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Criss-Cross Insertion and Deletion Correcting

Codes
Rawad Bitar, Lorenz Welter, Ilia Smagloy, Antonia Wachter-Zeh, and Eitan Yaakobi

Abstract

This paper studies the problem of constructing codes correcting deletions in arrays. Under this model, it is assumed that an
n× n array can experience deletions of rows and columns. These deletion errors are referred to as (tr, tc)-criss-cross deletions
if tr rows and tc columns are deleted, while a code correcting these deletion patterns is called a (tr, tc)-criss-cross deletion
correction code. The definitions for criss-cross insertions are similar.

It is first shown that when tr = tc the problems of correcting criss-cross deletions and criss-cross insertions are equivalent.
The focus of this paper lies on the case of (1, 1)-criss-cross deletions. A non-asymptotic upper bound on the cardinality of
(1, 1)-criss-cross deletion correction codes is shown which assures that the redundancy is at least 2n− 3 + 2 log n bits. A code
construction with an existential encoding and an explicit decoding algorithm is presented. The redundancy of the construction is
at most 2n+ 4 log n+ 7 + 2 log e. A construction with explicit encoder and decoder is presented. The explicit encoder adds an
extra 5 log n+ 5 bits of redundancy to the construction.

Index Terms

Insertion/deletion correcting codes, array codes, criss-cross deletion errors

I. INTRODUCTION

Recently, codes correcting insertions/deletions attracted a lot of attention due to their relevance in many applications such

as DNA-based data storage systems [2], communication systems [3] and file synchronization [4]–[7]. Due to the loss of syn-

chronization and working over vector spaces of different dimension, correcting deletions and insertions is seen as a harder

problem than correcting substitution errors.

The problem of coding for the deletion channel was introduced by Levenshtein [8] in the 1960s. A set C of binary vectors

of length n is a k-deletion correcting code if and only if any two vectors in C do not share a common subsequence of length

n − k. Levenshtein showed [8] that a code can correct any combination of k insertions and deletions if and only if it can

correct k deletions. The main property of the codes being optimized is the redundancy defined as R , n− log |C| where n is

the length of the codewords in C and |C| is the cardinality of the code. The optimal redundancy n− log |C| of any k-deletion

correcting code C is O(k logn) [8]. The Varshamov-Tenengolts (VT) code [9] is a nearly optimal single insertion correcting

code with redundancy log(n+1) bits. Constructing k-deletion/insertion correcting codes with small redundancy was the focus

of several recent works, e.g., [10]–[16]. In [17] and [18], the authors construct codes that can correct bursts of deletions. The

main idea of the papers is to imagine the codeword as a binary array and to use the structure of that array to detect and correct

bursts of deletions that happen in the one-dimensional codeword.

In this paper we extend the one-dimensional study of deletion and insertion correction to two-dimensional arrays. A (tr, tc)-
criss-cross deletion is the event in which an n× n array experiences a deletion of tr rows and tc columns. A code capable of

correcting all (tr, tc)-criss-cross deletions is referred to as (tr, tc)-criss-cross deletion correcting code and (tr, tc)-criss-cross

insertion correcting codes are defined similarly. Coding in the two dimensional space has proved profitable for data storage

and wireless communications [19]–[26]. Therefore, we find it important to understand the generalization of the well-studied

one-dimensional insertion- and deletion-correcting codes to the two-dimensional space. The main advantage of coding in the

two-dimensional space is to leverage the structure of the code arrays rather than applying one dimensional deletion/insertion

correcting codes on each dimension of the array. Along this line of thought, [27] studies the problem of correcting a predeter-

mined number of row and column deletions in two-dimensional arrays. Furthermore, the trace-reconstruction problem, which

is a variant of the deletion channel, is investigated in the two-dimensional space in [28].

It is well-known that in the one-dimensional case the size of the single-deletion ball equals the number of runs in the

word. However, the characterization of the arrays that can be obtained from a (1, 1)-criss-cross deletion is more complicated.

Nonetheless, we derive a non-asymptotic lower bound on the redundancy of these codes. Second, we propose a code construc-

tion which heavily depends on the construction of non-binary single-insertion/deletion correcting codes by Tenengolts [29],

which can be seen as the extension of the q-ary alphabet of [8]. In the one-dimensional case, successful decoding from dele-

tions in the transmitted word does not necessarily guarantee that the indices of the deleted symbols are known since the deletion
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of symbols from the same run results in the same output. While this does not impose a constraint in the one-dimensional case,

we had to take this constraint into account when using non-binary single-deletion correcting codes as our component codes.

The rest of the paper is organized as follows. In Section II, we formally define the codes and notations that we use throughout

the paper. We give a high level summary of the presented results in Section III. We prove in Section IV that the correction of

(t, t)-criss-cross deletions and insertions is equivalent. In Section V, we give a non-asymptotic upper bound on the cardinality

of (1, 1)-criss-cross deletion correcting codes. This bound shows that the minimum redundancy of these codes is 2n−3+2 logn
bits. In Section VI, we construct (1, 1)-criss-cross deletion correcting codes that we call CrissCross codes. The correctness of

this family of codes is given by an explicit decoding algorithm. The redundancy of the proposed CrissCross codes is at most

2n+ 4 logn + 7 + 2 log e. We present in Section VII CrissCross codes with explicit encoder and decoder. We show that the

explicit encoder comes at the expense of increasing the redundancy by 5 logn+ 5 bits compared to the existence result. We

conclude the paper in Section VIII.

II. DEFINITIONS AND PRELIMINARIES

This section formally defines the codes and notations that we use throughout this paper. Let Σq , {0, . . . , q − 1} be the

q-ary alphabet. We denote by Σn×n
q the set of all q-ary arrays of dimension n×n. All logarithms are base 2 unless otherwise

indicated. For two integers i, j ∈ N, i 6 j, the set {i, . . . , j} is denoted by [i, j] and the set {1, . . . , j} is denoted by [j]. For

an array X ∈ Σn×n
q , we denote by Xi,j the entry of X positioned at the i-th row and j-th column. We denote the i-th row

and j-th column of X by Xi,[n] and X[n],j , respectively. Similarly, we denote by X[i1,i2],[j1,j2] the sub array of X formed by

rows i1 to i2 and their corresponding entries from columns j1 to j2.

For two positive integers tr, tc 6 n, we define a (tr, tc)-criss-cross deletion in an array X ∈ Σn×n
q to be the deletion of

any tr rows and tc columns of X. We denote by Dtr,tc(X) the set of all arrays that result from X after a (tr, tc)-criss-cross

deletion (i.e., the two-dimensional deletion ball1). In a similar way we define (tr, tc)-criss-cross insertion and the set Itr,tc(X)
for the insertion case. If tr = tc = t, we will use the notation of Dt(X), (t)-criss-cross deletion, (t)-criss-cross insertion, and

It(X). Note that the order between the row and column deletions/insertions does not matter.

Definition 1 ((tr, tc)-criss-cross deletion correction code) A (tr, tc)-criss-cross deletion correcting code C is a code that can

correct any (tr, tc)-criss-cross deletion. A (tr, tc)-criss-cross insertion correcting code is defined similarly.

For clarity of presentation, we will refer to a (tr, tc)-criss-cross deletion as a (t)-criss-cross deletion when t = tr = tc and

(tr, tc)-criss-cross deletion correcting code as (t)-criss-cross deletion correcting code. The corresponding definitions for the

insertion case are similar. Notice that throughout this paper, we do not consider combinations of insertions and deletions (c.f.

Section III).

In our code construction we use Varshamov-Tenengolts (VT) single-deletion correcting codes [9]. A VT code was proven by

Levenshtein [8] to correct a single deletion in a binary string of length n, with redundancy not more than log(n+1) bits. In fact,

we use Tenengolt’s extension [29] for the q-ary alphabet, which is briefly explained next. For a q-ary vector x = (x1, . . . , xn)
we associate its binary signature s = (s1, . . . , sn). The entries of s are calculated such that s1 = 1 and si = 1 if xi > xi−1

or si = 0 otherwise for i > 1. Thus, all q-ary vectors of length n can be split into disjoint cosets VTn,q(a, b) defined as the

set of all x with signature s satisfying

n∑

i=1

(i − 1)si ≡ a mod n,

n∑

i=1

xi ≡ b mod q,

where 0 6 a 6 n− 1, 0 6 b 6 q − 1. Each coset is a single q-ary insertion/deletion correcting code. Note that the qn disjoint

cosets form a partition of Σn
q . Therefore, by the pigeon-hole principal, there exists a set (or a VT code) VTn,q(a⋆, b⋆) such

that

|VTn,q(a⋆, b⋆)| >
qn

qn
.

III. MAIN RESULTS

Our main results can be summarized as follows. In Theorem 1, we extend the equivalence between insertion correcting

codes and deletion correcting to the 2-dimensional codes considered in this setting. Namely, we show that a given code C is

a (t)-criss-cross deletion correcting code if and only if C is a (t)-criss-cross insertion correcting code. As a consequence, all

our results proven for the (1)-criss-cross deletion case hold for the insertion case as well. To evaluate how good a given (1)-
criss-cross deletion correcting code is, we derive a non-asymptotic upper bound on the cardinality of any criss-cross deletion

correcting code as follows.

Lower bound: (Theorem 11) The non-asymptotic redundancy of a q-ary (1)-criss-cross deletion correcting code C is bounded

from below by R > 2n− 3 + 2 logq n.

