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Information-Theoretic Analysis of OFDM with
Subcarrier Number Modulation

Shuping Dang, Member, IEEE, Shuaishuai Guo, Member, IEEE, Basem Shihada, Senior Member, IEEE, and
Mohamed-Slim Alouini, Fellow, IEEE

Abstract—With the prevalence of orthogonal frequency-
division multiplexing (OFDM) in many standards, e.g., IEEE
802.11, IEEE 802.16, DVB-T, and DVB-T2, a number of variant
modulation schemes based on OFDM have been proposed,
which resort to signal sparsity to further enhance spectral
efficiency and mitigate the high peak-to-average ratio (PAPR)
problem. Among these variants, OFDM with subcarrier number
modulation (OFDM-SNM) has been proven to be efficient for
simple communication systems with low constellation modulation
orders and limited decoding capability. To rigorously verify the
performance advantages of OFDM-SNM, we present the study
of OFDM-SNM in this paper from the information-theoretic
perspective. In particular, we determine an upper bound on the
mutual information of OFDM-SNM in closed form by using the
log sum inequality. Also, we analyze the optimal pattern utiliza-
tion probabilities (PUPs) for OFDM-SNM by channel-dependent
coding and propose an easy-to-implement iterative algorithm to
approach the optimal PUPs. Moreover, considering the practical
achievability, we propose a Huffman coding based achievable
PUP vector construction scheme to obtain the achievable PUPs
and the corresponding achievable rate. We carry out numerical
simulations to verify the effectiveness of this study and illustrate
the efficiency of the obtained PUPs in comparison with several
benchmarks.

Index Terms—Orthogonal frequency-division multiplexing
(OFDM), subcarrier number modulation (SNM), channel capac-
ity, information-theoretic analysis, channel-dependent coding.

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) has become increasingly prevalent since

being adopted as one of the core technologies for fourth
generation (4G) communications [1]. It has been accepted
in many widely used wireless and wired network standards,
e.g., IEEE 802.11 (WiFi), IEEE 802.16 (WiMAX), DVB-
T, and DVB-T2 [2], [3]. From the current communication
technological developments and trends, OFDM and its variants
still dominant the fifth generation (5G) communications and
are highly expected to play a key role for beyond 5G
(B5G) communications and even sixth generation (6G)
communications [4], [5]. To further enhance the performance
of classic OFDM and complement its drawbacks, e.g.,
high peak-to-average power ratio (PAPR), OFDM with
index modulation (OFDM-IM), a variant OFDM scheme, is
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proposed and has been rigorously proven to be more efficient
than the classic OFDM scheme under certain conditions [6].
The original proposal of OFDM-IM has sparked the research
enthusiasm of frequency-domain sparsity modulation in recent
years [7]–[10]. Abundant research works are devoted to find
enhanced OFDM-IM schemes with certain peculiarities,
novel modulation dimensions, and/or for special application
scenarios [11]–[17].

Different from OFDM-IM utilizing the indexes of subcar-
rier activation pattern (SAP) with a fixed number of active
subcarriers to piggyback extra information, another sibling
frequency-domain sparsity modulation scheme, termed OFDM
with subcarrier number modulation (OFDM-SNM), resorts to
the number of active subcarriers to encode extra information
[18]. It has been proven in [19] that the transmission rate
of OFDM-SNM could be higher than those of plain OFDM
and OFDM-IM for simple communication systems with low
constellation modulation orders and limited decoding capabil-
ity. This feature makes OFDM-SNM a promising modulation
scheme for the applications in the Internet of Things (IoT) and
machine-type communication (MTC) networks [20], [21].

Recently, continuous endeavors are exerted to fit OFDM-
SNM for different application scenarios with various service
requirements. In [22] OFDM-SNM and OFDM-IM are merged
to provide a higher degree of design freedom and spectral
efficiency. Cooperative relaying is introduced to extend the
coverage and improve energy efficiency of OFDM-SNM [23].
Joint mapping technique is applied to OFDM-SNM to allow
a constant length of information bits transmitted by OFDM-
SNM blocks [24]. Smart detector based on cascaded neural
computing is designed to realize low-computational detec-
tion of OFDM-SNM blocks [25]. The concept of number
modulation has also been transferred to the spatial domain
to invent antenna subcarrier modulation (ASM) for multiple-
input multiple-output (MIMO) systems in [26] and further
developed with adaptive antenna selection and a power-domain
non-orthogonal multi-access (NOMA) scheme in [27] and
[28], respectively.

Although there have been a number of papers analyzing the
error performance, outage performance, and spectral efficiency
of OFDM-SNM, its performance gain over plain OFDM has
not been rigorously studied from the information-theoretic
perspective. Unlike OFDM-IM that has been analyzed in terms
of achievable rate, mutual information, and channel capacity
[29]–[31], only phenomenological research of OFDM-SNM
has hitherto been carried out without a solid supporting pillar
from information theory. So far, the performance limit of
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OFDM-SNM remains undiscovered, let alone the quantitative
study of the performance gain brought by the novel number
dimension in conjunction with conventional amplitude and
phase dimensions.

To bridge this cognitional gap, we in this paper analyze
the mutual information and channel capacity of OFDM-SNM.
Since the analysis of mutual information and channel capacity
are rather complex when the assignments of SAPs and con-
stellation symbols are coupled, we adopt a set of powerful
mathematical tools and assumptions to facilitate our analysis
in this paper, including a successive padding procedure for
establishing an explicit bijective mapping relation, the log
sum inequality, and the Kullback-Leibler divergence. We also
propose and apply several iterative algorithms jointly to search
achievable solutions in an efficient manner. The analytical
methodologies and derivations can be directly applied to
analyze other cognate sparisity modulation schemes and can
also reflect the information-theoretic nature of the number
dimension in other domains. Specifically, the technical con-
tributions of this paper are summarized as follows:

• We formulate and analyze the mutual information and
channel capacity of OFDM-SNM.

• We derive an upper bound on the mutual information
of OFDM-SNM in closed form by using the log sum
inequality.

• We propose an easy-to-implement algorithm to approach
the optimal SAP utilization probabilities (PUPs) in an
iterative manner.

• We propose a Huffman coding based scheme to determine
the achievable PUPs for practical implementation.

• We prove that the Huffman coding based scheme is ca-
pable of providing the best fit between the optimal PUPs
and the achievable PUPs in the sense of Kullback–Leibler
divergence.

• We verify the information-theoretic performance analysis
in this paper by numerical simulations.

The rest of this paper is organized as follows. In Section
II, we present the system model of OFDM-SNM. Based on
this system model, we formulate and analyze the mutual infor-
mation of OFDM-SNM in Section III. With the formulation
of mutual information and a set of assumptions, we carry out
the information-theoretic analysis of the channel capacity of
OFDM-SNM in Section IV. Numerical results are presented
and discussed in Section V to verify our information-theoretic
analysis. Finally, the paper is concluded with several future
research directions in Section VI.

Notation: H(·) and I(·; ·) represent the entropy and mu-
tual information; D (· ‖ ·) is the Kullback-Leibler divergence
(a.k.a. the relative entropy) measuring the distance from a
certain probability distribution to the reference probability
distribution; (·)T and (·)H denote transpose and Hermitian
transpose of vector/matrix, respectively; CN (·, ·) represents
the complex Gaussian distribution with the mean and variance
enclosed;

( ·
·,·,...,·

)
is the multinomial coefficient, and b·c is the

floor function returning the nearest integer less than or equal
to the enclosed; E{·} gives the expectation of the random
vector/matrix enclosed, and P{·} denotes the probability of

Fig. 1: OFDM-SNM transmitter structure with a single OFDM block.

the random vector/matrix enclosed.

