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Rank and Kernel of Additive Generalised Hadamard
Codes

Steven T. Dougherty, Josep Rifa, Senior Member, IEEE, and Merce Villanueva

Abstract—A subset of a vector space F;' is additive if it is a
linear space over the field F,, where ¢ = p°, p prime, and e > 1.
Bounds on the rank and dimension of the kernel of additive
generalised Hadamard (additive GH) codes are established. For
specific ranks and dimensions of the kernel within these bounds,
additive GH codes are constructed. Moreover, for the case e = 2,
it is shown that the given bounds are tight and it is possible
to construct an additive GH code for all allowable ranks and
dimensions of the kernel between these bounds. Finally, we also
prove that these codes are self-orthogonal with respect to the trace
Hermitian inner product, and generate pure quantum codes.

Index Terms—Additive code, generalised Hadamard code,
generalised Hadamard matrix, kernel, nonlinear code, rank.

I. INTRODUCTION

ET F, = GF(q) denote the finite field with ¢ elements,

where ¢ = p®, p prime. Let F/ be the vector space of
dimension n over ;. The Hamming distance between vectors
w, v € 7, denoted by d(w, v), is the number of coordinates
in which w and v differ. A code C over F, of length n
is a nonempty subset of Fy. The elements of C' are called
codewords. The minimum distance of a code is the smallest
Hamming distance between any pair of distinct codewords. A
code C over I, is called linear if it is a linear space over I,
and, it is called additive if it is linear over the prime field IF,.
An additive code C' over [, has a dimension £’ as a linear
space over F, and we can write |O| = p* = ¢*, where
k' = ke. The dimension of an additive code C' over F, is
defined as the number k, which is not necessarily an integer
number.

Two codes Cy, C2 C Fy are said to be permutation
equivalent if there exists a permutation ¢ of the n coordinates
such that Cy = {0’(61,62, S ,Cn) = (0071(1), o 7CU—1(71)) :
(c1,¢2,...,¢,) € C1}. Without loss of generality, we shall as-
sume, unless stated otherwise, that the all-zero vector, denoted
by 0, is in C.

Two structural parameters of (nonlinear) codes are the
dimension of the linear span and the kernel. The linear span
of a code C over F,, denoted by R(C'), is the subspace over [,
spanned by C, that is R(C) = (C). The dimension of R(C)
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is called the rank of C' and is denoted by rank(C). If ¢ = p°,
p prime, we can also define R,(C) and rank,(C) as the
additive code spanned by C' and its dimension, respectively.
The kernel of a code C over F,, denoted by K(C), is defined
as K(O) = {x € F}' ax + C = C for all a € F}.
If ¢ = p° p prime, we can also define the p-kernel of
C as K,(C) = {x € F x + C = C}. Since we
assume that 0 € C, then K(C) is a linear subcode of C' and
K,(C) is an additive subcode. We denote the dimension of
the kernel (resp., p-kernel) of C' by ker(C) (resp., ker,(C)).
These concepts were first defined in [17] for codes over [,
generalising the binary case described previously in [2], [16].
In [17], it was proved that any code C' over [, can be written as
the union of cosets of IC(C') (resp., K,,(C)), and K(C) (resp.,
K,(C)) is the largest such linear code over F, (resp., F,) for
which this is true. Moreover, it is clear that IC(C') C IC,,(C).

A generalised Hadamard (GH) matrix H(q, \) = (h;;) of
order n = g over F; is a g\ x g\ matrix with entries from
IF, with the property that for every ¢,7, 1 <4 < j < ¢g], each
of the multisets {h;s — hjs : 1 < s < gA} contains every
element of [, exactly A times. It is known that since (IF,, +)
is an abelian group then H (g, \)T is also a GH matrix, where
H(q,\)T denotes the transpose of H (g, \) [11]. An ordinary
Hadamard matrix of order 44 corresponds to a GH matrix
H(2,\) over F,, where A\ = 2.

Two GH matrices H; and Hs of order n are said to
be equivalent if one can be obtained from the other by a
permutation of the rows and columns and adding the same
element of [, to all the coordinates in a row or in a column.
We can always change the first row and column of a GH
matrix into zeros and we obtain an equivalent GH matrix
which is called normalized. From a normalized GH matrix
H, we denote by Fyy the code over I, consisting of the rows
of H, and Cp the one defined as Cy = Uae]Fq (Fyg + al),
where Fy + a1l = {h+al : h € Fg} and 1 denotes the
all-one vector. The code Cy over F, is called generalised
Hadamard (GH) code. Note that Fr and Cpr are generally
nonlinear codes over IF,.

To check whether two normalized GH matrices are equiva-
lent is known to be an NP-hard problem [15]. However, we can
use the invariants related to the linear span and kernel of the
corresponding GH codes in order to help in their classification,
since if two GH codes have different ranks or dimensions
of the kernel, the normalized GH matrices are nonequivalent.
Given a normalized GH matrix H, to establish the rank and
dimension of the kernel of the corresponding code Fyy is the



same as to establish these values for the code C'g, since
rank(Cpy) =rank(Fp) + 1
ker(Cy) =ker(Fg) + 1

and

6]

by [8, Lemma 1]. In this paper, we focus on the codes Cy,
although everything could be rewritten in terms of the codes
Fy. It is important to emphasise that this is true as long as
the GH matrix H is normalized.

The rank and dimension of the kernel for ordinary
Hadamard codes over [, have already been studied. Specifi-
cally, lower and upper bounds for these two parameters were
established, and the construction of an Hadamard code for all
allowable ranks and dimensions of the kernel between these
bounds was given [18], [19]. The values of the rank and dimen-
sion of the kernel for ZsZ,-linear Hadamard codes were given
in [20], and these invariants for Zss-linear Hadamard codes
have been studied in [6], [7]. The ZyZ4-linear Hadamard codes
(resp. Zos-linear Hadamard codes) are the Hadamard codes
over [, obtained as the Gray map image of Z,Z4-additive
codes (resp. Zos-additive codes), which are subgroups of
7§ x Zf (resp. ng).

Some of the results on the rank and dimension of the kernel
for Hadamard codes over [, have been generalised to GH
codes over F, with ¢ # 2 [8]. Specifically, some lower and
upper bounds for the dimension of the kernel, and for the
rank once the dimension of the kernel is fixed, were given.
Moreover constructions of GH codes having different values
for these invariants within these bounds, were presented. In
this paper, we continue studying the rank and dimension of
the kernel for GH codes over F,. However, now we focus on a
specific family of GH codes, namely the additive GH codes,
that is, additive codes over F, obtained from GH matrices
H(q,\). In the specific case ¢ = p? we use the additive
GH codes over I, to generate pure quantum codes. It is
worth mentioning that the invariants rank and dimension of
the kernel, used in this paper for additive GH codes, could be
extended to classify more general additive or quantum codes.

The paper is organized as follows. In Section II, lower
and upper bounds on the dimension of the kernel, and the
rank once the dimension of the kernel is fixed, are given.
In Sections III and IV, several constructions of additive GH
codes over I, with ¢ = p®, p prime and e > 1, are shown.
In Section V, by using these constructions, we establish for
which allowable pairs (r, k), where r is the rank and k the
dimension of the kernel, there exists an additive GH code
having these invariants. Finally, in Section VI, we see that
the additive GH codes over [F,» can be used to generate pure
quantum codes since they are self-orthogonal with respect to
the trace Hermitian inner product.