1Strictly speaking, the set Dtr,tc (X) must be called the two-dimensional deletion sphere of X. However, we abuse terminology and refer to this set as the
deletion ball to follow the nomenclature used by the literature on deletion-correcting codes. The same holds for the set Itr,tc (X).
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We show that there exist (1)-criss-cross deletion/insertion correction codes that have redundancy 2 logn+o(1) bits far from

our lower bound. We do so by constructing an existential (1)-criss-cross deletion correction code called CrissCross code that

has redundancy 2n+4 logn+ o(1). We extend the existential construction to a (1)-criss-cross code with explicit encoder and

decoder at the expense of increasing the redundancy by 5 logn+ 5 bits.

Code constructions: The CrissCross code constructed in Section VI is a (1)-criss-cross deletion/insertion correcting code

(Theorem 13). The redundancy of the code is upper bounded by 2n+ 4 logn+ o(1) bits (Corollary 14). The encoder of the

code can be made systematic at the expense of increasing the redundancy to at most 2n+ 9 logn+ o(1) bits (Theorem 18).

Extensions: In this work we restrict our attention to (t)-criss-cross deletions and insertions. However, our (t)-criss-cross

deletion-correcting code construction can correct a mixed (1)-criss-cross error defined as a row/column deletion and a colum-

n/row insertion. In addition our codes can correct a single row insertion/deletion or a single column insertion/deletion. Never-

theless, the bound on the redundancy does not necessarily hold for those general problems. In fact, we show in [30] that, under

the generalized model, a code correcting a (1)-criss-cross deletion is able to correct two row deletions (no column deletions)

or two column deletions (no row deletions). We leave those general problems as an interesting direction for future research.

IV. EQUIVALENCE BETWEEN INSERTION AND DELETION CORRECTION

In this section we first show an equivalence between a (1)-criss-cross deletion correcting code and a (1)-criss-cross insertion

correcting code (Theorem 1). Then we use the result of Theorem 1 to prove the more general equivalence between (t)-criss-

cross deletion correcting codes and (t)-criss-cross insertion correcting codes for all t ∈ [n− 1] (Corollary 2).

Theorem 1 A code C ⊂ Σn×n
q is a (1)-criss-cross deletion correcting code if and only if it is a (1)-criss-cross insertion

correcting code.

Corollary 2 For any integer t ∈ [n− 1], a code C ⊂ Σn×n
q is a (t)-criss-cross deletion correcting code if and only if it is a

(t)-criss-cross insertion correcting code.

Note that in the one-dimensional case Theorem 1 holds since the intersection of the deletion balls of two vectors is not

trivial if and only if the intersection of their insertion balls is not trivial [8]. Since this property holds over any alphabet, the

following lemma can be derived by considering the arrays as one dimensional vectors where each element is a row/column.

Lemma 3 For a positive integer m and two arrays X ∈ Σm×m
q ,Y ∈ Σm×m

q ,

D1,0(X) ∩ D1,0(Y) 6= ∅ if and only if I1,0(X) ∩ I1,0(Y) 6= ∅
D0,1(X) ∩ D0,1(Y) 6= ∅ if and only if I0,1(X) ∩ I0,1(Y) 6= ∅.

While the last lemma is derived from properties of vectors, the next one, albeit similar, requires a complete proof.

Lemma 4 For a positive integer m and two arrays X ∈ Σ
(m+1)×m
q ,Y ∈ Σ

m×(m+1)
q ,

D1,0(X) ∩ D0,1(Y) 6= ∅ if and only if I0,1(X) ∩ I1,0(Y) 6= ∅.

Proof: We show the “if” direction while the “only if” part is proved similarly. That is, we prove that if D1,0(X) ∩
D0,1(Y) 6= ∅ then I0,1(X) ∩ I1,0(Y) 6= ∅. Assume that there exists D ∈ Σm×m

q such that D ∈ D1,0(X) ∩ D0,1(Y) and

by contradiction assume that I0,1(X) ∩ I1,0(Y) = ∅. Let iR, iC be the indices of the row and column deleted in X and Y,

respectively, to obtain D. Let r denote row iR of X, i.e., XiR,[m], after an insertion of 0 in position iC . Similarly, let c be

the column Y[m],iC after an insertion of 0 in position iR. Notice that it is also possible to insert 1 in both of the words, as

long as the symbol inserted is the same. The following relations hold from the definition of D.

Xi,j = Di,j = Yi,j for 1 6 i < iR, 1 6 j < iC ,

Xi+1,j = Di,j = Yi,j for iR 6 i 6 m, 1 6 j < iC ,

Xi,j = Di,j = Yi,j+1 for 1 6 i < iR, iC 6 j 6 m,

Xi+1,j = Di,j = Yi,j+1 for iR 6 i 6 m, iC 6 j 6 m.

(1)

Let Ix be the result of inserting column c at index iC into X. The array Iy is defined similarly by inserting row r at index

iR in Y. Notice that Ix is a result of inserting a column to X and thus Ix ∈ I0,1(X). For the same reasons it holds that

Iy ∈ I1,0(Y). We conclude the proof by showing that Ix = Iy . This will be done by considering the following cases.

• For i < iR, j < iC , both Ixi,j , I
y
i,j are not affected by the insertions or deletions. Hence, it follows that

Ixi,j = Xi,j = Yi,j = Iyi,j

• For i = iR and for j < iC , the symbols Ixi,j = rj remain unaffected by the insertion. On the other hand, Iyi,j is exactly an

inserted symbol into Y that is defined to be rj which results in Iyi,j = rj = Ixi,j .
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I ∈ I1(X) ∩ I1(Y)

X
1,0

Y
0,1

Lemma 3 Lemma 3X Z

Lemma 4

Lemma 4

Y

X
−1,0

Y
0,−1

D ∈ D1(X) ∩ D1(Y)

Column insertion Row insertion

Row insertion Column insertion Column insertionRow insertion

Row deletion Row insertion Column insertion Column deletion

Column deletion Row deletion

Fig. 1: A flowchart of the proof of Theorem 1.

• For i < iR and for j = iC , the symbols Iyi,j = ci remain unaffected by the insertion. On the other hand, Ixi,j is exactly an

inserted symbol into X that is defined to be ci which results in Ixi,j = ci = Iyi,j .
• For i = iR and for j = iC , it holds that Ixi,j = ci and Iyi,j = rj . By definition, both of these symbols are 0, which results

in Ixi,j = Iyi,j .
• For i > iR and for j < iC , by (1) it holds that

Ixi,j = Xi,j = Di−1,j = Yi−1,j .

On the other hand, after a row insertion in index iR, it holds that Iyi,j = Yi−1,j which results in Ixi,j = Iyi,j .
• For i > iR and for j = iC , by definition Ixi,j = ci = Yi−1,j . On the other hand, Iy had a row insertion in index iR, which

means that Iyi,j = Yi−1,j and results in Ixi,j = Iyi,j .
• For i < iR and for j > iC , by (1) it holds that

Iyi,j = Yi,j = Di,j−1 = Xi,j−1.

On the other hand, after a column insertion in index iC , it holds that Ixi,j = Xi,j−1 which results in Ixi,j = Iyi,j .
• For i = iR and for j > iC , by definition Iyi,j = rj = Xi,j−1. On the other hand, Ix had a column insertion in index iC ,

which means that Ixi,j = Xi,j−1 and results in Ixi,j = Iyi,j .
• For i > iR and for j > iC , Ix had a column insertion in index iC , which means that Ixi,j = Xi,j−1. On the other hand,

Iy had a row insertion in index iR, which means that Iyi,j = Yi−1,j . From (1) it holds that Xi,j−1 = Di−1,j−1 and

Yi−1,j = Di−1,j−1. This results in

Ixi,j = Xi,j−1 = Di−1,j−1 = Yi−1,j = Iyi,j .

This concludes that for all i, j ∈ [m + 1], Ixi,j = Iyi,j , which assures that Ix = Iy , and hence I0,1(X) ∩ I1,0(Y) 6= ∅, that

contradicts our assumption.

We now use the results of Lemma 3 and Lemma 4 to prove Theorem 1.

Proof of Theorem 1: The proof follows by showing that for any X,Y ∈ Σn×n
q , D1(X) ∩ D1(Y) = ∅ if and only if

I1(X) ∩ I1(Y) = ∅. For the reader’s convenience, a flowchart of the proof is presented in Figure 1. We only show the “only

if” part as the “if” part follows similarly.

Assume that there exists an array D ∈ Σ
(n−1)×(n−1)
q such that D ∈ D1,1(X) ∩ D1,1(Y). Hence, D can be obtained by

deleting a row and then a column from X and by deleting a column and then a row from Y (note that the order of the row

and column deletions does not matter and can be chosen arbitrarily). Denote the intermediate arrays by X−1,0,Y0,−1, so the

following relation holds.

X
Row Deletion−−−−−−−→X−1,0 Col Deletion−−−−−−→ D,

Y
Col Deletion−−−−−−→Y0,−1 Row Deletion−−−−−−−→ D.
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Hence, it holds that

D ∈ D1,0(Y
0,−1) ∩ D0,1(X

−1,0),

and thus, from Lemma 4 there exists an array Z ∈ Σn×n
q , such that Z ∈ I0,1(Y

0,−1) ∩ I1,0(X
−1,0). By definition, Z ∈

I1,0(X
−1,0) is equivalent to X−1,0 ∈ D1,0(Z). But, it is also known that X−1,0 ∈ D1,0(X), which means that

X−1,0 ∈ D1,0(Z) ∩D1,0(X).

