensuring quality of service.

Caching has been in vogue to lay off the traffic during the peak times in the network by storing part of the information

demanded by the users (clients) in local storage known as caches. In this way, during the peak hours, the server can transmit

only the non-cached information, thus reducing the traffic. Coded caching was proposed in a landmark paper by Ali-Niesen

[6] to exploit this aspect of cached content to reduce the network congestion in the peak traffic time by prefetching part of

the content in cost-effective cache available at the users during the off-peak time, while using coded transmissions during the

peak times.

In [6], the authors considered an error-free broadcast channel with a server containing N files of the same size and K

users (clients) each having a cache capable of storing M files, where M ≤ N . According to the scheme presented in [6] the

system operates in two phases. During the caching phase (happens in the off-peak time) each file in the server is divided into

F equal-sized subfiles (F is known as the subpacketization parameter), and placed in the caches of the clients. The caching

phase occurs well ahead of the appearance of receiver demands, and thus the caching phase has to be designed in a demand-

oblivious manner. During the delivery phase (happens in the peak time) each user demands a file from the server. Based on
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the demands and the cache contents of the users, the server makes multiple coded transmissions. The goal is to design the

caching and delivery phase so that the demands of all the users are satisfied. Since the caching phase is also designed centrally,

this framework for coded caching is known as the centralized coded caching. Decentralized coded caching was introduced in

[7], in which a coded delivery scheme is shown to achieve large gains in the rate, under a random or decentralized caching

phase. Other important variations of this setting include coded caching in a popularity-based caching setting [8], online coded

caching [9], and hierarchical coded caching [10]. We assume the basic centralized coded caching framework in the present

work.

The delivery scheme in [6] serves γ = 1+ MK
N users per transmission. The parameter γ is known as the global caching gain

and the rate of the scheme is given as R =
K(1−M

N )
γ , which has a Θ(K) gain over the uncoded delivery rate

(
for constant

M
N

)
which is K

(
1− M

N

)
. The rate achieved by Ali-Niesen scheme [6] was shown to be optimal for a given cache size M in

[11], under the assumption of uncoded cache placement and N ≥ K . Further, for large K , this scheme surprisingly achieves

(approximately) a rate that is independent of K . However, it suffers from the problem of large subpacketization, which we

now describe.

The achievability of the scheme shown in [6] is ensured by splitting each file into F =
(

K
MK/N

)
equal-sized subfiles,

where F is known as the subpacketization level or simply, subpacketization. It was noticed in [12] that for this scheme,

the subpacketization required grows exponentially in K for constant M
N as K grows large (as

(
K
Kp

)
≈ 2KH(p) for constant

0 < p < 1, where H(p) is the binary entropy). For instance, with K = 25 users and with the capability to store one-fifth of the

file library in the cache of each user
(
M
N = 1

5

)
, the subpacketization becomes

(
25
5

)
, which is 53130. A high subpacketization

requirement poses multiple issues in the implementation of coded caching. A straightforward issue is that of the size of the file

itself; the file-size has to be at least as large as the product of subpacketization F and the size of any accessible file-segment.

Assuming a file-segment size of about 512 KB, the file-size has to be at least 27 GB for a subpacketization level of 53130,

which is prohibitive in practice. Higher subpacketization levels also mean higher indexing overheads to identify the subfiles.

Also, a large subpacketization level implies smaller chunks of the file, which in turn means higher normalized read times from

the storage media, along with search-and-read overheads. Having longer indexing overheads to identify the subfiles is also a

factor to consider when there are a large number of subfiles in any file. Because of these reasons, coded caching schemes with

low-subpacketization and with good caching gains are preferable for practical applications.

Since this problem was identified, a number of papers, for instance [12]–[20] have presented new schemes for the coded

caching which use smaller subpacketization than [6] at the cost of having increased rate for the same cache requirement

compared to [6]. The summary of some important known schemes is given in Table I. The third column lists the cache fraction

of any file
(
a fraction M

N of each file is cached by a user
)
. Many of the schemes presented in Table I require exponential

subpacketization (in K , for large K), as shown in the fourth column of Table I to achieve a constant rate (shown in the fifth

column). The asymptotics of the rate are presented in the last column of Table I. A user-grouping technique combined with

the scheme of [6] was used in [12] to reduce the subpacketization at the cost of rate. A variety of techniques and structures

from combinatorics, coding theory, and graph theory, have also been employed to obtain many of these constructions. For

instance, in [13], a special combinatorial structure called placement delivery arrays (PDA) was presented and used to construct

coded caching schemes with reduced subpacketization than [6] (though it remained still exponential in K). The work [16] used

resolvable designs obtained from linear block codes for the same. The papers [14], [15] used hypergraphs and bipartite graphs

respectively, and showed schemes with subpacketization subexponential in K . The subpacketization of particular schemes of

[19] have been shown to be subexponential, while some schemes of [18] have subpacketization that is linear or polynomial

(in K) at the cost of either requiring much larger cache M or much larger rate compared to [6]. Interestingly, a linear

subpacketization scheme (F = K) was shown in [17] using a graph theoretic construction with near constant rate and small

memory requirement. However, the construction in [17] holds for very large values of K only. In [14], it was shown that the

schemes with subpacketization linear in K is impossible if we require constant rate. In [20], the authors consider caching

schemes without file splitting, i.e., the scenario when F = 1. Constructions of low-subpacketization coded caching schemes is

an active area of research, with many other recent works such as [21]–[25] presenting new or modifying existing constructions,

using a variety of techniques including combinatorial designs, bipartite graphs, orthogonal arrays, covering arrays, etc.



TABLE I: Parameters of some known coded caching schemes.
The asymptotic nature of the subpacketization and the rate with large K and constant cache fraction M

N
are shown wherever possible.

For simplicity, we ignore the constant multiplicative factors in the exponents of asymptotics (e is the base of the natural logarithm)
.

Scheme Number of Users Cache Fraction Subpacketization Rate R

K
M

N
F Expression Asymptotics

Ali-Niesen [6] any K M
N

for M < N O
(

2K
) K

(

1−M
N

)

MK
N

+1
O(1)

MK
N

∈ Z
+

Ali-Niesen scheme with K Same as [6] O (eg) K
g+1

(

1 − 1

⌈ N
M

⌉

)

, where

Grouping [12] g ∈ Z
+ such that K

g⌈ N
M

⌉
∈ Z

+. O
(

K
g

)

Yan et al. [13] based on Any K 1 − 1
q

or 1
q

O
(

eK
) K

(

1 − M
N

)

MK
N

O(1)

Placement Delivery Arrays (PDAs)

Shangguan et al. [14] R ≈ (2q − 1)2 , such that q = λ
2 ,

(PDAs based on hypergraphs) Specific choices 1 − 1
q

or 1
q

O
(

e
√

K
)

where λ is such that M
N

= 2λ−1

λ2 O(1)

Yan et al. [15] (for integers 0 < a, b < m

and λ < min {a, b} based on
(

m
a

)

(

a
λ

)(

m−a
b−λ

)

(

m
a

)

(

m
b

)

( m

a+b−2λ

)(a+b−2λ
a−λ

)

(m

b

) —

strong edge coloring of bipartite graph)

Tang et al. [16] based nq

on resolvable designs using (for some 1 − 1
q

or 1
q

O
(

qK
) K

(

1 − M
N

)

cK
q

+ 1
O(1)

n length linear block code of rate c constant q)

Scheme from [17] based on K

induced matchings of a (necessarily K−ǫ K Kδ Kδ

Ruzsa Szemeredi graph extremely large) (some small ǫ) (some small δ)

PDA scheme P1 from Cheng et al. [18]

(
k

t+1

)
1 − t+1

(

k
t

)

(
k
t

)
k

(kt)
—

k, t ∈ Z
+

Two PDA Schemes from [19]
(m

t

)

qt and
(

(q − z)/
⌊

q−1
q−z

⌋

)t

q, z,m, t ∈ Z
+, q ≥ 2, z < q, t < m (m + 1)q 1 −

(

q−z
q

)t
and z

q
O

(

q
t√
K

)

and (q − z)/
⌊

q−1
q−z

⌋

O(1)

The coded caching scheme proposed in [6] was extended to a variety of other settings, including device-to-device communi-

cation (D2D) networks [26], distributed computing [27], and interference management in wireless interference channels [28].

Every one of these settings can be modelled as a multi-client communication scenario with one or more transmitters, with

the clients (receivers), and in some situations the transmitters as well, having cache. This enables coded transmissions, which

generates rate advantages in all such situations. Because the fundamental scheme of [6] is adapted to each of these settings,

the subpacketization issue continues to affect the adapted schemes as well. In fact, the problem is sometimes exacerbated

because the special features of the setting requires a further division of the subfiles into smaller packets (for instance, the

subpacketization in the D2D scheme of [26] is MK
N

(
K

MK/N

)
, thus having a multiplicative factor of MK

N over that of the

subpacketization of [6]).

In this work, we construct low-subpacketization schemes for coded caching utilizing ideas from graph theory and projective

geometry over finite fields. We give the summary of the contributions of this paper in the next section.

II. SUMMARY OF MAIN CONTRIBUTIONS

The contributions and organization of this work are as follows. In Section III, we review the formal system model for coded

caching on broadcast networks from [6]. In Section III-B, we present the bipartite graph model for coded caching given in

[15]. For symmetric coded caching schemes in which the caching is file-index invariant, the bipartite graph model captures the

caching scheme and a specific class of delivery schemes in the form of a bipartite graph and its subgraphs.

The central contribution of this work is the construction of coded caching schemes which have subpacketization subexpo-

nential in the number of users K (for large K). Using the bipartite graph framework, and utilizing some basic ideas from the



TABLE II: Summary of asymptotic behaviour (as K grows large) of the coded caching schemes for the broadcast channel

presented in this paper. (where n,m ∈ Z+ and q is prime power.)

Scheme name and Cache fraction
(
M
N

)
Subpacketization (F ) Rate (R) Results,

examples,

Characteristics numerical

comparisons

Low

(subexponential)

subpacketization

scheme with large

cache fraction

≤ constant (≥ 0.5) O(poly(K)) Θ(K) Section IV-C

Theorem 2

Table VI

1−Θ
(

1√
K

)
qO((logq K)2) O(1) Examples 3,4

(Scheme A) (subexponential in K) Appendix B

Section V-C

Low

(subexponential)

subpacketization

scheme with small

cache fraction

≤ constant qO((logq K)2) Θ
(

K
(logq K)n

)
Theorem 3

Table VII

Table VIII

Table IX

Example 5

(Scheme B) (subexponential in K) Appendix D

Linear

subpacketization

(F = K) scheme

with small cache

fraction

≤ constant = K Θ
(

K
(logq K)n

)
Section V-E

Corollary 2)

(Scheme C) (linear in K) (Theorem 3

with n = m)

projective geometries over finite fields, we construct two new coded caching schemes, given in Section IV (Scheme A) and

Section V (Scheme B). We briefly describe the salient features of these schemes. Scheme A, which we present in Section IV,

has subexponential subpacketization, but uses high cache size, to achieve a rate upper bounded by a constant. When compared

to Scheme A, Scheme B presented in Section V has equivalent subpacketization (as an asymptotic function of K), while having

lower cache size but a higher rate. Because of the low-cache requirement which is relevant in practice, we consider Scheme

B to be the more important among the two schemes presented. For ranges of users from 10s-1000s and cache-fraction in the

range 0.05 to 0.35, we show via numerical examples that we obtain the practical values of subpacketization in the range of

102 − 104, achieving the rates in the range 10− 100, (serving number of users in the range of 3− 15 per transmission). These

numerical comparisons of Scheme A and Scheme B with existing schemes are shown in Table VI (Section IV), and Tables

VII,VIII and IX (Section V) respectively.

Observing the subpacketization and the rate of any given scheme, as the number of users grow, gives us an understanding

of the performance of the scheme, and is done in the prior literature also (see the subpacketization column of Table I, for

instance). It also enables comparison with the existing schemes, in situations when parameters cannot be matched accurately.

Asymptotically in K , both the schemes A and B achieve subpacketization F = qO((logq K)2), Scheme A achieves this F when

R = O(1) and M
N = 1−Θ

(
1√
K

)
, whereas Scheme B achieves this F when R = Θ

(
K

(logq K)n

)
and M

N is smaller than some

constant (where n is an integer constant and q is some prime power). So clearly, Scheme A requires a large cache size that

grows with K , whereas in scheme B the cache fraction can be maintained constant. In the regime when M
N is smaller than



TABLE III: Summary of the subpacketization dependent lower bounds on the rate presented in this paper. Here D = F (1− M
N )

and d = K(1− M
N ).

Corollary 3 (Section VII) Table

XII

(Symmetric caching with every

user caching the same number of

subfiles)

R∗F ≥ (K + F )
(
1− M

N

)
− 1

Theorem 9 (Section VII) Table

XII

(Symmetric caching with every

user caching the same number of

subfiles and every subfile cached in

the same number of users)

R∗F ≥ D +
⌈
(d−1)D
K−1

⌉
+ · · ·+

⌈
1

KM
N

+1

⌈
2

KM
N

+2

⌈
· · ·
⌈

d−2
K−2

⌈
(d−1)D
K−1

⌉⌉
· · ·
⌉⌉⌉

some constant, Scheme A achieves subpacketization F = O(poly(K)) when R = Θ(K) (thus the gain of coded caching is

small and therefore this regime is not very interesting). These asymptotics are proved in respective sections, and also captured

in Table II. The last column of Table II provides the location of the related results, numerical comparisons and examples in

the paper.

For specific values of the scheme parameters, we get a new linear subpacketization scheme (Scheme C) in Section V-E,

parametrized with two parameters, q a prime power and λ ∈ (0, 1). For this scheme, we get the number of users K ≤ q2λ
2q2

(λq)! ,

the subpacketization level F = K , the cache fraction M
N ≤ λ, and the rate being

K(1−M/N)
γ , where γ ≥ 4λq

2
√
λq

. The asymptotics

of Scheme C and location of its results in the paper are captured in Table II. A generalized version of Scheme B, with one

more tunable parameter, is presented in Section V-F.

In Section VI, we extend our low-subpacketization low-cache Scheme B to some other settings explored in the literature

where coded caching helps. In particular, we extend our Scheme B to the distributed computing in Section VI-A (Theorem

6), and to the cache-aided interference channel setting in Section VI-B (Theorem 7). In each of these settings, our extended

scheme is compared with the existing schemes numerically to illustrate our low subpacketization advantage (Tables X, XI) in

Section VI.

Utilizing the perspective that is given by the bipartite graph model in Section III-B, we obtain two information-theoretic lower

bounds for the rate of coded caching schemes with some fixed finite subpacketization level in Section VII. Prior literature, for

instance, in [11], [18], has such lower bounds on the rate. However, not all of them take into account the finite-subpacketization

constraint. The two lower bounds on the rate we obtain for given parameters K,F,M and N , are given in Table III in this

section. In this table, the parameter D , F
(
1− M

N

)
and d , K

(
1− M

N

)
. Using numerical examples, we also compare the

performance of these lower bounds with the bounds from [11], [18] in Table XII (Section VII). We conclude the paper with

discussions regarding future work in Section VIII.

Notations and terminology: Z+ denotes the set of positive integers. We denote the set {1, . . . , n} by [n] for some n ∈ Z+.

The empty set is denoted by φ. For sets A,B, the set of elements in A but not in B is denoted by A\B. The set A\a denotes

A \ {a}. The set of all b sized subsets of A is denoted by
(
A
b

)
. For a, b ∈ Z+ such that 1 ≤ a ≤ b,

(
a
b

)
represents the binomial

coefficient. A set {A1, A2, · · · , An} is said to partition the set A if
n⋃

i=1

Ai = A (where the union is a disjoint union). The

finite field with q elements is Fq. The k-dim (dimensional) vector space over Fq is represented as Fk
q . The dimension of a

vector space V over Fq is given as dim(V ). The zero vector is represented as 0. For two subspaces V,W , their subspace

sum is denoted by V + W . Note that V + W = V ⊕W (the direct sum) if V ∩W = {0}. The subspaces V1, · · · , Vn (all

are subspaces of a vector space) are said to be linearly independent if v1 + · · · + vn = 0
(
for each vi ∈ Vi, i ∈ [n]

)
holds

only for v1 = v2 = · · · = vn = 0, and linearly dependent otherwise. A graph G is defined by its vertex set V (G) and

edge set E(G) ⊆
(
V (G)

2

)
. A graph H is said to be a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G) such that the

vertices of each edge in E(H) are in V (H). Further, H is said to be an induced subgraph of G if E(H) consists of all

those edges of G both vertices of which are in V (H). For a graph G, the neighbourhood of a vertex u ∈ V (G) is defined



Fig. 1: Broadcast coded caching setup.

as N (u) = {v ∈ V (G) : {u, v} ∈ E(G)} and |N (u)| denotes the degree of u. A graph G is said to be a bipartite graph if

there exist A,B ⊆ V (G) such that A ∪B = V (G) (where the union is a disjoint union) and every edge in E(G) connects a

vertex in A to a vertex in B. Further, A and B are called as the set of left and right vertices respectively. A bipartite graph G

is said to be left-regular (right-regular) if the degree of every left (right) vertex is the same. A bipartite graph G is said to be

bi-regular if it is both left and right regular. A graph G is said to be regular if the degree of every vertex is the same. WLOG

stands for “Without loss of generality”.