II. BOUNDS ON THE RANK AND DIMENSION OF THE
KERNEL

In this section, we state new results on the rank and dimen-
sion of the kernel for additive generalised Hadamard codes.
Note that a GH matrix H(p, \) over F,, p prime, generates
an additive GH code Cy of length n = Ap = p! if and only
if rank(Cp) = rank,(Cy) = ker,(Cy) = ker(Cy) = 1+ t.

Therefore, we focus on additive GH codes over [, with
q=7p°e>1

Proposition IL1. [8, Proposition 9] Let H(q,\) be a GH
matrix over ¥y, where q = p®, p prime, and e > 1. Let n =
g\ = p's such that ged(p,s) = 1. Then 1 < ker(Cy) <
ker,(Cy) < 1+t/e

Lemma IL.2. [8, Lemma 16] Let C'y be a GH code of length
n = q"s over I, where s # 1 and s is not a multiple of q.
Then ker(Cy) < h.

Lemma IL3. Ler H(q,\) be a GH matrix over B, such that
Cy is additive. Let n = g\ = p's such that ged(p,s) = 1,
where q = p°, p prime, and e > 1. For any v € Cyg, v €
K(Cr) if and only if pv € Cy for all p € F,.

Proof. Assume that yv € Cy for all p € . Since Cy is
additive, for any w € C'y we have that yv +w € Cp. Hence,
the statement follows. O

Proposition IL4. Ler H(q, ) be a GH matrix over F;, where
q = p% p prime, and e > 1. Let n = g\ = p's such that
ged(p, s) = 1. Then

(i) If Cy is an additive code, then s = 1.
(ii) The code Cyy is an additive code if and only if
rank,(Cg) = ker,(Cy) = 1+ t/e.
(iii) If Cy is an additive code and ker(Cpr) = k, then
e+t—k
e —
(iv) If Cy is an additive code, then rank(Cy) = ker(Cp) =

1+1t/e when Cy is linear over B (t is a multiple of e),
or otherwise

<rank(Cyx) <1+4+t—(e—1)(k-1).

1 <ker(Cp) < |t/e].

Proof. Since the number of codewords is |Cy| = gqn = p*tis,
if C'y is additive, then we have that s = 1 and rank,(Cy) =
ker,(Cy) = 1+ t/e. This proves items (i) and (47).

Let Cyy be an additive code with ker(Cyy) = k. The kernel
K(CHr) is the largest linear subspace over F, in C'y such that
Cpy can be partitioned into cosets of (Cy). Specifically,
there are |CH|/qk — ql—i—t/e/qk _ q1+t/e—k _ pe+t—ek
cosets. Since Cy and KC(Cy) are linear over F,, the above
cosets (that is, the elements of the quotient C'r; /K(Cyr)) have
a linear structure over IF,. Therefore, there are e + ¢ — ek
independent vectors over [, generating these cosets, which
means that the number of independent vectors over [, gen-
erating these cosets is upper bounded by e + ¢ — ek. Hence
rank(Cy) <k+(e+t—ek)=1+t—(e—1)(k—1). From
Lemma IL.3, for any v ¢ K(Cpy), the intersection of the linear
space over I, generated by v and Cy is, at most, of dimension
e — 1 over F,. Therefore, for the lower bound, we have that
etiek 4 k= <=k < rank(Cy) and item (iid) follows.

For item (iv), when Cp is linear over F,, we have that
Cy = K(Cp). Since |Cy| = pett = ¢**+/¢, ¢ is a multiple
of e and rank(Cy) = k = 1+t/e. Otherwise, 1 < k < 1+t/e
by Proposition II.1 and item (4). In this case, if ¢ is a multiple
of e, clearly k < |t/e|. Finally, if ¢ is not a multiple of e, by



Lemma II.2, since n = th/ers/, where 1 < ps/ < q, we have
that k& < |t/e]. O

Corollary IL5. Let H(q,\) be a GH matrix over F,, where
q = p? and p prime. If Cy is an additive code of length
n = g\ = p', then
(i) rank(Cpy) + ker(Cy) =2+ ¢.
(ii) If 211, then rank(Cpr) — ker(Cp) > 3.
(iii) If 2 | t and Cy is nonlinear over T, then rank(Cp) —
ker(Cp) > 2.

Proof. The first item is straightforward from item (i%¢) in
Proposition I1.4.

For the second item, if 2 = e t ¢, then t = 2h 4+ 1. From
item (¢v) in Proposition I1.4, ker(Cr) < h and so rank(Cpr)—
ker(Cp) > rank(Cg)—h = 24+t—ker(Cy)—h > 2+t—2h =
3. For the third item, we can follow a similar argument, but
considering that ¢t = 2h. O

Example IL.6. For ¢ = p3, the second column in Table I gives
all possible values for the dimension of the kernel of additive
GH codes over F,s of length n = pt with 2 < t < 12. For
each one of these values, the third column shows the possible
values for the rank, given by Proposition I1.4. A

TABLE I
PARAMETERS ker(C'ry) AND rank(C'gr) FOR ALL ADDITIVE GH CODES
Cp OVER F 3 OF LENGTH n = p* WITH 3 < ¢ < 12.

t  ker(Cp) rank(Cp) ker, (Cg) = rank,(Cp)
3 2 2 2
1 34 2
4 1 34,5 7/3
5 1 45,6 8/3
6 3 3 3
2 4,5 3
1 45,67 3
7 2 4,56 10/3
1 5,6,7.8 10/3
8 2 5,6,7 11/3
1 5,6,7,8.9 11/3
9 4 4 4
3 5,6 4
2 5,6,7.8 4
1 6,7,8,9,10 4
10 3 5,6,7 13/3
2 6,7,8,9 13/3
1 6,7,8,9,10,11 13/3
11 3 6,7,8 14/3
2 6,7,8,9,10 14/3
1 7,8,9,10,11,12 14/3
12 5 5 5
4 6,7 5
3 6,7,8,9 5
2 7,8,9,10,11 5
1 7,8,9,10,11,12,13 5

III. KRONECKER AND SWITCHING CONSTRUCTIONS

In this section, we show that by using the Kronecker sum
construction from additive GH codes, we also obtain additive
GH codes. Moreover, we present a switching construction
that allows for the production of additive GH codes. For all

these constructions, we establish the values of the rank and
dimension of the kernel for the obtained codes.

A standard method to construct GH matrices from other
GH matrices is given by the Kronecker sum construction [14],
[23]. That is, if H(gq,\) = (hi;) is any g\ x ¢\ GH matrix
over Iy, and By, B, ..., By, are any qu x g GH matrices
over [, then the matrix in Table II gives a ¢?Ap x ¢*Au
GH matrix over [, denoted by H & [B1, By, ..., By, where
n =q\ If B = By = --- = B, = B, then we write

H®[By,Bs,...,B,]=H® B.
TABLE II
KRONECKER SUM CONSTRUCTION
h11+B1  hi2+ B hin + B1
ha1 + B2 has + Bo hon + B2
HeB= ) . .
hnl + Bn hn2 + Bn hnn + Bn

Let S, be the normalized GH matrix H(q,1) given by
the multiplicative table of F,. As for ordinary Hadamard
matrices over [, starting from a GH matrix St = Sg. we
can recursively define S* as a GH matrix H(q,q""!), con-
structed as S" = S, @ [S"~1, 5071, L, Sh ) =5, @ Sht
for h > 1, which is called a Sylvester GH matrix. Note
that the corresponding GH code Cgn is linear over F,, so
rank(Cgn) = ker(Cgn) = 14 h, by Equation (1) or item (4v)
of Proposition I1.4.

Now, we recall some known results on the rank and di-
mension of the kernel for GH codes constructed by using
the Kronecker sum construction. In these cases, starting with
additive GH codes, we obtain additive GH codes.