From Lemma 3 it follows that there exists some X1,0 ∈ I1,0(Z)∩ I1,0(X). The same argument can be done for Y, and define

its result by Y0,1. Next, notice that we can also conclude that

Z ∈ D1,0(X
1,0) ∩D0,1(Y

0,1),

so from Lemma 4 it is deduced that there exists an array I ∈ I0,1(X
1,0)∩I1,0(Y0,1). Note that I ∈ I0,1(X

1,0) and X1,0 ∈ I1,0(X),
which means I is obtained by inserting a row and a column in X, i.e., I ∈ I1(X). A symmetrical argument holds for Y, which

assures that I ∈ I1(X) ∩ I1(Y).
We now prove Corollary 2 by using the result of Theorem 1.

Proof of Corollary 2: The proof follows by showing that for any X1,Xt+1 ∈ Σn×n
q , Dt(X)∩Dt(Xt+1) 6= ∅ if and only

if It(X) ∩ It(Xt+1) 6= ∅. We first prove the following claim.

Claim 5 For any two arrays X1,Xt+1 ∈ Σn×n
q , Dt(X1) ∩ Dt(Xt+1) 6= ∅ if and only if there exist t− 1 arrays X2, . . . ,Xt

such that D1(Xi) ∩ D1(Xi+1) 6= ∅ for all 1 6 i 6 t.

Proof: We prove the “if” part by induction. The proof of the “only if” part follows similarly and is omitted.

a) Base case: We need to show that if D1(X1)∩D1(X2) 6= ∅ then D1(Xi)∩D1(Xi+1) 6= ∅ for all i = 1 which follows

from the assumption.

b) Induction step: Assume the property holds for t ∈ [n−2] and we show that the property holds for t+1. Let X1,Xt+2

be such that Dt+1(X1) ∩ Dt+1(Xt+2) 6= ∅. Then, there exists X
(1)
1 ,X

(1)
t+1 resulting from a criss-cross deletion of X1 and

Xt+2, respectively, such that Dt(X
(1)
1 ∩ Dt(X

(1)
t+1) 6= ∅. Thus, according to the induction hypothesis, there exist t− 2 arrays

X
(1)
1 , . . . ,X

(1)
t that satisfy D1(X

(1)
i ) ∩ D1(X

(1)
i+1) 6= ∅ for all 1 6 i 6 t.

According to Theorem 1, there exist t arrays X2, . . . ,Xt+1 such that for all 2 6 i 6 t+1, Xi ∈ I(X
(1)
i−1)∩ I(X

(1)
i ). Therefore,

it holds that for 1 6 1 6 t+ 1,

X
(1)
i ∈ D1(Xi) ∩ D1(Xi+1).

This completes the “if” part of the proof.

Next we prove a similar claim for the insertion case.

Claim 6 For any two arrays X1,Xt+1 ∈ Σn×n
q , It(X1) ∩ It(Xt+1) 6= ∅ if and only if there exist t − 1 arrays X2, . . . ,Xt

such that I1(Xi) ∩ I1(Xi+1) 6= ∅ for all 1 6 i 6 t.

The proof of Claim 6 is similar to the proof of Claim 5 and is thus given in Appendix A.

Having the results of Claim 5 and Claim 6, we can now prove Corollary 2 as follows. For any Xt,Xt+1 ∈ Σn×n
q , if

Dt(X1)∩Dt(Xt+1) 6= ∅, then from Claim 5 we know that there exist t−1 arrays X2, . . . ,Xt such that D1(Xi)∩D1(Xi+1) 6= ∅
for all 1 6 i 6 t. Then, according to Theorem 1, there exist t arrays X

(1)
1 , . . . ,X

(1)
t such that for all 1 6 i 6 t,

X
(1)
i ∈ I1(Xi) ∩ I1(Xi+1).

Finally, we can now apply Claim 6 to conclude that It(X1) ∩ It(Xt+1) 6= ∅. The “only if” part follows similarly.

V. UPPER BOUND ON THE CARDINALITY

In this section we prove a non-asymptotic upper bound on the cardinality of a (1)-criss-cross deletion correcting code. For

an array X ∈ Σn×n
q , we denote by Xi,j the array obtained from X after deleting the i-th row and the j-th column. Let

X ∈ Σn×n
q and let i1, i2, j1 ∈ [n] be such that i1 6 i2. We define a column run of length i2− i1+1 as a sequence of identical

consecutive symbols in a column j1, i.e., Xi1,j1 = Xi1+1,j1 = · · · = Xi2,j1 . We define a row run similarly. A diagonal run

of length δ + 1 is a sequence of identical symbols situated on a diagonal of X, i.e., Xi1,j1 = Xi1+1,j1+1 = · · · = Xi1+δ,j1+δ.

An anti-diagonal run of length δ + 1 is a sequence of identical symbols situated on an anti-diagonal of X, i.e., Xi1,j1 =
Xi1+1,j1−1 = · · · = Xi1+δ,j1−δ . In Lemma 7 we give a necessary and sufficient condition that two different (1)-criss-cross

deletions applied on an array X must satisfy to result in the same array Xi1,j1 = Xi2,j2 for (i1, j1) 6= (i2, j2). We start with

an example that illustrates the idea of Lemma 7.

Example 1 Consider the following binary 9× 9 array divided into nine 3× 3 arrays structured as in Figure 2.
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XL XR

XB

XT

XC

XIII

XI

XIV

XII

j1 j2

i1

i2 ?

?

Fig. 2: Required pattern for Xi1,j1 = Xi2,j2 . Let (i1, j1) 6= (i2, j2) be the indices of the deleted row and column in two

different criss-cross deletions on the array X. W.l.o.g j1 < j2 and for case i1 < i2 the constraints are: 1) Each row of the

sub arrays XT and XB must be a row run of length j2 − j1 + 1 and each column of XL and XR must be a column run of

length i2 − i1 + 1. 2) Each diagonal of the sub array XC must be a diagonal run. 3) The corner sub arrays XI, XII, XIII

and XIV are outside of the region affected by the criss-cross deletions. Therefore, no constraints are imposed on those sub

arrays. The same holds for Xi1,j2 and Xi2,j1 since they are both deleted by criss-cross deletions. Note that for i1 > i2, all the

requirements remain the same except for XC. In this case, the bottom-left to top-right diagonals are diagonal runs.

X =




XI XT XII

XL XC XR

XIII XB XIV



 =




0 1 0 1 1 1 0 1 0
1 1 1 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0
0 1 1 1 0 1 0 1 0
0 1 1 0 1 0 0 1 0
0 1 1 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0
1 1 1 1 1 1 1 0 0
1 0 1 1 1 1 0 1 0




.

It is easy to verify that deleting column 4 and row 4 or deleting column 6 and row 6 results in the same array, i.e., X4,4 = X6,6.

Let (i1, j1) = (4, 4) and (i2, j2) = (6, 6). The equality X4,4 = X6,6 happens because: all rows of the arrays XT =
X[1,i1−1],[j1,j2] = X[1,3],[4,6] and XB = X[i2+1,n],[j1,j2] = X[7,9],[4,6] are row runs; all the columns of the arrays XL =
X[i1,i2],[1,j1−1] = X[4,6],[1,3] and XR = X[i1,i2],[j2+1,n] = X[4,6],[7,9] are column runs; and all the diagonals of XC =
X[i1,i2],[j1,j2] are diagonal runs. Lemma 7 generalises this example to show that given an array X and two (1)-criss-cross

deletions applied on X, the equality Xi1,j1 = Xi2,j2 for (i1, j1) 6= (i2, j2) holds if and only if X has the structure described

in this example.

Lemma 7 For i1, i2, j1, j2 ∈ [n] such that (i1, j1) 6= (i2, j2), we define imin , min(i1, i2) and imax , max(i1, i2) and assume

w.l.o.g. that j1 6 j2. For all n > 3 and X ∈ Σn×n
q , the equality Xi1,j1 = Xi2,j2 holds if and only if the entries Xi,j of X

satisfy the following structure (illustrated in Figure 2 for the case i1 6 i2).

i ∈ [1, imin − 1], j ∈ [1, j1 − 1]: Xi,j is arbitrary,
i ∈ [1, imin − 1], j ∈ [j2 + 1, n]: Xi,j is arbitrary,
i ∈ [imax + 1, n], j ∈ [1, j1 − 1]: Xi,j is arbitrary,
i ∈ [imax + 1, n], j ∈ [j2 + 1, n]: Xi,j is arbitrary,
i ∈ [1, imin], j ∈ [j1, j2 − 1]: Xi,j = Xi,j+1,
i ∈ [imax + 1, n], j ∈ [j1, j2 − 1]: Xi,j = Xi,j+1,
i ∈ [imin, imax − 1], j ∈ [1, j1 − 1]: Xi,j = Xi+1,j ,
i ∈ [imin, imax − 1], j ∈ [j2 + 1, n]: Xi,j = Xi+1,j ,
{

i ∈ [imin, imax − 1], j ∈ [j1 + 1, j2] :

i ∈ [imin, imax − 1], j ∈ [j1, j2 − 1] :

Xi,j = Xi+1,j+1 for i1 6 i2,

Xi,j = Xi+1,j−1 for i1 > i2.

Proof: For a better grasp of the proof we use the notation of Figure 2 for the sub arrays and the aforementioned notation

of runs. Furthermore, for an array X we write X[:−1] if all the elements of that array are shifted by one column to the left,
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i.e., X[:−1] =
[
X[n],2|X[n],3| · · · |X[n],n

]
where [·|·] denotes a concatenation of arrays. Similarly, we write X[−1:] for a row

shift by one to the top and X[−1:−1] for a simultaneous row and column shift.