III. SYSTEM MODEL

In this section, we present the classical coded caching setup as given by Ali-Niesen in [6]. We then discuss the bipartite

graph model for coded caching as given in [15].

A. System Model

Consider a broadcast coded caching setup as shown in Fig. 1. Let K be the set of users (clients) (|K| = K) in a system

consisting of one server having a library of N files, {Wi : i ∈ [N ]}, connected to the clients via an error-free broadcast

channel. We assume K ≤ N , i.e., the number of files is larger than the number of users. This is typically the case in most

research works in the coded caching literature (some exceptions exist, for instance [29]). It is also true in many practical

situations, as the library (set of all files) has possibly many more files than the number of receivers in the network. Further,

if the number of receivers is large, then they may be grouped into multiple groups, and coded caching may be applied to the

modified system, in which each group is considered like a single user (see, for instance, [12]); in which case the setting of

K ≤ N is more relevant.

Let F be the subpacketization level, i.e., we assume each file is composed of F subfiles, each taking values according to

a uniform distribution from some finite Abelian group A. The subfiles of file Wi are denoted as Wi,f : f ∈ F for some

set F of size F . Each user can store M files (equivalently, MF subfiles) in its cache. A coded caching scheme consists of

two sub schemes (as in [6]), a caching scheme according to which subfiles of the files are placed in the user caches during

periods when the traffic is low (the caching phase), and a transmission scheme or a delivery scheme that consists of broadcast

transmissions from the server satisfying the demands of the clients appearing during the demand phase. We assume symmetric

caching throughout the paper, i.e., for any f ∈ F , any user either caches Wi,f ∀i ∈ [N ] or does not cache Wi,f ∀i ∈ [N ].

Most schemes in the literature, including those for instance in [12]–[19], employ symmetric caching. The parameters F and
M
N in the symmetric caching will lead to the quantity MF

N being an integer, indicating the number of subfiles of any particular

file stored in a user’s cache.

During the demand phase, each client demands one file from the library. In the delivery scheme, the transmissions must be

done so that the demands of the clients are all satisfied. The worst-case demand scenario corresponds to that situation in which

each receiver demands a unique file. As in [6], the rate R (for the worst-case demands) of such a coded caching scheme is

defined as,



Fig. 2: The figure is a bipartite caching graph B(K = 4, F = 5, D = 3) and represents a symmetric caching scheme with 4
users, 5 subfiles and cache fraction M

N = 2
5 . Edges indicate the missed subfiles.

Rate R ,

Number of bits transmitted in the transmission
scheme considering worst-case demands

Number of bits in a file
.

The delivery scheme typically involves multiple transmission rounds. Under the assumption that the size of each transmission

is the same as that of the subfile size, the rate expression can be simplified as,

R =

Number of transmission rounds in the
transmission scheme for worst-case demands

Number of subfiles in a file (F )
. (1)

In an achievable scheme in which the delivery scheme consists of uncoded transmissions, note that the rate must be

K
(
1− M

N

)
, as the uncached fraction of each demanded file consisting of F

(
1− M

N

)
subfiles are sent uncoded. Note that in

this scheme, each transmitted subfile is intended for one particular user only.

The ratio of the rate of the uncoded scheme to the rate R of a coded caching scheme is defined as the global caching gain

(γ) of the coded caching scheme. Thus,

γ =
K(1−M/N)

R
. (2)

The global caching gain γ of a coded caching scheme also represents the average number of users served per transmission

in the coded caching scheme. We are interested in designing coded caching schemes with low rate (or high gain) and low

subpacketization level, which also uses low cache size at the users.

B. Bipartite Graph based Coded Caching and Delivery based on [15]

We can visualize the symmetric caching scheme (with fully populated caches) using a bipartite graph, following [15]. We

shall use this bipartite coded caching picture to obtain our coded caching schemes in Section IV and Section V, as well as to

obtain lower bounds on the rate of coded caching in Section VII.

Consider a bipartite graph B with K being the left (user) vertices and the right (subfile) vertices being F . We then define the

edges of the bipartite graph to denote the uncached subfiles of the files, i.e., for k ∈ K, f ∈ F , an edge {k, f} ∈ E(B) exists

if and only if the user k does not contain in its cache the subfile Wi,f , ∀i ∈ [N ]. Clearly, this bipartite graph is left-regular,

with F
(
1− M

N

)
being the degree of any user vertex. Indeed any left-regular bipartite graph defines a caching scheme, which

we formalize below.

Definition 1 (Bipartite Caching Scheme, Bipartite Caching Graph). Given a bipartite D-left-regular graph with K left vertices

and F right vertices denoted by B(K,F,D) (or in short, B), the symmetric caching scheme defined on K users with

subpacketization F with the edges of B indicating the uncached subfiles at the users, is called the (K,F,D) bipartite caching

scheme associated with the bipartite graph B. Further, B(K,F,D) is known as the bipartite caching graph.

Remark 1. We observe that the bipartite caching scheme associated with the graph B(K,F,D) has the cache fraction
M
N = 1− D

F .



Example 1. Fig. 2 shows a graph describing a (K = 4, F = 5, D = 3) bipartite caching scheme. The cache-fraction is
M
N = 2

5 , meaning that each receiver caches 2 out of the 5 subfiles in each file. For instance, the user 2 caches the subfiles

Wi,f1 ,Wi,f3 and does not cache Wi,f2 ,Wi,f4 ,Wi,f5 , ∀i ∈ [N ]. Similarly, the subfile Wi,f1 is cached in the users 2, 3, 4, and

not at the user 1, ∀i ∈ [N ] (where, N represents the number of files in the library).

Most schemes in the literature can be captured via the bipartite caching model. The delivery scheme of such schemes are the

so-called ‘all-but-one’ delivery schemes, in which each transmission is simply a sum of subfiles (one for each client in some

subset of clients), with each summand subfile being demanded by a unique client in the subset, while the other summands are

available in the unique clients cache. It turns out that this all-but-one delivery scheme can be captured in a graph-theoretic

sense, as given in [15], an equivalent version of which we now briefly discuss.

A matching of a graph G is a subset of edges with no common vertices between any two distinct edges in the subset. An

induced matching C of a graph G is a matching such that the induced subgraph of the vertices of C is C itself. The formal

definition is as follows:

Definition 2 (Induced Matching, Induced Matching Cover). Consider a bipartite graph B. A set of edges C ⊆ E(B) is called

an induced matching of B, if every {k1, f1}, {k2, f2} ∈ C satisfies k1 6= k2, f1 6= f2 and {k1, f2}, {k2, f1} /∈ E(B). A set of

induced matchings {Ci : i ∈ [S]} is called an induced matching cover of B if it partitions E(B).

Now, an induced matching cover {Ci : i ∈ [S]} of B is equivalent to the set of color classes of an S-strong-edge-coloring

of B. The work [15] connects the strong edge coloring of bipartite graphs to coded caching. For more details on the definition

of strong edge coloring we refer the reader to [15].

Let Wdk
denote the demanded file of the user k ∈ K, in the demand phase. For an induced matching C of the bipartite

caching graph B consisting of the edges {{ki, fi} : i ∈ [g]} (where g represents the number of edges in the induced matching

C), consider the associated transmission

YC =

g∑

i=1

Wdki
,fi . (3)

As C is an induced matching, Wdki
,fi is a subfile unavailable but demanded at the user ki. By the same reason, each user

ki has all the subfiles in (3) in its cache except for Wdki
,fi , hence user ki can decode Wdki

,fi , ∀i ∈ [g]. If {Ci, i ∈ [S]} is

an induced matching cover then it is easy to see that the transmissions YCi
: i ∈ [S] (constructed as in (3)) corresponding to

Ci : i ∈ [S] satisfy the demands of all the users, as all the edges of the bipartite caching graph are ‘covered’ by the induced

matching cover. Therefore, we have obtained a valid delivery scheme. We refer to this delivery scheme as the induced-matching

based delivery scheme. Here, the parameter S represents the number of induced matchings in the induced matching cover or

equivalently the number of transmissions in the associated delivery scheme. By (1), the rate of this transmission scheme is S
F .

Further, if |Ci| = g, ∀i ∈ [S] then the rate will be S
F = K(1−M/N)

g and the coded caching gain is g. Thus, each transmission

corresponding to each induced matching will serve exactly g users.

The above discussion of the bipartite caching scheme and the induced-matching based delivery scheme is summarized into

the following theorem, which will be used to derive the coded caching parameters from the bipartite caching graphs that we

construct in Section IV and Section V. The equivalent description of this theorem can be found in [15] in the language of

strong edge coloring.

Theorem 1. Consider a bipartite caching graph B(K,F,D) with an induced matching cover {Ci : i ∈ [S]} such that

|Ci| = g, ∀i ∈ [S]. Then there is a coded caching scheme for a broadcast system with K users, each with cache size

M , with the number of files N ≥ K , consisting of the caching scheme defined by B(K,F,D) with subpacketization

F , cache fraction M
N = 1− D

F , and the associated delivery scheme based on the induced matching cover {Ci : i ∈ [S]}
having rate R = S

F and global caching gain γ = g.

The following example illustrates an induced matching cover for the bipartite caching scheme presented in Example 1.



Example 2 (Continuation of Example 1). Consider the following subsets of edges of the bipartite caching graph presented

in Fig. 2. C1 = {{1, f1}, {3, f5}} , C2 = {{1, f2}, {4, f5}} , C3 = {{1, f3}, {2, f5}} , C4 = {{2, f2}, {4, f3}} , C5 =

{{2, f4}, {3, f3}} , C6 = {{3, f2}, {4, f4}}. Further
6⋃

i=1

Ci = E(B), (where the union is a disjoint union). It is easy to see

that each Ci, ∀i ∈ [6] is an induced matching and {Ci : i ∈ [6]} is an induced matching cover by Definition 2. Therefore, by

Theorem 1, we have a delivery scheme corresponding to the induced matchings of B, with rate R = 6
5 and global caching

gain γ = 2. In Example 6, we show that this rate is optimal for the symmetric caching scheme defined by B(4, 5, 3).

IV. A NEW LOW SUBPACKETIZATION SCHEME WITH LARGE CACHE FRACTION (SCHEME A)

In this section and in Section V, we present new coded caching schemes using the bipartite graph framework, which we

have recollected in Section III-B, via tools from the projective geometry. Intuitively, these schemes combine ideas from the

base-line coded caching scheme of [6], which is based on sets and set-containment, with ideas from the projective geometry,

i.e., subspaces and subspace-containment (containment or the lack thereof of smaller subspaces within larger ones).

In this section we present a construction of coded caching scheme (Scheme A) which achieves a subpacketization which is

subexponential in K , with cache fraction (MN ) ≥ 0.5. Example 3 is a motivating example corresponding to the construction

in Scheme A.

The construction of Scheme A (also Scheme B in Section V) is based on the bipartite graph approach recollected in Section

III-B. We construct the bipartite caching graph by giving user vertices and subfile vertices, and then identify an induced

matching cover in it. Then by using Theorem 1, we obtain the parameters of the coded caching scheme.

As our constructions use some simple results from the projective geometry, we first review some basic concepts from the

projective geometry over finite fields and develop some mathematical terminology.

A. Review of the Projective Geometries over Finite Fields [30]

Let k, q ∈ Z+ such that q is a prime power. Let Fk
q be a k-dim vector space over a finite field Fq. Let ‘0’ represent the zero

vector of Fk
q . Consider the set of equivalence classes of Fk

q \ {0} under the equivalence relation ∼ defined by x ∼ y if there

is a nonzero element α ∈ Fq such that x = αy. The (k − 1)-dim projective space over Fq is denoted by PGq(k − 1) and is

defined as the set of these equivalence classes. For m ∈ [k], let PGq(k − 1,m− 1) denote the set of all m-dim subspaces of

Fk
q . From Chapter 3 in [30] it is known that |PGq(k − 1,m− 1)| is equal to the Gaussian(or q)-binomial coefficient

[
k

m

]

q
where, [

k

m

]

q

,
(qk − 1) . . . (qk−m+1 − 1)

(qm − 1) . . . (q − 1)
. (where k ≥ m)

In fact,

[
k

m

]

q

gives the number of m-dim subspaces of any k-dim vector space over Fq . Further, by definition,

[
k

0

]

q

= 1. In

any Gaussian binomial coefficient

[
a

b

]

q

given in this paper we assume that a, b ∈ Z+ and 1 ≤ b ≤ a.

The following known results from [30] are used to describe our schemes (Scheme A and Scheme B).

Lemma 1. [30] Consider a k-dim vector space Fk
q . Let 1 ≤ r, s, l < k.

A1:

[
k

r

]

q

=

[
k

k − r

]

q

.

A2: The number of distinct r-dim subspaces of Fk
q containing a fixed l-dim subspace is

[
k − l

r − l

]

q

.

A3: The number of distinct r-dim subspaces of Fk
q intersecting a fixed s-dim subspace in some l-dim subspace is

q(r−l)(s−l)

[
k − s

r − l

]

q

[
s

l

]

q

.



We are essentially interested in finding out some asymptotic results of the schemes which we develop in next sections. For

this reason, we use the following simple upper and lower bounds on Gaussian binomial coefficients and their relationships.

Lemma 2. For non-negative integers a, b, f , for q being some prime power,

q(a−b)b ≤
[
a

b

]

q

≤ q(a−b+1)b (4)

q(a−f−1)b ≤

[
a

b

]

q[
f

b

]

q

≤ q(a−f+1)b (5)

q(a−f−b−1)δ ≤

[
a

b

]

q[
a

f

]

q

≤ q(a−f−b+1)δ. (6)

where, δ = max(b, f)−min(b, f).

Proof: The first lower bound for

[
a

b

]

q

is well known from the combinatorics literature (see, for instance, [31]). All the

other bounds are proved by definition of the Gaussian binomial coefficient and by noting that qa − 1 ≥ qa−1 (since q ≥ 2),

and qa − 1 ≤ qa. This completes the proof.

B. An Illustrative Example

We now show an example which we shall see illustrates the idea behind the construction in Section IV-C.

Example 3. Consider a caching system with K = 7, F = 7, M
N = 4

7 . To present this system, we need to provide the indexing

for the users (K) and the subfiles (F). For this purpose, we consider some quantities from the projective geometry over finite

fields. Consider a 3-dim vector space (F3
2) over a binary field F2. Consider the 1-dim subspaces of F3

2 which are listed as

follows,

V1 = span{(0, 0, 1)}
V2 = span{(0, 1, 0)}
V3 = span{(1, 0, 0)}
V4 = span{(1, 1, 0)}
V5 = span{(1, 0, 1)}
V6 = span{(0, 1, 1)}
V7 = span{(1, 1, 1)}.

Let V = {V1, V2, V3, V4, V5, V6, V7}. Consider the 2-dim subspaces of F3
2 which are listed as follows,



X1 = {(0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 0, 0)}
X2 = {(0, 0, 1), (1, 0, 0), (1, 0, 1), (0, 0, 0)}
X3 = {(0, 1, 0), (1, 1, 0), (1, 0, 0), (0, 0, 0)}
X4 = {(0, 0, 1), (1, 1, 0), (1, 1, 1), (0, 0, 0)}
X5 = {(0, 1, 0), (1, 0, 1), (1, 1, 1), (0, 0, 0)}
X6 = {(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)}
X7 = {(1, 1, 0), (0, 1, 1), (1, 0, 1), (0, 0, 0)}.

Let X = {X1, X2, X3, X4, X5, X6, X7}. We now proceed to describe the caching phase and the delivery phase.

Caching phase: Let K = V and F = X. During the caching phase, every file (Wi, i ∈ [N ]) is divided into F = 7 subfiles.

The subfiles of Wi are denoted as Wi,X , ∀X ∈ F . The caching scheme is,

• For each i ∈ [N ], the user Vl ∈ K caches the subfile Wi,X if Vl is not a subspace of X .

Following this rule, we have the cached and uncached subfile indices of each user as shown in Table IV. The first two

columns of Table IV, provides users and indices of cached subfiles respectively. Therefore, every user caches 4 out of the 7

subfiles in every file. Hence, the cache fraction M
N = 4

7 .

TABLE IV: Indices of the cached and uncached subfiles for the caching scheme presented in Example 3.

Users Indices of Indices of uncached

cached subfiles (equivalently demanded) subfiles

V1 X3, X5, X6, X7 X1, X2, X4

V2 X2, X4, X6, X7 X1, X3, X5

V3 X1, X4, X5, X7 X2, X3, X6

V4 X1, X2, X5, X6 X3, X4, X7

V5 X1, X3, X4, X6 X2, X5, X7

V6 X2, X3, X4, X5 X1, X6, X7

V7 X1, X2, X3, X7 X4, X5, X6

Delivery phase: Let demand of an arbitrary user Vl ∈ K be WdVl
. The demanded (uncached) subfile indices corresponding

to each user are given in the last column of Table IV. To satisfy the demands of the users, the server transmits the following

7 transmissions.

WdV6 ,X1 +WdV5 ,X2 +WdV7 ,X4

WdV1 ,X1 +WdV4 ,X3 +WdV7 ,X5

WdV1 ,X2 +WdV2 ,X3 +WdV7 ,X6

WdV3 ,X3 +WdV1 ,X4 +WdV6 ,X7

WdV3 ,X2 +WdV2 ,X5 +WdV4 ,X7

WdV2 ,X1 +WdV3 ,X6 +WdV5 ,X7

WdV4 ,X4 +WdV5 ,X5 +WdV6 ,X6 .