Lemma III.1. Letr H; and Hs be two GH matrices over
F, and H = Hy & H,. Then rank(Cy) = rank(Cg,) +
rank(Cp,) — 1 and ker(Cy) = ker(Ch,) + ker(Cp,) — 1.
Moreover, if Cy, and Cpy, are additive, then Cy is also
additive and rank,(Cy) = rank,(Cy, ) + rank,(Ch,) — 1.

Proof. Straightforward from the proof of Lemma 3 in [8]. [

Corollary IIL2. Let B be a GH matrix over F;, and H =
Sq ® B. Then rank(Cp) = rank(Cp) + 1 and ker(Cpy) =
ker(Cp) + 1. Moreover, if Cp is additive, then Cy is also
additive and rank,(Cy) = rank,(Cpg) + 1.

Proof. Straightforward from the proof of Corollary 4 in [8].
O

Several switching constructions have been used to construct
perfect codes in [21], [22] ordinary Hadamard codes over [,
n [18], [19], and generalised Hadamard codes over F, in
[8]. In this paper, we present different constructions, based
on this technique, in order to obtain additive GH codes
with different ranks and dimensions of the kernel. The first
switching construction, given by Proposition IIL.3, allows us
to construct additive GH codes over F, of length n = p*¢
with kernel of dimension 2 and rank 4.

Proposition IIL.3 (Switching Construction I). For ¢ = p°, p
prime, and any e > 1, there exists a GH matrix H (p®, p®) such



2e _ 2

that Cy is an additive code over Fye of length n = p© = ¢

with ker(Cpr) = 2 and rank(Cp) = 4.

Proof. Let 0, 1, w(), w(@2) be the elements
0,1,w,...,w? 2 repeated ¢ times, respectively, where w is
a primitive element in F,. Let S? = S, & S, be the Sylvester
GH matrix H(q,q). We can assume without loss of generality
that S? is generated over F, by the row vectors v; and vy of
length n = ¢2, where

_ 1 q—2
vi=(0,1,w,...,wi™% ...,

vy = (0, 1,0®, .. 7<.u(q_2)).

0,1,w',...,w??), and

Let K be the linear subcode of S? generated by the row
vector vy. The rows of S? can be partitioned into ¢ cosets of
K, that is, S = Ugeg, (K + Bv1). Let 3. € F, be the last
coordinate of the element 3 € I, represented as a vector from
;. Then we construct the matrix

H=(8*\ |J (K+pv)U | (E+Bvi+8.8) = | ] Kp.
BER, BER, BER,
Be#0 Be#0

where g = (0,...,0,0,1,w!,...,w??) and K5 = K+Bvi+

Beg.

It is easy to see that H is a GH matrix and Cg is an
additive code. Indeed, note that K3z + K, = Kg, for all
B,v € F,. Moreover, clearly, rank(Fy) = 2+ 1 = 3 and
K C K(Fp). It is also easy to prove that K = K(Fy).
Therefore, ker(Fy) = 1. By Equation (1), ker(Cy) = 2 and
rank(Cp) = 4. O

Example IIL4. We construct a GH matrix H(22,22) such
that C is an additive code over F,> of length n = 2% with
ker(Cy) = 2 and rank(Cpy) = 4. We start with the GH
matrix S? = S4@® Sy, which is linear over F,> and is generated
by vi = (0,1,w,w?0,1,w,w?0,1,w,w?0,1,w,w?) and
ve = (0,0,0,0,1,1,1, 1, w, w, w,w,w? w? w? w?), where w
is a primitive element in Fy> and w? = w + 1. Let K = (v3).
Then, S? = K U (K + v1) U (K + wvy) U (K + w?vy).
By the proof of Proposition III.3, we change the last eight
rows of S?, and we obtain the GH matrix H(2?%,2?) =
KU (K +vi) U (K +wv; +g) U (K + w’vi + g),
where g = (0,0,0,0,0,0,0,0,0,0,0,0,0,1,w,w?), that is,
the matrix given in Table III. VAN

The switching construction given by Proposition III.3 can
be generalised to the case H (p¢,p"~1¢) with h > 1, that is,
when ¢ is a multiple of e. A first generalisation is shown in
Proposition III.5, and a second one in Proposition IIL.6.

Proposition IIL.S (Switching Construction II). For ¢ = p°,
p prime, and any e > 1, h > 1, there exists a GH matrix
H(p¢,p"=V¢) such that Cy is an additive code over F,e of
length n = p"® = ¢" with ker(Cy) = h and rank(Cy) = r
forallr € {h+2,...,h+e}.

Proof. Let S be the Sylvester GH matrix H(q,q"!). We
can assume without loss of generality that S” is generated by
the vectors v, ..., v}, of length n = ¢", where

Vi = (0“ li’wl(l)’ to ’wz('q_2)7 -5 04, 11‘70)2(‘1)3 - ,wz(‘q_2))7

0,, 1, wgl), o wgqu) are the elements 0, 1,w, ..., w92 re-

peated ¢° ! times, respectively, and w is a primitive element in
F,, for all ¢ € {1,...,h}. All vectors vi,..., vy have length
¢" and are linearly independent over IF,. The corresponding
GH code Cgn is linear over Fy, so rank(Cgn) = ker(Cgn) =
1+h.

Let K be the linear subcode of S” generated by the vectors
Va,...,v,. Note that all n = ¢" coordinates are naturally
divided into ¢"~' groups of size q, which will be referred to
as blocks, such that the columns of K in a block coincide.
Moreover, the rows of S™ can be partitioned into ¢ cosets of
K, that is, Sh = Uﬁe]pq (K + ,Bvl).

Now, consider the vectors gy, ...,g.—1 € F*, where g; has
exactly the values 0, 1,w, ...,w? 2 in the coordinate positions
(jg+1),...,(j+1)q, respectively, and zeros elsewhere, for all
j€{l,...,e—1}. Note that, for each j € {1,...,e—1}, these
q coordinate positions correspond to a block. Moreover, there
are always enough blocks since e < ¢ < ¢~ = p¢»=1D_ Let
B €, be 3= (Bo,---,B—1) represented as a vector in [,
Then, we construct the matrix

HY = | ) K,
BEF,

where s € {1,...,e — 1} and Kg = K + Bv1 +>_7_, Bjg;-

Next, we prove that the corresponding code Cpys) is an
additive GH code for all s € {1,...,e — 1}. First of all, the
length of H®) is ¢" and the number of rows is also ¢". The
code C'y(s) is additive over I, since Kg, = Kg + K, for
any (3,7 € F,. Finally, it can be seen easily that H(*) is a GH
matrix by computing the differences between any two different
rOws.

By Lemma II.3, it is straightforward to show that
K(H®)) = K, so we have that ker(Cpy)) =h—1+1=h
by Equation (1). It is easy to see that all linearly independent
vectors vy,...,v, from S are in (C}y ). Moreover, the
linearly independent vectors gq,...,gs are also in (Cys)).
Hence, by Equation (1), rank(Cp ) = h + s + 1, which
covers all values in the range of h + 2 to h + e. O

2

We can make a slight modification in the proof of
Proposition IIL.5 allowing the construction of GH matrices
H(p®, pth=Ye) with h > 1, where the dimension of the kernel
k of the corresponding codes ranges from 2 to & and for each
one of these values the rank takes any value from 2h—k—+2 to
h4+1+(h—k+1)(e—1). Note that this switching construction
includes the previous two switching constructions I and II
given by Proposition III.3 and Proposition IIL.5, respectively.