We now assume that for (i1, j1) 6= (i2, j2) ∈ [n] × [n] there exists an array X̃ ∈ Σ
(n−1)×(n−1)
q such that X̃ = Xi1,j1 =

Xi2,j2 . Note that w.l.o.g. we assume that j1 6 j2.

Due to the assumption that Xi1,j1 = Xi2,j2 we have X
i1,j1
I = X

i2,j2
I . The indices of the columns and rows of X

i1,j1
I and

X
i2,j2
I satisfy i < imin and j < j1. Therefore the entries of those sub arrays are not affected by the criss-cross deletion.

Hence, X
i1,j1
I = X

i2,j2
I = XI irrespective of the values of the entries of X. For i < imin and j > j2, we have X

i1,j1
II =

X
i2,j2
II = XII[:−1] irrespective of the values of the entries of X. This equality holds because in both cases the columns of

XII are shifted by one column to the left. Using a similar argument, one can show that X
i1,j1
III = X

i2,j2
III = XIII[−1:] and

X
i1,j1
IV = X

i2,j2
IV = XIV[−1:−1].

In contrast, from X
i1,j1
T = X

i2,j2
T we get X

i1,j1
T = XT[:−1] and X

i2,j2
T = XT which produces the row run constraint

XT[:−1] = XT, i.e., Xi,j = Xi,j+1 for all corresponding values of i and j. The same constraints hold for the equalities

X
i1,j1
B = XB[−1:−1] and X

i2,j2
B = XB[−1:] following from the existence of X̃.

Furthermore, we observe that X
i1,j1
L = XL[−1:] and X

i2,j2
L = XL which produces the column run constraint XL[−1:] = XL,

i.e., Xi,j = Xi+1,j for all corresponding values of i and j. Once more, due to the existence of X̃ the same constraints holds

due to X
i1,j1
R = XR[−1:−1] and X

i2,j2
R = XR[:−1].

In the center sub array XC we need to distinguish whether i1 6 i2 or i2 > i1, since this imposes different constraints

on XC. For the first case we notice that X
i1,j1
C = XC[−1:−1] and X

i2,j2
C = XC which leads to a diagonal run constraint

of XC[−1:−1] = XC, i.e., Xi,j = Xi+1,j+1 for all corresponding values of i and j. In the case where i2 > i1, we see that

X
i1,j1
C = XC[:−1] and XC

i2,j2 = XC[−1:]. Therefore we need the anti-diagonal run constraint, i.e., Xi,j = Xi+1,j−1 for all

corresponding values of i and j.

The constraints imposed on the sub arrays are exactly the same as the structure imposed on the array X which concludes

the first part of the proof.

The reverse statement follows by observing that an array X satisfying the structure described in the claim will result in

X̃ = Xi1,j1 = Xi2,j2 . The reason is that this structure makes the sub arrays invariant to the different shifts in X resulting

from both (i1, j1) and (i2, j2) (1)-criss-cross deletions.

We use the following nomenclature throughout this section.

Good and bad arrays: An array X ∈ Σn×n
q is called good if its deletion ball is larger than 2n2

5 , i.e., |D1(X)| > 2n2

5 and X

is called bad otherwise. Denote by Gn,Bn the set of all good and bad arrays in Σn×n
q , respectively.

Bad columns and rows: A column X[n],j , j ∈ [2, n], is called bad if for any pair of row indices i1, i2 ∈ [n] with i1 < i2 the

columns X[n],j and X[n],j−1 satisfy the following constraints:

1) They are identical in the intervals [1, i1− 1] and [i2 +1, n], i.e., X[i1−1],j = X[i1−1],j−1 and X[i2+1,n],j = X[i2+1,n],j−1.

2) The column X[n],j is either identical to X[n],j−1 up to a single down shift in the interval [i1, i2], i.e., Xi+1,j = Xi,j−1

for all i ∈ [i1, i2 − 1]; or identical to X[n],j−1 up to a single up shift in the interval [i1, i2], i.e., Xi−1,j = Xi,j−1 for all

i ∈ [i1 + 1, i2].

For the case i1 = i2 a column X[n],j is bad if it is identical to the column X[n],j−1, except for the bit i1 which can have an

arbitrary value, i.e., X[i1−1],j = X[i1−1],j−1 and X[i1+1,n],j = X[i1+1,n],j−1. Columns that do not satisfy the aforementioned

constraints are referred to as good columns. Bad rows and good rows are defined similarly.

Claim 8 The deletion ball size of an array X ∈ Σn×n
q is bounded from below by

|D(X)| > |Ic
X
||Ir

X
|.

Thus, X is good if the numbers of good columns and the number of good rows is at least

√
2
5n, i.e., |Ic

X
| >

√
2
5n and

|Ir
X
| >

√
2
5n.

Proof: Let cg = |Ic
X
| and rg = |Ir

X
| be the number of good columns and good rows, respectively. For a column

X[n],j , j ∈ [n], the number of distinct arrays resulting from deleting the j-th column and any row Xi,[n], i ∈ [n] is greater

than or equal to rg . In other words, deleting column X[n],j and any good row Xig ,[n], ig ∈ Ir
X

gives a new distinct array. To

see this, assume by contradiction that there exists a pair i1, i2 ∈ Ir
X

such that Xi1,j = Xi2,j . Then, according to Lemma 7,

all rows Xi1,[n] up to Xi2,[n] must be identical. Thus we have a contradiction since Xi2,[n] 6= Xi2−1,[n] by the definition of a

good row.

We now turn our attention to good columns. For any jg ∈ Ic
X

, the arrays resulting from deleting column X[n],jg and any

row are distinct. Assume by contradiction that there exist j2 ∈ Ic
X
, j2 6= jg, and i1, i2 ∈ [n] such that Xi1,jg = Xi2,j2 . Let

jm = max{jg, j2}. Then according to Lemma 7, the columns X[n],jm−1 and X[n],jm must satisfy Xi,jm−1 = Xi,jm for all

i ∈ [1,min{i1, i2} − 1] ∪ [max{i1, i2} + 1, n] and X[n],j2 must be identical to X[n],j2 up to a single up or down shift in the
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interval [min{i1, i2},max{i1, i2}] depending whether i1 > i2 or i2 > i1. However, this contradicts the definition of a good

column.

Hence, |D(X)| > cgrg . Thus, if cg >
√

2
5n and rg >

√
2
5n, then |D(X)| > 2n2/5 and X is a good array.

Claim 9 For n > 5 the number of possible choices of a good column (or row) is equal to
(
2n − 2n2

)
.

Proof: For a column X[n],jb to be bad, for any i ∈ [n] it could be identical to column X[n],jb−1 on all entries except

the i-th entry which can still be arbitrary, i.e., for all i ∈ [n] it must hold that X[i−1],jb = X[i−1],jb−1 and X[i+1,n],jb =
X[i+1,n],jb−1. There are 2n such columns. In addition, for two integers i1, i2 ∈ [n] such that i1 < i2, a bad column X[n],jb could

also be identical to X[n],jb−1 on the intervals [1, ii−1] and [i2+1, n], i.e., X[i1−1],jb = X[i1−1],jb and X[i2+1,n],jb = X[i2+1],jb ;

and identical to column X[n],jb−1 up to a single down shift on the interval [i1, i2], i.e., X[i+1,jb = Xi,jb−1 for all i ∈ [i1, i2−1].
We have 2

(
n
2

)
such columns. Similarly there are 2

(
n
2

)
bad columns resulting from being identical to X[n],jb−1 up to a single

up shift on the interval [i1, i2]. Therefore, the total number of bad columns is bn , 2n+ 4
(
n
2

)
= 2n2 and the total number of

good columns is equal to 2n
2 − 2n2. The same calculation holds for good and bad rows.

We are ready to give an upper bound on |Bn|, the number of bad arrays.

Lemma 10 For n > 41 and q > 2 the number of bad arrays is bounded from above by

|Bn| 6
√

8

5
· qn2−3n.

Proof: If an array X ∈ Σn×n
q satisfies the conditions of Claim 8, then it is a good array. Otherwise, X can be either a

good array or a bad array. Therefore, we can compute an upper bound on the number of bad arrays as the number of arrays

that do not satisfy the conditions of Claim 8, i.e., have either less than
√

2
5n good columns or less than

√
2
5n good rows.

Thus, we can write

|Bn| 6 2

n∑

j=n−
√

2
5n+1

(
n

j

)
(bn)

jqn·(n−j)

6 2

√
2

5
n2n(2n2)nq

√
2
5n

2−n =

√
8

5
n(4n2)nq

√
2
5n

2−n

=

√
8

5
q
√

2
5n

2−n+logq(n)+n logq(4n
2)

6

√
8

5
q
√

2
5n

2−n+log2(n)+n log2(4n
2)

6

√
8

5
· qn2−3n,

where bn = 2n2 results from the observation of Claim 9. The upper bound can be interpreted as summing over all arrays with

at least n−
√

2
5n+ 1 bad columns (or bad rows) which can be located at

(
n
j

)
different positions. The other columns (rows)

can be chosen arbitrarily. The second inequality is obtained by bounding
(
n
j

)
with 2n and the last inequality holds for n > 41.

We now use the upper bound on the number of bad arrays to prove the following lower bound on the redundancy of a

criss-cross deletion correcting code.