Each transmission is a linear combination of 3 demanded subfiles. It is easy to see (using Table IV) that any user decodes

their demanded subfiles. For instance, the user V1 decodes WdV1 ,X1 from the second transmission as it contains WdV4 ,X3



and WdV7 ,X5 in its cache. Similarly, the user V1 decodes WdV1 ,X2 from the third transmission and WdV1 ,X4 from the fourth

transmission. Thus, each transmission serves 3 users. Hence, the global caching gain is γ = 3. By using (1), the rate of the

scheme is R = 7
7 = 1.

Remark 2. The caching scheme of the Example 3 is obtained based on the idea of ‘subspace containment’, which we shall

see motivates the caching scheme of our new construction in this section. We shall show in Example 4 in Section IV-C that

the delivery scheme of Example 3 is obtained from an induced matching cover of the bipartite caching graph of the new

construction.

We are now ready to construct Scheme A, which is the main result of this section.

C. Construction of Scheme A

We will construct Scheme A by constructing a bipartite caching graph B(K,F,D) and identify an induced matching cover

in it. Then by using Theorem 1, we obtain the coded caching parameters (K,F, M
N , R, γ) of Scheme A.

Let k,m, t, q be positive integers such that m + t ≤ k and q is some prime power. Consider a k-dim vector space Fk
q .

Consider the following sets of subspaces which are used to index our user vertices, subfile vertices and the induced matchings

of the bipartite caching graph B which we construct.

V , PGq(k − 1, t− 1). (set of all t-dim subspaces)

X , PGq(k − 1,m+ t− 1).(set of all (m+ t)-dim subspaces)

T , PGq(k − 1,m− 1). (set of all m-dim subspaces)

Construct a bipartite graph B with left (user) vertex set K = V and right (subfile) vertex set F = X. Define the edge set of

B as,

E(B) , {{V,X} : V ∈ V, X ∈ X, V ⊆ X}.

We now find the values of K,F and the degree of any user vertex (left degree) D.

Lemma 3. The following relationships hold for the construction we have presented.

K = |V| =
[
k

t

]

q

, F = |X| =
[

k

m+ t

]

q

,

D , |N (V )| =
[
k − t

m

]

q

,

where the last relationship holds for any V ∈ V.

Proof: By using the ideas presented in Section IV-A we can write,

K = |V| = |PGq(k − 1, t− 1)| =
[
k

t

]

q

.

F = |X| = |PGq(k − 1,m+ t− 1)| =
[

k

m+ t

]

q

.

Now, we will find |N (V )|. Consider an arbitrary V ∈ V. It is easy to see that N (V ) = {X ∈ X : V ⊆ X}. Therefore,

finding |N (V )| is equivalent to counting the number of (m+ t)-dim subspaces of Fk
q containing the fixed t-dim subspace V .

By applying A2 of Lemma 1 we get,

D = |N (V )| =
[

k − t

(m+ t)− t

]

q

=

[
k − t

m

]

q

.



This completes the proof.

Note that, by Lemma 3, B is a D-left regular bipartite graph with K left vertices and F right vertices. Therefore, by

Definition 1, B(K,F,D) is a valid bipartite caching graph.

Remark 3. Similar to left degree D, it is easy to see that the degree of any right (subfile) vertex X ∈ X is |N (X)| =

|PGq(m+ t− 1, t− 1)| =
[
m+ t

t

]

q

. Therefore, B is a bi-regular bipartite caching graph.

We now show that B has an induced matching cover {Ci : i ∈ [S]} such that |Ci| = g, ∀i ∈ [S], for some g, S ∈ Z+.

Induced matching cover: The induced matchings of B, that we wish to obtain, is based on a relabeling of the edges B

based on m-dim subspaces of Fk
q . Towards that end, we first require the following lemmas (Lemma 4 and Lemma 5) using

which we can find ‘matching’ labels to the t-dim and m-dim subspaces of some X ∈ X. Subsequently, using Lemma 6 and

Lemma 7, we show the induced matching cover of B.

Lemma 4. Consider some element X ∈ X. Let



Vi, i = 1, . . . ,

[
m+ t

t

]

q



 denote the t-dim subspaces of X taken in some

fixed order. Then the set of m-dim subspaces of X can be written as an indexed set as



TVi,X , i = 1, . . . ,

[
m+ t

m

]

q



 such

that TVi,X ⊕ Vi = X, ∀i (where ⊕ denotes direct sum). Moreover, such an indexed set can be found in operations polynomial

in

[
m+ t

t

]

q

.

Proof: See Appendix A.

For a t-dim subspace Vi contained in an (m+ t)-dim subspace X, let TVi,X (the m-dim subspace as obtained in Lemma 4

such that TVi,X ⊕ Vi = X) be called the matching subspace of Vi in X . Using these matching subspaces, we can obtain an

alternate labeling scheme for the edges of our bipartite caching graph B. The alternate labels are given as follows:

• Let the alternate label for {V,X} be {V, TV,X}, where TV,X is the m-dim matching subspace of V in X obtained using

Lemma 4.

The following lemma ensures that the alternative labeling given above is indeed a valid labelling, i.e., it uniquely identifies

the edges of B.

Lemma 5. No two edges of B have the same alternate label.

Proof: If {V1, X1}, {V2, X2} ∈ E(B) have the same alternate label {V, TV,X}, then clearly V1 = V2 = V . Moreover,

we should also, by definition of the alternate labels, have that X1 = TV,X ⊕ V = X2. Therefore {V1, X1} = {V2, X2}. This

completes the proof.

We are now in a position to present the induced matching cover of B. Our induced matchings (defined in Lemma 6) are

represented in terms of the alternate labels given to the edges of B. We first show the structure of one such induced matching.

Lemma 6. For an m-dim subspace T ∈ T, consider the subset of E(B) (identified by their alternate labels) as follows:

CT , {{V, T } ∈ E(B) : V ∈ V}.

Then CT is a

[
k −m

t

]

q

-sized induced matching of B.

Proof: Firstly, we observe that CT is a well-defined set because the T is an m-dim subspace of precisely

[
k −m

(m+ t)−m

]

q

subspaces of dimension (m + t) by A2 of Lemma 1. Note that {V, T } is the alternate label for {V, T ⊕ V } ∈ E(B). Also,

we can observe that for distinct {V1, T }, {V2, T } ∈ CT , we must have V1 ⊕ T 6= V2 ⊕ T . This is due to the fact that each



m-dim subspace within an (m + t)-dim subspace X is matched to a unique t-dim subspace of X . Hence, by Lemma 4 and

our alternate labeling scheme, we should have |CT | =
[

k −m

(m+ t)−m

]

q

=

[
k −m

t

]

q

.

We now show that CT forms an induced matching of B. We do this using Definition 2. Consider two distinct and arbitrary

edges {V1, T }, {V2, T } ∈ CT . These are the alternate labels for {V1, T ⊕V1}, {V2, T ⊕V2} respectively. We have that V1 6= V2,

and have already checked that T ⊕ V1 6= T ⊕ V2. Further, note that V1 6⊂ T ⊕ V2. This is because if V1 ⊂ T ⊕ V2, then,

T ⊕ V1 = T ⊕ V2, which is not true by the definition of CT . Thus {V1, T ⊕ V2} /∈ E(B). Similarly, {V2, T ⊕ V1} /∈ E(B).

By invoking the Definition 2, it is clear that CT is an induced matching of B. This completes the proof.

We now show that the set of induced matchings {CT : T ∈ T} partition E(B).

Lemma 7. ⋃

T∈T

CT = E(B),

where the above union is a disjoint union (the induced matchings CT are as defined in Lemma 6).

Proof: It should be clear from our alternate labeling scheme and the definition of CT that any edge {V,X} ∈ E(B)(
which gets some alternate label {V, TV,X}

)
appears in the induced matching of B given by CTV,X

. Furthermore, by definition

CT1 and CT2 are disjoint for any distinct T1 and T2 in T. This completes the proof.

Therefore, {CT : T ∈ T} is an induced matching cover of B. In the light of the construction of the bipartite caching graph

B of this section and the induced matching cover of B, we are now ready to present our coded caching scheme, Scheme A,

in the following theorem.

Theorem 2. (Scheme A) Let k,m, t be positive integers such that m+ t ≤ k and q be any prime power. The bipartite

graph B constructed in Section IV-C is a B(K,F,D) bipartite caching graph with an induced matching cover having

S =

[
k

m

]

q

induced matchings, each having g =

[
k −m

t

]

q

edges and defines a coded caching scheme with,

K =

[
k

t

]

q

, F =

[
k

m+ t

]

q

,

M

N
= 1−

[
k − t

m

]

q[
k

m+ t

]

q

, R =

[
k

m

]

q[
k

m+ t

]

q

,

Global caching gain γ =

[
k −m

t

]

q

.

Proof: From Lemma 3, we get the expressions of K,F and D. By Lemma 6 and Lemma 7, the size of the induced

matchings of B is g = |CT | =
[
k −m

t

]

q

for any T ∈ T and they partition the edge set E(B). Further, by Lemma 6,

the number of induced matchings in the induced matching cover is S = |T| = |PGq(k − 1,m − 1)| =
[
k

m

]

q

. Hence, the

bipartite graph B satisfies all the conditions in Theorem 1. Therefore, there exists a coded caching scheme with K users,

subpacketization F ,

M

N
= 1− D

F
= 1−

[
k − t

m

]

q[
k

m+ t

]

q

,



Fig. 3: Illustration of the relabeling procedure presented in Example 4: The left figure is a bi-regular bipartite graph (B1) with

the left and right vertices being the t-dim and m-dim subspaces of X1 respectively. Note that {Vi, Tj} ∈ E(B) if Vi⊕Tj = X1

where i, j ∈ {1, 2, 6}. The right figure is a perfect matching of B1. Hence, the relabels of {V1, X1}, {V2, X1}, {V6, X1} are

{V1, T2}, {V2, T6}, {V6, T1} respectively.

R =
S

F
=

[
k

m

]

q[
k

m+ t

]

q

,

Global caching gain γ = g =

[
k −m

t

]

q

.

This completes the proof.

Example 4. (Continuation of Example 3) Example 3 gives us an illustration of our Scheme A for the values of t = 1,m =

1, k = 3 and q = 2. It is not difficult to see that the bipartite caching graph B(K,F,D) obtained according to Scheme A gives

us the caching scheme as given in Example 3. We now illustrate how we obtained the delivery scheme as shown in Example

3, using the induced matching cover of B obtained through perfect matchings of the bipartite graph constructed in Appendix

A (proof of Lemma 4) and our alternate labelling scheme.

In the bipartite graph terminology we have recollected, the edge set of the bipartite caching graph B can be inferred from

Table IV. For instance, the edges incident at the user vertex V1 are {V1, X1}, {V1, X2}, {V1, X4} and the edges incident at

the subfile vertex X1 are {V1, X1}, {V2, X1}, {V6, X1}. First, we relabel the edges of B as per Lemma 4. Let T be the set

of all m-dim subspaces of F3
2. Since t = m = 1, we can consider T = V with Ti = Vi, i ∈ [7]. Consider an (m + t)-dim

subspace X1. This can be written as X1 = V1 ⊕ T2 = V1 ⊕ T6 = V2 ⊕ T1 = V2 ⊕ T6 = V6 ⊕ T1 = V6 ⊕ T2.

The relabeling procedure is illustrated in Fig. 3. The left figure represents a bipartite graph with the t-dim (m-dim) subspaces

of X1 as the left (right) vertices. The edges denote the subspaces in direct sum. This bipartite graph is not the caching graph,

but it corresponds to the one defined in Appendix A used to find the relabeling. The right figure of Fig. 3 denotes a perfect

matching of the bipartite graph. In the same way, for each (m + t)-dim subspace X ∈ X, a perfect matching is obtained.

Following the edges of the perfect matchings gives us the new labels for the elements of E(B), which are presented in Table

V.

Now we describe how we can get the delivery scheme using the induced matchings of the bipartite caching graph B, which

are indexed using T. For each m-dim subspace T we can define an induced matching of B as per Lemma 6 using the alternate

labels for the edges of B. For instance, the induced matching corresponding to T1 is CT1 = {{V6, T1}, {V5, T1}, {V7, T1}} =

{{V6, X1}, {V5, X2}, {V7, X4}}. Therefore, the transmission corresponding to CT1 is WdV6 ,X1 + WdV5 ,X2 + WdV7 ,X4 as

mentioned in Example 3. Similarly, other transmissions can be obtained from the induced matchings CT : T ∈ T, corresponding

to which the transmissions are shown in Example 3.

D. Asymptotic Analysis and Numerical Comparisons of Scheme A with Ali-Niesen Scheme

In Appendix B, we provide the asymptotic analysis (as K grows) for the scheme presented in Theorem 2. We have provided

two cases. In case 1 of Appendix B, the cache fraction is upper bounded by a constant (MN ≤ constant) and our scheme

has subpacketization, F = O(poly(K)). The rate, however, increases linearly with K i.e., R = Θ(K) (similar to the uncoded

caching rate); hence this regime does not have much significance. In case 2 of Appendix B, we keep the rate upper bounded



TABLE V: Old and new labels of the edges in E(B) through perfect matchings, for the bipartite caching graph B presented

in Example 4.

Old labels New labels Old labels New labels

{V1, X1} {V1, T2} {V7, X4} {V7, T1}

{V2, X1} {V2, T6} {V2, X5} {V2, T5}

{V6, X1} {V6, T1} {V5, X5} {V5, T7}

{V1, X2} {V1, T3} {V7, X5} {V7, T2}

{V3, X2} {V3, T5} {V3, X6} {V3, T6}

{V5, X2} {V5, T1} {V6, X6} {V6, T7}

{V2, X3} {V2, T3} {V7, X6} {V7, T3}

{V3, X3} {V3, T4} {V4, X7} {V4, T5}

{V4, X3} {V4, T2} {V5, X7} {V5, T6}

{V1, X4} {V1, T4} {V6, X7} {V6, T4}

{V4, X4} {V4, T7}

TABLE VI: Comparison of the coded caching scheme in Theorem 2 (Scheme A) with the scheme in [12] (Ali-Niesen

scheme with grouping). We match the cache fraction, the gain, and number of users as closely as possible, and compare

the subpacketization level.

Number Cache Global Subpacketization

of users fraction caching gain

(k,m, t, q) (K
′
, l)

K1 K2
M
N γ F1 F2

(Theorem 2) [12] (Theorem 2) [12]

(8, 3, 1, 2) (60, 4)

255 240
16

17
31 200787 1017

(6, 3, 2, 3) (24, 459)

11011 11016
81

91
13 364 2704156

(6, 3, 2, 2) (12,54)

651 648
16

21
7 63 924

(7, 4, 1, 2) (12, 10)

127 120
96

127
7 2667 924



by a constant (R = O(1)) then our scheme has subexponential subpacketization, F = qO((logq K)2) and cache fraction
M
N = 1−Θ

(
1√
K

)
. Hence, the drawback of Scheme A is that it requires higher cache fraction even though it has subexponential

subpacketization (when rate is upper bounded by a constant). The asymptotics of Scheme A obtained in this section are

summarized in the first 2 rows of Table II in Section II.

In Table VI, we compare numerically the scheme in Theorem 2 with the scheme in [12] (Section V-A in [12], this is also

given in row 2 of Table I), which is a modified version of the coded caching scheme in [6] with user grouping. The scheme

in [12] is parameterized by the cache fraction M
N , global caching gain γ and number of user groups l, and gives a scheme

with the number of users K2 = K
′
l and subpacketization F2 =

(
K

′

γ−1

)
, where K

′
= (γ − 1)⌈N

M ⌉. The number of users and

subpacketization corresponding to Theorem 2, are labelled as K1 and F1 respectively. From the table it is clear that Scheme

A performs better than [12], for most of the cases, in terms of the subpacketization.

We also observe from the construction of Scheme A as well as Table VI that the cache fraction of our scheme is at least

0.5 in general. To overcome the drawback of high cache requirement of Scheme A, we propose a new scheme (Scheme B) in

Section V. Scheme B also uses ideas from the projective geometry.

V. A NEW LOW SUBPACKETIZATION SCHEME WITH SMALL CACHE FRACTION (SCHEME B)

In this section, we present a coded caching scheme (Scheme B), which achieves subexponential (in K) subpacketization

when memory is upper bounded by a constant. In Section V-E, we give Scheme C, which is a special case of Scheme B, and

achieves linear subpacketization and is comparatively more flexible than the existing linear subpacketization schemes in the

literature with non-trivial caching gain. Finally, in Section V-F, we show a generalized version of Scheme B which adds one

more tunable parameter to the construction of Scheme B.

The construction of Scheme B uses similar techniques (bipartite graph and projective geometry) as that of Scheme A. Before

presenting the new construction of bipartite caching graph B(K,F,D) (which gives Scheme B), we first present some simple

results using the projective geometry over finite fields which are used in this section.

A. An useful lemma about sets of subspaces

Let T , PGq(k − 1, 0). Let θ(k) denote the number of distinct 1-dim subspaces of Fk
q . Therefore,

θ(k) = |T| =
[
k

1

]

q

=
qk − 1

q − 1
.

The following lemma will be used repeatedly in this section.