II. SYSTEM MODEL

Without loss of generality, we consider an OFDM-SNM
system with a single block of NS subcarriers1, which form the
full set of subcarriers NS = {1, 2, . . . , NS}. Such an OFDM-
SNM system has a transmitter structure as shown in Fig. 1. Ac-
cording to this transmitter structure, the incoming bit sequence
with length p from the information source is first split into two
parts with lengths pA and pC sent to the activation number
mapper and the constellation modulator, respectively. In this
paper, all bits are assumed to be independently distributed and
equiprobable between ‘1’ and ‘0’, adhering to the principle of
maximum entropy. Then, the activation number mapper can
decide the number of active subcarriers KA depending on the
input pA-bit sequence. In parallel, the constellation modulator
performs as the same as for plain OFDM with KA subcarriers
and generate the corresponding constellation symbols with
certain amplitudes and phases based on the pC-bit sequence.
Note that, to fully exploit the system-level design freedom and
advantageous features of OFDM-SNM, KA ≥ 1 is a varying
number and has a bijective mapping relation with the input pA-
bit sequence. As a direct consequence of the varying number of
active subcarriers, the number of carried constellation symbols
generated by the constellation modulator is also varying for
each transmission attempt. This indicates that OFDM-SNM
is a modulation scheme transmitting a varying length of bit
sequence, which leads p to a non-fixed value. The number
of active subcarriers and the same number of constellation
symbols are sent to the multi-carrier block generator and
the following signal processing units to yield an independent
transmission block with NS elements, including KA effective
elements and KI = NS − KA nulls. The following signal
processing units include inverse fast Fourier transform (IFFT),
cyclic prefix (CP) appending, digital-to-analog conversion
(DAC), and up-conversion [33].

Different from the canonical OFDM-SNM scheme without
any adaptation mechanism [18], we introduce an SNM opti-
mizer in the OFDM-SNM transmitter structure that is able to
adapt the codebook by instantaneous channel state information

1As detailed in [18] and [32], a near-optimal energy-based detection scheme
can be employed for OFDM-SNM, which allows a relative large number
of subcarriers in a single OFDM block. Therefore, the initial splitting of a
total number of subcarriers into sub-blocks becomes unnecessary in practical
application scenarios and is omitted in this paper for simplicity.
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(CSI) for maximizing the system transmission capability2. As
a consequence of the adaptive codebook, the SNM optimizer
also has an impact on the mapping relation between pA input
bits and the modulated SAP. In particular, for each KA, we
assume that a certain SAP

xSNM(KA) = [φ1, φ2, . . . , φNS
]T (1)

is selected by a designed channel-dependent criterion from the
SAP set denoted as XSNM(KA), where φn = 1 indicates that
the nth subcarrier is active, and φn = 0 indicates that the
corresponding subcarrier is inactive, ∀ n ∈ NS. The channel-
dependent SAP selection criterion for a given KA is in nature
a subcarrier assignment scheme relying on instantaneous CSI,
which is detailed in [19]. In brief, the set of KA active
subcarriers denoted as NS(KA) is determined by3

NS(KA) = arg max
ℵ⊂NS,|ℵ|=KA

{∑
n∈ℵ

|hn|2
}
, (2)

where hn is the instantaneous channel coefficient of the nth
subcarrier, and the cardinality of NS(KA) is |NS(KA)| = KA.

Obviously the cardinality of XSNM(KA) is |XSNM(KA)| =(
NS

KA

)
. For each CSI updating round, NT = 2blog2(NS)c ≤ NS

times of SAP selection are carried out to form an optimized
codebook, which consists of∑

KA∈NT

(
NS

KA

)
= 2NS − 1−∆(NS, NT) (3)

selection processes, where

∆(NS, NT) =
NSΓ(NS) 2F̃1(1,−NS +NT + 1;NT + 2;−1)

Γ(NS −NT)
(4)

signifies the design freedom when NT < NS and equals zero
when4 NT = NS; 2F̃1(·, ·; ·; ·) is the regularized hypergeomet-
ric function, and Γ(·) is the gamma function.

Once xSNM(KA) is given, KA constellation symbols gen-
erated by the constellation modulator will be carried on the
KA active subcarriers. For M -ary amplitude-phase modulation
(APM) with a symbol set M, e.g., M -ary phase shift keying

2It should be noted that instantaneous CSI is not a necessity of performing
OFDM-SNM but more like a bonus that produces a coding gain by activating
subcarriers with bias [19]. Without the access to instantaneous CSI, OFDM-
SNM can still be carried out by activating subcarriers in sequence [18].
Considering the convenience for estimating OFDM channels in quasi-static
propagation environments for the applications in the IoT and MTC networks
[34], it is reasonable to assume that instantaneous CSI is perfectly accessible.

3Given KA, the designed assignment criterion is equivalent to iden-
tifying KA subcarriers with the first, second and until the KAth
largest instantaneous channel power gains from NS subcarriers. Consid-
ering a toy example when NS = 4 and [|h1|2, |h2|2, |h3|2, |h4|2] =
[1.2672, 0.4811, 2.9746, 0.9988], we have |h3|2 > |h1|2 > |h4|2 > |h2|2.
Then, the assignment criterion will produce: NS(1) = {3}, NS(2) = {1, 3},
NS(3) = {1, 3, 4}, and NS(4) = {1, 2, 3, 4}.

4In most modern OFDM systems where IFFT is performed, NT = NS

must be satisfied [33]. We present the above discussion without presuming
NT = NS to keep the generality of this work. For the rest of this paper,
NT = NS is implied, unless explicitly stated otherwise. Meanwhile, to avoid
bring confusion, we still keep using both notations NS and NT for the total
number of subcarriers and the maximum number of active subcarriers as well
as the total number of legitimate SAPs, respectively.

Fig. 2: An illustrative example of the successive padding procedure,
given NS = 4, KA = 2, and M = 4 (QPSK).

(M -PSK) and M -ary quadrature amplitude modulation (M -
QAM), there are M options available for each symbol de-
cided by a log2(M)-bit segment of the pC-bit input sequence
to the constellation modulator5. Assuming Gray coding is
implemented to map the bits to a symbol, we have pC =
KA log2(M). Overall, a certain symbol combination pattern
(SCP)

xAPM(KA) = [s1, s2, . . . , sKA
]T (5)

is determined by the pC-bit input sequence of the constellation
modulator, where sn is a normalized M -ary complex symbol
with the property E{(sn)Hsn} = 1.

With both SAP xSNM(KA) and SCP xAPM(KA), we can
construct the multi-carrier transmission block in a bijective
manner as

x(KA) = [x1, x2, . . . , xNS ]T (6)

for OFDM-SNM by a successive padding procedure:

xn =

{
sη(n), if φn = 1

0, if φn = 0
, (7)

where η(n) maps the index of the active subcarrier, i.e., n, to
the index of the padded symbol in xAPM(KA) in a successive
order. This successive padding procedure can be pictorially
illustrated in Fig. 2 for clarity. Because E{(sn)Hsn} = 1, we
can easily have E{(x(KA))Hx(KA)} = KA.

Assuming a given amount of transmit power PT is uni-
formly allocated to KA subcarriers, the received multi-carrier
block after CP removal and FFT at the receiving side can be
expressed as

y(KA) = [y1, y2, . . . , yNS
]T =

√
PT

KA
Hx(KA) + w, (8)

where H = diag{h1, h2, . . . , hNS
} is an NS × NS diagonal

channel coefficient matrix, and w = [w1, w2, . . . , wNS
]T is

the an NS × 1 noise vector. For simplicity, we assume that
the noise is an independent frequency-domain additive white
Gaussian noise (AWGN) abiding CN (0, BnN0), where Bn
is the bandwidth of the nth subcarrier, and N0 is the power
spectral density (PSD) of noise. Viewing the complex random
variables as a pair of real and imaginary random components,
we can treat hn and wn as two-dimensional random vectors.
Because for most OFDM systems, we have B = B1 = B2 =

5Without loss of generality, the base of the logarithm is set to two for
all information measures in this paper. Therefore, the resulting units of all
information measures in this paper are bits.
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Fig. 3: A diagrammatic representation of the mapping relation among
xSNM(KA), xAPM(KA), x(KA), and y(KA). The circles represent
the legitimate sets of the corresponding random vectors.

· · · = BNS [35], the probability density function (PDF) of wn
can be determined by [33]

fw(wn) =
1

πBN0
exp

(
−|wn|

2

BN0

)
. (9)

From (7) and (8), we can also have the entry-wise relation
between the transmitted and received multi-carrier blocks as

yn =

√
PT

KA
hnxn+wn =

{√
PT

KA
hnsη(n) + wn, if φn = 1

wn, if φn = 0
.

(10)
Based on the descriptions above, the mapping relation

among xSNM(KA), xAPM(KA), x(KA), and y(KA) can be
diagrammatically shown in Fig. 3. Accordingly, the receiver
can employ a certain detection scheme, e.g., maximum likeli-
hood (ML) detection, log-likelihood ratio (LLR) detection, and
energy-based detection, to estimate and reconstruct x(KA) by
y(KA) [18], [22], [36]. Subsequently, both xSNM(KA) and
xAPM(KA) can be obtained from x(KA) through the bijective
relation resulted by the successive padding procedure. Finally,
the original p-bit sequence is thereby retrieved by the OFDM-
SNM demodulation afterwards.