Theorem 11 The cardinality of any q-ary (1)-criss-cross deletion correcting code C for n > 41 and q > 2 is bounded by

|C| 6 (1 + ε)
qn

2

q2n−1 · 2n2

5

,

with ε = 0.29, and thus its redundancy is lower bounded by

R > 2n− 3 + 2 logq(n).

Proof: Let CB , C ∩ Bn and CG , C ∩ Gn. Consider the following sphere packing argument

2n2

5
|CG | 6

∑

X∈CG

|D1(X)| 6
∑

X∈C

|D1(X)| 6 q(n−1)2 .
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Hence, |CG | 6 q(n−1)2

2n2

5

. From Lemma 10, for n > 41 the number of bad arrays is bounded by |Bn| 6
√

8
5 · qn2−3n. Thus,

|C| = |CG |+ |CB|
6 |CG |+ |Bn|

6
q(n−1)2

2n2

5

+

√
8

5
· qn2−3n

=
qn

2

q2n−1 · 2n2

5

(
1 +

√
32

125

n2

qn+1

)
. (2)

We show next that for any n > 5 and q = 2 we have

f(n) ,

√
32

125

n2

qn+1
< ε = 0.29.

Then we plug this result in (2) to obtain the bound on the cardinality of C.

First, the only root of f(n) is at n = 0. Second, we can find the only maximum at f( 2
loge(2)

) = 0.2850 and a saddle point

at f(0) = 0. Therefore, for n > 3 the function is monotonically decreasing and is always greater than zero. Moreover, it holds

for any n > 3 and q > 2
√

32

125

n2

qn+1
<

√
32

125

n2

2n+1
6 f

(
2

loge(2)

)
< ε = 0.29,

since 2n+1 < qn+1.

Consequently, we can re-write the upper bound in (2) with n > 41 and ε = 0.29 as

|C| 6 (1 + ε)
qn

2

q2n−1 · 2n2

5

,

which coincides with the expression in the theorem.

For the lower bound on the redundancy of a criss-cross code, we calculate a bound on R = n2 − logq(|C|) as

R > n2 − logq

(
(1 + ε)

qn
2

q2n−1 · 2n2

5

)

= n2 − logq(1 + ε)

− n2 + (2n− 1) + 2 logq(n)− logq

(
5

2

)

> 2n− 3 + 2 logq(n),

since logq(1 + ε) + logq(5/2) < log2(1.29) + log2(5/2) < 2.

In the following we write f(n) ≈ g(n) or f(n) . g(n) if the equality or inequality holds when n goes to infinity.

Corollary 12 For a (1)-criss-cross deletion correcting code C and n → ∞ the following holds:

|C| . qn
2

q2n−1 · n2

2

,

thus its asymptotic redundancy is at least 2n− 2 + 2 logq n.

Proof: The derivations are similar to the ones in Theorem 11. We only change the definition of good arrays to have

deletion balls greater than or equal to n2/2. A complete proof is given in Appendix B.

VI. CONSTRUCTION

In this section we present our CrissCross codes that can correct a (1)-criss-cross deletion or insertion and state their main

properties. Throughout the rest of the paper, we only consider binary arrays for the ease of presentation. The same construction

can be extended for q-ary arrays. We denote the set of all binary arrays {0, 1}n×n by Σn×n. Moreover, we assume that a, b, c, d
are non-negative integers such that 0 6 a, b, d 6 n − 1 and 0 6 c 6 n − 2. We also assume that n is a power of 2 so that

logn is an integer, while the extension for other values of n will be clear from the context. The main results of this section

are summarized in the following theorem and corollary.
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Theorem 13 The CrissCross code Cn(a, b, c, d) (defined in Construction 1) is a (1)-criss-cross deletion and insertion correct-

ing code that has an explicit decoder.

Corollary 14 There exist integers a, b, c, d for which the redundancy of the CrissCross code Cn(a, b, c, d) is at most

2n+ logn+ 7 + 2 log e

bits and is therefore at most 2 logn+ 10 + 2 log e bits away from the lower bound.

We prove Theorem 13 through a detailed explanation of the code construction that will be given in Section VI-A. In Sec-

tion VI-B, we show how the decoding works for a (1)-criss-cross deletion and insertion. Afterwards, we compute an upper

bound on the redundancy in Section VI-C, and thus prove Corollary 14.

A. The Construction

The CrissCross code C is an existential code whose codewords are n × n binary arrays structured as shown in Figure 3

and as explained next. The code consists of two main components. The columns and the rows are indexed using the binary

expansion U and V of two n-ary VT coded vectors to recover the positions of the inserted/deleted row and column. The parity

bits pc and pr are used to recover the deleted information in case of a deletion and to help detect the location of an inserted

column or row in case of an insertion.

Indexing the columns: The first logn rows of a codeword C ∈ C are the binary representation of a q-ary vector u encoded

using a VT code VTn,q(a, b) that can correct one insertion/deletion, where q = n. The logn× n binary array U satisfies the

following requirements: i) every column of U is the binary representation of a symbol of the VT coded vector u ∈ VTn,n(a, b);
ii) any two consecutive columns are different; iii) the last column is the alternating sequence that starts with 0; and iv) the

first 4 bits of the second to last column are 0’s. As we shall see in the decoding section, this array serves as an index of the

columns. That is, it allows the decoder to exactly recover the position of the inserted/deleted column.

Indexing the rows: The (n − 1) × logn array formed of the last logn bits of rows 1 to n − 1 (situated at the right of

the array C) is the binary representation of a q-ary vector v encoded using a V T code VTn−1,q(c, d) that can correct one

insertion/deletion, with q = n. The (n − 1) × logn binary array V satisfies the following requirements: i) each row of V is

the binary representation of a symbol of the VT coded vector v ∈ VTn−1,n(c, d); ii) any two consecutive rows are different;

iii) the first logn rows also satisfy the requirements imposed on U, with the exception of replacing the alternating sequence

by the all 0 sequence2; and iv) the first bit below the alternating sequence is the opposite of the last bit of the alternating

2The array U can still store the alternating sequence. When checking the constraints on the rows of V we assume the last column of U is the all 0
sequence. Similarly, when encoding V we also assume that the last column is all 0. Since this information is known by the decoder, the all 0 sequence need
not be stored in the array.

U ∈ VTn,n(a, b)

V
∈
VT

n
−
1
,n
(c,d

)

pc

pr

0
1
0
1
0
1
0
1

0
0
0
0
⋆

⋆

⋆

logn

n− logn

1

Fig. 3: The structure of the codewords of our CrissCross code. U is the binary representation of a q-ary vector u ∈ VTn,q(a, b)
with q = n. Each column is viewed as a symbol of the VT coded vector u. The last column of U is an alternating sequence

and the second to last column must start with four consecutive 0’s. V is defined similarly to U where each row is a symbol

of a VT coded vector v ∈ VTn−1,n(c, d). The alternating sequence of U is extended by one bit in V. For the encoding of

V, we replace the alternating sequence by the all 0 sequence. The column pc is a parity column consisting of the sum of all

columns of its size (and position). The row pr is a parity row defined similarly to pc. We denote by X ∈ VTn,q(a, b) the

binary representation of a q-ary vector x ∈ Σn
q , such that x ∈ VTn,q(a, b).
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sequence. In other words, the alternating sequence is of length logn+1. Again here we assume that the stored bit belongs to

the alternating sequence, but for the encoding of v we assume that the first logn+ 1 bits of the last column are all 0’s. This

array serves as an index of the rows that allows the decoder to recover the position of the inserted/deleted row.

Parities: The part of the first column of C that is not included in U is a parity of the same part of all corresponding

columns, i.e., each entry of that column is the sum of all bits corresponding to its same row. This column is denoted by pc

and is shown on the left in Figure 3. Moreover, the last row of C is a parity of all the rows and is denoted by pr. In case of

deletion, the parities allow the decoder to recover the information in the deleted column and row. In case of an insertion, the

parities help the decoder to exactly recover the index of the inserted row and column in case the arrays U and V failed to

do so, as explained in more details in the next section. We start with an example to illustrate the idea before going into the

formal definition of the construction. The example also illustrates the deletion decoder.

Example 2 We construct a 9 × 9 codeword of our code to illustrate the construction and the decoding algorithm. We chose

n to be 9 (not a multiple of 2) for convenience and to make the example simpler.

Assume that we want the columns and the rows to be indexed by codewords of q-ary VT codes with q = 2(⌈logn⌉) = 16
with a = 2, b = 0, c = 7 and d = 0. The first 4 rows of the codeword should then be the binary representation of a q-ary

vector u ∈ VT 9,16(2, 0). For clarity of presentation, we represent a symbol x = (x1, x2, x3, x4)
T ∈ Σ24 as the decimal

representation x =
∑4

i=1 xi2
i−1. Our construction requires the last symbol of u to be 10, i.e., its binary representation is the

alternating sequence. In addition, the second to last symbol of u must be 0. Moreover, every two consecutive symbols of u

must be different. An example is u = (0, 1, 2, 3, 4, 5, 11, 0, 10) ∈ Σ9
24 . The binary representation U of u is the first four rows

of X given in (3). Given u, we now index the columns with a vector v ∈ VT 8,16(7, 0) such that the first four symbols of v are

predetermined to be 3, 10, 1 and 10, respectively. Our construction requires the last bit of the binary representation of the fifth

symbol of v to be set to 0 as an extension of the alternating sequence of the last symbol of u (c.f. (3)). Similarly to u, any

two consecutive symbols of v must be different. An example is v = (3, 10, 1, 10, 6, 8, 9, 7) ∈ Σ8
24 . The binary representation

V of v is the transpose of the last four columns and first eight rows of the array X given in (3). The remaining entries of the

array X not belonging the first column nor the last row (marked in black) are arbitrary. The entries of the last row (marked

in red) are the column-wise parity bits. The remaining entries of the first column (in green) are the row-wise parity bits. The

constructed codeword X is shown in (3).