Lemma 8. Let k, a, b ∈ Z+ such that 1 ≤ a+ b ≤ k. Consider a k-dim vector space V over Fq and a fixed a-dim subspace A

of V . The number of distinct (un-ordered) b-sized sets {T1, T2, · · · , Tb} ⊆ T and A⊕T1⊕T2⊕· · ·⊕Tb ∈ PGq(k−1, a+b−1)

is 1
b!

b−1∏
i=0

(θ(k)− θ(a+ i)).

Proof: First we find the number of T1 ∈ T such that A ⊕ T1 is an (a + 1)-dim subspace of V . To pick such a T1 we

define, T1 = span(t1) for some t1 ∈ V \A. Such a t1 can be picked in (qk − qa) ways. However, for one such fixed t1, there

exist (q − 1) number of t′
1
∈ V \ A such that span(t1) = span(t′

1
) = T1. Thus, the required number of unique T1 ∈ T is

qk−qa

q−1 = θ(k)−θ(a). Similarly, for every such T1 we can select T2 with the condition that A⊕T1⊕T2 is (a+2)-dim subspace

of V in (θ(k)−θ(a+1)) ways. So the number of distinct ordered sets {T1, T2} is (θ(k)−θ(a))(θ(k)−θ(a+1)). By induction

the number of distinct ordered sets {T1, T2, · · · , Tb}, such that A
b⊕

i=1

Ti is an (a+b)-dim subspace of V is
b−1∏
i=0

(θ(k)−θ(a+i)).

We know that the number of permutations of a b-sized set is b!. Therefore, the number of distinct (un-ordered) sets satisfying

the required conditions is 1
b!

b−1∏
i=0

(θ(k)− θ(a+ i)). This completes the proof.

We also use the following corollary to Lemma 8. The proof of this follows from Lemma 8 (by taking k = a, b = 1, a = a−1

in Lemma 8).



Corollary 1. Consider two subspaces A′, A of a k-dim vector space V over Fq such that dim(A′) = a− 1, dim(A) = a and

A′ ⊂ A. The number of distinct T ∈ T such that A′ ⊕ T = A is 1
1! (θ(a)− θ(a− 1)) = qa−qa−1

q−1 = qa−1.

We now give an example of another coded caching scheme, which we shall see in Section V-C to be illustrative of Scheme

B of this paper.

B. An Illustrative Example

Example 5. Consider a caching system with K = 7, F = 21, MN = 0.4285. Similar to Example 3, we need to provide the

indexing for the users (K) and the subfiles (F). For this purpose, we consider some quantities from the projective geometry

over finite fields. Consider a 3-dim vector space (F3
2). Consider the 1-dim subspaces of F3

2 which are listed as follows,

T1 = span{(0, 0, 1)}
T2 = span{(0, 1, 0)}
T3 = span{(1, 0, 0)}
T4 = span{(1, 1, 0)}
T5 = span{(1, 0, 1)}
T6 = span{(0, 1, 1)}
T7 = span{(1, 1, 1)}.

Let X = {T1, T2, T3, T4, T5, T6, T7}. We know that any two distinct 1-dim subspaces are linearly independent. Let Y be the

set of all 2-sized sets of linearly independent 1-dim subspaces of F3
2 i.e., Y = {{Ti, Tj}, i, j ∈ {1, 2, · · · , 7}, i 6= j}. Therefore

|Y| = 21.

Let Z1 be the set of all 3-sized sets of linearly dependent 1-dim subspaces of F3
2. It is easy to see that

Z1 = {{T1, T2, T6}, {T2, T3, T4}, {T1, T3, T5}, {T1, T4, T7},
{T2, T5, T7}, {T3, T6, T7}, {T4, T5, T6}}.

Let Z be the set of all 3-sized sets of linearly independent 1-dim subspaces of F3
2. Therefore Z =

(
X

3

)
\Z1. Therefore |Z| = 28.

We now proceed to describe the caching phase and delivery phase.

Caching phase: Let the user set be K = X and the set of subfiles be F = Y. During the caching phase, every file (Wi, i ∈
[N ]) is divided into F = |Y| = 21 subfiles. The subfiles of Wi are denoted as Wi,Y , ∀Y ∈ F . The caching scheme is,

• For each i ∈ [N ], the user Tl ∈ K caches the subfile Wi,Y if {Tl} ∪ Y /∈ Z.

For instance, the user T1 caches the subfiles Wi,{T1,T2}, Wi,{T1,T3},Wi,{T1,T4},Wi,{T1,T5},Wi,{T1,T6},Wi,{T1,T7} and

Wi,{T2,T6}, Wi,{T3,T5},Wi,{T4,T7} for every i ∈ [N ]. It is easy to see that, every user caches 9 subfiles of every file. Hence,

the cache fraction M
N = 9

21 = 0.4285.

Delivery phase: Let demand of an arbitrary user Tl ∈ K be WdTl
. Note that the subfiles requested by the user Tl are

precisely {WdTl
,Z\Tl

: ∀Z ∈ Z}. The transmission scheme is,

• For each Z ∈ Z, the server makes the transmission
⊕

Tl∈Z

WdTl
,Z\Tl

.

For instance, the transmission corresponding to {T1, T2, T3} ∈ Z is WdT1 ,{T2,T3} +WdT2 ,{T1,T3} +WdT3 ,{T1,T2}. It is clear

that, from this transmission, the user T1 decodes WdT1 ,{T2,T3}, the user T2 decodes WdT2 ,{T1,T3}, and the user T3 decodes

WdT3 ,{T1,T2}. Since one transmission is made for each Z ∈ Z, all the user demands will be satisfied. As 3 users are served

in any transmission, the global caching gain is 3. By using (1), the rate of the scheme is R = |Z|
|F| =

28
21 = 1.33.

We are now ready to construct Scheme B, which is the main result of this section.



C. Construction of Scheme B

We now proceed to develop some notations which are used to label our user vertices, subfile vertices and induced matchings

of the bipartite caching graph that we construct.

Let k,m, n, q be positive integers such that n+m ≤ k and q is some prime power. Consider a k-dim vector space Fk
q and

the following sets of subspaces.

T , PGq(k − 1, 0). (set of all 1-dim subspaces)

R , PGq(k − 1, n− 1). (set of all n-dim subspaces)

S , PGq(k − 1,m− 1). (set of all m-dim subspaces)

U , PGq(k − 1, n+m− 1). (set of all (n+m)-dim subspaces)

Now, consider the following sets, which are used to present our bipartite caching graph.

X ,

{
{T1, T2, · · · , Tn} : ∀Ti ∈ T,

n∑

i=1

Ti ∈ R

}
. (7)

Y ,

{
{T1, T2, · · · , Tm} : ∀Ti ∈ T,

m∑

i=1

Ti ∈ S

}
. (8)

Z ,

{
{T1, · · · , Tn+m} : ∀Ti ∈ T,

n+m∑

i=1

Ti ∈ U

}
. (9)

Thus, X is the set of all n-sized sets of 1-dim subspaces such that their sum is an n-dim subspace. Intuitively, each Ti, i ∈ [n]

in {T1, T2, · · · , Tn} has a different extra dimension. So, the dimension of the subspace
n∑

i=1

Ti is n. Similarly, we have Y and

Z.

We now proceed to construct the bipartite caching graph B(K,F,D). Construct a bipartite graph B with left (user) vertex

set K = X and right (subfile) vertex set F = Y. Define the edge set of B as,

E(B) , {{X,Y } : X ∈ X, Y ∈ Y, X ∪ Y ∈ Z}.

We now find the values of K,F and the degree of any user vertex (left degree) D.

Lemma 9. From the given construction, we have the following.

K = |X| = 1

n!
q

n(n−1)
2

n−1∏

i=0

[
k − i

1

]

q

,

F = |Y| = 1

m!
q

m(m−1)
2

m−1∏

i=0

[
k − i

1

]

q

,

D , |N (X)| = qnm

m!
q

m(m−1)
2

m−1∏

i=0

[
k − n− i

1

]

q

.

where the last equation holds for any X ∈ X.

Proof: See Appendix C.

Note that, by Lemma 9, B is a D-left regular bipartite graph with K left vertices and F right vertices. Therefore, by

Definition 1, B(K,F,D) is a valid bipartite caching graph.

Remark 4. It is also easy to show that the degree of any right (subfile) vertex Y ∈ Y is |N (Y )| = qnm

n!
q

n(n−1)
2

n−1∏
i=0

[
k −m− i

1

]

q
(the proof is similar to that of D in Appendix C with an interchange of n and m). Therefore, B is a bi-regular bipartite caching

graph.



We now show that B has an induced matching cover {Ci : i ∈ [S]} such that |Ci| = g, ∀i ∈ [S], for some g, S ∈ Z+.

Induced matching cover: We first describe an induced matching of B and show that such equal-sized induced matchings

partition E(B). This will suffice to show the delivery scheme as per Theorem 1.

We now present an induced matching of size
(
n+m
n

)
in B (where

(
a
b

)
represents binomial coefficient). Recall the definition

of Z from (9).

Lemma 10. Consider Z = {T1, T2, · · · , Tn+m} ∈ Z. Then CZ ,

{
{X,Z \X} : X ∈

(
Z
n

)}
⊆ E(B) is an induced matching

of size
(
n+m
m

)
in B.

Proof: First note that CZ is well-defined as Z ∈ Z. Consider an arbitrary X ⊂ Z such that X ∈ X. It is clear that

{X,Z \ X} ∈ E(B). Consider two distinct edges {X1, Z \ X1}, {X2, Z \ X2} ∈ CZ (where X1 6= X2). It is clear that

Z \X1 6= Z \X2. WLOG, let Ta /∈ X1 and Ta ∈ X2 (as X1 6= X2, such a Ta exists). Then, Ta /∈ X1 ∪ (Z \X2) and hence

X1∪(Z \X2) ( Z . By the definition of Z in (9), it is clear that X1∪(Z \X2) /∈ Z. Therefore, we have {X1, Z \X2} /∈ E(B),

by the definition of E(B). Similarly {X2, Z \X1} /∈ E(B). By invoking Definition 2, it is clear that CZ is an induced matching

of B. It is easy to see that |CZ | =
(
n+m
n

)
. This completes the proof.

We now show that the set of induced matchings {CZ : Z ∈ Z} partition E(B).

Lemma 11. The induced matchings {CZ : Z ∈ Z} as defined in Lemma 10 partition the edge set E(B).

Proof: Consider Z,Z ′ ∈ Z such that Z 6= Z ′. By definition of CZ , CZ′ , we have CZ ∩ CZ′ = φ. Now consider

an arbitrary edge
{
{T1, T2, · · · , Tn}, {Tn+1, Tn+2 · · · , Tn+m}

}
∈ E(B). By the construction of B, {T1, T2, · · · , Tn} ∪

{Tn+1, Tn+2 · · · , Tn+m} ∈ Z. Therefore, the edge
{
{T1, T2, · · · , Tn}, {Tn+1, Tn+2 · · · , Tn+m}

}
lies in the unique induced

matching, C{T1,T2,··· ,Tn+m} (defined as in Lemma 10). This completes the proof.

Therefore, {CZ : Z ∈ Z} is an induced matching cover of B. We are now ready to present our coded caching scheme using

the bipartite caching graph constructed above.

Theorem 3. (Scheme B) Let k, n,m, q be positive integers such that n +m ≤ k and q be some prime power. The

bipartite graph B constructed in Section V-C is a B(K,F,D) bipartite caching graph with an induced matching cover

having S = 1
(n+m)! q

(n+m)(n+m−1)
2

n+m−1∏
i=0

[
k − i

1

]

q

induced matchings, each having g =
(
n+m
n

)
edges, and defines a

coded caching scheme with,

K =
1

n!
q

n(n−1)
2

n−1∏

i=0

[
k − i

1

]

q

,

F =
1

m!
q

m(m−1)
2

m−1∏

i=0

[
k − i

1

]

q

,

M

N
= 1− qnm

m−1∏

i=0

[
k − n− i

1

]

q[
k − i

1

]

q

,

R =
m! qnm

(n+m)!
q

n(n−1)
2

n−1∏

i=0

[
k −m− i

1

]

q

,

Global caching gain γ =

(
n+m

n

)
.

Proof: From Lemma 9, we get the expressions of K,F and D. By Lemma 10 and Lemma 11, the size of the induced

matchings of B is g = |CZ | =
(
n+m
m

)
for any Z ∈ Z and they partition the edge set E(B). Further, by Lemma 10, the number



of induced matchings in the induced matching cover is S = |Z|. Finding |Z| is same as that of finding K (replace n with

n+m in the computation of K in Appendix C). Therefore,

S =
1

(n+m)!

n+m−1∏

i=0

(θ(k) − θ(i)) (10)

=
1

(n+m)!
q

(n+m)(n+m−1)
2

n+m−1∏

i=0

[
k − i

1

]

q

.

Hence the bipartite graph B satisfies all the conditions in Theorem 1. Therefore, there exists a coded caching scheme with K

users, subpacketization F ,

1− M

N
=

D

F
=

1
m!

m−1∏
i=0

(θ(k) − θ(n+ i))

1
m!

m−1∏
i=0

(θ(k)− θ(i))

(11)

=

m−1∏

i=0

qk − qn+i

qk − qi
=

m−1∏

i=0

qn
qk−n−i − 1

qk−i − 1
,

(where D,F expressions are from Appendix C).

Therefore,

M

N
= 1− qnm

m−1∏

i=0

[
k − n− i

1

]

q[
k − i

1

]

q

.

R =
S

F
=

1
(n+m)!

n+m−1∏
i=0

(θ(k) − θ(i))

1
m!

m−1∏
i=0

(θ(k) − θ(i))

=
m!

(n+m)!

n+m−1∏

i=m

(θ(k) − θ(i))

=
m!

(n+m)!

n−1∏

i=0

(θ(k)− θ(m+ i))

=
m! qnm

(n+m)!
q

n(n−1)
2

n−1∏

i=0

[
k −m− i

1

]

q

.

(where S expression is from (10) and F expression is from Appendix C). Finally, we have that the global caching gain γ = g,

which completes the proof.

We regard the coded caching scheme (Scheme B) presented in Theorem 3 as the main scheme of this work. We present

Algorithm 1 in which the caching and delivery scheme of Scheme B are captured. The coded caching scheme proposed in

Theorem 3, does not exist for all K (similar to most of the low subpacketization coded caching schemes in the literature).

So based on the design parameters (desired number of users, cache size) we add some dummy users and treat some fraction

of the available cache as unused cache. This is done as follows. For the given number of users (K ′), cache size (M ′) and

number of files (N), select the appropriate parameters k, n,m, q which give a coded caching scheme according to Theorem

3 with parameters K, MN , F,R such that (K − K ′) and (M
′

N − M
N ) are non-negative and as small as possible (we treat the

extra users K −K ′ as dummy users and the extra cache M ′ −M is left unused). Now construct a bipartite caching graph

B(K,F,D) as mentioned in Section V-C and find X (user indices), Y (subfile indices), Z (indices of induced matchings of

B, equivalently indices of transmissions) by using (7),(8),(9).



Algorithm 1 Coded caching scheme proposed in Theorem 3

1: procedure PLACEMENT PHASE

2: for each i ∈ [N ] do

3: Split Wi into {Wi,Y : Y ∈ Y}.

4: end for

5: for each X ∈ X do

6: user X caches the subfiles Wi,Y , ∀i ∈ [N ], ∀Y ∈ Y such that X ∪ Y /∈ Z.

7: end for

8: end procedure

9: procedure DELIVERY PHASE( demand of user X is represented as WdX
, ∀X ∈ X)

10: for each Z = {V1, V2, · · · , Vn+m} ∈ Z do

11: Server transmits
⊕

X∈(Zn)
WdX ,Z\X .

12: end for

13: end procedure

D. Asymptotic Analysis and Numerical Comparisons of Scheme B with the State of the Art

In Appendix D, we provide the asymptotic analysis for the scheme presented in Theorem 3. When M
N is upper bounded by a

constant (MN ≤ constant) and as K grows large, from Appendix D we see that our scheme has subexponential subpacketization

i.e., F = qO((logq K)2) and rate R = Θ
(

K
(logq K)n

)
. Hence, Scheme B overcomes the drawback of Scheme A (high cache

requirement), but with higher rate. The asymptotics of Scheme B obtained in this section are summarized in the third row of

Table II in Section II.

We now compare our scheme with some schemes from Table I. We first discuss asymptotic comparison in subpacketization

as the number of users K increases. In Table I, we see that the subpacketization levels of several schemes are exponential in

K
1
r for some positive integer r. Comparatively, our scheme achieves subpacketization exponential in O((logq K)2), which is

an improvement. Matching our scheme’s parameters with those from [15] is hard. A special case of the general scheme in [15]

is discussed in that work, which achieves subpacketization exponential in
√
K. Our Scheme B thus improves over this special

case. The scheme of [17] achieves linear subpacketization, but it works only for an extremely large number of users and hence

we do not compare with this numerically. The PDA scheme P1 from [18] as given in Table I achieves a subpacketization that

is smaller than K , but uses a large cache fraction in general (≥ 0.5). Hence, we do not compare with this scheme also.

We now come to the numerical comparisons. In Table VII, we compare numerically the scheme in Theorem 3 with a

modified version of Ali-Niesen scheme with user grouping from [12] (Section V-A in [12], which is also given in row 2 of

Table I). The scheme in [12] is parameterized by the cache fraction M
N , global caching gain γ and number of user groups l,

and gives a scheme with the number of users K2 = K
′
l and subpacketization F2 =

(
K

′

γ−1

)
, where K

′
= (γ − 1)⌈N

M ⌉. The

number of users and subpacketization corresponding to Theorem 3, are labelled as K1 and F1 respectively. From the table it

is clear that Scheme B performs better than [12], for most of the cases in terms of the subpacketization.