Proposition II1.6 (Switching Construction III). For ¢ = p°,
p prime, and any e > 1, h > 1, there exists a GH matrix
H(p®,p"=V¢) such that Cyr is an additive code over Fye of
length n = p"¢ = ¢" with ker(Cg) = k and rank(Cy) = r,
forall ke {2,...,h} and

re{2h—k+2,....,1+t—(e—1)(k—-1)}.

Proof. We consider the vectors vi,..., v, of length n = ¢"
defined in the proof of Proposition III.5. Let K be the linear
subcode of S" generated by the vectors vs,...,vy. In this
case, the rows of S can be partitioned into q2 cosets of



TABLE III
THE GH MATRIX H (22, 22) CONSTRUCTED IN EXAMPLE II1.4

0 O 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 w w
0 O 0 0 w w w w  w? w?
0 0 0 0 w? w? w? Ww? 1 1
0 1 w w2 0 1 w w 0 1
0 1 w  w? 1 0 w? w w  w?
0 1 w w w w2 0 1 W w
0 1 w w? w2 w 1 0 1 0
0 w w? 1 0 w w2 1 0 w
0 w w? 1 1 w?  w 0 w 0
0 w w? 1 w 0 1 w2 w? 1
0 w w? 1 w? 1 0 w 1 w?
0 w? 1 w 0 w? 1 w 0 w?
0 w? 1 w 1 w 0 w2 w 1
0 w? 1 w w 1 w? 0 w? 0
0 w? 1 w o w? 0 w 1 1 w

K, that is, S* = Ug e, (K + Bvi + yv2). Let 8,7 € F,

be 8= (Bo,---,Be—1) and v = (70, ..,Ye—1), Tespectively,
represented as vectors in Fpe. Then, we construct the matrix

HEv2) = U K.y,
Bf\/EEI

3)

where s1,s0 € {l,...,e — 1}, Kz, = K + fvi +
Zj;l 5jg§1) + yvo + Zjil 'nggz). We take the vector
g;l) g; defined as in the proof of Proposition IIL5
for j € {1,...,e — 1}. The vector gj(?) has exactly the
values 05, 1o, wgl), e wéqﬁQ) in the coordinate positions
(jg®>+1),...,(j+1)¢?% respectively, and zeros elsewhere, for
all je{l,...,e—1}.

We can repeat again and again the above construction taking

in the z-th round vectors gﬁ-z) with exactly the values 0, 1.,

w®, . w? in the coordinate positions (jg*+1),...,(j+
1)¢?, respectively, and zeros elsewhere, for all j € {1,...,e—

1}. Again, there are always enough coordinates since e < g =
p®. We can follow this process until we consider the linear
subcode K = (v},), and we obtain the matrix H (51:52:5h—1),

Next, we prove that the matrix H = H(51:52:5h—k+1) g
a GH matrix, and the corresponding code is additive. First
of all, the length and the number of rows of H is qh. The
corresponding code Cg is an additive code over [, as in the
proof of Proposition III.5. Finally, it can be easily seen that
H is a GH matrix by computing the differences between any
two different rows.

Again, by Lemma IL3, it is easy to see that (H) = K, so
we have that ker(Cyy) =h—(h—k+2)+1=k—-14+1=k
by Equation (1). For the rank(Cpy), it is easy to see that all
linearly independent vectors in Cgr are also in (Cy). Apart
from that vectors, we also find in (Cp) the linearly inde-
pendent vectors g§1)7...,gg), . ,g§h7k+1),...,g§},fffjll).
Hence, rank(Cy) = h+1+ 51+ - -+ Sp—k+1, Which covers
all values in the range from h+1+ (h—k+1) =2h—k+2

toh+1+(h—k+l)(e—1)=1+t—(e—1)(k—1). O

0 0 0 0 0 o0
w w UJ2 w2 w2 w2
w2 w2 1 1 1 1 K
1 1 w w w w
w  w? 0 1 w  w?
0 1 w? w 1 0
1 0 1 0 w w } K+wv1
w? w w w? 0 1
w? 1 0 w? 1 w
1 w? w? 0 w 1
0 w 1 w 0 w? K+wvitg
w 0 w 1 w? 0
1 w 0 w w? 1
2 2
w 0 w 12 0 w K +w2v1 +g
w 1 1 w w 0
0 w? w 0 1 w?
IV. NEW CONSTRUCTIONS WITH KERNEL OF DIMENSION 1

In this section, two new constructions of additive GH codes
having a kernel of dimension 1, one with maximum rank and
another one with minimum rank, are presented. In Section V,
these constructions together with the Kronecker and switching
constructions presented in Section III will be used to construct
additive GH codes having different ranks and dimensions of
the kernel.

First, we introduce a new construction of GH matrices
which allows us to guarantee that the obtained code C'y of
length n = pt is additive over Fpe, has kernel of minimum
dimension 1 and maximum rank ¢ + 1.

Proposition IV.1. For q = p®, p prime, and any t > e > 1,
there exists a GH matrix H(p®,pt=¢) such that Cy is an
additive code over F,e of length n = p* with ker(Cy) = 1
and rank(Cp) =t + 1.

Proof. Let S,: = H(p',1) be the GH matrix, given by the
multiplicative table of I, that is, the matrix

0 0 0o ... 0 0

0 1 w WP 3 P2
Hp',)=] 0 w o’ w21 |,

0 w2 1 WP 4 '3

“)
where w is a primitive element in F,:. Let by + byz +--- +
bi—12t71 — 2! € F,[z] be the primitive polynomial of w and
note that by # 0. In this case, C'y is a linear code over
F,: and an additive code. By Proposition 1.4, we have that
rank,(Cg) = ker,(Cy) = rank(Cy) = ker(Cy) = 2.
Now, for any e, 1 < e < t, we consider the projection map
from F,: to Fpe given by

V= (vla"'avevve-l-lv"'v

Note that we can consider that the projection of w € Ty
gives a primitive element W = « € Fye. Let H, be the matrix
obtained from H after changing each entry v by V. Since in
any row of H there are all the elements in F,:, it is easy

v) €EFye — V= (v1,...,0.) € Fye.



to see that in any row of H. there will be all the elements
in Fye, but each one repeated p'~¢ times. The same happens
taking the difference of any two different rows in H. Hence,
H,.(p¢, p'—¢) is a GH matrix. Since Cp is an additive code
it is easy to see, by construction, that C'g, is also an additive
code.

Let Hy) be the matrix H,. after removing the first row
and column. Take any row v = (J1,%2,...,%pt—1) of m",
where ; € E, for all ¢ € {1,2,...,p" — 1}. The case when
entry 7; is zero corresponds to y; € F,: of the form ~; =
(0,0,...,0,Aeq1,...,At), or equivalently, v; = Aep1w® +
——

€

co+ AMw'l, where \; € F, foralli € {e+1,e+2,...,t}h
Now, we compute wy; = Aep1w® L+ -+ N _jwt ™ 4+ A
and from w? = by + byw + -+ + b_1w'™! we have wy; =
(b +bra+---+b._1a°t). Hence, taking two consecutive
entries in v, for instance #;,¥;+1 = w7;, such that 4; = 0 and
Fi+1 # 0 we have that 7; 1 = A\ (bo +bra+- - +be_1a¢1),
for some nonzero \; € [,. Therefore, multiplying any row of
Hér) by od, for any ol ¢ [F,, we do not obtain a row of He(r).
Indeed, if a/v were a row in H.", then o’ ~iyad ;1 would
be two consecutive entries in the row, where o ; = 0 and
a1 #0, 50 ad ;1 = Ny(bg + bra+ -+ + be_1a°~ 1) for
some nonzero \; € F,, and so we have (A} —a’\;)(bo +bra+
-+++be_1a°"1) = 0. Since « is a primitive element in Fye, we
obtain A} — a’/\; = 0 which contradicts our assumption o/ ¢
[F,. Hence, from Lemma II.3 we obtain that the dimension of
the kernel ker(Fy, ) is zero (or equivalently, ker(Cp ) = 1).