III. FORMULATION AND ANALYSIS OF MUTUAL
INFORMATION

As shown in Fig. 3, because the successive padding
procedure establishes a bijective mapping relation between
xSNM(KA), xAPM(KA), and x(KA), it is obvious that
H(x(KA)) = H(xSNM(KA),xAPM(KA)). Hence, we can
reduce the mutual information of OFDM-SNM to be

I(x(KA);y(KA)) = I(xSNM(KA),xAPM(KA);y(KA)).
(11)

The mutual information given above can be further reduced
by the chain rule for mutual information to be [37]

I(xSNM(KA),xAPM(KA);y(KA))

= I(xAPM(KA);y(KA)|xSNM(KA))

+ I(xSNM(KA);y(KA)).

(12)

Denote the probability that KA subcarriers are activated
as P(xSNM(KA)). According to the basic definition of con-
ditional mutual information, we can expand the conditional
mutual information between xAPM(KA) and y(KA) given
xSNM(KA) in (13), where (a) is valid upon the assumptions

that all incoming bit sequences are equiprobable and Gray
coding is implemented. As a result, once an SAP with k
active subcarriers is given, all Mk SCPs are chosen equally
with a uniform probability 1/Mk. This conditional mutual
information measures how much information regarding the
SCP can be obtained by estimating received multi-carrier block
once the SAP has already been correctly estimated.

In (13), fy(y(k)|xSNM(KA) = xSNM(k),xAPM(KA) =
xAPM(k)) is the conditional PDF of y(k) given xSNM(KA) =
xSNM(k) and xAPM(KA) = xAPM(k) with k active subcar-
riers. Because of the independent nature of OFDM systems
over multiple subcarriers, we can first discuss the entry-wise
conditional distribution of each yn given the SAP and SCP
and then derive the joint conditional distribution of y(k).

In (13), fy(y(k)|xSNM(KA) = xSNM(k)) is the conditional
PDF of y(k) solely conditioned on xSNM(KA) = xSNM(k).
By the basics of probability theory, we tentatively regard hn
as a known and stationary factor and derive the conditional
PDF of yn as

fkA/I(yn) =
1

π%kn
exp

(
−|yn|

2

%kn

)
, (14)

where

%kn =

{
BN0

(
PT|hn|2
kBN0

+ 1
)
, if n ∈ NS(k)

BN0 if n /∈ NS(k)
. (15)

Therefore, the joint distribution of y(k) solely conditioned on
SAP can be characterized by its joint conditional PDF given
by

fy(y(k)|xSNM(KA) = xSNM(k)) =

NS∏
n=1

fkA/I(yn)

=

 ∏
n∈NS(k)

fkA(yn)

 ∏
n/∈NS(k)

fI(yn)

 .

(16)

In addition, from the basic definition of mutual information,
we can similarly expand the mutual information between
xSNM(KA) and y(KA) as

I(xSNM(KA);y(KA)) =

NT∑
k=1

P(xSNM(k))

×
∫
y(k)

fy(y(k)|xSNM(KA) = xSNM(k))

× log2

(
fy(y(k)|xSNM(KA) = xSNM(k))

fy(y(k))

)
dy(k),

(17)

where fy(y(k)) is the a priori PDF of y(k) without any prior
knowledge of xSNM(KA) and xAPM(KA). We can obtain the
a priori PDF of y(k) by averaging fy(y(k)|xSNM(KA) =
xSNM(k)) over xSNM(KA) = xSNM(k) as

fy(y(k)) =

NT∑
i=1

P(xSNM(i))fy(y(k)|xSNM(KA) = xSNM(i)).

(18)
As such, the mutual information I(xSNM(KA);y(KA)) quan-
tifies how much information regarding xSNM(KA) one can
obtain by estimating y(KA).
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I(xAPM(KA);y(KA)|xSNM(KA)) =

NT∑
k=1

P(xSNM(k))I(xAPM(KA);y(KA)|xSNM(KA) = xSNM(k))

(a)
=

NT∑
k=1

Px(xSNM(k))

Mk∑
m=1

1

Mk

∫
y(k)

fy(y(k)|xSNM(KA) = xSNM(k),xAPM(KA) = xAPM(k))

× log2

(
fy(y(k)|xSNM(KA) = xSNM(k),xAPM(KA) = xAPM(k))

fy(y(k)|xSNM(KA) = xSNM(k))

)
dy(k)

(13)

IV. INFORMATION-THEORETIC ANALYSIS

A. Problem Formulation and Analysis

The formulation and analysis of mutual information for
OFDM-SNM directly lead to the formulation of channel
capacity upon the stationary channel settings characterized by
H [33]:

C(H) = max
P
{I(xSNM(KA),xAPM(KA);y(KA))}

= max
P
{I(xAPM(KA);y(KA)|xSNM(KA))

+I(xSNM(KA);y(KA))} ,

(19)

where P = [P(xSNM(1)),P(xSNM(2)), . . . ,P(xSNM(NT))]T

is the PUP vector of NT SAPs. It is evident that∑NT

k=1 P(xSNM(k)) = 1 and6 0 ≤ P(xSNM(k)) ≤ 1.
In theory, we aim to find the optimal PUP vector P∗ so as

to achieve the maximum mutual information, i.e., channel ca-
pacity. The searching problem with regard to P∗ is formulated
by

P∗ = [P∗(xSNM(1)),P∗(xSNM(2)), . . . ,P∗(xSNM(NT))]T

= arg max
P

{I(xSNM(KA),xAPM(KA);y(KA))}

s.t.

NT∑
k=1

P(xSNM(k)) = 1,

0 ≤ P(xSNM(k)) ≤ 1, ∀ 1 ≤ k ≤ NT.
(20)

First, let us take a close look at
I(xAPM(KA);y(KA)|xSNM(KA)). If an SAP is given
and fixed, this conditional mutual information can be
analyzed as for a canonical OFDM with KA parallel channels
[38]. Therefore, this conditional term will reach its maximum
when xAPM(KA) is a vector with KA power constrained

6Here, we intent to stipulate a closed set for the activation probabil-
ity P(xSNM(k)) for an arbitrary SAP xSNM(k), implying that abandon-
ing a subset of SAPs is allowed during the optimization. In an extreme
case where P(xSNM(1)) = P(xSNM(2)) = · · · = P(xSNM(NT −
1)) = 0 and P(xSNM(NT)) = 1, OFDM-SNM reduces to plain OFDM
utilizing NT available subcarriers from the optimized set NS(NT) =

arg max
ℵ⊂NS,|ℵ|=NT

{∑
n∈ℵ |hn|2

}
formed by the subcarrier assignment. This

closed stipulation is able to release the underlying presumption of OFDM-
SNM that all NT SAPs must be used and therefore scrutinize the necessity
of OFDM-SNM.

continuous Gaussian distributed inputs and KI nulls [33]. As
a result, we can derive the following inequality:

I(xAPM(KA);y(KA)|xSNM(KA))

< I(xAPM(KA);y(KA)|xSNM(KA))

=

NT∑
k=1

P (xSNM(k))
∑

n∈NS(k)

B log2

(
1 +

PT|hn|2

kBN0

)
.

(21)

Therefore, we can approximate the condi-
tional mutual information given a certain SAP
I(xAPM(KA);y(KA)|xSNM(KA)) by its upper bound
I(xAPM(KA);y(KA)|xSNM(KA)), which is a linear
combination of P as shown in (21).

Second, referring to (17), we can resort to Bayes’ theorem
to have the following relation

fy(y(k)|xSNM(KA) = xSNM(k))

fy(y(k))
=

P (xSNM(k)|y(k))

P (xSNM(k))
(22)

where the a posteriori PUP P (xSNM(k)|y(k)) given the
knowledge of y(k) can be derived by the formula of total
probability as

P (xSNM(k)|y(k))

=
P (xSNM(k)) fy(y(k)|xSNM(KA) = xSNM(k))∑NT

i=1 P (xSNM(i)) fy(y(i)|xSNM(KA) = xSNM(i))
.

(23)

Accordingly, we rewrite I(xSNM(KA);y(KA)) as

I(xSNM(KA);y(KA)) =

NT∑
k=1

P(xSNM(k))

×
∫
y(k)

fy(y(k)|xSNM(KA) = xSNM(k))

× log2

(
P (xSNM(k)|y(k))

P (xSNM(k))

)
dy(k).