In Table VIII and Table IX, we compare numerically the scheme in Theorem 3 with the schemes in [13] and [16] respectively,

for some choices of K and M
N . We chose these two schemes for the reason that these two schemes show a large improvement in

the subpacketization level without compromising much on the coding gain compared to the basic scheme of [6]. For instance,

the PDA based scheme in [13] achieves lower subpacketization (though not in the asymptotic sense) over [6], while having a

global caching gain only one less than the scheme of [6].

We label the parameters of our scheme in Theorem 3 as K1,
(
M
N

)
1
, F1, γ1. The parameters of the scheme presented in [13]

are K2 = q(m + 1),
(
M
N

)
2
= 1

q , F2 = qm, γ2 =
K(1−M

N
)

q−1 = m + 1 where q(≥ 2),m ∈ Z+. The parameters of the scheme

presented in [16] are labeled as K3 = nq,
(
M
N

)
3
= 1

q , F3 = qkz, γ3 = k + 1 where n, k, q, z parameters are defined as per

[16]. As it is difficult to match exact parameters, we try to match the K and M
N values as closely as possible between our

scheme and these two schemes, while comparing the rate and subpacketization. Also, as the subpacketization can take large

values, we approximate it to the nearest positive power of 10.

Throughout, we notice that our Scheme B has parameters for small cache sizes, offering large reductions in subpacketization



TABLE VII: Comparison of the coded caching scheme in Theorem 3 (Scheme B) with the scheme in [12] (Ali-Niesen scheme

with grouping). We match the cache fraction, global caching gain, and number of users, as closely as possible, and compare

the subpacketization level.

Number Cache Global Subpacketization

of users fraction caching gain

(k, n,m, q) (K
′
, l)

K1 K2
M
N γ F1 F2

(Theorem 3) [12] (Theorem 3) [12]

(7, 2, 4, 2) (56, 143)

8001 8008
125

381
15 107 1012

(7, 2, 2, 2) (75, 107)

8001 8025
187

2667
6 8001 107

(5, 2, 2, 2) (20,23)

465 460
43

155
6 465 15504

(4, 2, 1, 2) (10, 10)

105 100
1

5
3 15 45

(4, 1, 2, 3) (20, 2)

40 40
1

10
3 780 190

TABLE VIII: Comparison of the coded caching scheme in Theorem 3 (Scheme B) with the scheme in [13]. (inf represents

> 10307). (We try to match the K and M
N values of Theorem 3 with that of [13] as closely as possible by choosing appropriate

parameters, and compare the subpacketization and gain).

Number of users Cache fraction Subpacketization Global caching gain

(k, n,m, q) (q,m)

K1 K2

(
M
N

)
1

(
M
N

)
2

F1 F2 γ1 γ2

(Theorem 3) [13] (Theorem 3) [13] (Theorem 3) [13] (Theorem 3) [13]

(4, 2, 2, 2) (2, 51)

105 104 0.54 0.50 105 1015 6 52

(5, 2, 2, 2) (4, 116)

465 468 0.28 0.25 465 1069 6 117

(4, 2, 2, 3) (3, 259)

780 780 0.38 0.33 780 10123 6 260

(7, 2, 4, 2) (3, 2666)

8001 8001 0.33 0.33 107 inf 15 2667

(7, 2, 2, 2) (14, 571)

8001 8008 0.07 0.07 8001 inf 6 572



TABLE IX: Comparison of the coded caching scheme in Theorem 3 (Scheme B) with the scheme in [16]. (We try to match

the K and M
N values of Theorem 3 with that of [16] as closely as possible by choosing appropriate parameters, and compare

the subpacketization and gain).

Number of users Cache fraction Subpacketization Global caching gain

(k, n,m, q) (k, n, z, q)

K1 K3

(
M
N

)
1

(
M
N

)
3

F1 F3 γ1 γ3

(Theorem 3) [16] (Theorem 3) [16] (Theorem 3) [16] (Theorem 3) [16]

(3, 1, 2, 5) (7, 12, 2, 3)

31 36 0.2 0.3 465 4374 3 8

(4, 1, 2, 3) (8, 12, 3, 5)

40 60 0.1 0.2 780 106 3 9

(4, 2, 1, 2) (9, 12, 3, 11)

105 132 0.2 0.1 15 109 3 10

(5, 2, 1, 2) (8, 12, 3, 29)

465 348 0.09 0.03 31 1012 3 9

compared to the other two existing schemes in the literature, while having smaller caching gains (and equivalently, higher

rate). Since many of the subpacketization values are of the order of 102− 104, we consider our Scheme B to be of importance

in practice.

We finally remark that we can also achieve subpacketization F = K (we discuss this in the next subsection) and even

F < K by choosing the parameters appropriately. For instance, for k = 4, n = 2,m = 1, q = 4 (in Theorem 3), we have

K = 3570, F = 85, with M
N = 0.0588, and gain 3.

E. Scheme C: A Flexible Scheme with Linear Subpacketization (a special case of Scheme B)

One of the most interesting regimes for the coded caching problem is that of linear subpacketization, i.e., the case when

F = O(K). It is known from [14] via the theory of hypergraphs that linear subpacketization is not sufficient for achieving

constant rate. A well known result from [17] shows that there exist coded caching schemes which have F = K and achieve

a rate of Kδ (for small δ), and for a small cache fraction. However, the number of users required for this construction is

extremely high. The Ali-Niesen scheme [6] itself achieves F = K when M
N = 1

K , but the rate is then R = K−1
2 . A similar

scheme with the same parameters is known from [18] (see Section V-B in [18]). Thus, most of the existing schemes with

linear subpacketization either require an extremely large number of users to exist, or have a very small caching gain.

The following corollary to Theorem 3 gives a new linear subpacketization scheme (Scheme C) obtained using our projective

geometry based technique. Note that the scheme is parametrized by the prime power q (finite-field size) and the cache fraction

λ, and hence is flexible for different numbers of users and cache fraction.

Corollary 2. (Scheme C) For q being some prime power and λ ∈ (0, 1) such that λq is a positive integer, then there

exists a linear subpacketization coded caching scheme with F = K ≤ q2λ
2q2

(λq)!
, cache fraction M

N ≤ λ, and global

caching gain γ ≥ 4λq

2
√
λq

(
with the rate achieved being

K(1−M
N

)

γ

)
.

Proof: We choose some specific values for the parameters for our construction in Section V-C to prove this result. From

(26) in Appendix D, we have that M
N ≤ n

qα−n+1 ≤ n
q . We choose n = λq (note that n must be an integer and q is a prime

power and hence we have our constraints on λ).

From the expressions in Theorem 3, we have that K = F when m = n. We choose the least valid value of k, i.e.,

k = n+m = 2n. We thus have with these parameters,

K = F
(27)
≤ qkn

n!
=

q2n
2

n!
=

q2λ
2q2

(λq)!
,



as stated in the statement of the corollary. We now come to the global caching gain. From Theorem 3, we have that the global

caching gain of the scheme is

γ =

(
2n

n

)
≥ 4n√

4n
=

4λq

2
√
λq

,

where the above inequality is a well-known inequality for the middle binomial coefficient that holds for n ≥ 1. This completes

the proof.

F. Generalization of Scheme B

We can further generalize the scheme presented in Section V-C (Scheme B). In Scheme B, the user vertices, the subfile

vertices and the induced matchings are the sets of linearly independent 1-dim subspaces, whereas in the generalized scheme

which we present now, these are the sets of linearly independent l-dim subspaces.

Let k,m, n, l, q ∈ Z+ such that nl+ml ≤ k and q is some prime power. Consider a k-dim vector space Fk
q and the following

sets of subspaces.

L , PGq(k − 1, l − 1). (set of all l-dim subspaces)

R , PGq(k − 1, nl− 1). (set of all nl-dim subspaces)

S , PGq(k − 1,ml− 1). (set of all ml-dim subspaces)

U , PGq(k − 1, (nl +ml)− 1). (set of all (nl +ml)-dim spaces)

Similar to Scheme B, consider the following sets, which are used to present the new bipartite caching graph.

X ,

{
{L1, L2, · · · , Ln} : ∀Li ∈ L,

n∑

i=1

Li ∈ R

}
. (12)

Y ,

{
{L1, L2, · · · , Lm} : ∀Li ∈ L,

m∑

i=1

Li ∈ S

}
. (13)

Z ,

{
{L1, · · · , Ln+m} : ∀Li ∈ L,

n+m∑

i=1

Li ∈ U

}
. (14)

i.e., X is the set of all n-sized sets of linearly independent l-dim subspaces, hence their sum (or direct sum) is an nl-dim

subspace. Similarly, we have Y and Z.

Construct a bipartite caching graph B, similar to that of Scheme B, with the left (user) vertex set K = X and right (subfile)

vertex set F = Y. Define the edge set of B as,

E(B) , {{X,Y } : X ∈ X, Y ∈ Y, X ∪ Y ∈ Z}.

The parameters of B such as the number of user vertices (K), the number of subfile vertices (F ) and the degree of any

user vertex (left degree) D are given in the following lemma.

Lemma 12. From the given construction, we have the following.

K = |X| = (l!)n q
n(n−1)l2

2

(nl)! (n!)

nl−1∏
i=0

[
k − i

1

]

q
l−1∏

i=0

[
l − i

1

]

q




n y1,



F = |Y| = (l!)m q
m(m−1)l2

2

(ml)! (m!)

ml−1∏
i=0

[
k − i

1

]

q
l−1∏

i=0

[
l − i

1

]

q




m y2,

D = |N (X)| = (l!)m qml2(m−1
2 +n)

(ml)! (m!)

ml−1∏
i=0

[
k − nl− i

1

]

q
l−1∏

i=0

[
l− i

1

]

q




m y2.

where the last equation hold for any X ∈ X, and y1 =
n−1∏
i=0

(
(n−i)l

l

)
, y2 =

m−1∏
i=0

(
(m−i)l

l

)
.

Proof: See Appendix E.

Note that, by Lemma 12, B is a D-left regular bipartite graph with K left vertices and F right vertices. Therefore, by

Definition 1, B(K,F,D) is a valid bipartite caching graph. We remark that, similar to scheme B, the graph B(K,F,D) is a

bi-regular bipartite graph. We now construct the induced matching cover similar to that of Scheme B.

Induced matching cover: CZ ,

{
{X,Z \X} : X ∈

(
Z
n

)}
, where Z ∈ Z is a valid induced matching and {CZ : Z ∈ Z} is

an induced matching cover of B. The proof of these statements is similar to Lemma 10 and Lemma 11. We now present the

coded caching scheme corresponding to the bipartite caching graph constructed above.

Theorem 4. Let k,m, n, l, q ∈ Z+ such that nl+ml ≤ k and q is some prime power. The bipartite caching graph B

constructed in Section V-F is a B(K,F,D)-bipartite caching graph with an induced matching cover having

S =
(l!)(n+m) q

(n+m)(n+m−1)l2

2

((n+m)l)! ((n+m)!)

(n+m)l−1∏
i=0

[
k − i

1

]

q
l−1∏

i=0

[
l − i

1

]

q




n ×

×
n+m−1∏

i=0

(
(n+m− i)l

l

)

induced matchings, each having g =
(
n+m
n

)
edges and defines a coded caching scheme with, number of users K and

subpacketization F (where K,F,D are as given in Lemma 12) and

M

N
= 1− qmnl2

ml−1∏

i=0

[
k − nl − i

1

]

q[
k − i

1

]

q

,

R =
S

F
, Global caching gain γ = g.

Proof: Similar to the proof of Theorem 3.

Remark 5. For the special case of l = 1, the scheme in Theorem 4, reduces to Scheme B (Theorem 3). The asymptotic

analysis for the scheme in Theorem 4 is similar to that of Scheme B (Appendix D). When M
N is upper bounded by a constant(

M
N ≤ nl

qk−ml−nl+1

)
and as K grows large, we can show (by following the similar techniques as that of Appendix D) that

the scheme in Theorem 4 achieves subexponential subpacketization i.e., F = qO((logq K)2) and rate R = Θ
(

K
(logq K)n

)
. Thus,

this generalized scheme has more flexibility than Scheme B, but unfortunately does not improve upon Scheme B asymptotically.



VI. EXTENSION TO OTHER SETTINGS

In this section, we extend our main scheme, Scheme B, to the distributed computing setting [27], and the wireless interference

channel setting [28]. Our main motivation for this section is to present a low subpacketization scheme for each of these two

settings which improves upon the currently existing schemes. Most of the existing schemes for these settings are adapted from

existing broadcast coded caching schemes, and hence inherit the large subpacketization issue from the same.

The connection from broadcast coded caching schemes to distributed computing schemes was established in [32], through

the concept of placement delivery array (PDA). In [32], a method was shown to derive distributed computing schemes from

a special class of PDAs known as g-PDAs. After recollecting a result from [15], which establishes the connection between

bipartite caching graphs and PDA’s, we use the result from [32] to adapt our Scheme B to the distributed computing setting.

Towards that end, we recall the definition of PDA presented in [13].

Definition 3 (Placement Delivery Array [13]). For positive integers K,F, Z and S, an F ×K array A = [aj,k], j ∈ [F ], k ∈
[K], composed of a specific symbol “∗” and S integers 1, · · · , S, is called a (K,F, Z, S) placement delivery array (PDA), if

it satisfies the following conditions:

C1. The symbol “∗” appears Z times in each column.

C2. Each integer occurs at least once in the array.

C3. For any two distinct entries aj1,k1 and aj2,k2 we have aj1,k1 = aj2,k2 = s, an integer, only if

1. j1 6= j2, k1 6= k2, i.e., they lie in distinct rows and distinct columns; and

2. aj1,k2 = aj2,k1 = ∗.

If each integer s ∈ [S] occurs exactly g times, then A is called a regular g − (K,F, Z, S) PDA, or g-PDA for short.

Most known coded caching schemes in the literature correspond to PDAs. The following result shows that any bipartite

caching graph B(K,F,D) with an induced matching cover with the size of each induced matching being at least 2 is equivalent

to a g-PDA. This is equivalent to the result in [15] which relates a PDA with a strong edge coloring of the bipartite caching

graph B, which as we have discussed in Section III-B is equivalent to an induced matching cover of B.

Theorem 5 (equivalent to Theorem 1 in [15]). B is a (K,F,D) bipartite caching graph with an induced matching cover

consisting of S induced matchings, each of size g ≥ 2 if and only if there exist a g − (K,F, Z = F −D,S) regular PDA.

By Theorem 5, it is clear that the bipartite caching graph developed in Section V-C, which resulted in Scheme B, corresponds

to a g− (K,F, F −D,S) regular PDA, where the expressions of K,F, S, g are given in Theorem 3 and the expression for D

is given in Lemma 9.

A. Extension to Distributed Computing Systems

Using coded transmissions to reduce the communication load is a general technique that can potentially be used in any

distributed communication system. One such system is the distributed computing framework called the Map-Reduce framework

[33]. In this framework, one or more functions have to be evaluated on some given large amount of data. To do this in a

distributed manner, subsets of the data are assigned to a number of distributed computing nodes, each of which compute the

functions on their own data subset. After this, the intermediate values are accumulated at the nodes to give the total computed

function values. In [27], for this framework presented in [33], a technique to reduce the communication load was presented,

which is inspired from the coded caching framework.

We now recall the model from [27]. Consider NC files, KC computing nodes and each node is assigned one or more

functions to be computed finally (we use superscript C to represent the parameters of the distributing computing system). The

total number of functions to be computed on the files is Q. In the map phase, the set of NC files are split into F C batches,

each containing NC

FC files. Each node stores some batches of files and computes all the Q functions on the files present in each

batch. We denote the files present at node k ∈ [KC ] as Mk. These computed function values are referred as intermediate

values, and we assume they are represented as T -length bit-vectors. Thus, there are Q|Mk| intermediate values computed at

each node k at the end of the map phase. In the shuffle phase, each node k ∈
[
KC] computes a signal denoted by Xk (of



length lk bits) from the intermediate values, it computed in the map phase, and communicates to other nodes. This is known as

data shuffling. In the final reduce phase, each node is assigned to reduce a set of
Q
KC functions (we assume

Q
KC is an integer).

Using the signals received from the other nodes via data shuffling, and the intermediate values computed at itself during the

map phase, each node decodes all the intermediate values of its assigned output functions, to finally compute the complete

value of the output functions.

The computation load, denoted by rC , is the number of map functions computed at all the nodes, normalized by N . The

communication load, denoted by LC , is the ratio of the total number of bits transmitted to the total number of bits in all the

intermediary values QNT . Therefore,

rC =

∑
k∈[KC]

|Mk|

N
, LC =

KC∑
i=1

li

QNT
.

Similar to the coded caching problem, it is a practical necessity to obtain distributed computing schemes for the above model

with smaller number of batches F C for low computation and communication loads. We adapt our Scheme B to this setting in

order to obtain a distributed computing scheme which has lower number of batches for similar computation load requirements

compared to other major schemes in the literature, at the cost of having larger communication loads. For this purpose, we rely

on the literature, which relates the PDAs to the distributed computing schemes [32], [34], [35]. In particular, we are interested

in the following result from [32].