For the rank, we can improve the lower bound given
in Proposition II.4. From the previous paragraph, for any
v € Cy\K(Cpq), the intersection of the linear space over
e generated by v and C'y is of dimension 1 over F,. Hence,
the number of independent vectors over Fjp. generating the
pett=ek cosets of K(Cy) over Cp is lower bounded by
e+t—ek =tandsot+k =t+1 < rank(Cp). Finally, from
item (iv) of Proposition I1.4 we obtain the statement. O

Example IV.2. We construct a GH matrix H(22,2) such that
Cpy is an additive code over Fy> of length n = 23 with
ker(Cy) = 1 and rank(Cp) = 4. We begin with the GH
matrix H(23,1) given by the multiplicative table of Fys, that
is,

o o o O O o0 0 O
0 1 w w? P w W Wb
0 w w? WP w* W W o1
3 0 w? w? wt W oW 1w
H(2 ’ 1) - 0 w3 UJ4 w5 wG 1 w w2 ’
0 w* W Wb 1 w W WP
0 ® Wb 1 w w? W W
0 wb@ 1 w w? W w! WP

®)
where w is a primitive element in Fys and w3 = w + 1, Next,
we write each entry of (5) by using coordinates over I, and

projecting them over Fy2. Note that 0 = (0,0,0) = (0,0) = 0,
1 =7(100) = (1,00 =1, @ = (0,1,0) = (0,1) = a,
w? = ~ (LL0) = (1,1) = a2,

1) = (0,0) = 0, @*
1) 71) = Q, w® = (17171) = (131) :O‘27
,0) = 1, where « is a primitive element in

> and o = o+ 1. Finally, by the proof of Proposition IV.1,
we obtain the following GH matrix H (2%, 2):

o 0o 0 O o o0 0 O
01 a 0 o> a o 1
00 a 0 a2 a o 1 1
5 0 0 o2 a o2 1 1 «a
H(2%,2) = 00 a2 aa &> 1 1 o 0
0 o o® 1 1 a 0 o?
0 o> 1 1 a 0 o2 «
0 1 1 a 0 o2 o o
(6)
A

By Proposition 1.4, for g = p2 (that is, for e = 2), we have
that the rank of an additive GH code C of length n = p?
(that is, with ¢ = e = 2) has to be 3 if the dimension of the
kernel is 1. The next result shows that there exists a code Cy
with these parameters for any p prime and p # 2. Therefore,
in this case, we have that the given lower bound for the rank,
once the dimension of the kernel is fixed, coincides with the
upper bound.

Note that, for ¢ = 4, it is well known that there is only one
GH matrix H(4,1), up to equivalence, which gives the linear
code Cy of length n = 4 over [y, having rank and dimension
of the kernel equal to 2.

Proposition IV.3. For t = e = 2 and p an odd prime, there
exists a GH matrix H(p?,1) such that Cy is an additive code
over B2 of length n = p? with ker(Cy) = 1 and rank(Cp) =
3.

Proof. First, we construct a GH matrix H(p?,1) and then
we prove that it fulfils the conditions of the statement. Let
vi = (0,w",w!, ..., wP ~2), where w is a primitive element
in F,2. Hence, vi has a zero in the first position and w’™*
in the (i 4 1)th position, for i € {1,2,...,p? — 1}. Now, we
define v as the vector having a zero in the first position and
w' in the (i+1)th position. We construct the matrix H (p?, 1)
having as rows all linear combinations over I, of v; and vs.
We permute the rows in order to have the all-zero row as the
first one. Note that H(p*,1) is a matrix of order p* over F,
which has all zeros in the first row and column.

The vector v; has no two positions with the same value. The
same is true for vy (indeed, the coordinates of v, correspond
to the image of the Frobenius automorphism xz — xP). The
elements of If,> which are in I, are of the form WP+ for
A € {0,1,...,p — 1}. Hence, the (i + 1)th position of any
row in H(p?,1) is of the form wPHDi=1 4 Y(PHD
fori € {1,2,...,p> — 1} and A,y € {0,1,...,p — 1}. The
coordinates of any row of H(p?,1) are all different, otherwise
we would have two indexes ¢, j such that

WD) =1 YD) i — \v(e+D) -1 (L) ydp

or, equivalently, w PHD=1( — 7)) = WY PHD (WP — P),
Note that (w/? — w) = (—=1)P(w’ — w’)P. Therefore, sim-
plifying, there would exist § € {0,1,..., p — 1} such that
WOPHD=1 — (¢ — 7)P=1, Raising this equality to p + 1,
we obtain (p+1)(6(p+1) —1) =0 (mod p? — 1). Reducing



modulo 2¢, where £ is the highest power of 2 dividing p+1, we
obtain p + 1 = 0 (mod 2¢£), which contradicts the definition
of &. This proves that H(p?, 1) is a GH matrix.

Finally, by Proposition I1.4, we just need to prove that
H(p?1) is nonlinear. We see that multiplying v; by w?,
we obtain a vector which is not any row of the matrix. It is
enough to focus on the second column of the matrix. Assume
the contrary, that is, there exist A,y € {0,1,...,p — 1} such
that w? = WP 4 YPFDEP o, equivalently, W P =
(1 — wY®PD)uP. Since WP+ and 1 — WP+ € F,, we
would have that w? € [F,, which is a contradiction. O

Example IV.4. We construct a GH matrix H(9,1) such that
Cpg is an additive code over Fy of length n = 9 with
ker(Cy) =1 and rank(Cp) = 3.

Let vi = (0,0 w,w? w? whw’ wb w’) and vy =
(0,w3, Wb, w,w*, W, w? W, w?), where w is a primitive ele-
ment in Fy> and w3 = w+2. By the proof of Proposition IV.3,
we obtain the matrix H (9, 1) as the matrix having as rows all

linear combinations over F3 of v and vs, that is,

o o o O O o0 o0 0 O
0 1 w w? ¥ w* W W W
0 w? Wb w wr W W W 1
0 w* W Wb W1l w W WP
H3 D= 0 o w? o 1 w o w ot
0 w w? 1 ¥ W W wt W?
0 ® W w* W ow w1 Wl
0 b w* WP W W 1 W ow
0 w2 1 W w b wr W WP

(7N

A

By Proposition I1.4, for ¢ = p? (that is, for e = 3), we have
that the rank of an additive GH code C'; of length n = p? (that
is, with ¢t = e = 3) is 3 or 4 if the dimension of the kernel is 1.
However, by computer search, we found that there is not any
additive GH matrix H(8,1) with C of rank 3, and they do
exist with rank 4, for example the one given in Example IV.5.
Therefore, the lower bound given by Proposition 1.4 is not
always tight.

Example IV.5. The following GH matrix H(23,1) over Fys
generates an additive GH code Cp of length n = 23 with
rank equal to 4 and a kernel of dimension 1, where w is a
primitive element in Fys and w® = w + 1.

o o o O O 0 0 o0
0 w? W w1 w W Wt
0 w w whow? oWt WP
3 0 1 w? W W' W W ow
H(2 ’ 1) - 0 w5 w6 a UJ2 W4 w3 1
0 wl w? wr W 1 w W?
0 w w* w? W W 1 Wb
0 w* 1 W w w w? W
)]
A

For t = e = 4, we have found that there are GH matrices
H(p*,1) for p = 3 and p = 5 such that C'y are additive
codes with minimum dimension of the kernel ker(Cp) = 1

and minimum rank rank(Cy) = 3, given by the following two
examples. We have checked computationally that the technique
used in these two examples does not apply for p = 7 and
p=11.