(24)

Denote the state space of P as Θ(P) = [0, 1]NT×1, which
is obviously a convex set. Also, I(xSNM(KA);y(KA)) given
in the rewritten form can be proven to be a concave function
of7 P. Therefore, the objective function of the optimization
problem (20) consisting of a linear combination of P and
a concave function of P is also a concave function of P.
Hence, the Karush-Kuhn-Tucker (KKT) conditions are sat-
isfied, and accordingly there must exist a single extremum

7Interested readers can refer to Appendix A for a rigorous proof.
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P∗ that is the optimum and maximizes the objective function
I(xSNM(KA),xAPM(KA);y(KA)). The existence of the op-
timum P∗ is unique and axiomatic. Interesting readers can find
rigorous but tedious proofs in [39]. As a direct consequence
of the concavity, there exists at least one iterative algorithm
that can converge toward the maximum in a monotonically
non-decreasing manner [40], [41].

From (21) and (24), we can form a systematic view of
OFDM-SNM from the information-theoretic perspective. In
information theory parlance, the channel resulted by OFDM-
SNM is in nature a hybrid channel merging the parallel
channel model and the sum channel model with NT paths
via weights taken from P.

B. Iterative Algorithm to Approach the Optimum

To fast converge toward the channel capacity and yield the
optimal PUP vector, an iterative algorithm for optimal spatial-
domain design has been proposed for spatial modulation (SM)
in [42]. The core principle of this iterative algorithm has
also been numerically verified to be effective for optimal
frequency-domain design for OFDM-IM in [30]. In this sub-
section, we tailor this iterative algorithm for OFDM-SNM by
considering the information brought by the subcarrier number
dimension. It can be shown that the computational complexity
of the tailored iterative algorithm is linearly proportional to
the number of assigned subcarriers for OFDM-SNM, i.e.,
NT. This linear property makes it a suited algorithm for
practical OFDM-SNM systems with a large NT, subject to
volatile channel conditions and requiring real-time optimiza-
tion. Specifically, the tailored iterative algorithm is a finite-step
approach, and we detail these steps as follows.

Step 1: Initialize: Denote the the PUP of SAP xSNM(k)
yielded by the tailored iterative algorithm in the τ th iteration as
P〈τ〉(xSNM(k)). For the first iteration, i.e., τ = 1, we initialize
the PUPs for all NT SAPs as

P〈1〉(xSNM(k)) = 1/NT, ∀ k ∈ [1, 2, . . . , NT]. (25)

We organize all PUPs for each iteration by the vector P〈τ〉 =
[P〈τ〉(xSNM(1)),P〈τ〉(xSNM(2)), . . . ,P〈τ〉(xSNM(NT))].

Step 2: Calculate the upper bound on the SAP-wise mutual
information: With P〈τ〉(xSNM(k)), we can refer to (17) and
(21) to determine an upper bound on the SAP-wise mutual
information as8

Ξ〈τ〉(xSNM(k))

=
∑

n∈NS(k)

B log2

(
1 +

PT|hn|2

kBN0

)
+D(P〈1〉‖P〈τ〉)

+
1

NT

NT∑
i=1

NS∑
n=1

D(fkA/I(yn)‖f iA/I(yn)),

(26)

where

D(P〈1〉‖P〈τ〉) =
1

NT

NT∑
i=1

log2

(
1

NTP〈τ〉(xSNM(i))

)
(27)

8The derivation of this upper bound on the SAP-wise mutual information
is presented in Appendix B for interested readers.

by the definition of Kullback-Leibler divergence for discrete
probability distributions and (25);

D(fkA/I(yn)‖f iA/I(yn)) = log2

(
%in
%kn

)
−
(

1− %kn
%in

)
log2(e)

(28)
is derived between two complex Gaussian distributions in
Appendix C.

Step 3: Calculate the upper bound on the weighted average
of the SAP-wise mutual information: With the upper bound on
the SAP-wise mutual information, we can determine an upper
bound on the the weighted average of the SAP-wise mutual
information by

C̄〈τ〉(H) = E
xSNM(k)

{
Ξ〈τ〉(xSNM(k))

}
=

NT∑
k=1

P〈τ〉(xSNM(k))Ξ〈τ〉(xSNM(k)).
(29)

Step 4: Update the PUP vector: Different from the original
PUP updating criterion relying on intermediate parameters
proposed in [42], we directly utilize the upper bounds on the
SAP-wise mutual information as references to update the PUP
vector for the next iteration by

P〈τ+1〉(xSNM(k)) =
2Ξ〈τ〉(xSNM(k))∑NT

i=1 2Ξ〈τ〉(xSNM(i))
. (30)

Step 5: Check the termination condition: With a preset
termination threshold ε, for τ ≥ 2, we check if the following
termination condition is satisfied:

C̄〈τ〉(H)− C̄〈τ−1〉(H) < ε. (31)

If yes, the iterative process is terminated and the optimum
is said to be converged. Then, we have the sub-optimal PUP
vector

P& = [P&(xSNM(1)),P&(xSNM(2)), . . . ,P&(xSNM(NT))]T

= P〈τ〉.
(32)

Otherwise, the iterative process goes back to Step 2 and repeats
until the above termination condition is satisfied.

C. Closed-Form Approximations of the Optimum and the
Channel Capacity

D. Setting of the Termination Threshold

Here, we also propose an easy-to-implement approach to
set the termination threshold ε so as to accurately approxi-
mate P∗ by P& with a reasonable amount of computational
resource. Recalling the basic properties of mutual information
and entropy and assuming that all symbols carried on active
subcarriers are Gaussian input with a total power constraint



7

PT, we can derive a loose upper bound on channel capacity,
denoted as Υ(H), as follows

C(H) < Υ(H)
.
= max

P

{
−

NT∑
k=1

P(xSNM(k)) log2 (P(xSNM(k)))

}
︸ ︷︷ ︸

=ΥSNM

+ max
P


NT∑
k=1

P(xSNM(k))
∑

n∈NS(k)

B log2

(
1 +

PT|hn|2

kBN0

)︸ ︷︷ ︸
=ΥAPM(H)

.

(33)

By the method of Lagrange multipliers, we can easily
find that the first term can be maximized once all SAPs are
uniformly chosen, which yields

ΥSNM = log2(NT). (34)

Because of the linearity of ΥAPM(H) with respect to proba-
bilities, it is obvious that only a single SAP with the highest
SAP-wise channel capacity resulted by the carried symbols on
active subcarriers should be chosen to achieve the maximum
of the second term. By this reasoning, we can derive

ΥAPM(H) =
∑

n∈NS(κ)

B log2

(
1 +

PT|hn|2

κBN0

)
, (35)

where

κ = arg max
k

 ∑
n∈NS(k)

B log2

(
1 +

PT|hn|2

kBN0

) . (36)

Assuming a special case where all channels are faded in a
completely correlative manner and with normalized channel
power gains, i.e., |h1|2 = |h2|2 = · · · = |hNS |2 = 1, we can
explicitly derive the closed-form expression of Υ(diag{1})
as9

Υ(diag{1}) = log2(NT)+NTB log2

(
1 +

PT

NTBN0

)
(37)

To provide intuitive knowledge of this upper bound, we plot
Υ(diag{1}) with normalized bandwidth for different NT and
PT/N0 in Fig. 4.

Obtaining such a loose upper bound Υ(H) on channel
capacity, we can roughly estimate the order of magnitude for
channel capacity. The order of magnitude for channel capacity
can be used as prior knowledge and help to decide a proper
value of the termination threshold ε. Specifically, assuming
the magnitude of Υ(H) to be υ, with ε = 10υ−ε, we can
achieve the accuracy of about ε orders of magnitude lower
than Υ. As a rule of thumb, ε = 10−5×Υ(H) would maintain
a balanced equilibrium between approximation accuracy and
computational resource and can be used in simulations for
most application scenarios [43].

9Interested readers might refer to Appendix D for the detailed derivation
of Υ(diag{1}).

Fig. 4: Υ(diag{1}) for different NT and PT/N0.