Lemma 13. (Corollary 3 in [32]) . For a given g− (K,F, Z, S) regular PDA with g ≥ 2, there exists a scheme for distributed

computing system with KC = K nodes, achieving the computation load rC = KZ
F and communication load LC = g

g−1
S

KF ,

which can be implemented with the minimum number of batches requirement F C = F .

Now, by applying Lemma 13, we can get the corresponding distributed computing system which is presented in Theorem

6 (the proof follows from Theorem 5 and Lemma 13).

Theorem 6. Let k, n,m, q be positive integers such that n+m ≤ k and q be some prime power. The bipartite caching

graph given in Section V-C corresponds to a distributed computing scheme with,

KC =
1

n!
q

n(n−1)
2

n−1∏

i=0

[
k − i

1

]

q

,

rC = KC



1− qnm

m−1∏

i=0

[
k − n− i

1

]

q[
k − i

1

]

q




,

F C =
1

m!
q

m(m−1)
2

m−1∏

i=0

[
k − i

1

]

q

,

LC =
qnm(

n+m
n

)
− 1

n−1∏

i=0

[
k −m− i

1

]

q[
k − i

1

]

q

.

In Table X, we compare our distributed computing system presented in Theorem 6 with that of [27]. The scheme in [27]

is the original scheme in the distributed computing literature for the given setting, and can be viewed as an adaptation of

the fundamental coded caching scheme [6] into a distributed computing scheme. This scheme is optimal in terms of the

communication load for a given computation load, but uses a large batch size, as shown in Table X. The parameters of the



scheme presented in [27] are KC
2 = K,F C

2 =
(
K
r

)
, rC2 = r, LC

2 = 1
r

(
1− r

K

)
. where K is a positive integer and r ∈ [K]. The

parameters corresponding to Theorem 6 are labelled as KC
1 , F

C
1 , r

C
1 , L

C
1 . We choose matching values for KC and rC for the

purpose of comparison.

TABLE X: Comparison of the distributed computing scheme in Theorem 6 with the scheme in [27]. (inf represents > 10307).

Number of computing nodes Computation load Number of batches Communication load

(k, n,m, q) (K, r)

KC
1 KC

2 rC1 rC2 F C
1 F C

2 LC
1 LC

2

(Theorem 6) [27] (Theorem 6) [27] (Theorem 6) [27] (Theorem 6) [27]

(6, 2, 2, 2) (1953, 273)

1953 1953 273 273 1953 inf 0.1720 0.0032

(4, 2, 1, 3) (780, 78)

780 780 78 78 40 10108 0.45 0.0115

(5, 2, 2, 2) (465, 129)

465 465 129 129 465 10117 0.1445 0.0056

(5, 1, 2, 3) (121, 4)

121 121 4 4 7260 106 0.4835 0.2417

(4, 2, 1, 2) (105, 21)

105 105 21 21 15 1021 0.40 0.0381

(6, 1, 2, 2) (63, 3)

63 63 3 3 1953 39711 0.4762 0.3175

We see from Table X that for a given number of computing nodes and computation load, our scheme presented in Theorem

6 performs much better than the scheme of [27] in terms of the number of file batches required (which makes our scheme more

practical for distributed systems with tens of nodes or more) for the same computation load. However, the communication load

is higher in general. However, for some examples, for instance the entries in Table X with number of nodes equal to 63 or

121, for the communication load at most twice of what the scheme of [27] achieves, we achieve order-of-magnitude gains in

the batch-number F C .

Remark 6. The coded caching technique has also been utilized in the Device-to-Device (D2D) setting in recent work, for

instance, [26]. The underlying communication model is very similar to the distributed computing model. Hence, similar to

Theorem 6, we can also extend the proposed Scheme B to the D2D coded caching system [26], using Theorem 5 and [32]

(Corollary 1 in [32]) to get low subpacketization schemes for D2D systems. For more details, the reader is referred to [4].

B. Extension to Coded Caching in a Wireless Interference Channel

We now present another setting in which we can apply our low subpacketization scheme, namely the interference channel.

Coded caching for the interference channel setting with caches at both transmitters and receivers was considered in [28], where

the fundamental coded caching scheme of Ali-Niesen [6] was adapted to this setting. In [36], this scheme was further refined to

present a scheme with lower subpacketization requirement (particularly, no subpacketization at the transmitter end). We leave

the details of these schemes to the reader and refer them to the respective papers. In this subsection, we present the adaptation

of our low-subpacketization Scheme B for the setting presented in [28], also motivated by the techniques from [36]. We then

compare via numerical examples our scheme’s performance with that of [36] which itself is an improvement over [28] in terms

of the subpacketization, with all other parameters being the same.

We first review the model given in [28] as shown in Fig. 4. Consider a wireless channel with KT transmitters and KR

receivers with N files (denoted as Wi : i ∈ [N ]) such that each transmitter can store MT files and each receiver can store



Fig. 4: Channel model for coded caching in the wireless interference channel.

MR files. We assume L , KTMT

N is an integer, and also that L divides KR. Each transmitter and receiver has one antenna,

and the channel coefficient between any particular transmitter-to-receiver pair is a complex number that is a realization of

an independent continuous probability distribution, and assumed to be constant over the time of communication. The coded

caching scheme in this setting involves two phases as before, the caching phase where the transmitter and receiver caches

are populated, and then the delivery phase in which the receiver demands (each receiver demands a particular file as before)

are served collaboratively by the transmitters. In every round of transmission, some subset of KT transmitters send signals to

the receivers. In a valid scheme, at the end of a finite number of rounds, the decoding of demands at the respective receivers

should be complete. The sum-DoF in this setting refers intuitively to the number of receivers served per transmission. For a

precise definition of this parameter, we refer to the reader to [28].

For this setting, under the condition that L + KRMR

N ≤ KR, the scheme in [28] achieves a sum-DoF of L + KRMR

N , with

a subpacketization level of
(
KT

L

)( KR
KRMR

N

)
which arises as a result of subpacketization for caching at both the transmitter-side

and the receiver-side. The work [36] achieves the same sum-DoF with a subpacketization level of
( KR/L
KRMR/(LN)

)
, which avoids

subpacketization at the transmitter-side completely. For more details, we refer the reader to [28] and [36]. In the rest of this

subsection, we shall adapt our low subpacketization scheme, Scheme B, to this interference channel setting. For the sake

of notational convenience, we focus on adapting a particular special class of Scheme B (which has parameters (k,m, n, q))

with parameter n = 1. However, the more general scheme can also be adapted, which gives more flexibility in terms of the

parameters.

The principle we use is similar to the grouping scheme for the multi-transmitter coded caching scheme given in [36]. The

idea behind this is to divide the receivers into a number of K , KR

L groups, each containing L receivers. Then the broadcast-

channel coded caching scheme (in our case, Scheme B) is applied to the groups considering them to be super-users, while

also utilizing the presence of transmitter caches to zero-force some non-demanded and un-cached subfiles. We now give the

detailed scheme.

Let k,m, q be positive integers such that m ≤ k and q is some prime power. We assume that KR = KL, where K =

[
k

1

]

q

for some k. Let V , {V ∈ PGq(k − 1, 0)} (Note that in Section V-C, we used the notation T for the same). Consider

MR

N = 1 −
qm







k −m

1







q






k

1







q

(note that this is equal to the M/N value we get from Scheme B with n = 1 in Theorem 3). We

group the KR users into K groups, such that in each group there are L users. The groups are indexed by distinct 1-dim

subspaces of Fk
q , i.e., by the elements of V. Let the users in a group V ∈ V be denoted as V (1), ..., V (L). We now describe

the placement and delivery phase.

1) Placement Phase: Transmitter Caching Strategy: We follow the caching strategy described in [36] (Appendix A in [36])

for the transmitter side. We require each subfile of each file to be cached at precisely L transmitters.



• For i ∈ [KT ], the cache content CTi
of the ith transmitter denoted by Ti is given by

CTi
= {W1+(p−1)(mod N) : p ∈ {1 + (i− 1)MT , ...,MT i}}.

Thus, the transmitters cache successive MT files into their caches. Because of this caching strategy, it should also be clear

that each file cached at L = KTMT

N transmitters. This property of the transmitter-side caching will be used to obtain a

sum-DoF = L+ KRMR

N via the zero-forcing technique.

Receiver Caching Strategy: On the receiver side, the caching strategy is based on the projective geometry as described in

Section V-C (Scheme B, with the parameter n = 1). Consider m ∈ Z+ such that m ≤ k. Let

S , {S ∈ PGq(k − 1,m− 1)}.

Y ,

{
{V1, V2, ..., Vm} : ∀Vi ∈ V,

m∑

i=1

Vi ∈ S

}
.

Following Scheme B, the subfiles are indexed by the elements of Y. The subfiles of file Wi are denoted as Wi = {WY
i : Y ∈

Y}. The subpacketization F is thus equal to |Y|, which was shown in Lemma 9 in Section V to be 1
m! q

m(m−1)
2

m−1∏
i=0

[
k − i

1

]

q

.

• The caches of the receivers V (r) : r ∈ [L] in the group V ∈ V are populated with the same content, given as

ZV ,

{
WY

i : Y ∈ Y, V 6⊆
∑

Vj∈Y

Vj

}N

i=1

.

Thus we have the K =

[
k

1

]

q

groups of our current setting in the place of K users in the original Scheme B. We now describe

the delivery phase corresponding to this caching strategy.

2) Delivery Phase: In the delivery phase, each receiver demands for a file. We use a projective geometry based delivery

scheme developed in Section V-C over the groups of users. Let the demand of receiver V (i) be denoted as WdV (i)
. The delivery

scheme serves m + 1 groups of receivers in each transmission. For this purpose, we develop some notations following the

description of Scheme B.

Let

Z =

{
{V1, V2, ..., Vm+1} ⊆ V :

m+1∑

j=1

Vj ∈ PGq(k − 1,m)

}
.

Consider Z = {V1, V2, ..., Vm+1} ∈ Z, denoting a set of (m+ 1) groups of receivers, the (m + 1)L receivers which will be

served in one round of transmission. Let Yj = Z\Vj : j ∈ [m+1]. In this round, the subfiles to be transmitted to the receivers

in the groups given in Z are {WYj

dVj(i)
: j ∈ [m+1], i ∈ [L]}. Clearly, the subfile W

Yj

dVj (i)
which is desired at the user Vj(i), is

not cached at any receiver in the group Vj but available at all the receivers in the groups Vj′ : j
′ ∈ [m+1]\j. For the purpose

of transmitting on a wireless channel, let W̃
Yj

dVj(i)
denote the signal (from some complex constellation) denoting the mapping

of the subfile W
Yj

dVj (i)
; this mapping is known to all receivers and transmitters. We now construct the idea behind the delivery

scheme, by showing the round corresponding to Z ∈ Z.

We denote by si ∈ C1×1 : i ∈ [KT ] the signal transmitted by ith transmitter during this round. We have to design our

transmission signals such that the mapped subfile W̃
Yj

dVj(i)
can be obtained at the user Vj(i), while (a) the same subfile can be

zero-forced at the receivers in Vj\Vj(i) by utilizing the presence of the L transmitters in which the subfile W
Yj

dVj (i)
is available,

and (b) the same subfile can be cancelled using the cache content at each receiver in the group Vj′ : j
′ ∈ [m+ 1] \j.

Let wj = [W̃
Yj

dVj(1)
, ..., W̃

Yj

dVj(L)
]T denote the mapped subfiles involved in this round of transmissions corresponding to the

group Vj . The round of transmissions is described as follows:






s1
...

sKT


 =

[
A1 · · · Am+1

]



w1

...

wm+1


, (15)

where Ai ∈ CKT×L : i ∈ [m+1] contains as its columns the L precoding vectors of length KT corresponding to the mapped

subfiles W̃
Yj

dVj(i)
: i ∈ [L] generated by the KT transmitters. Note that any such precoding vector can have only L non-zeros,

as the subfile W
Yj

dVj (i)
is available only at some L transmitters. Thus, every column of the matrices Ai : i ∈ [m+ 1] contains

KT − L zeros, with the remaining entries to be chosen to satisfy the zero-forcing requirements. In the remainder of this

subsection, we show that such precoding vectors can indeed be chosen, and show that decoding of the mapped subfiles (and

thereby, via the inverse mapping, the uncached subfiles) can be decoded at the respective receivers. The delivery scheme can

therefore be completed by constructing transmissions as in (15) for every Z ∈ Z, with appropriately chosen precoding vectors

to effect successful decoding.

We now show that the precoding vectors of (15) in the matrices Ai : i ∈ [m+ 1] can be chosen to ensure decoding of the

desired subfiles at the respective users. The received signals at the receivers of groups Z = (V1, ..., Vm+1) is given as,




y1

...

ym+1


 =




H1

...

Hm+1







s1
...

sKT


+ z, (16)

where yj = [yj,1, ..., yj,L]
T : j ∈ [m+ 1], with yj,i : i ∈ [L] being the received signal at the user Vj(i), the matrix Hj : j ∈

[m+1] is the L×KT channel matrix from the KT transmitters to the L receivers of the group Vj and z = (z1, . . . , zm+1)
T

denotes the additive white Gaussian noise, each component of which is distributed as a circular symmetric complex Gaussian.

We now have from (15) and (16), the received signal at the group Vj as

yj =
[
HjA1 . . .HjAm+1

]



w1

...

wm+1


 + zj (17)

Because the receiver Vj(i) has the subfiles in (17) except W
Z\Vj

dVj(i)
: i ∈ [L], from (17), the receivers of the group Vj can obtain,

ỹj = HjAjwj + zj .

Because of the fact that the entries of Hj are picked from a continuous distribution, any L columns of Hj are linearly

independent almost surely, there exists a vector, with the condition that it is non-zero only in the positions corresponding to

the transmitters caching WdVj(i)
and 0 everywhere else, which can be fixed as the ith column of Aj , such that HjAj = I (the

identity matrix of size L). Hence, we have found the desired solution for the precoding vectors. This ensures decoding (as

SNR grows large, in the DoF sense) of the mapped subfiles {W̃Yj

dVj(i)
: j ∈ [m+ 1], i ∈ [L]} at the respective receivers, and

thus by inverse mapping the original desired subfiles can be decoded. The delivery scheme, which constructs the transmissions

as in (15) for every Z ∈ Z thus ensures decoding of all uncached and desired subfiles at the respective receivers. As in each

round of transmissions, the number of users served is L(m+1), which is the sum-DoF for the presented scheme. The results

of the coded caching scheme constructed above is presented in the following theorem.



Theorem 7. In a wireless channel consisting of N files, KT transmitters each with cache that can contain MT

files such that L = KTMT

N is a positive integer, and consisting of KR = L

[
k

1

]

q

receivers each of cache size MR

files where MR

N = 1 −
qm







k −m

1







q






k

1







q

, we can achieve with high SNR, a sum-DoF = L(m + 1) with subpacketization

F = 1
m! q

m(m−1)
2

m−1∏
i=0

[
k − i

1

]

q

, where k,m ∈ Z+ with m ≤ k and q is some prime power.

TABLE XI: Comparison of the coded caching scheme for the interference channel presented in Theorem 7 with the scheme

in [36], for some specific values of KR, L,
MR

N .

(k,m,q) L MR

N
F1 F2 sum-DoF1 sum-DoF2

KR (Theorem 7) [36] (Theorem 7) [36]

(4, 3, 2)

30 2 0.4667 420 6435 8 16

(5, 3, 2)

62 2 0.2258 4340 7.3× 105 8 15

(4, 3, 3)

80 2 0.3250 9360 1.2× 1010 8 28

(5, 4, 2)

124 4 0.4839 2.6× 104 3× 108 20 64

(6, 4, 2)

252 4 0.2381 5.4× 105 1.22× 1014 20 64

Table XI gives a numerical comparison of our scheme’s parameters, subpacketization and sum-DoF, with that of [36]

by choosing matching values for KR, L and MR

N . The comparison parameters corresponding to Theorem 7 are labelled as

F1 and sum-DoF1. The comparison parameters corresponding to the scheme in [36] are F2 =
( KR/L
⌊(KRMR)/(NL)⌋

)
and sum-

DoF2 = L + ⌊KRMR

N ⌋. As can be seen, our scheme performs better in terms of the subpacketization, while having lesser

sum-DoF. The quantities are rounded off to a few decimal places wherever applicable.

VII. LOWER BOUNDS ON RATE OF DELIVERY SCHEME FOR SYMMETRIC CACHING

In this section, we present two information theoretic lower bounds on the rate of the transmission scheme associated with

a (K,F,D = F (1 − M
N )) bipartite caching scheme (which is associated with the bipartite caching graph B(K,F,D)) and

numerically compare with the existing lower bounds from [11], [18]. We obtain two bounds for the rate of coded caching

with the fixed parameters K,F,M and N . The first bound holds for all symmetric caching schemes, but is quite loose. The

second one holds for a special class of symmetric caching schemes, in which each subfile is stored in the same number of

users (equivalently the bipartite caching scheme associated with a bi-regular bipartite graph). These bi-regular schemes include

all the symmetric caching schemes in the literature to the best of our knowledge, including those in Table I. In this special

class of caching schemes, the second bound is shown to be better, for a number of parameter choices, than the existing bounds

from the prior work via numerical comparisons.

We first give some preliminary ideas and definitions before we present our bounds. As the subfile Wi,f of the file Wi takes

values from the finite set A with uniform distribution, taking the base of logarithm as |A|, we have the Shannon entropy of

Wi,f as H(Wi,f ) = 1, ∀i, f . Thus H(Wi) = F, ∀i ∈ [N ].