Example IV.6. Let H(3* 1) be the matrix having as
rows all linear combinations over I3 of vy, wvy, v
and wvy, where vi = (0,00 w!, ... Wi ..., w™), vo =
(0,w?, W, . w2t w™), and w is a primitive element
in F3a. We can check that it is a GH matrix. Clearly, by
construction, Cy is an additive code with rank(Cy) = 3.

By Lemma I1.3, we have that ker(Cp) = 1. A

Example IV.7. Let H(5% 1) be the matrix having as
rows all linear combinations over Fs of vq, wvy, vy and
wvy, where vi = (0,0’ wl .. wh . . W), vy =
(0,w8, w3t ... WO w605 and w is a primitive ele-
ment in Fsa. We can check that it is a GH matrix. Clearly, by
construction, C'y is an additive code with rank(Cy) = 3. By

Lemma I1.3, we have that ker(Cp) = 1. A

V. COMBINING DIFFERENT CONSTRUCTIONS

In this section, we use the constructions of additive GH
codes given in Sections III and IV, to show the existence of
such codes having different ranks between the lower and upper
bounds found in Section II, for a fixed dimension of the kernel.
We also see that it is only possible to construct codes for all
allowable pairs rank and dimension of the kernel when e = 2,
by using the above constructions. For e > 3, mainly it is still
necessary to prove the existence of additive GH codes with a
kernel of dimension 1 and not having the maximum rank.

First, in the next theorem, for ¢ = p°, p prime and any
t > e > 1, we prove that there is an additive GH code C'y over
I, of length n = p* with ker(Cp) = k for each possible value
of k given by item (iv) of Proposition II.4. These codes are the
ones having the maximum rank, that is, satisfying the upper
bound given by item (#i¢) of Proposition IL.4. This proves that
this upper bound for the rank, once the dimension of the kernel
is fixed, is tight for all cases with t > e > 1.

Note that when ¢t = e > 1, there is an additive GH matrix
H(q, 1), given by the multiplicative table of F,, so the corre-
sponding GH code Cy = Cg, of length n = p® = ¢ is linear
over F, and ker(Cy) = rank(Cy) = 2 [24]. According to
Proposition I1.4, in this case, there could be additive GH codes
Cy having ker(Cy) = 1 and rank(Cy) € {3,...,1+e¢}. By
Proposition IV.3, for t = e = 2, there exist such codes having
rank 3. However, it is still an open problem to prove their
existence when ¢ = p® and e > 3 (except for ¢ = 23, ¢ = 3%
and ¢ = 5% by Examples IV.5 to IV.7, respectively), even
in general for GH codes which are not necessarily additive.
These are connected to Latin squares of order ¢ — 1 and we
could use this approach to construct them.

Theorem V.1. For q = p®, p prime, and any t > e > 1, there
exists an additive GH code C over F, of length n = p* with
ker(Cry) = k if and only if

(i) ke{l,...,[t/e]} when ett,

(ii) k€ {1,...,t/e+ 1}, otherwise.



Moreover, rank(Cy) =1+t — (e —1)(k —1).

Proof. The general proof is by induction over t > e, in steps
of e. In this sense, the first point is to show the existence of
additive GH codes with the following parameters:

k=1whente{e+1,...,2¢e—1},
k€ {1,2,3} when t = 2e.

When t = 2e, by Corollary II1.2, the additive GH code Cy
corresponding to S? = S, & S, has k = 3 and rank(Cy) =
14+t—(e—1)(k—1) = 3. By Proposition IIL5, there exists an
additive GH code Cp over F, with k£ = 2 and rank(Cp) =
1+t—(e—1)(k—1) = 2+ e. From Proposition IV.1, the
existence of additive GH codes with £ = 1 and maximum
rank is assured for all ¢ > e > 1.

By Corollary III.2 and Lemma III.1, we can recursively
construct additive GH codes C'y by using the Kronecker sum
construction, H = S, @ B, where B is an additive GH matrix
of size pt/ = p'~¢ constructed in the previous step. Note that
if C'p of length ptl has a kernel of dimension &’ and maximum
rank 7’ =1+t — (e — 1)(k’ — 1), then Cy of length p* with
t = t' + e has a kernel of dimension ¥ = k’ 4+ 1 and rank
r =1 + 1. Therefore, r = 1+t ' — (e—1)(k' = 1)+ 1 =
1+t¢t—(e—1)(k—1) and Cy has maximum rank. This
construction covers all the values of k in the statement, except
k = 1. However, Proposition IV.1 assures the existence of
additive GH codes with k¥ = 1 and maximum rank for all
t > e > 1. Therefore, the existence for all given parameters
is proved.

Finally, by Proposition 1.4 and Lemma II.2, we have that
these are the only possibilities for the dimension of the kernel
of an additive GH code. O

When e = 2, by Corollary II.5, we have that for each
possible dimension of the kernel, there is only one possible
rank. Therefore, when t > e = 2, the above theorem covers
all possible pairs (r,k), where r is the rank and k the
dimension of the kernel of the additive GH code. Moreover,
since Proposition IV.3 covers the case when ¢t = e = 2, we
have the following corollary.

Corollary V.2. For q = p? p prime, and any t > 2, there
exists an additive GH code Cy over F, of length n = p' with
ker(Cy) = k and rank(Cyr) = ifand only if r =t +2—k
and k satisfies

(i) ke{l,...,[t/e]} when ett,
(ii) k€ {1,...,t/e + 1}, otherwise.

Proof. Straightforward by Propositions IV.3 and 1.4, Corol-
lary II.5, and Theorem V.I. O

Example V.3. For ¢ = p?, the second column in Table IV
gives all possible values for the rank and dimension of the
kernel of additive GH codes over F,2 of length n = p’ with
2 <t < 7, given by Proposition 1.4 and Corollary ILS5.
By Corollary V.2, for each one of these pairs, there exists
an additive GH code over I,> having these parameters.

A

TABLE IV
PARAMETERS (rank(Cp ), ker(Cpr)) FOR ALL ADDITIVE GH CODES Ciy
OVER ]Fp2 OF LENGTHn = pt WITH2 < ¢t < 7.

t  (rank(Cq),ker(Cr)) kerp(Cp) = rank,(Ch)
2 3,1) (2,2) 2
3 (4.1 25
4 5,1) 4,2) 3,3) 3
5 6,1) (5,2 3.5
6 (7,1) (6,2) (5,3) (4,4) 4
7 8,1) (7,2) (6,3) 4.5

Example V4. For ¢ = 4, that is when p = 2 and e = 2,
we can take into account some already known results on the
classification of GH matrices.

o If n =4 (t = 2), there is only one GH matrix H(4,1)
over Fy having rank(Cp) = ker(Cy) = 2. Therefore,
Cpy is linear over Ty, so additive. Actually, H(4,1)
corresponds to the Sylvester GH matrix S* = S,.

o If n =8 (t = 3), there is only one GH matrix H(4,2)
having rank(Cy) = 4 and ker(Cy) = 1. Therefore,
Cy is nonlinear over F,. However, since ranks(Cy) =
kery(C) = 2.5, it is additive.

e If n = 16 (t = 4), it is known that there are 226
nonequivalent GH matrices H (4,4) over F, [10]. Table V
shows the ranks and dimensions of the kernel of the
corresponding codes C'. Moreover, for each case, it
also gives the value Na/N, where N is the number of
nonequivalent codes and Na the number of such codes
that are additive.