E. Construction of Achievable PUP Vector

Albeit with P& obtained by a sufficiently small ε, we need
to notice that such an optimized PUP vector might not be
practically achievable when all incoming bits are assumed to
be independently distributed and equiprobable in this paper.
This is because the number of SAPs, i.e., NT, is a limited
integer in OFDM-SNM systems, and each achievable PUP
vector must be represented by a certain structure of a full
binary tree comprised of NT leaves [44]. This entropy coding
constraint on the achievable PUP vector is imposed by the
practical requirements of being uniquely and instantaneously
decodable [33]. We hereby denote the full set of achievable
PUP vectors by U(NT). As shown in [38], determining an
appropriate achievable PUP vector P# from U(NT) through
exhaustive search is nontrivial and with exponential computa-
tional complexity. The cardinality of U(NT) can be written as
[38]

|U(NT)| = U(NT) =
∑

t∈T (NT−1)

(
NT

ρ1, ρ2, . . . , ρNT−1

)
,

(38)
where T (NT− 1) is the reduced set of symmetric full binary
trees with NT − 1 internal nodes, i.e., NT leaves associated
with NT legitimate SAPs; ρq represents the number of leaves
at level q of tree t. The cardinality of T (NT−1) is the number
of unique solution vectors [ρ1, ρ2, . . . , ρNT−1]T satisfying the
following equation set

∑NT−1
q=1 ρq(1/2)ρq = 1∑NT−1
q=1 ρq = NT

0 ≤ ρq ≤ NT, ∀ q = 1, 2, . . . , NT − 1

ρq ∈ N, ∀ q = 1, 2, . . . , NT − 1

. (39)

As U(NT) is required for providing comparison benchmarks
for numerical simulations, we adopt a simple but effective
enumerating algorithm in Appendix E to generate U(NT) for
small NT.

To facilitate the construction of achievable PUP vector, we
employ Kullback-Leibler divergence as the distance measure
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between two probability distributions and define the optimal
achievable PUP vector P# based on P& as

P# = [P#(xSNM(1)),P#(xSNM(2)), . . . ,P#(xSNM(NT))]T

= arg min
P∈U(NT)

{
D
(
P ‖ P&

)}
,

(40)

where D
(
P ‖ P&

)
can be explicitly written for our case as

D
(
P ‖ P&

)
=

NT∑
k=1

P(xSNM(k)) log2

(
P(xSNM(k))

P&(xSNM(k))

)
.

(41)
To obtain P# for OFDM-IM, the authors in [30] have

utilized the principle of Huffman coding by sorting the SAPs
by partial SAP-wise mutual information, which is equivalent
to relying on the first term

∑
n∈NS(k)B log2

(
1 + PT|hn|2

kBN0

)
in (26). However, this is not optimal for both OFDM-IM
and OFDM-SNM systems, because only the partial SAP-wise
mutual information pertaining to the symbols carried on the
active subcarriers is taken into account. The efficiency is even
worse for OFDM-SNM, since the number of active subcarriers
in OFDM-SNM systems is varying. Furthermore, in Huffman
coding, ordering patterns by other associated references, in-
cluding even the full SAP-wise mutual information, instead of
their occurring probabilities has been proven to be less efficient
[45], let alone the much higher computational complexity
rendered by calculating mutual information for each pattern.

Hence, with the optimized PUP vector P&, an efficient
way to find out P# is to employ the Huffman coding as-
sociating NT leaves labeled by their occurring probabilities
{P&(xSNM(k))}NT

k=1 that represent NT SAPs [38]. The de-
tailed operational steps of the Huffman coding based achiev-
able PUP vector construction procedure are presented as
follows:

Step 1: Label SAPs: In accordance with Huffman coding,
all SAPs are processed with labeled weight functions, which
are the optimized PUPs {P&(xSNM(k))}NT

k=1 returned by the
iterative algorithm detailed in Section IV-B.

Step 2: Order SAPs and their combinations: In the first
round, all NT SAPs should be ordered from the largest to the
smallest in terms of P&(xSNM(k)). Then, the two SAPs with
the smallest and the next-to-smallest PUPs are merged to form
an SAP combination labeled with the sum of the these two
smallest probabilities. Subsequently, the SAP combination is
treated as a whole in the next ordering round until the (NT−
1)th ordering round when all SAPs have been connected in a
certain manner to form a full binary tree.

Step 3: Determine the achievable PUP vector: Examine the
depth of the leaf associated with each connected SAP in the
formed full binary tree, denoted as d(xSNM(k)), and determine
the corresponding achievable PUP as

P#(xSNM(k)) = 2−d(xSNM(k)), ∀ k ∈ {1, 2, . . . , NT}. (42)

In contrast to the heuristic formalism of the binary tree
aided projection in [38], we rigorously prove in Appendix F
that the achievable PUP vector constructed in this way is the
closest to P& in the sense of Kullback-Leibler divergence.
The complete channel-dependent coding procedure, involving

Algorithm 1 Complete channel-dependent coding procedure
determining the achievable optimized PUP vector P#.

1: BEGIN
2: Input H, PT, N0, B, NT, {xSNM(k)}NT

k=1, {NS(k)}NT

k=1,
and ε;

3: for k = 1 : NT do
4: Initialize P〈1〉(xSNM(k))← 1/NT;
5: end for
6: for k = 1 : NT do
7: Calculate Ξ〈1〉(xSNM(k)) by (26);
8: end for
9: Calculate C̄〈1〉(H) by (29);

10: for k = 1 : NT do
11: Update and obtain P〈2〉(xSNM(k)) by (30);
12: end for
13: for k = 1 : NT do
14: Calculate Ξ〈2〉(xSNM(k)) by (26);
15: end for
16: Calculate C̄〈2〉(H) by (29);
17: Initialize τ ← 2;
18: while C̄〈τ〉(H)− C̄〈τ−1〉(H) ≥ ε do
19: τ ← τ + 1;
20: for k = 1 : NT do
21: Update and obtain P〈τ〉(xSNM(k)) by (30);
22: end for
23: for k = 1 : NT do
24: Calculate Ξ〈τ〉(xSNM(k)) by (26);
25: end for
26: Calculate C̄〈τ〉(H) by (29);
27: end while
28: P& ← P〈τ〉 = [P〈τ〉(xSNM(1)), . . . ,P〈τ〉(xSNM(NT))];
29: Order all {xSNM(k)}NT

k=1 by {P&(xSNM(k))}NT

k=1 in de-
scending order;

30: for l = 1 : NT − 1 do
31: Merge the two SAPs (SAP combinations) with the

smallest PUPs (sum of PUPs) to form a new branch;
32: end for
33: for k = 1 : NT do
34: Determine the depth of each connected SAP in the

formed full binary tree, i.e., d(xSNM(k));
35: P#(xSNM(k))← 2−d(xSNM(k));
36: end for
37: return P# = [P#(xSNM(1)), . . . ,P#(xSNM(NT))]T ;
38: END

two stages of iterative optimization and Huffman coding,
is specified in Algorithm 1 for clarity. We can pictorially
illustrate the optimization procedure as well as the qualitative
relation among P∗, P&, and P# in Fig. 5.

V. NUMERICAL RESULTS AND DISCUSSION

A. Simulation Setups

In the following simulations, we consider power and com-
plexity constrained application scenarios and set up relatively
simple OFDM-SNM systems with NT = NS = 2, 4. The
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Fig. 5: Pictorial illustration of the entire optimization procedure with
the qualitative relation among P∗, P&, and P#.

bandwidth of each subcarrier B and the noise PSD N0 are nor-
malized for simplicity. Without loss of generality, two channel
fading models are taken into consideration for simulations:
• Normalized AWGN channel model: H = diag{1}.
• Normalized Rayleigh fading channel model: H =

diag{h1, h2, . . . , hNS
}, given hn ∼ CN (0, 1), ∀ n ∈ NS.

To capture the channel variations into consideration and focus
on the average, we employ the ergodic channel capacity
as a performance evaluation metric in this paper to inspect
the effectiveness of the proposed methods and compare the
simulation results. The ergodic channel capacity is given by

C = E
H
{C(H)} , (43)

in which the NS-fold integral (c.f. (17)) is numerically calcu-
lated by Monte Carlo sampling averaging over 102 samples
[46]. The ergodic channel capacity illustrated in this section
is approximated by averaging over 104 repeated trials with
independent channel realizations so as to reflect the statistical
nature of OFDM-SNM and the statistical regularity by the law
of large numbers.

For the normalized Rayleigh fading channel model, we also
employ outage probability defined as

Pout = P {C(H) < ς} (44)

to capture the probabilistic characteristics of OFDM-SNM
applied in fast fading environment, where ς is a preset outage
threshold signifying the reception capability and is normalized
in the following simulations for simplicity.

Considering finite constellation inputs with a limited con-
stellation order M , we employ the spectral efficiency to reflect
and compare the information transmission capabilities among
schemes with different settings. The spectral efficiency is
defined as

R = −
NT∑
k=1

P(xSNM(k)) log2 (P(xSNM(k)))︸ ︷︷ ︸
=RSNM

+

NT∑
k=1

P(xSNM(k))k log2(M)︸ ︷︷ ︸
=RAPM

,

(45)

in bit per channel use (bpcu), where RSNM and RAPM

represent the spectral efficiency brought by modulating input
data over different SAPs and SCPs, respectively.