Definition 4. For the given parameters K, MN , and F such that FM
N ∈ Z+, a rate R is said to be achievable if there exists

some (K,F,D = F (1 − M
N )) bipartite caching scheme, with a delivery scheme with the rate R that satisfies all the client

demands. For the given parameters K,F,D, we define the optimal rate R∗(K,F,D) as follows:

R∗(K,F,D) , inf{R : R is achievable}.



Fig. 5: Intuition behind the lower bound presented in Theorem 8. The nesting of the ρ3 neighbours of the vertex k3 within the ρ2
neighbours of k2, and these further within the ρ1 neighbours of k1, results in the number of transmissions R∗F ≥ ρ1+ρ2+ρ3.

Remark 7. We abbreviate R∗(K,F,D) as simply R∗, as the parameters involved will be clear from the context.

It is known from [11] that R∗ ≥ K(1−M
N

)

1+MK
N

for any value of F , and this is achieved by the scheme in [6] with F =
(

K
MK
N

)
.

Further, for the coded caching schemes with given parameters derived from the PDAs (which correspond to the bipartite

caching schemes with the induced matching based delivery schemes), it was shown in [18] that

R∗F ≥
⌈
DK

F

⌉
+

⌈
D − 1

F − 1

⌈
DK

F

⌉⌉
+ · · ·

· · ·+
⌈

1
FM
N + 1

⌈
2

FM
N + 2

⌈
· · ·
⌈
D − 1

F − 1

⌈
DK

F

⌉⌉
· · ·
⌉⌉⌉

. (18)

Note that in (18), the notation R∗ is abused to correspond to the optimal rate only among the PDA based delivery schemes

(which corresponds to the induced matching based delivery schemes), which is a restricted class of delivery schemes among

all the delivery schemes obtainable for any symmetric caching scheme. We compare our new lower bounds with these two

bounds.

We will first prove a generic lower bound on the rate, in Theorem 8, for the coded caching schemes whose caching scheme

is based on the bipartite caching model, about which we briefly give some intuition. Consider the induced-matching based

delivery scheme in Section III-B of the bipartite caching graph. The cardinality of any subset of edges of the bipartite caching

graph such that no two among the subset can appear in any single induced matching, gives us a lower bound on the number

of transmissions in any induced-matching based delivery scheme. This is illustrated in Fig. 5. Consider a bipartite caching

graph B, of which a subgraph is shown in Fig. 5. Let k1 be an arbitrary user vertex. Let ρ1 = |N (k1)|. By Definition 2, it

is clear that no two of these ρ1 edges (from k1 to N (k1)) must lie in the same induced matching. Now consider an arbitrary

user vertex k2(6= k1). Let ρ2 = |N (k1) ∩ N (k2)|. We can see that no two of the ρ1 + ρ2 edges
(
from k1 to N (k1) and

from k2 to N (k1)∩N (k2)
)

lie in the same induced matching, by Definition 2. Following this idea, consider N
′

user vertices

{k1, k2, · · · , kN ′ }. Let ρj =
∣∣∣

j⋂
i=1

N (ki)
∣∣∣ where j ∈

[
N

′]
. Now consider the set of edges of B from kj to

j⋂
i=1

N (ki), ∀j ∈
[
N

′]
.

There are exactly
N

′∑
j=1

ρj edges in this set and no two edges lie in the same induced matching, by Definition 2. Therefore,

N
′∑

j=1

ρj is a lower bound on the number of transmissions of any induced-matching based delivery scheme.

Interestingly, we show in Theorem 8 that the bound
N

′∑
j=1

ρj derived in the above discussion applies in the information theoretic

sense also, for a given bipartite caching scheme. We then use this result to show our two lower bounds on the rate of the

coded caching schemes with the fixed parameters K,F and D = F (1 −M/N) in Corollary 3 and Theorem 9. Thus, these

bounds hold for non-linear schemes as well, in contrast with (18), which was shown to be true for induced matching based

delivery schemes. The lower bound in Theorem 8 can be viewed as the maximum acylic induced subgraph (MAIS) lower

bound [37] for the index coding problem induced by the coded caching setup. The proof of this bound uses a technique from



[38] (Appendix A in [38]).

Theorem 8. Let B be a bipartite caching graph representing a caching scheme on a broadcast network with N files at

the server. For some N
′ ≤ N , let U = {kj : j ∈ [N ′]} be an arbitrary subset of N ′ user vertices of B. For j ∈ [N ′],

let ρj be the number of right vertices (subfiles) in B which are adjacent to each vertex in {ki : i ∈ [j]}. Let R̃∗ be

the infimum of all achievable rates for the bipartite caching scheme defined by B. Then,

R̃∗F ≥
N ′∑

j=1

ρj.

Proof: We are given a valid caching scheme associated with B. As N ′ ≤ N , we can assume a demand scenario in which

the N ′ users all demand different files. Let Y denote the set of all transmissions in a valid transmission scheme. Let Wdj
be

the demand and Zj be the cache content of the user kj ∈ U . Let Sj denote the set of subfiles of Wdj
not cached in any of the

users ki : i ∈ [j]. This corresponds to the subfile vertices adjacent to all the users ki : i ∈ [j]. In our notation, |Sj | = ρj . Since

Wdj
s are distinct, thus each subfile in Sj : j ∈ [N ′] is distinct. We then follow an idea similar to [38]. We construct a virtual

receiver which contains an empty cache at first. In the jth step, the cache of this virtual user is populated with all the cache

contents of the user kj except those pertaining to the files demanded by ki : i ∈ [j − 1]. Let Z̃j = Zj\{Wdi,f : i < j, ∀f}.
Then {Z̃j : j ∈ [N ′]} is the final cache content of this virtual user. By the given transmission scheme, the receivers can decode

their demands. Hence, we must have

H
(
{Wdj

: j ∈ [N ′]} | {Z̃j : j ∈ [N ′]},Y
)
= 0, (19)

as the virtual user must be successively able to decode all the demands of the N ′ users. Since RF denotes the size of

transmissions (assuming each subfile to be of unit size) in a code of rate R, we must have the following inequalities.

R̃∗F ≥ H(Y )

≥ I
(
Y ; {Wdj

: j ∈ [N ′]} | {Z̃j : j ∈ [N ′]}
)

= H
(
{Wdj

: j ∈ [N ′]} | {Z̃j : j ∈ [N ′]}
)

(by (19))

≥ H ({Sj : j ∈ [N ′]}) =
N ′∑

j=1

ρj,

where I(; ) denotes the mutual information, and the last inequality is obtained by noting the missing subfiles in {Z̃j : j ∈ [N ′]}.

This completes the proof.

Once again, we note that as the bound in Theorem 8 applies to the rate of any delivery scheme for the given bipartite

caching scheme, not just the induced-matching based scheme. The following example illustrates the lower bound presented in

Theorem 8.

Example 6. (Continuation of Example 1, Example 2) Label the user vertices of the bipartite caching graph B(4, 5, 3) presented

in Fig. 2 as k1 = 1, k2 = 3, k3 = 2, k4 = 4. Assume that the number of files N ≥ 4. Following Theorem 8, we get

ρ1 =
∣∣N (k1)

∣∣ =
∣∣{f1, f2, f3}

∣∣ = 3, ρ2 =

∣∣∣∣
2⋂

i=1

N (ki)

∣∣∣∣ =
∣∣{f2, f3}

∣∣ = 2, ρ3 =

∣∣∣∣
3⋂

i=1

N (ki)

∣∣∣∣ =
∣∣{f2}

∣∣ = 1, ρ4 =

∣∣∣∣
4⋂

i=1

N (ki)

∣∣∣∣ =

|φ| = 0. We then get the lower bound on the rate as, R∗ ≥
4
∑

j=1

ρj

5 = 6
5 . The induced matching based delivery scheme presented

in Example 2 achieves the rate R = 6
5 . Therefore, for the symmetric caching scheme defined by B(4, 5, 3), the rate R = 6

5 is

information theoretically optimal.

Using the result in Theorem 8, we obtain our first lower bound in Corollary 3 for any symmetric caching scheme (left-regular

bipartite caching schemes), and then the second bound in Theorem 9 for all bi-regular bipartite caching schemes.



Corollary 3. For any symmetric caching scheme with K users, cache fraction M
N , subpacketization F , and the number

of files N ≥ K(1− M
N ); the optimal rate R∗ satisfies

R∗F ≥ (K + F )

(
1− M

N

)
− 1. (20)

Proof: A symmetric caching scheme, with the given parameters, is equivalently represented by a bipartite caching graph

B(K,F,D) as in Section III-B. In any such graph, by the pigeon-holing argument, it is easy to see that there is a subfile vertex

f ∈ F in B having at least K
(
1− M

N

)
adjacent user vertices, which we refer to as U = {ki : i ∈ [K

(
1− M

N

)
]. Clearly, by

definition of B, the vertex k1 has D = F (1− M
N ) neighbours. Thus, following the notations in Theorem 8, we have ρ1 = D.

Further, for 2 ≤ i ≤ K(1− M
N ), we have ρi ≥ 1, as f is adjacent to each vertex in U . As the bounds on ρi : ∀i ∈

[
K(1− M

N )
]

are independent of the bipartite graph chosen and depend only on the given parameters K,F, M
N , by applying Theorem 8 for

the bipartite graph corresponding to the caching scheme which gives the delivery scheme with optimal rate R∗, we get (20).

In the following bound, we abuse the notation R∗ to denote the optimal rate (given K,F, M
N ) among all delivery (including

non-linear) schemes defined for a bi-regular bipartite caching graph B(K,F,D). It is clear that for such a graph the right

degree is d , K
(
1− M

N

)
which means that, each subfile is stored in a constant KM

N number of clients. All known symmetric

caching schemes belong to this class of graphs, to the best of our knowledge, and hence this bound is applicable to each of

them. This bound also applies to the schemes which we have developed in this work, as they are obtained from bi-regular

bipartite graphs (see Remarks 3 and 4). We show in Table XII that this second lower bound outperforms prior bounds for

many chosen values of parameters.

Theorem 9. Let R∗ be the infimum of all achievable rates for the coded caching problem defined by a bi-regular

bipartite caching graph B(K,F,D), with the right degree d = K
(
1− M

N

)
and assume that the number of files

N ≥ K
(
1− M

N

)
. Then R∗ satisfies

R
∗

F ≥ D +

⌈

(d− 1)D

K − 1

⌉

+ · · ·

· · ·+

⌈

1
KM

N
+ 1

⌈

2
KM

N
+ 2

⌈

· · ·
⌈

d− 2

K − 2

⌈

(d− 1)D

K − 1

⌉⌉

· · ·
⌉

⌉⌉

Proof: Consider a bi-regular bipartite caching graph B(K,F,D). We know that D = F
(
1− M

N

)
and d = K

(
1− M

N

)
.

Consider an arbitrary user vertex and call it k1. We know that |N (k1)| = D. From the notations of Theorem 8, we have

ρ1 = D. WLOG, let N (k1) = {f1, f2, · · · , fρ1}. Now, consider the graph induced by K ∪N (k1) of B and call it B
′
.

Finding lower bound on ρ2: Since the degree of each f ∈ N (k1) is d, there are exactly dρ1 edges in B
′
. It is easy to see

that the number of edges in B
′

between K \ {k1} and N (k1) is (d− 1)ρ1. By the pigeon-holing argument, there exists a user

vertex in K \ {k1} with degree at least
⌈ (d−1)ρ1

K−1

⌉
, in B

′
. Consider such a user vertex and call it k2. Therefore,

ρ2 ≥
⌈
(d− 1)ρ1
K − 1

⌉
=

⌈
(d− 1)D

K − 1

⌉
.

WLOG, let N (k2) = {f1, f2, · · · , fρ2} in B
′
. It is clear that N (k2) ⊆ N (k1). Therefore, from each subfile vertex in N (k2)

two edges will go to k1, k2 each.

Finding lower bound on ρ3: Since the degree of each f ∈ N (k2) is d, there are exactly dρ2 edges incident at the edges

in N (k2). Now, it should be clear that the number of edges in B′ between K \ {k1, k2} and N (k2) is (d − 2)ρ2. Again by

the pigeon-holing argument, there exists a user vertex in K \ {k1, k2} with degree at least
⌈ (d−2)ρ2

K−2

⌉
, in B

′
. Consider such a

user vertex and call it k3. Therefore,

ρ3 ≥
⌈
(d− 2)ρ2
K − 2

⌉
.



TABLE XII: Comparison of the two proposed information theoretic lower bounds on the rate of the transmission schemes associated with
the special class of caching schemes defined by the bi-regular bipartite caching graphs with parameters K,F,D, with that of [18], [11]. The
last column gives the number of transmissions in the scheme constructed in Section V-C for whatever values are applicable. (NA represents
not applicable).

K F D M
N (Corollary 3) (Theorem 9) [18] [11] Scheme B

[Section V-C]

= 1− D
F R∗ ≥ R∗ ≥ R∗ ≥ R∗ ≥ R

15 50 30 0.4 0.76 1.42 1.08 1.2857 NA

24 54 36 0.3333 0.9444 2.0185 1.6667 1.7778 NA

15 20 12 0.4 1 1.5 1.55 1.2857 NA

7 21 12 0.4286 0.7143 1.0476 0.8571 1 1.33

13 78 54 0.3077 0.7949 1.8333 1.3205 1.8 3

15 105 84 0.2 0.9048 3.0952 2.2286 3 4

21 210 160 0.2381 0.8333 2.7381 1.7952 2.6667 105

31 465 420 0.0968 0.9613 7.0839 4.9247 7 9.3333

40 780 702 0.1 0.9449 7.2936 4.7397 7.2 12

105 105 48 0.5429 0.9048 1.2571 1.2571 0.8276 8

465 4340 1792 0.5871 0.4569 0.7435 0.4880 0.7007 19.2

4340 465 192 0.5871 4.2645 4.5548 6.9398 0.7030 179.2

465 465 335 0.28 1.4387 3.8215 3.8215 2.5573 56

8001 9,921,240 6,666,081 0.3281 0.6724 2.0479 1.0330 2.0471 358.4

By using the lower bound on ρ2 we can write,

ρ3 ≥
⌈
d− 2

K − 2

⌈
(d− 1)ρ1
K − 1

⌉⌉
.

Note that these ρ3 edges are incident on ρ3 subfile vertices in B′, which we denote as N (k3). By construction of k3 we note

that N (k3) ⊆ N (k2). Iterating this procedure for j = 4, . . . , d, we can identify vertices kj , with neighbouring vertices N (kj)

in B′ numbering ρj respectively, such that N (kj) ⊆ N (kj−1), ∀j ≤ d, satisfying the following inequality for each j by the

pigeon-hole principle

ρj ≥
⌈
(d− (j − 1))ρj−1

K − (j − 1)

⌉
.

Note that d = K
(
1− M

N

)
. As N ≥ K

(
1− M

N

)
, we have in Theorem 8, N

′
= K

(
1− M

N

)
. Now, applying Theorem 8

upon noticing that the bounds on ρjs depend only on the parameters K,F, M
N , completes the proof.

We now present the numerical comparisons (in Table XII) between the information theoretic bounds we have obtained

in this section, with earlier results. Throughout this numerical comparison, we assume that the caching schemes are defined

by the bi-regular bipartite caching graphs. For a number of choices of parameters
(
K,F and M

N

)
, in Table XII, we compare

numerically the new subpacketization-dependent lower bounds based on Corollary 3 and Theorem 9 on the optimal rate (column

5 and column 6 of Table XII), with the lower bound (18) of [18] (given in column 7), as well as the lower bound of [11](
R∗ ≥ K(1− M

N )

1 + MK
N

, calculated in column 8

)
. Note that the bound in [18] holds for PDA based delivery schemes with given



subpacketization level, while the bound in [11] holds for non-linear schemes as well and is subpacketization-independent.

It can be seen that for many of the chosen parameters, our bound of Theorem 9 is better than those in [18], [11] (when

applied to the special class of bi-regular bipartite caching graphs). However, the bound in Corollary 3 is quite loose. Further,

the last column of Table XII denotes the rate achieved (for whichever parameters are applicable) by our new coded caching

scheme, titled Scheme B, whose construction we have presented in Section V-C (from Remark 4, recall that Scheme B is

defined on a bi-regular bipartite caching graph). Also, seeing the table, we remark that there is in general a wide gap between

the lower bounds and achievable rates for small subpacketization levels, which indicate scope for future work.

VIII. CONCLUSION AND DISCUSSION

In this work, we have presented the coded caching schemes which achieve low subpacketization compared to a number of

existing schemes in the literature. Our coded caching schemes are constructed over the foundations of the bipartite graphs

and the projective geometry. The literature in this area is now extensive, therefore we have presented comparisons with only

a few important existing coded caching schemes, which are considered state-of-the-art to the best of our knowledge. We have

also extended our scheme to other channel settings, thereby showing similar gains in the subpacketization in those settings

also. There are a number of questions and open problems, which are yet to be answered in terms of the subpacketization-rate

trade-off, some of which are listed here.

• Is there a closed-form expression for the optimal rate achievable for a given subpacketization level? Can we obtain

impossibility results, for certain regimes of (asymptotic) coded caching gains given a certain level of subpacketization,

or vice-versa? (For instance, the work [14] gives an impossibility of the subpacketization being linear in K , for constant

rate and cache-fraction).