X =




0 1 0 1 0 1 1 0 0
0 0 1 1 0 0 1 0 1
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0
1 1 1 1 1 0 0 0 1
0 0 1 0 1 1 0 0 1
0 1 0 1 0 1 1 1 0
1 1 1 0 1 0 0 0 0




, X2,7 =




0 1 0 1 0 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 1
0 0 1 0 1 1 0 1
0 1 0 1 0 1 1 1
1 1 1 0 1 0 0 0




(3)

To illustrate the decoding strategy assume that column 7 and row 2 of X are deleted. The resulting array X2,7 is illustrated

in (3). The decoder looks at the last non-deleted column and knows that it should be the alternating sequence because it is not

the all zero column in the first four rows. From the last column, the decoder knows that the second row is deleted. Using the

row-wise parity bits of the last row, the decoder can recover the second row. Now the decoder has all the rows of U with one

deleted column and can thus use the VT decoder to recover the value and position of the lost column. Note that since every

two consecutive columns in U are different, the decoder recovers the exact location of the deleted column. Having the index

of the deleted column, the decoder recovers the values of the bits outside of U (rows 5 to 8) using the column-wise parity

bits. The last bit of the deleted column is the sum of all other bits.

Formally, the CrissCross code C can be seen as an intersection of four codes over Σn×n that define the constraints imposed

on the codewords of C. Let ℓ , logn, we define W to be the all zero array except for the first ℓ+ 1 bits of the last column

to be the alternating sequence, i.e., W[ℓ+1],n = [01010101 · · · ]T and Wi,j = 0 otherwise. We denote by X ∈ VTn,q(a, b) the

binary representation of a q-ary vector x ∈ Σn
q , such that x ∈ VTn,q(a, b).
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U(a, b) ,





X :

X[ℓ],j 6= X[ℓ],j+1, j ∈ [n− 1]

X[4],n−1 = [0000]T ,

X[ℓ+1],n = [010101 · · · ]T ,
X[ℓ],[n] ∈ VTn,2ℓ(a, b)





,

V(c, d) ,





X :

Xi,[n−ℓ+1,n] 6= Xi+1,[n−ℓ+1,n], i ∈ [n− 1]

X[ℓ+1],n = [0000 · · · ]T ,
XT

[n−ℓ+1,n],n−1 ∈ VTn−1,2ℓ(c, d)





,

V ′(c, d) ,

{
Y :

Y[ℓ+1],n = [010101 · · · ]T ,
Y ⊕W ∈ V(c, d)

}
,

Pc ,



X : xi,1 =

n∑

j=2

xi,j , i = ℓ+ 1, . . . , n− 1



 ,

Pr ,

{
X : xn,j =

n−1∑

i=1

xi,j , j ∈ [n]

}
.

Construction 1 The CrissCross code Cn(a, b, c, d) is the set of arrays C ∈ Σn×n that belong to

Cn(a, b, c, d) , U(a, b) ∩ V ′(c, d) ∩ Pc ∩ Pr.

B. Decoder

In this section, we show how the CrissCross code construction leverages the structure of a codeword C ∈ Cn(a, b, c, d) to

correct a criss-cross deletion or insertion. Formally, we prove Theorem 13. We assume that the decoder knows the dimension

of received array. In other words, the decoder knows whether a criss-cross deletion or a criss-cross insertion has happened and

only needs to correct it.

Intuition: The goal of the decoder is to use the insertion/deletion correction capability of VTn,n(a, b) and VTn−1,n(c, d) to

recover the positions of the inserted/deleted column and row. The decoder first uses the alternating sequence to check if a row

of U is inserted/deleted and therefore corrects it before proceeding to the VT code decoder. In case of a deletion, the second

to last column allows the decoder to detect whether the alternating sequence was deleted or not. If the alternating sequence

is deleted, the decoder cannot use U and has to start using V to detect the position of the deleted row, recover it using the

parities and then obtain the position of the deleted column from U. The parities are used to recover the deleted information

once the decoder has the position of the deleted row and/or column. In case of an insertion, the inserted vector may be equal

to another consecutive vector in either U or V. In this case, the decoder uses the parity bits over the remaining part of the

vector to exactly recover the position of the inserted row or column. We are now ready to present the proof of Theorom 13.

Proof of Theorem 13: We split the proof into two parts: a) an explicit decoder for a (1)-criss-cross deletion; and b) an

explicit decoder for a (1)-criss-cross insertion.

a) Deletion correcting decoder: The decoder for Cn(a, b, c, d) receives as input an (n− 1)× (n− 1) array C̃ resulting

from a (1)-criss-cross deletion in an array C of Cn(a, b, c, d) and works as follows. The decoder starts by looking at the first

ℓ× (n− 1) subarray of C̃ and examining the last column.

Case 1: Assume the last column of C is not deleted. Using the alternating sequence, the decoder can detect whether or not

there was a row deletion in U and locate its index. This is done by locating a run of length 2 in the alternating sequence. The

last bit of the alternating sequence falling in V and not in U ensures that the decoder can detect whether the last row of U

is deleted or not.

Case 1 (a): If there was a row deletion in U, the decoder uses the non deleted part of pr to recover the deleted row

except for the bit in the deleted column. The decoder can now use the properties of VTn,n(a, b) to decode the column deletion

in U. Since any two consecutive columns in U are different, the decoder can locate the exact position of the deleted column

and recover its value. The position of the deleted column in U is the same as the deleted column in the whole array. Using

pc, the decoder can now recover the remaining part of the deleted column.

Case 1 (b): If the deleted row was not in U, the decoder uses VTn,n(a, b) to recover the index of the deleted column and

its value within U and uses pc to recover the value of the deleted column outside of U (except for the bit in the intersection of

the deleted row and column). Then, the decoder uses VTn−1,n(c, d) to recover the index of the deleted row. Again, since any

two consecutive rows in V are different the decoder can recover the exact position of the deleted row. Using pr, the decoder

recovers the value of the bits of the deleted row.
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Case 2: Now assume that the last column of C is deleted. By looking at the last column of C̃, the decoder knows that the

alternating sequence is missing thanks to the run of 0’s inserted in the beginning of the second to last column of C. Note that

irrespective of the location of the row deletion, the last column will have a run of at least three 0’s which cannot happen in

the alternating sequence. Therefore, the decoder knows that the last column is deleted and starts by looking at V. Using the

parity pc, the decoder recovers the missing part of the deleted column that is in V but not in U. By construction, the first ℓ
bits of the last column of V are set to 0 when encoding V using a VT code. Thus, the decoder recovers the whole missing

column. By using the property of VTn−1,n(c, d), the decoder recovers the index of the missing row and uses pr to recover the

value of the bits of this row. After recovering the deleted row the decoder adds the alternating sequence to U and recovers

the whole array C.

b) Insertion correcting decoder: The decoder for Cn(a, b, c, d) receives as input an (n+ 1)× (n+ 1) array C̃ resulting

from a (1)-criss-cross insertion of an array C of Cn(a, b, c, d) and works as follows. The decoder starts by looking at the first

(ℓ+ 1)× (n+ 1) subarray of C̃ (recall that ℓ = logn) and examines the last two columns.

Case 1: Assume the second to last column is not an alternating sequence (special insertions that we consider in cases 2

and 3) and the last column is the alternating sequence. Using the alternating sequence, the decoder can detect whether or not

there was a row insertion in U. This is done by locating a run of length 2 in the alternating sequence.

Case 1 (a): If there was a row insertion in U, the decoder has two candidates for the inserted row: the ones that cause

the run of length 2 in the alternating sequence. Recall that the bit-wise sum of the n rows of C is known to the decoder (parity

check constraint). The decoder verifies which of the two candidate rows does not satisfy the parity constraints, i.e., the decoder

sums the n − 1 remaining rows together with each of the candidate rows and checks the Hamming weight of the resulting

vector. The row that results in a vector with Hamming weight more than 1 is the inserted row3. If both resulting vectors are

different and result in Hamming weight 1, then the decoder is confused between two candidates for the inserted row and two

candidates for the inserted column. In this case, the decoder deletes both candidate rows and both candidate columns where

a “1” appears in the resulting vectors and uses the deletion correction capability of the code to recover the original message.

This works since the inserted row and column were removed, i.e., the array is now affected by one row deletion and one

column deletion.

Otherwise, the decoder removes the inserted row and uses the properties of VTn,n(a, b) to decode the column insertion in

U. Since any two consecutive columns in U are different, the inserted column is either different from both adjacent columns

or equal to only one of them. In the former case, the decoder recovers the exact position of the inserted column and removes

it. The position of the inserted column in U is the same as the inserted column in the whole array. In the latter case, the

decoder has two candidates of inserted columns. The decoder uses the column parity check to verify which column is the

inserted one and removes it. Note that since the inserted row is removed, the decoder will have at most one column that does

not satisfy the column parity check constraints. If both columns verify the parity constraints, then they are identical.