B. Numerical Exploration of Ergodic Channel Capacity

We carried out numerical simulations regarding ergodic
channel capacity with respect to average signal-to-noise ratio
over both AWGN channels and Rayleigh channels for two- and
four-subcarrier systems. The numerical results corresponding
to different system setups are shown in Figs. 6, 7, 8, and 9.
By observing the presented numerical results, we can discover
a series of important properties of OFDM-SNM and the
proposed channel-dependent adaptive algorithms.

First of all, as all subchannels are statistically equivalent
under the AWGN channel setup, thus, the channel-dependent
SAP selection criterion of OFDM-SNM does not bring any
performance advantage. Also, because of the reduced degree
of freedom, there exists ergodic channel capacity underperfor-
mance of OFDM-SNM compared to classic OFDM. For this
reason, the ergodic channel capacity yielded by classic OFDM
serves as the upper bound over the entire signal-to-noise ratio
region when the AWGN channel model is adopted. This is also
in line with the observations and analysis regarding OFDM-IM
given in [29].

Different from AWGN channels, the ergodic channel ca-
pacity yielded by OFDM-SNM can be higher than that of
classic OFDM at low signal-to-noise ratio when the Rayleigh
channel setup is utilized. This performance gain in the low
power region is brought about by the channel-dependent SAP
selection mechanism (c.f. (2)). These results align with the
previous analysis that OFDM-SNM fits simple communication
systems with transmit power constraints better.

More importantly, for both AWGN and Rayleigh chan-
nel setups, the ergodic channel capacities yielded by classic
OFDM and the iterative algorithm converge at high signal-
to-noise ratio, which substantiates that the proposed iterative
algorithm can approach the optimum. On the other hand,
once we consider the practical achievability by processing the
optimized PUP vector via the Huffman coding based scheme,
an obvious theory-to-practice performance gap is yielded. For
the case of NT = 2, the processed PUP vector gives the same
performance as by the uniform distribution, since there exists
only one available structure for the full binary tree with two
leaves. For the case of NT = 4, the processed PUP vector
is capable of outperforming the uniform distribution, while
still exhibits an obvious loss compared to the optimized PUP
vector directly yielded by the iterative algorithm.

In addition, further observing the PUP distributions for
all cases clarifies how the ergodic channel capacity changes
with different systems settings. Apparently, increasing trans-
mit power will undermine the equilibrium among multiple
PUPs. In the extreme case of infinite transmit power, the
OFDM-SNM employing the optimized PUP vector given by
the proposed iterative algorithm will become classic OFDM,
since only a single SAP with all NT available subcarriers
activated will be chosen almost surely. This can be well
explained by the phenomenon that with a sufficient amount of
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Fig. 6: Ergodic channel capacity and PUP distributions vs. average signal-to-noise ratio for AWGN channels, when NT = 2.
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Fig. 7: Ergodic channel capacity and PUP distributions vs. average signal-to-noise ratio for Rayleigh channels, when NT = 2.

0 5 10 15 20

P
T
/(BN

0
) (dB)

10
0

10
1

E
rg

o
d

ic
 c

h
a

n
n

e
l 
c
a

p
a

c
it
y
 (

b
p

c
u

)

By P
&

By P
#

By P
<1>

 (uniform)

Classic OFDM

0 5 10 15 20

P
T
/(BN

0
) (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
U

P
 d

is
tr

ib
u

ti
o

n
: 

P
&

0 5 10 15 20

P
T
/(BN

0
) (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

U
P

 d
is

tr
ib

u
ti
o

n
: 

P
#

7 8 9

4.5

5

5.5

Fig. 8: Ergodic channel capacity and PUP distributions vs. average signal-to-noise ratio for AWGN channels, when NT = 4.
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Fig. 9: Ergodic channel capacity and PUP distributions vs. average signal-to-noise ratio for Rayleigh channels, when NT = 4.
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transmit power, all symbols carried on the subcarriers can be
correctly received, which produces the capacity advantage over
inactivating a subset of subcarriers but resorting to different
SAPs for information transmission. Following this rationale,
the effect of the transmit power in the low signal-to-noise ratio
region can also be understood. As only a few symbols carried
on subcarriers will be correctly received with less transmit
power, the information conveyed by changed SAPs dominates,
and thereby all PUPs turn to be uniformly chosen, adhering to
the principle of maximum entropy. Because multi-path fading
renders channel imbalance, which gives the room for improve-
ment by the channel-dependent SAP selection criterion, the
imbalance among different PUPs in the high signal-to-noise
ratio can be mitigated when the Rayleigh channel setup is in
use. In essence, transmit power serves as a weight between
the information transmission potentials of SCPs and SAPs.
As a result, with different transmit power, OFDM-SNM will
resort to the proposed iterative algorithm and adapt the PUP
distribution so as to achieve a higher ergodic channel capacity.

C. Numerical Exploration of Outage Probability for Fast
Fading Environment

For the fast fading environment abiding the Rayleigh chan-
nel model, we simulated the outage performance under differ-
ent system configurations and present the numerical results
in Fig. 10. Note that because of the high consumption of
computational power for simulating probability measures by
Monte Carlo sampling, we set the simulations to collect
102 outage events from an undetermined number of repeated
trials with independent channel realizations for counting the
numerical solutions of outage probability. As a result, the
curves are not so smooth as those of ergodic channel capacity
shown in the last subsection, albeit with adequate explanatory
power.

In addition to the average measure, i.e., the ergodic channel
capacity, the outage probability, as a probability measure, pro-
vides another view to inspect the proposed iterative algorithm
and the Huffman coding based method. It is surprising that the
outage probabilities yielded by OFDM-SNM with all three
PUP distributions is lower than that of classic OFDM. The
outage performance superiority is even more evident for a
larger number of available subcarriers. These results imply that
a higher degree of system reliability can be brought by OFDM-
SNM, even though the transmission capability measured by the
ergodic channel capacity might not necessarily outperform.
This sightly counterintuitive phenomenon can be interpreted
by the fact that deep fading is better dealt with by avoid-
ing activating unfavorable subcarriers in OFDM-SNM. This
outcome is in line with the prior judgment that OFDM-SNM
can better serve the IoT and MTC applications than classic
OFDM, where the system reliability is taken much more
seriously. Meanwhile, mapping the optimized PUP produced
by the iterative algorithm to its achievable counterpart will
only result in a trivial loss of outage performance, which is
different from the case of ergodic channel capacity. Overall,
from a perspective of system reliability, the effectiveness and
efficiency of the proposed algorithms for OFDM-SNM have
been corroborated.

Besides, the simulation results shown in Fig. 10 clearly
reveal that no diversity gain can be harvested by OFDM-
SNM, albeit with the subcarrier assignment scheme relying on
instantaneous CSI. Instead, a coding gain can be attained by
exploiting channel knowledge and optimizing the sets of active
subcarriers through (2). This is because that all subcarriers
have been involved in the modulation process even though they
are used with different priorities, but none of them has been
eliminated from the modulation process by pre-selection. Such
a unity-diversity-order property has been first reported and
preliminary explained in [19]. With the information-theoretic
analysis given in Section IV, we can have more in-depth
understanding of the unity-diversity-order property of OFDM-
SNM.

D. Numerical Exploration of Data Rate for Finite Constella-
tion Input

To reveal the effectiveness and efficiency of the proposed
algorithms for practical communication systems using a finite
constellation order M , we simulated the spectral efficiency
for systems with M = 2 (BPSK) and M = 4 (QPSK) and
illustrate the numerical results in Fig. 11. For comparison
purposes, we derive the optimal PUP vector that maximizes the
spectral efficiency by (45) in Appendix G, which is denoted
as P@ in Fig. 11, serving as benchmarks.

From Fig. 11, it is clear that the curves associated with the
optimized PUP vectors are able to hit the optimal benchmarks
in the low-to-medium signal-to-noise power region when op-
erating over AWGN channels. For both AWGN and Rayleigh
channels, the spectral efficiency yielded by the optimized PUP
vector is higher than that of plain OFDM, which verifies
the effectiveness and efficiency of the proposed algorithms
for practical communication systems with finite constellation
orders. Moreover, it is worth noting that the spectral efficiency
is not a monotone function of transmit power. This is because
the transmit power alters the optimized PUP vector that maxi-
mizes the instantaneous channel capacity, while the optimized
PUP vectors might not necessarily lead to the maximum
spectral efficiency once the instantaneous channel capacity is
maximized.