TABLE V
NUMBER OF NONEQUIVALENT ADDITIVE GH CODES OF LENGTH 16 OVER
F4 VERSUS THE TOTAL NUMBER, FOR EACH POSSIBLE RANK AND
DIMENSION OF THE KERNEL.

rank(Cy)
ker(Crr) ‘ 345 6 7 8
3| 1/1
2 5/7 0/8
1 0/3 3892 0/55 0/57 0/3

A

Recall that the more general switching construction, given
by Proposition II1.6, allows for the construction of additive
GH codes having different ranks and dimensions of the kernel,
when ¢ is a multiple of e and £ > 1. Now, we combine this
construction with the Kronecker sum construction to cover
more cases, proving the existence of additive GH codes C'y
over F, of length n = p’, where ¢ = p®, when t is not a
multiple of e and k£ > 1.

Proposition V.5. For ¢ = p®, p prime, and any t not a multiple
of e > 1, there exists an additive GH code Cy over F, of
length n = p' with rank(Cy) = r and ker(Cy) = k, for all
ke{2,....,h=|t/e]} and

re{2h—k+t+e—he,....1+t—(e—1)(k—1)}.

Proof. Take q = p®, p prime, and any ¢ > e not a multiple
of e > 1. Set t = he + h/, where h = |t/e]. Hence, we can
write t = (h — 1)e + (e + h/).



If h = k, then r = 2h—k+t+e—he = 1+t—(e—1)(k—1),
so the code has the maximum rank r, and its existence is given
by Theorem V.1. Note that if h = 2, then k = 2, so we can
focus on the case where h > 3.

If h > 3, by Proposition II1.6, there exists a GH code D
of length p*~1¢ with ker(D) = k for all k € {2,...,h —1}
and rank(D) € {2(h—1) —k+2,...,h+ (h—k)(e—1)}.
Also, by Proposition IV.1, there exists a GH code E of length
pet?" with ker(E) = 1 and rank(E) = e + &’ + 1. Then, by
Lemma III.1, using the Kronecker sum construction with D
and F, we obtain an additive GH code C over I, of length
n = p' with ker(C') = k and rank(C) = r, for all 2 < k <
h—1land2(h—1)—k+2+e+h +1-1<r<h+(h—
k)(e—1)+e+h'+1—1, or equivalently, 2h —k+t+e—he <
r <1+4t—(e—1)(k—1). Therefore, the result follows. [

Note that the additive GH codes constructed from the more
general switching construction, given by Proposition II1.6, do
not cover all possible pairs (r, k), where r is the rank and k the
dimension of the kernel, when ¢ is a multiple of e and k > 1.
The upper bounds in Propositions 1.4 and III.6 coincide since
h+1+(h—k+1)(e—1)=14+t—(e—1)(k—1) if t = he.
However, the lower bounds do not coincide in general. The
smallest case where both propositions disagree is for e = 3,
t =9, h =3 and k = 2. By using Proposition II.6, we
know that we can construct additive GH codes with these
parameters having rank r for all € {6,7,8}. However, from
Proposition 1.4, we have that » € {5,6,7,8}, and it is not
known whether there is a code having rank r = 5.

As we just noted for the case when ¢ is a multiple of e
and k > 1, the codes constructed in Proposition V.5 when ¢ is
not a multiple of e do not cover all possible pairs (r, k) given
by Proposition I1.4. Again, the upper bounds coincide, but not
the lower bounds. The smallest case where they disagree is
fore=3,t=7, h =2 and k = 2. By using Proposition V.5,
there exist additive GH codes with these parameters having
rank » = 6. However, from Proposition 1.4, we have that
r € {4,5,6}, and the existence of the case with r € {4,5} is
not known.

Theorem V.6. For q = p®, p prime, and any t > e > 1, there
exists an additive GH code Cy over F, of length n = p' with
ker(Cy) = k and rank(Cy) =, forall k € {2,...,h =
[t/e]} and

re{lg,...,1+t—(e—1)(k—-1)},
where
_J2h—k+2 if t is multiple of e,
T oh -k +t+e— he, otherwise.

Proof. Straightforward from Propositions V.5 and II1.6. [

Corollary V.7. For q = p°, p prime, and any t > e > 1, there
exists an additive GH code Cy over F, of length n = p* with
ker(Cy) = k and rank(Cy) = r, if and only if
(i) re{t/e+2,...,t/e+e} when k =t/e (t is a multiple
of e);
(ii) r=14t/e when k = 1+ t/e (t is a multiple of e).

Proof. By Theorem V.6, we have that there exists an additive
GH code Cy over F, of length n = p* with ker(Cy) = h
and rank(Cy) = r for all r € {h +2,...,h + e}, where
h = t/e. In this case, the value h 4+ 2 coincides with the
lower bound [%_f/?], given in Proposition I1.4. Note that

et+t—t/e e—1+1+4+t—t/e
I J:f_lt/ 1 = [ 1+e_+1t t/ 1 :1<'|> [e%l] +tle=tle+2=
h + 2. Similarly, the value h + e is equal to the upper bound
given by Proposition I1.4, since 1 +t — (e — 1)(t/e — 1) =

tle+e=h+e. O

Example V.8. In Table I of Example II.6, all possible values
for the rank of additive GH codes of length n = p* with
2 <t < 12, once the dimension of the kernel is given, are
shown. By Theorem V.6, for each one of these values, except
for the ones in bold type, there exists an additive GH code
having these parameters.

As it is noticed in Corollary V.7, we can also see in Table I
that when ¢t = 3h with t > 3, if k = hor k = h+ 1, we
can construct an additive GH code Cp with ker(Cy) = k
and rank(Cy) = r for all possible values of r between the
bounds given by Proposition I1.4. AN

By using the additive GH codes over s of length n = p?

(with p = 3 and p = 5) and a kernel of dimension 1, given
in Examples IV.6 and IV.7, along with the Kronecker sum
construction, we show the existence of additive GH codes over
I,« with greater length, kernel of dimension 1 and different
ranks.

Proposition V.9. For q = p*, with p =3 or p = 5, and any
t > 4, there exists an additive GH code Cy over I, of length
n = p' with ker(Cyg) = 1 and rank(Cy) = t + 1 — 24, for all
1€{0,...,[t/4] — 2}

Proof. First, note that the upper bound for the rank is ¢ + 1
when the dimension of the kernel is 1. For ¢ € {5,6, 7,8}, we
have that » = ¢+ 1 and the statement is true by Theorem V.1.
Assume that it is true for ¢’ € {4h' —3,4h' — 2,4k’ — 1,4h'},
h’' > 2. That is, by induction hypothesis, there exist an additive
GH code Cp with ker(Cp) = 1 and rank(Cp) =t + 1 —
2j for all j € {0,...,h’ —2}. By Examples IV.6 and IV.7,
there exists an additive GH code C'g with ker(Cg) = 1 and
rank(Cg) = 3. By Lemma III.1, applying the Kronecker sum
construction to the corresponding GH matrices D and E, there
exist additive GH codes O of length n = pt, with t = ¢/ +4
and h = h’/+1, having ker(Cp) = ker(Cp)+ker(Cg)—1 =1
and rank(Cp) = rank(Cp)+rank(Cg)—1 = t/+1-25+3-1
for all j € {0,...,h' — 2}, or equivalently, rank(Cy) =t —
44+1-2j+2=t+1-2(G+1) =t+1— 2¢ for all
i € {1,...,h — 2}. Finally, again by Theorem V.1, there is a
code Cy for i = 0, and the result follows. O

Finally, we show that if the existence of additive GH codes
with dimension of the kernel 1 and any rank between the given
lower and upper bounds is proved, then we would have the
existence of any such code with rank r and kernel of dimension
k for any possible pair (r, k).