Case 1 (b): If the inserted row was not in U, i.e., the alternating sequence is intact, the decoder uses VTn,n(a, b) to

recover the index and value of the inserted column in U. If this column in U is different from both of its adjacent columns in

U, then the decoder removes the whole column and proceeds to correcting the inserted row. However, if the inserted column

in U is equal to one of its adjacent columns (since any two consecutive columns are different), then the decoder has two

candidates of inserted columns. In a similar way to Case 1 (a), the decoder uses the column parity check constraints to verify

which column is the inserted one. After removing the inserted column, the decoder uses VTn−1,n(c, d) to recover the index of

the inserted row. Again, if the inserted row in V is different from both adjacent rows in V, the decoder removes the whole row.

Otherwise, the decoder has two candidates for the inserted rows; therefore the decoder uses the row parity check to recover

the exact position of the inserted row.

Case 2: Now assume that the two last columns of U are identical. Due to the 4 zeros in the second to last column of C

(now third to last column in C̃), the decoder detects that a column insertion happened in one of the last two columns of U.

The decoder uses the column parity check to verify which column is the inserted one. In case both columns satisfy the parity

check constraints, then they are identical. If both columns violate the parity check constraints in one position, similarly to

Case 1 (a), the decoder deletes both columns and both rows where the columns do not satisfy the parity check constraint and

uses the deletion correction capability of the code. After removing the inserted column, the decoder examines the alternating

sequence to check if the inserted row is in U. If this is the case, the decoder uses the row parity check to verify which row

is inserted and removes it. If the inserted row is not in U, the decoder uses VTn−1,n(c, d) and the column parity check to

recover the exact index of the inserted row.

Case 3: Assume that the last column of U is not the alternating sequence. Thus, the last column is an inserted column. The

decoder removes this column and proceeds to detect which row is inserted as explained in the previous case.

3The original row can only result in at most one 1 located in the position of the inserted column.
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C. Redundancy of the code

The redundancy RCn(a,b,c,d) of Cn(a, b, c, d) is given by

RCn(a,b,c,d) = log(2n
2

)− log |Cn(a, b, c, d)|
= n2 − log |U(a, b) ∩ V ′(c, d) ∩ Pc ∩ Pr| .

In this section we show that there exist a, b, c, d for which

RCn(a,b,c,d) 6 2n+ 4 logn+ 7 + 2 log e.

We do so by computing a lower bound on log |Cn(a, b, c, d)|. To that end we count the number of n × n binary arrays that

satisfy all the requirements imposed on the codewords C in Cn(a, b, c, d).
Since the constraints imposed on the codes U(a, b) ∩ V ′(c, d), Pc, and Pr are disjoint, we have that

RCn(a,b,c,d) = RU(a,b)∩V′(c,d) +RPc
+RPr

= RU(a,b)∩V′(c,d) + 2n− logn− 1. (4)

Equation (4) follows from the fact that the n− logn− 1 bits of pc and the n bits of pr are fixed to predetermined values.

We now compute an upper bound on the redundancy of the set U(a, b) ∩ V ′(c, d).

Proposition 15 There exists four values a⋆, b⋆, c⋆ and d⋆ for which the redundancy R1 of U(a⋆, b⋆) ∩ V ′(c⋆, d⋆) is bounded

from above by

R1 < (2n− 2 logn− 3) log

(
n

n− 1

)
+ 5 logn+ 6. (5)

From Equations (4) and (5) we obtain,

RCn(a,b,c,d) < (2n− 2 logn− 3) log

(
n

n− 1

)
+ 2n+ 4 logn+ 5

< 2n log

(
n

n− 1

)
+ 2n+ 4 logn+ 5

< 2n+ 4 logn+ 5 + 2 log 2e (6)

= 2n+ 4 logn+ 7 + 2 log e.

In (6) we use the inequality 2n log
(

n
n−1

)
6 2 log 2e. This inequality follows from noting that

(
1− 1

n

)n
is an increasing

function of n that converges to 1
e

and is always greater than or equal to 0.25 > 1
2e = 0.1852 for n > 2. The proof of

Corollary 14 is now complete. We conclude this section with the proof of Proposition 15.

Proof of Proposition 15: We start with counting the number of arrays that satisfy all the imposed constraints except for

the VT constraints in the codes U(a⋆, b⋆) and V ′(c⋆, d⋆). To that end, we define the following three sets over Σn×n.

U⊥ ,
{
X : X[ℓ],j 6= X[ℓ],j+1, j ∈ [n− ℓ− 1]

}
,

V⊥ ,

{
X :

Xi,[n−ℓ+1,n] 6= Xi+1,[n−ℓ+1,n], ℓ < i < n− 1

Xℓ+1,n ≡ ℓ mod 2

}
,

S∩ ,





X :

X[ℓ],j 6= X[ℓ],j+1, n− ℓ 6 j < n,

Xi,[n−ℓ+1,n] 6= Xi+1,[n−ℓ+1,n], i ∈ [ℓ],

X[4],n−1 = [0000]T ,

X[ℓ],n = [010101 · · · ]T





.

U⊥ is the set of all n×n arrays in which any two consecutive columns, from column 1 to n−ℓ, are different when restricted

to the first ℓ entries; V⊥ is the the set of all n×n arrays in which the entry Xℓ+1,n is fixed to a predetermined value and any

two consecutive rows, from row ℓ + 1 to n− 1, are different when restricted to the last ℓ entries; and S∩ is the set of n× n
arrays in which the ℓ× ℓ sub array ending at the last bit of the first row of the original array has distinct consecutive columns,

distinct consecutive rows, the last row fixed to a predetermined value and the first 4 bits of the second to last column are also

predetermined. S∩ is also defined to guarantee that the first column of the ℓ × ℓ sub array is different from the ℓ entries of

column n− ℓ and similarly to the last row.



15

Claim 16 The redundancies of U⊥ and V⊥ are respectively given by

RU⊥ = (n− logn− 1) log

(
n

n− 1

)
,

RV⊥ = (n− logn− 2) log

(
n

n− 1

)
+ 1.

The intuition behind Claim 16 is that the first log n bits of any two consecutive columns of U (last logn bits of any two

consecutive rows of V) must be different. The proof of Claim 16 is given in Appendix C.

Claim 17 The redundancy of S∩ is upper bounded by

RS∩ < logn+ 5. (7)

The intuition behind Claim 17 is that with at most one bit of redundancy we can guarantee that every two consecutive rows

and every to consecutive columns of the logn × logn square are different. The remaining logn + 4 bits are due to the use

of the alternating sequence and fixing four bits of the second to last column of the square. The proof of Claim 17 is given in

Appendix C.

The remaining part of the proof is to count the number of arrays that satisfy the above requirements and have U ∈ VTn,n(a, b)
and V ∈ VTn−1,n(c, d). Using the same arguments explained in Section II, we note that the VT constraints partition the set

U⊥ ∩ V⊥ ∩ S∩ into (n3)(n− 1) disjoint cosets. Therefore, there exist a⋆, d⋆, c⋆, d⋆ for which

|U(a⋆, b⋆) ∩ V(c⋆, d⋆)| > |U⊥ ∩ V⊥ ∩ S∩|
(n3)(n− 1)

.

In other words, the redundancy R1 of U(a⋆, b⋆) ∩ V(c⋆, d⋆) is bounded from above by

R1 6 RU⊥∩V⊥∩S∩ + log
(
(n3)(n− 1)

)
.

Since all the constraints in U⊥, V⊥, S∩ are disjoint by construction, we can rewrite the previous equation as

R1 6 RU⊥ +RV⊥ +RS∩ + log
(
n3(n− 1)

)

< RU⊥ +RV⊥ +RS∩ + 4 logn (8)

6 (2n− 2 logn− 3) log

(
n

n− 1

)
+ 5 logn+ 6. (9)

In (9) we substituted the results from Claim 16 and Claim 17.

VII. CONSTRUCTION WITH EXPLICIT ENCODER

In this section we show how to construct a CrissCross code with explicit encoder and decoder at the expense of increasing

the redundancy by 5 logn+5 bits. The main idea is to change the arrays U and V so that they are the binary representations of

two q-ary vectors u and v, which are encoded using two variations of the explicit systematic non-binary VT codes from [29]

and will be introduced in the sequel. The new structure of the codewords is depicted in Figure 4. In the remaining of this

section we also take log n to be an integer. The main result of this section is stated in the next theorem.

Theorem 18 The CrissCross code defined below, constructed by modifying Construction 1, is a (1)-criss-cross deletion and

insertion correcting code that has explicit encoder and decoder. The redundancy of this code is bounded from above by

Rexplicit < 2n+ 9 logn+ 12 + 2 log e.

A. Construction

We first review the non-binary systematic VT construction from [29].
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U ∈ VT (h)
n,n

V
∈
VT

(v
)

n
−
ℓ−

1
,n

pc

pr

a
a

b
b

c

c

d

d

logn

n− logn

1

Fig. 4: The structure of the codewords of our CrissCross code with explicit encoder and decoder. U is the binary representation

of a q-ary vector u encoded using an explicit VT code VT (h)
n,q with q = n. Each column is viewed as a symbol of the VT

coded vector u. V is defined similarly to U where each row is a symbol of a VT coded vector v encoded using an explicit

VT code VT (v)
n−ℓ−1,n, where ℓ = logn. pc is a parity column consisting of the sum of all columns of its size (and position).

pr is a parity row consisting of the sum of all rows. The first four bits of the second column below U (shown as a, a, b, b)

are reserved to help the decoders of VT (h)
n,n and VT (v)

n−ℓ−1,n. The first two bits of the third and fourth columns below U (i.e.,

c, c, d, d) are reserved to help the decoder of VT (h)
n,n . Choosing the values of a, b, c and d will be clarified.