E. Numerical Exploration of the Huffman Coding Based
Achievable PUP Vector Construction Scheme

To show the applicability of the Huffman coding based
scheme, we further simulated the Kullback-Leibler diver-
gences of three PUP distributions to the optimized one gener-
ated by the iterative algorithm:
• Huffman coding based scheme
• Enumerating method given in Appendix E
• Perfect binary tree construction corresponding to the

uniform PUP distribution (the comparison benchmark)
The numerical results are given in Fig. 12 for both AWGN and
Rayleigh channel setups with different numbers of subcarriers
NT. In all cases, the pairs of curves pertaining to the Huffman
coding based scheme and the enumerating method perfectly
match each other, which verifies that the proposed Huffman
coding based method is capable of generating the closest PUP
distribution in the sense of Kullback-Leibler divergence.
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Fig. 10: Outage probability vs. average signal-to-noise ratio for Rayleigh channels for NT = 2, 4.
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Fig. 11: Spectral efficiency vs. average signal-to-noise ratio for AWGN and Rayleigh channels with different NT and M .

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the performance of OFDM-SNM
from an information-theoretic perspective and confirmed its
performance superiority over the plain OFDM scheme acti-
vating all subcarriers. Specifically, we derived an upper bound
on the mutual information of OFDM-SNM in closed form
by using the log sum inequality, based on which an easy-to-
implement iterative algorithm has been developed to adapt the
PUP vector for maximizing the instantaneous channel capacity.
Then, we also investigated a series of practical issues of
OFDM-SNM and ensure its practical relevance by proposing
a Huffman coding based achievable PUP vector construction

scheme. The analytical and numerical results exhibited in this
paper verified the applicability of OFDM-SNM and perfor-
mance superiority over plain OFDM for power-constrained and
IoT/MTC applications. This paper sets a solid information-
theoretic cornerstone for the implementation of OFDM-SNM
in next generation communication networks.

Having such a solid information-theoretic cornerstone, it
is expected that more research attention will be devoted to
OFDM-SNM in the near future. To promote this promising
sparsity modulation paradigm, we summarize several worth-
while research directions that would be investigated as future
work. First, as can be seen in Figs. 6-9, PUP distributions are
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Fig. 12: Kullback-Leibler divergence vs. average signal-to-noise ratio for AWGN and Rayleigh channels for NT = 2, 4.

highly related to average signal-to-noise ratio and thereby the
transmit power PT. Therefore, joint optimization considering
both PUP and transmit power are of interest, which shall be
analyzed as the foundation for the combination of OFDM-
SNM and OFDM with subcarrier power modulation (OFDM-
SPM) [47]. Meanwhile, OFDM-SNM can also be jointly
applied with some advanced setups, e.g., dual-mode/multi-
mode modulations; that is, the on/off states of subcarriers can
be replaced by different constellation modes [13]; however,
the in-depth performance analysis of such a combined scheme
is still lacking and worth studying. Also, the detection of the
entire OFDM-SNM block can be improved by extracting prior
information from successive per-subcarrier detection, given
a known subcarrier assignment scheme. The novel detector
designs of OFDM-SNM would benefit from the latest advances
in deep learning and distributed learning. The information-
theoretic analysis of multi-user application scenarios using
OFDM-SNM is also worth investigating, and innovative math-
ematical tools might be developed to cope with the analytic
challenges when multiple communication pairs are taken into
account.

APPENDIX A
PROOF OF THE CONCAVITY OF I(xSNM(KA);y(KA)) IN P

Substituting (23) into (24) yields

I(xSNM(KA);y(KA)) =

NT∑
k=1

P (xSNM(KA))

×
∫
y(k)

fy (yk|xSNM(KA) = xSNM(k))×

log2

 fy (yk|xSNM(KA) = xSNM(k))
NT∑
i=1

P (xSNM(i))fy (y(k)|xSNM(KA) = xSNM(i))

dy(k),

(46)

which can be expended to two terms as

I(xSNM(KA);y(KA)) =

NT∑
k=1

P (xSNM(KA))

×
∫
y(k)

fy (yk|xSNM(KA) = xSNM(k))×

log2

 1
NT∑
i=1

P (xSNM(i))fy (y(k)|xSNM(KA) = xSNM(i))

 dy(k)

+

NT∑
k=1

P (xSNM(KA))

∫
y(k)

fy (yk|xSNM(KA) = xSNM(k))×

log2 (fy (yk|xSNM(KA) = xSNM(k))) dy(k).
(47)

Given fy (y(k)|xSNM(KA) = xSNM(i)), i = 1, 2, · · · , NT, it
is obvious that the first term of (47) is concave with respect
to P, just as the conventional form of the entropy function,
and the second term is linear with respect to P. Therefore,
I(xSNM(KA);y(KA)), as the sum of concave and linear terms,
is also concave with respect to P.

APPENDIX B
DERIVATION OF THE UPPER BOUND ON THE SAP-WISE

MUTUAL INFORMATION

Assuming that Gaussian distributed symbols are conveyed
on active subcarriers, we can have the SAP-wise mutual
information for each SAP xSNM(k) by (17) as

Λ〈τ〉(xSNM(k)) =
∑

n∈NS(k)

B log2

(
1 +

PT|hn|2

kBN0

)
+

∫
y(k)

fy(y(k)|xSNM(KA) = xSNM(k))

× log2

(
fy(y(k)|xSNM(KA) = xSNM(k))

fy(y(k))

)
︸ ︷︷ ︸

=λ〈τ〉(xSNM(k))

dy(k).

(48)
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However, to the best of our knowledge, the NS-fold integral
in the second part of (48), denoted as λ〈τ〉(xSNM(k)), cannot
be solved analytically. The numerical evaluation of such
a multiple integral is even tricky and time-consuming for
conventional numerical platforms, e.g., MATLAB (up to
triple integral can be numerically evaluated by the function
integral3()). The incompetence of numerical evaluation
of multiple integral hinders the optimization procedure. To
enable the evaluation of λ〈τ〉(xSNM(k)), we resort to the
log sum inequality [39] and approximate λ〈τ〉(xSNM(k)) by
ξ〈τ〉(xSNM(k)) in (49), which immediately leads to the upper
bound on SAP-wise mutual information Ξ〈τ〉(xSNM(k)) =∑
n∈NS(k)B log2

(
1 + PT|hn|2

kBN0

)
+ ξ〈τ〉(xSNM(k)) ≥

Λ〈τ〉(xSNM(k)) =
∑
n∈NS(k)B log2

(
1 + PT|hn|2

kBN0

)
+

λ〈τ〉(xSNM(k)) as given in (26).

APPENDIX C
DERIVATION OF THE KULLBACK-LEIBLER DIVERGENCE

BETWEEN TWO COMPLEX GAUSSIAN DISTRIBUTIONS

Proposition 1: Given two complex Gaussian distribu-
tions with zero mean denoted by CN (0, %1) and CN (0, %2),
the Kullback-Leibler divergence between these two complex
Gaussian distributions can be written as

D(f1(z)‖f2(z)) = log2

(
%2

%1

)
−
(

1− %1

%2

)
log2(e), (50)

where f1(z) and f2(z) are the PDFs of complex Gaussian
distributions CN (0, %1) and CN (0, %2).

Proof: According to the basic properties of the complex
Gaussian distribution, we can explicitly express the PDF
of a zero-mean complex Gaussian distribution as f(·)(z) =

1
π%(·)

exp
(
− |z|

2

%(·)

)
. By the definition of Kullback-Leibler diver-

gence for continuous probability distributions, we can expand
the Kullback-Leibler divergence between these two complex
Gaussian distributions with zero mean as

D(f1(z)‖f2(z)) =

∫
z∈C

f1(z) log2

(
f1(z)

f2(z)

)
dz

=

∫
z∈C

f1(z) log2

(
%2
%1

exp

(
−
(

1

%1
− 1

%2

)
|z|2
))

dz

= log2

(
%2
%1

)∫
z∈C

f1(z)dz︸ ︷︷ ︸
=1

−
(

1

%1
− 1

%2

)
log2(e)

∫
z∈C

f1(z)|z|2dz︸ ︷︷ ︸
=%1

= log2

(
%2
%1

)
−
(

1− %1
%2

)
log2(e).

(51)

Substituting %1 = %kn and %2 = %in into (50) immediately
results in the expression given in (28).