• The current paper can be said to subsume the construction of [6] in the following sense. Suppose we substitute n = 1 in

Theorem 3, and let q → 0, then it is easy to see that we obtain the scheme from [6]. Further, retaining n as a parameter,

just letting q → 0 gives us a scheme from [15] (which is based on the set-theoretic principles). The likely common

theory which underlies these types of combinatorial constructions, which are based on set-containment and subspace-

containment principles, is the notion of geometric lattices. Exploring such connections may lead to further interesting and

useful constructions.

• One drawback of our constructions in this work is the number of parameters and the lack of flexibility in designing for

all possible values for the number of users, and for cache sizes, without introducing dummy users or wasting existing

user cache memory. It is possible that using a similar grouping scheme as in [12], we could achieve some flexibility in

the number of users. Exploring this is a direction for future work.

• The single server with multi-antenna and multi-receiver wireless scenario can be looked at as a multi-transmitter scenario

(which we discuss in this current work) with all the transmitters having access to the entire library. Recently, the works

[39], [40] carry forward the discussion of subpacketization in the multi-antenna wireless communication. In particular, in

[40], a simple linear subpacketization scheme is presented for multi-antenna scenario provided some parameter conditions

are satisfied. This raises the question of whether there are schemes for other scenarios, which are of low theoretical

complexity, low subpacketization, and offer good caching gain.
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Construct a bipartite graph with left vertices as



Vi, i = 1, . . . ,

[
m+ t

t

]

q



 (the t-dim subspaces of X) and right vertices as

{T : T is a m-dim subspace of X}. By the lemma statement, we know that the number of right vertices is

[
m+ t

m

]

q

. By A1

of Lemma 1, we have

[
m+ t

m

]

q

=

[
m+ t

t

]

q

. Therefore, the number of right vertices is equal to the number of left vertices.



We now define the edges of the bipartite graph. For a left vertex V , let the adjacent right-vertices in the bipartite graph be

{T : V ∩ T = {0}}.

Thus, the left-degree is

[
m+ t

t

]

q

− |{T : V ∩ T 6= {0}}|. Now, V ∩ T is a subspace. By A3 of Lemma 1, the number of

m-dim subspaces of X intersecting a fixed t-dim subspace in some i-dim subspace (1 ≤ i ≤ min(t,m)) is

q(m−i)(t−i)

[
(m+ t)− (t)

m− i

]

q

[
t

i

]

q

= q(m−i)(t−i)

[
m

i

]

q

[
t

i

]

q

.

Thus the left-degree in this bipartite graph is

[
m+ t

t

]

q

−
min(m,t)∑

i=1

q(m−i)(t−i)

[
m

i

]

q

[
t

i

]

q

,

where the second term above is precisely |{T : V ∩ T 6= {0}}|.
Similarly, by Lemma 1, the number of t-dim subspaces of X intersecting a fixed m-dim subspace in some i-dim subspace

is

q(t−i)(m−i)

[
(m+ t)− (m)

t− i

]

q

[
m

i

]

q

= q(t−i)(m−i)

[
t

i

]

q

[
m

i

]

q

.

And hence the right degree is equal to the left-degree. Hence, the bipartite graph we have constructed is regular.

A perfect matching of a graph G is a matching of G such that every vertex of G is incident on some edge of the matching.

It should be clear that what we are looking for is a perfect matching of the regular bipartite graph we have constructed. The

reason is as follows. Define TVi,X as the m-dim subspace adjacent to Vi in the perfect matching. Since for given Vi, any T

adjacent to Vi in our bipartite graph is such that T ⊕ Vi = X , thus we have TVi,X ⊕ Vi = X . Thus, a perfect matching gives

us the collection of TVi,X , ∀Vi as we desire.

Now, for a regular bipartite graph with n left-vertices, algorithms are known to find a perfect matching with complexity as

small as O(n logn) [41]. This completes the proof.

APPENDIX B

ASYMPTOTIC ANALYSIS OF SCHEME A (THEOREM 2)

We analyse the asymptotic behaviour of our scheme as K grows large in two cases. In the first case, we bound M
N from

above by a constant and analyse the asymptotic behaviour of F and R. In the second case, we bound R from above by a

constant and analyse the asymptotic behaviour of F and M
N .

We first give the equivalent expressions of M
N and R (which can be easily verified using the definition of the Gaussian

binomial coefficient). We do this because we can apply the bounds in Lemma 2 conveniently to these expressions in order to

obtain our asymptotics.

M

N
= 1−

[
k − t

m

]

q[
k

m+ t

]

q

= 1−

[
m+ t

t

]

q[
k

t

]

q

and

R =

[
k

m

]

q[
k

m+ t

]

q

=

[
m+ t

t

]

q[
k −m

t

]

q

.



Throughout we assume q is constant. We have K =

[
k

t

]

q

. We analyse our scheme as k grows large.

By using (4) we have

q(k−t)t ≤ K ≤ q(k−t+1)t. (21)

We can write this as,

1√
K

q
−t2

2 ≤ q
−kt
2 ≤ 1√

K
q

−t2+t
2 . (22)

Case 1: If M
N is upper bounded by a constant

From Theorem 2 we have,

1− M

N
=

[
m+ t

t

]

q[
k

t

]

q

(5)
≥ q(m+t−k−1)t. (23)

To lower bound 1− M
N (or upper bound M

N ) by a constant, assume t and k −m as constants. Note that m+ t ≤ k.

Asymptotics of F : We now analyse the asymptotics for F . Consider,

F

K
=

[
k

m+ t

]

q[
k

t

]

q

(6)
≤ q(k−t−m−t+1)m ≤ q(k−2t−m+1)(k−t)

(21)
≤ K

k−2t−m+1
t

Hence F ≤ K
k−t−m+1

t .

Therefore F = O(poly(K)). (since t and k −m are constants)

Asymptotics of R:

We now analyse the asymptotics for R =







m+ t

t







q






k −m

t







q

.

By using (5) we get,

q(m+t−k+m−1)t ≤ R ≤ q(m+t−k+m+1)t.

Now by using (21) we can write,

q2(t+m−k−1)t ≤ R

K
≤ q2(t+m−k)t+t.

Therefore R = Θ(K). (since t and k −m are constants)

Case 2: If R is upper bounded by a constant

We have, R
(5)
≤ q(2m−k+t+1)t.

To bound R from above by a constant, assume t and k − 2m as constants. Note that m+ t ≤ k.



Asymptotics of F : We now analyse the asymptotics for F . Consider,

F

K

(6)
≤ q(k−t−m−t+1)m ≤ q(k−2t−m+1)(k−t)

F ≤ K q(
k
2+

k−2m
2 −2t+1)(k−t)

≤ qlogq K q
k2−kt

2 +α1(k−t), (24)

where α1 = k−2m
2 − 2t+ 1 is a constant. From (21) we have k ≤ 1

t logq K + t.

By using this in the inequality in (24), it is easy to see that F = qO((logqK)2). (since t and k − 2m are constants)

Asymptotics of M
N : We now analyse the asymptotics for M

N . By using (5) we have,

q(m+t−k−1)t ≤ 1− M

N
≤ q(m+t−k+1)t

q(
2m−k

2 +t−1)tq
−kt
2 ≤ 1− M

N
≤ q(

2m−k
2 +t+1)tq

−kt
2 .

By using (22) we get,
1√
K

q(
2m−k

2 +t−1)t− t2

2 ≤ 1− M

N
≤ 1√

K
q(

2m−k
2 +t+1)t− t2+t

2 .

Therefore M
N = 1−Θ

(
1√
K

)
. (since t and k − 2m are constants)
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Finding the number of user vertices K (= |X|):

Finding K means finding the number of distinct sets {T1, T2, · · · , Tn} such that Ti ∈ T, ∀i ∈ [n] and
n∑

i=1

Ti ∈ R. By

invoking Lemma 8 (with a = 0), we have,

K =
1

n!

n−1∏

i=0

(θ(k)− θ(i)) (25)

=
1

n!

n−1∏

i=0

(
qk − 1

q − 1
− qi − 1

q − 1

)

=
1

n!

n−1∏

i=0

qk − qi

q − 1
=

1

n!

(
n−1∏

i=0

qi

)(
n−1∏

i=0

qk−i − 1

q − 1

)

=
1

n!
q

n(n−1)
2

n−1∏

i=0

[
k − i

1

]

q

.

Finding the number subfile vertices F (= |Y|):

Proof is similar to that of K (replace n with m).

Finding the degree of user vertex D (= |N (X)|):

Consider an arbitrary X = {T1, T2, · · · , Tn} ∈ X. We have
n∑

i=1

Ti = R, for some R ∈ R. We know that dim(R) = n. Now,

finding |CX | is equivalent to counting the number of distinct sets Y = {T ′
1, T

′
2, · · · , T ′

m} ∈ Y such that X ∪ Y ∈ Z, that is

dim

(
n∑

i=1

Ti +
m∑
i=1

T ′
i

)
= n+m. By Lemma 8 we have,



|N (X)| = 1

m!

m−1∏

i=0

(θ(k)− θ(n+ i))

=
1

m!

m−1∏

i=0

qk − qn+i

q − 1

=
1

m!

(
m−1∏

i=0

qn+i

)(
m−1∏

i=0

qk−n−i − 1

q − 1

)

=
qnm

m!
q

m(m−1)
2

m−1∏

i=0

[
k − n− i

1

]

q

.

This completes the proof.

APPENDIX D

ASYMPTOTIC ANALYSIS OF SCHEME B (THEOREM 3)

In this appendix, we analyse the asymptotic behaviour of F,R for our coded caching scheme presented in Theorem 3

(Scheme B) as M
N is upper bounded by a constant and K → ∞. We show that F = qO((logq K)2), while R = Θ

(
K

(logq K)n

)
.

Throughout our analysis, we assume q is a constant and some prime power, and n is some constant. We now upper bound M
N

by a constant. From (11) we have,

1− M

N
=

m−1∏
i=0

(θ(k)− θ(n+ i))

m−1∏
i=0

(θ(k) − θ(i))

=

n+m−1∏
i=n

(θ(k)− θ(i))

m−1∏
i=0

(θ(k)− θ(i))

=

n+m−1∏
i=0

(θ(k) − θ(i))

(
n−1∏
i=0

(θ(k) − θ(i))

)(
m−1∏
i=0

(θ(k)− θ(i))

)

=

n+m−1∏
i=m

(θ(k) − θ(i))

n−1∏
i=0

(θ(k) − θ(i))

=

n−1∏
i=0

(θ(k)− θ(m+ i))

n−1∏
i=0

(θ(k) − θ(i))

=

n−1∏

i=0

qk − qm+i

qk − qi
=

n−1∏

i=0

qk−i − qm

qk−i − 1

≥
n−1∏

i=0

qk−i − qm

qk−i

1− M

N
≥

n−1∏

i=0

(
1− qi

qk−m

)
.

Let α = k −m. (α ≥ n, since k ≥ n+m)

1− M

N
≥

n−1∏

i=0

(
1− qi

qα

)
≥

n−1∏

i=0

(
1− qn−1

qα

)

≥
(
1− 1

qα−n+1

)n

≥ 1− n

qα−n+1
. (26)

Therefore, the upper bound on M
N is given as M

N ≤ n
qα−n+1 , where α = k −m and n are constants.



We have K = 1
n! q

n(n−1)
2

n−1∏
i=0

[
k − i

1

]

q

. We analyse our scheme as k grows large (thus K grows large). By Lemma 2 we

have,

1

n!
q

n(n−1)
2

n−1∏

i=0

qk−i−1 ≤ K ≤ 1

n!
q

n(n−1)
2

n−1∏

i=0

qk−i

n−1∏
i=0

qi

n!
q(k−1)n

n−1∏

i=0

q−i ≤ K ≤

n−1∏
i=0

qi

n!
qkn

n−1∏

i=0

q−i

1

n!
q(k−1)n ≤ K ≤ 1

n!
qkn (27)

(k − 1)n ≤ logq (n!K) ≤ kn.

Hence, we have,
1

n
logq (n!K) ≤ k ≤ 1

n
logq (n!K) + 1. (28)

Asymptotics of R:

We now get the asymptotics for the rate. We have, R =
K(1− M

N )

γ
. From Theorem 3, we have γ =

(
n+m
n

)
. Since α = k−m

we can write, γ =
(
k−α+n

n

)
. We have the following well known bounds on the binomial coefficient (e being the base of the

natural logarithm), (a
b

)b
≤
(
a

b

)
≤ eb

(a
b

)b
.

By using this result, the bounds on γ can be written as,

(
k − α+ n

n

)n

≤ γ ≤
(
e(k − α+ n)

n

)n

.

By using (28) the lower bound on γ can be written as,

(
1
n logq (n!K)− α+ n

n

)n

≤ γ ,

and the upper bound on γ can be written as,

γ ≤
(
e
(
1
n logq (n!K)− α+ n+ 1

)

n

)n

.

After some simple manipulations we get γ = Θ
(
(logq n!K)n

)
= Θ

(
(logq K)n

)
. (since n is a constant). Therefore, we get

R = Θ
(

K
(logq K)n

)
.

Asymptotics of F :

We now obtain the asymptotics for the subpacketization F . By using K,F expressions in Theorem 3 we get,

F

K
=

n!

m!

q
m(m−1)

2

q
n(n−1)

2

m−1∏
i=0

[
k − i

1

]

q

n−1∏
i=0

[
k − i

1

]

q

.



By Lemma 2 we have,

F

K
≤ n!

m!

q
m(m−1)

2

q
n(n−1)

2

m−1∏
i=0

qk−i

n−1∏
i=0

qk−i−1

=
n!

m!

q
m(m−1)

2

q
n(n−1)

2

m∏
i=0

q−i

n∏
i=0

q−i

qkm

q(k−1)n

F ≤ n! K

m!
qkm−kn+n.

By using m = k − α we get,

F ≤ qlogq (n!K) q(k
2+(α+n)(−k)+n)

(k − α)!
.

By (28) we have,

k2 + (α+ n)(−k) + n

≤
(
1

n
logq (n!K) + 1

)2

+ (α+ n)

(−1

n
logq (n!K)

)
+ n

=

(
1

n
logq (n!K)

)2

+

(
2− α− n

n
logq (n!K)

)
+ n+ 1.

By the lower bound of (28) we have,

1

(k − α)!
≤ 1⌊

1
n logq (n!K)− α

⌋
!
.

By using these bounds, we get,

F ≤ q(
1
n
logq (n!K))

2
+( 2−α

n
logq (n!K))+n+1

⌊
1
n logq (n!K)− α

⌋
!

.

Using Stirling’s approximation for x! as
√
2πx

(
x
e

)x
for large x, and after some simple manipulations, we see that F =

qO((logq (n!K))2) = qO((logq K)2) (Since n is a constant).
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Finding the number of user vertices K (= |X|):

Let T , PGq(k−1, 0) (set of all 1-dim subspaces). Finding K means finding the number of distinct sets {L1, L2, · · · , Ln}
such that Li ∈ L, ∀i ∈ [n] and

n∑
i=1

Li ∈ R. Now to find K , we prove the following smaller claims.

Claim 1: The number (say x1) of distinct nl sized sets {T1, T2, · · · , Tnl} such that Ti ∈ T, ∀i ∈ [nl] and
n∑

i=1

Ti ∈ R is

x1 = 1
(nl)!

nl−1∏
i=0

(θ(k)− θ(i)).

Proof of Claim 1: By invoking Lemma 8 with a = 0 and b = nl we see the result.

Claim 2: Consider a set T = {T1, T2, · · · , Tnl} such that Ti ∈ T, ∀i ∈ [nl] and
n∑

i=1

Ti ∈ R. The number (say x2) of distinct

X ∈ X generated from T is x2 = 1
n!

n−1∏
i=0

(
(n−i)l

l

)
.



Proof of Claim 2: It is clear that T contains nl number of linearly independent 1-dim subspaces. So the addition of any l

subspaces from T will generate a unique l-dim subspace. Hence, finding x2 is equivalent to counting the number of distinct

n-sized sets of l-sized sets that can be formed from T . It is clear that each such n-sized set will generate a unique X . From

the basic combinatorics, the expression for x2 can be inferred.

Therefore, the total number of X ∈ X which can be generated from Fk
q is x1x2. But there are some repetitions in x1x2. We

identify them in the following claim.

Claim 3: Consider an arbitrary X = {L1, L2, · · · , Ln} ∈ X. The number (say x3) of distinct {T1, T2, · · · , Tnl} (such that

Ti ∈ T, ∀i ∈ [nl] and
nl∑
i=1

Ti ∈ R) which generate X is x3 =

(
1
(l!)

l−1∏
i=0

(θ(l)− θ(i))

)n

.

Proof of Claim 3: Consider an arbitrary Lj ∈ X . By Lemma 8, the number of distinct sets {T ′
1, T

′
2, · · · , T

′

l } (∀T ′
i ∈ T, i ∈ [l])

such that
l∑

i=1

T
′
i = Lj is (substitute a = 0, b = l, k = l in Lemma 8) 1

(l!)

l−1∏
i=0

(θ(l)− θ(i)). There are n such Li’s in X (all are

linearly independent subspaces). Therefore x3 =

(
1

(l!)

l−1∏
i=0

(θ(l)− θ(i))

)n

.

Hence K = x1x2

x3
. Now by using θ(k) = qk−1

q−1 and by doing some simple manipulations we see the expression of K as per

the lemma statement. The proofs of F and D follows similarly.
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