Theorem V.10. Let ¢ = p° p prime, and e > 1. If there
exist an additive GH code Cy over B, of length n = p',



t > e with ker(Cyg) = 1 and rank(Cy) = r for all
r e {[<H17,...,1 + t}, then there exists an additive GH
code Cy over By of length n = p' with ker(Cy) = k
and rank(Cy) = r, for all k € {2,...,|t/e]} and v €
{[e2E], 1+t + (e — 1) (k— 1)L

Proof. Tt follows from the same arguments as in the proof
of Theorem V.1, by induction over ¢, in steps of e. Note
that, for the lower bound of the rank, by induction hypothe-
ses, there exists an additive GH code of length p‘~¢ with
kernel of dimension & — 1 and rank (w] After
applying the Kronecker sum construction, the new additive

e—1

GH code Cp of length 2! would have ker(Cy) = k and
rank(Cy) = [76” e—(k 1)1 +1= [76-};_1” O

VI. SELF-ORTHOGONAL ADDITIVE GH CODES OVER Fpe2
AND QUANTUM CODES

The question of finding quantum-error correcting codes is
transformed into the question of finding additive codes over a
finite field which are self-orthogonal with respect to a certain
trace inner product [1], [3]. In this section, we see that the
additive GH codes over F, with ¢ = p? constructed in the
previous sections are self-orthogonal, so they can be used to
produce quantum codes.

For codes of length n over I, there are other well
known inner products besides the Euclidean inner product.
Let v.= (vi,...,vn) and w = (w1,...,w,) € F}. The
Hermitian inner product, defined by [v,w|g = Y ., vw?
and the trace Hermitian inner product, which is used for
additive codes over F,z, that is (v,w) =>"" | (v;w! —oPw;)
or (v,w) = > 1 1(”1 — vPw;) depending on whether p
is even or odd, respectwely [13], where 8 = w®*T1/2 and w
is a primitive element in [F,>. We denote the orthogonal code
defined by the trace Hermitian inner product as C+.

Lemma VL1. Let v, w be two rows of a GH matrix H(p?, \)
with p # 2. Then (v,w) = 0.

Proof. Since the nonzero elements of IF are the roots of the
polynomial 27~! —1, we see that >"°_7 o’ = 0, where o € F,
is a primitive element and p # 2.

Now, let w be a primitive element in F> and take o = wbt!
which is a primitive element in F,. Then

—2p+1
:D+1 § :E z+t(p 1) p+1 _

:0 i=0 t=1
p—2 p—2
P+1)> (@) =p+1)) o' =0.
=0 i=0
©))
For any two rows v = (vy,...,v,) and w = (w1, ..., wy,)

in a GH matrix H(p? \), where n = p?)\, we have

that Zz 1(’01 - wl)p+1 = Z? 1’Uf+1 - Zz 1w17+1 =
A 72(w3 )PTL =0 by (9). Then we have
D (i —w)P = (0 — wh) (v — w;) =
i=1 i=1
S P b ol - WPw; 4 wl) = (10)

— Z(vfwi +wlv;) = 0.

i=1

Therefore, if p is even, then (v,w) = 0. Otherwise, 0 =
=B (iwi + wivi) = 3 ((Bvi)Pwi — wi(Bus)) =
(Bv,w) = B({v,w) and we also have that (v, w) = 0. Note
that since 8 = w®T1/2 when p is odd, f* = —p. O

Lemma VL.2. Let v, w be two different rows of a GH matrix
H(4,)\). Then (v,w) =X (mod 2). If v=w then (v,w) =
0 (mod 2).

Proof. We note that for a vector v = (vq,...,0,), > i ¥}
is the weight of v since each nonzero element cubed is 1. Let
v # w. Note also that wt(v) = wt(w) = wt(v+w) =n—X\
by the properties of a GH matrix, where n = 4\ is the order.
Then we have

En:vz—i—wz Zv —1—321) wz—i—SZvlw —|—Zw
i=1

wt(v + w) :Wt( )+3<v,w>+wt( ).

w) = A (mod 2).
If v = w, then wt(v+w) = 0 and by the same computation
as before we have (v,w) =0 (mod 2). O

Hence, (v,w) =n — X =3\ and so (v,

Proposition VL.3. Let H(p? \) be a GH matrix, where X is
even when p = 2. Then Fg C F ﬁ- is a self-orthogonal code.

Proof. By Lemmas VI.1 and VI.2, we have that any two
vectors are orthogonal with respect to the trace Hermitian inner
product. O

Proposition VL4. Let H(p?, \) be a GH matrix of order n =
p? X = pt over F,2, where \ is even when p = 2, such that
Cy is additive. Then Cy is an additive self-orthogonal code,

containing p'*? codewords, and the minimum distance of C%;
is 3.

Proof. By construction and Proposition V1.3, the results are
clear and all that is required is to show that the minimum
distance of C' ﬁ is 3. For this, we use the MacWilliams identity,
which is proved for these codes in [4]. The (Hamming) weight
enumerator of Cp is

y) =¥+ (p2 = p)at’ Ty

WCH (SC, + (p2 - 1)yp



and so, the (Hamming) weight enumerator of C is

1
WCI# (Iay) ZWWCH(‘T + (p2 - l)y,IE - y) =

el (R

("2 = p*)(@ + (* = D)
(¥~ D@ —y)"|.
Y

Let a = p*, b=p'~2 and ¢ = p? — 1. Note that bc = a — b.
Then, the coefficient of 2P ~1y in (11) is

—ac+p*(a—1)(bc — be)] = 0.
|CH|[ac +p*(a—1)(bec — be)] =0

Analogously, the coefficient of =7 ~2y? is

1)) e e () ()01

1 a\ o o c2b(b — 1) + be(be — 1) — 2c2b?
C] Hz)p +rila—1) 2 ]

ZH) v )

1 ca—cb(e+1)
Ll@-n==5"] =
(a—1D(ca—cblc+1)) (a—1)(—a+bc+0D)

= =0.
2a 2a

(12)

The coefficient of azpt’3y3 is
1 sfa a
el () <))
2
pila=1) (b (b 5 (b be
“\Cal [c 3 3 cb2 +bc2}.
(13)

The first term in (13) is always positive. Therefore, in order
to prove that the coefficient of 2P’ ~3y3 is positive, we only
need to check that the second term is non negative. Hence,
6lc®(5) — (%) — b(8) + be(%)] = be[2(b — 1)(b - 2) —
(be — 1)(be — 2) — 3bc®(b — 1) + 3bc(be — 1)] = be(2¢? — 2),
which is non negative since ¢ = p?> — 1 > 1. This proves the
statement. O

Finally, we describe the connection of these additive GH
matrices or the corresponding C'; codes with quantum codes,
by following [5, Theo. 6.10].

A g-ary quantum code of length n and dimension K is a
K-dimensional linear subspace @) of C?" (a ¢™-dimensional
Hilbert space). It is denoted by [[n, k, d]];, where k = log, K
and d is the minimum distance, which means that ) can detect

up to d — 1 errors and correct up to L%j

Theorem VLS. Let H(p?, \) be a GH matrix of order n =
p? X = pt over F,2, where )\ is even when p = 2, such that
Cy is additive. Then C'y gives a pure additive quantum-error-
correcting code with parameters [[p*,p' — (t + 2), 3]].

Proof. Tt follows from [5] and Proposition VI.4. Note that
there are no vectors of weight less than 3 in C\Cy. O
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