APPENDIX D
DERIVATION OF Υ(diag{1})

Assuming |h1|2 = |h2|2 = · · · = |hNS
|2 = 1, we can

reduce ΥAPM(diag{1}) by the symmetry of subcarriers to be

ΥAPM(diag{1}) = Σ[κ] = κB log2

(
1 +

PT

κBN0

)
. (52)

We can then prove in the sequel that the number sequence Σ[κ]
is an increasing sequence with respect to κ, for κ ≥ 1. First,
we can release the domain of definition of κ from positive
integers to any positive real numbers. Then, we can regard
Σ[κ] as a function of κ and have its first and second derivatives
as

dΣ

dκ
= −BPT log2(e)

κBN0 + PT
+B log2

(
1 +

PT

κBN0

)
, (53)

and
dΣ2

d2κ
= − BP 2

T log2(e)

κ(κBN0 + PT)2
. (54)

Because dΣ2

d2κ < 0 for k > 0, it can be known that dΣ
dκ must

be a monotone decreasing function of κ and the minimum
is approached for κ → ∞. Consequently, we can obtain the
relation infra

dΣ

dκ
> lim
κ→∞

{
dΣ

dκ

}
= 0, (55)

which indicates that Σ[κ] is a monotone increasing function
of κ if κ > 0, and so as an increasing number consequence
when κ takes positive integers. Therefore, When κ = NT, the
maximum of the SAP-wise channel capacity resulted by the
carried symbols on active subcarriers is achieved, and (37) is
thereby proven.

APPENDIX E
ENUMERATING ALGORITHM GENERATING U(NT) FOR

SMALL NT

We present the enumerating algorithm generating U(NT)
with all admissible probability distributions by deletion. As
the enumerating algorithm by deletion is in fact an exhaustive
search, which will result in exponentially increasing compu-
tational complexity with NT, this algorithm is only suited for
small NT and used in this paper to provide benchmarks for
comparison purposes only.

To generate U(NT), we first need to have T (NT − 1)
and then permute all NT SAPs with different depths of the
leaves for all trees in T (NT − 1). According to (39), a tree
structure can be characterized by a unique solution vector
[ρ1, ρ2, . . . , ρNT−1]T . Based on this reasoning, the generating
algorithm of T (NT − 1) can be designed as shown in Algo-
rithm 2, where permn(V, NT − 1) returns all permutations
with repetition of NT − 1 entries taken from V.

Having obtained T (NT−1), we can now construct the set of
all admissible probability distributions U(NT) by permuting
distinguishable groups of leaves with different depths for all
trees in T (NT − 1). The detailed procedures for generating
U(NT) from T (NT − 1) by deletion are presented in Algo-
rithm 3, where catc(·, ·) and catr(·, ·) return the concatenated
matrix/vector of the two inputs by column and row, respec-
tively; perms(·) returns a matrix containing all permutations of
the elements of the input vector without repetition; unique(·)
deletes the repeated rows of the input matrix and thereby
ensures that all rows are unique.
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λ〈τ〉(xSNM(k)) =

∫
y(k)

NT∑
i=1

(
1

NT
fy(y(k)|xSNM(KA) = xSNM(k))

)

× log2

 ∑NT

i=1

(
1
NT
fy(y(k)|xSNM(KA) = xSNM(k))

)
∑NT

i=1 P〈τ〉(xSNM(i))fy(y(k)|xSNM(KA) = xSNM(i))

 dy(k)

≤ ξ〈τ〉(xSNM(k)) =

∫
y(k)

NT∑
i=1

1

NT
fy(y(k)|xSNM(KA) = xSNM(k))

× log2

(
1
NT
fy(y(k)|xSNM(KA) = xSNM(k))

P〈τ〉(xSNM(i))fy(y(k)|xSNM(KA) = xSNM(i))

)
dy(k)

=

∫
y(k)

NT∑
i=1

1

NT

 ∏
n∈NS(k)

fkA(yn)

 ∏
n/∈NS(k)

fkI (yn)



× log2


( ∏
n∈NS(k)

fkA(yn)

)( ∏
n/∈NS(k)

fkI (yn)

)

NTP〈τ〉(xSNM(i))

( ∏
n∈NS(i)

f iA(yn)

)( ∏
n/∈NS(i)

f iI (yn)

)
dy(k)

= D(P〈1〉‖P〈τ〉) +
1

NT

NT∑
i=1

NS∑
n=1

D(fkA/I(yn)‖f iA/I(yn))

(49)

Algorithm 2 Algorithm for generating T (NT − 1).

1: BEGIN
2: Input NT;
3: Generate the seed vector V = [0, 1, . . . , NT] for permu-

tation with repetition;
4: R← permn(V, NT− 1) with each row corresponding to

a possible solution vector;
5: Initialize temp← 0;
6: Initialize T = [0, , 0, . . . , 0]︸ ︷︷ ︸

NT−1

, which is expandable in row.

7: for u = 1 : (NT + 1)NT−1 do
8: r← R(u, :);
9: if tr(diag{r}) = NT then

10: Initialize sum prob← 0;
11: for q = 1 : NT − 1 do
12: sum prob← sum prob + r(q)(1/2)q;
13: end for
14: if sum prob = 1 then
15: temp← temp + 1;
16: T(temp, :)← r;
17: end if
18: end if
19: end for
20: T (NT − 1)← {T(1, :),T(2, :), . . . ,T(temp, :)}
21: return T (NT − 1);
22: END

APPENDIX F
PROOF OF THE CLOSEST NATURE IN THE SENSE OF

KULLBACK-LEIBLER DIVERGENCE

By the definition of Kullback-Leibler divergence, we can
expend D(P&||P#) as

Algorithm 3 Algorithm for generating U(NT) by deletion.

1: BEGIN
2: Input NT and T (NT − 1);
3: Calculate U(NT) by (38);
4: for t = 1 : |T (NT − 1)| do
5: t← T (NT − 1)(t);
6: Initialize p← [], which is expendable in column;
7: for q = 1 : NT − 1 do
8: p← catc(p, 1︸︷︷︸

1×t(q)

×(1/2)q);

9: end for
10: if t = 1 then
11: U← unique (perms(p));
12: else
13: U← catr (U, unique (perms(p)));
14: end if
15: end for
16: U(NT)← {U(1, :),U(2, :), . . . ,U(U(NT), :)};
17: return U(NT);
18: END

D(P&||P#) =

NT∑
k=1

P&(xSNM(k)) log2

(
P&(xSNM(k))

P#(xSNM(k))

)

=

NT∑
k=1

P&(xSNM(k)) log2 P
&(xSNM(k))

−
NT∑
k=1

P&(xSNM(k)) log2 P
#(xSNM(k)).

(56)
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Substituting P#(xSNM(k)) = 2−d(xSNM(k)) into (56) gives

D(P&||P#) =

NT∑
k=1

P&(xSNM(k))d(xSNM(k))︸ ︷︷ ︸
=L

−H(P&),

(57)

where L denotes the expected code length. As proven by Cover
and Thomas in [39], Hamming codes are the optimal instan-
taneous codes with the minimum expected length. Therefore,
it is proven that P# is the closest to P& in the sense of
Kullback-Leibler divergence.

APPENDIX G
DERIVATION OF THE OPTIMAL PUP VECTOR MAXIMIZING

THE SPECTRAL EFFICIENCY

According (45), we can construct the following Lagrange
function by the concavity of spectral information with respect
to PUPs:

L(P, ω) =

NT∑
k=1

P(xSNM(k)) (− log2(P(xSNM(k))) + k log2(M))

− ω

(
1−

NT∑
i=1

P(xSNM(i))

)
,

(58)

where ω is the Lagrange multiplier. Taking the partial deriva-
tive of L(P, ω) with respect to {P(xSNM(k))} and ω gives

∂L(P, ω)

∂P(xSNM(k))
= − log2(P(xSNM(k))) + k log2(M)

− log2(e) + w

(59)

and
∂L(P, ω)

∂ω
= −1 +

NT∑
i=1

P(xSNM(i)). (60)

Let ∂L(P,ω)
∂P(xSNM(k)) = 0, and we can obtain

P@(xSNM(k)) =
2ωMk

e
, (61)

which can be substitute into ∂L(P,ω)
∂ω = 0 to yield

ω = log2

e(NT∑
i=1

M i

)−1
 . (62)

Finally, substituting (62) back to (61) produces the optimal
PUP maximizing the spectral efficiency of OFDM-SNM as

P@(xSNM(k)) = Mk

(
NT∑
i=1

M i

)−1

. (63)
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