1) Systematic VT code: In [29] Tenengolts presented two VT code constructions: an existential construction as in Section II,

i.e., one defines the constraints on the codewords and shows that such a code exists; and a systematic construction that takes

as input a message and only adds redundancy to it such that the resulting codeword satisfies some imposed constraints. Before

going into the details of our construction, we explain the construction of the systematic VT code as presented in [29].

The systematic VT code, denoted by VT ⋆
n,q, takes as input a message a = (a1, . . . , ak) ∈ Σk

q and encodes it into a vector

c ∈ Σn
q where4 n = k + 3 + ⌈logq k⌉. Since in our case we take q = n, we explain here the construction of VT ⋆

n,n, and

n = k + 4. Given the message a, the encoded vector c = (c1, . . . , cn) ∈ Σn
n of VT ⋆

n,n is constructed as follows.

1) The first k symbols of c, referred to as the systematic data part, are the same as the first k symbols of a, i.e., ci = ai
for i = 1, . . . , k.

2) The symbols ck+1 and ck+2 satisfy ck+1 = ck+2 = ak + 1 mod n.

3) To compute ck+3, the signature vector s = (s1, . . . , sk) is computed as s1 = 1 and

si =

{
1 if ai > ai−1

0 otherwise.

The symbol5 ck+3 is then equal to
∑k

i=1(i − 1)si mod k.

4) The symbol ck+4 is computed as ck+4 =
∑k

i=1 ci mod n.

The symbols ck+3 and ck+4 are referred to as the parity symbols. The symbols ck+1 and ck+2 are used as separators

between the data part and the parity part so that the decoder can localize the insertion/deletion. Note that they can have other

values besides ak + 1 mod n as long as they are different from ak. We will use this variation in our construction. If the

insertion/deletion happens in the data part, the decoder uses ck+3 and ck+4 together with the same VT decoder explained in

[29] to decode the insertion/deletion. Otherwise, the data part is intact and no decoding is needed.

2) Encoding of U and V: We slightly modify the systematic VT code to fit our setting. Namely, for the vector u (used to

compute the array U) we put the systematic part of the data in the end of the sequence and the parity part in the beginning.

For the vector v, we maintain the structure of the systematic VT code. For both vectors u and v we pre-encode the message

so that every two consecutive symbols of the vectors u and v are different. Thus, the construction will not be systematic, but

explicit. Furthermore, we also change the separator symbols to better fit our setting. We require any two consecutive symbols

to be different to detect a row deletion within U. These modifications require also adding one more redundancy symbol.

4In the construction by Tenengolts, three extra symbols are added at the end of the sequence to account for the case of sending several concatenated
codewords. We do not need those symbols here as only one array is sent through the channel.

5In the general VT ⋆
n,q where q < n, one needs r = ⌈logq k⌉ symbols ck+3, . . . , ck+3+r to be the q-ary representation of the equal to

∑k
i=1

(i − 1)si
mod k.
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a) Horizontal VT encoder VT (h)
n,n : Consider the message a = (a1, . . . , ak) ∈ {1, . . . , n− 1}k to be encoded into the

vector u ∈ Σn
n. Here we take n = k + 5. For notational convenience we number the indices of u from −4 to n − 5, i.e.,

u = (u−4, u−3, . . . , un−5). The vector u is constructed as follows.

1) To guarantee that every two consecutive symbols are different, the symbol u1 is made equal to a1 and the symbols u2 to

un−5 are computed as ui = ui−1 + ai mod n.

2) The symbol u0 can take an arbitrary value up to the restrictions explained in the sequel.

3) The symbol u−4 is computed as u−4 =
∑n−5

i=0 ui mod n.

4) To compute u−3, we compute the signature vector s = (s1, . . . , sk+1) as s1 = 1 and for i = 2, . . . , n

si =

{
1 if ui−1 > ui−2

0 otherwise.

The symbol u−3 is then equal to
∑k+1

i=1 (i− 1)si mod (k + 1).
5) The symbol u−2 is the n-ary value of a length logn alternating sequence and u−1 is chosen as the complement alternating

sequence of the binary representation of u−2.

6) Since for our CrissCross code we need any two consecutive symbols to be different, ui 6= ui±1 for all i, we choose the

value of u0 to be different from u−1 and u1 such that it ensures that u−4 6= u−3 and u−3 6= u−2. This is proved in the

next claim.

Claim 19 A value for u0 that satisfies u0 6= u−1, u0 6= u1 and makes u−4 6= u−3 and u−3 6= u−2 always exists.

The intuition behind Claim 19 is that u−3 changes if u0 is smaller or greater than u1 (2 choices), whereas u−4 changes with

the value of u0 (n− 2 choices). A detailed proof is given in Appendix D.

We refer to this encoding procedure as the horizontal VT encoder and is denoted by VT (h)
n,n .

b) Vertical VT encoder VT (v)
n−ℓ−1,n: Consider the message b = (b1, . . . , bk′) ∈ {1, . . . , n− 1}k′

to be encoded into the

vector v of length n′ = n− ℓ − 1. Here n′ = n − ℓ − 1 = k′ + 5. The vector v ∈ Σn′

n is encoded similarly to u except for

the ordering of the data part and the parity part.

1) Let v1 = b1 and vi = vi−1 + bi mod n for i = 1, . . . , k′.
2) The symbol vk′+1 can take an arbitrary value up to the constraints explained next.

3) We let vk′+2 and vk′+3 be the n-ary values of two length logn complement alternating sequences.

4) Computing the signature s′ of the vector (v1, . . . , vk′+1), we let vk′+4 be equal to
∑k′+1

i=1 (i − 1)s′i mod (k′ + 1). and

vk′+5 =
∑k′+1

i=1 vi mod n.

5) We choose vk′+1 to be different from vk′ and vk′+2 such that vk′+3 6= vk′+4 and vk′+4 6= vk′+5. By Claim 19, such a

value of vk′+1 always exists.

We refer to this encoding procedure as the vertical VT encoder and is denoted by VT (v)
n−ℓ−1,n.

B. Encoder

We are now ready to explain our explicit encoder for the CrissCross code construction. The encoder takes as input n1 + n2 + n3

bits and encodes them as follows, where

n1 = n2 − 2n− 9 logn− (2n− log n− 11) log (n)− 8,

n2 = ⌊(n− 5) log(n− 1)⌋ ,
n3 = ⌊(n− logn− 6) log(n− 1)⌋ .

1) The first ⌊(n− 5) log(n− 1)⌋ bits are encoded using the horizontal VT encoder VT (h)
n,n and we let U be the binary array

representation of the resulting vector.

2) The next ⌊(n− logn− 6) log(n− 1)⌋ bits are encoded using the vertical VT encoder VT (v)
n−ℓ−1,n and let V be the binary

array representation of the transpose of the resulting vector.

3) The first bit of the alternating sequence representing u−2 is repeated in the second column in the first and second row

below U. This bit is shown as a in Figure 4. The first bit of the alternating sequence representing vn−ℓ+1 is repeated in

the second column in the third and fourth row below U. This bit is shown as b in Figure 4.

4) The alternating sequences representing u−2 and u−1 are extended by 1 bit each. This bit is then repeated in the row

below. Those bits are shown in Figure 4 as c and d, respectively.

5) The remaining n2 − 2n − 9 logn − (2n − logn − 11) log (n) − 8 bits are systematically distributed in the n × n array

outside of U, V, the positions of the parity check bits, and the eight reserved bits (shown in Figure 4).

6) The parity check bits are then computed as the respective column-wise and row-wise sums of all the bits.
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C. Decoder

The decoder works exactly the same as explained in Section VI-B where the alternating sequence is now the third column

of U rather than the last column of U (even after either u−2 or u−1 is deleted). For completeness, we explain the subtle

details of decoding deletions in U and V. The insertion case follows similarly.

The decoder first examines the received version of U. To check whether a row of U is deleted, the decoder checks the

alternating sequences (or one of them if the other is deleted). If a row is deleted, the alternating sequence must have a run of

length 2, unless the first row is deleted. If no run of length 2 exists, the decoder simply counts the length of the alternating

sequence to check if the first row is deleted. The decoder is guaranteed to count the exact length of the alternating sequence

thanks to extending the sequence by one bit and repeating that bit. If a row of U is deleted, the decoder uses the row parity

check to recover the value of the deleted row.

After checking for (and correcting) deleted rows in U, the decoder checks for deleted columns. If both alternating sequences

are not deleted and are in their correct positions, then the deleted column is in the systematic data part. The decoder uses the

detailed decoding of [29] to recover the value and the position of the deleted column. If both alternating sequences are not

deleted and are not in their correct positions, then the deleted column happened in the first two columns that are function of

the systematic data part. The decoder can then recompute the parity part from the systematic data part and recover the index

of the deleted column. In case one of the alternating sequences is deleted, then the decoder needs to know whether u−2 or

u−1 is deleted. To that end, the decoder verifies the first bit of the non deleted alternating sequence with the bit in the second

column and first row below U. Thus, the decoder recovers the index of the deleted column.

V is decoded similarly, except that the decoder would have recovered the index and value of the deleted column.

D. Redundancy

The redundancy of the explicit code is given by

Rexplicit = n2 − (n1 + n2 + n3)

= 2n+ 9 logn+ (2n− logn− 11) log (n) + 8

− ⌊(n− 5) log(n− 1)⌋
− ⌊(n− logn− 6) log(n− 1)⌋

(a)
< 2n+ 9 logn+ (2n− logn− 11) log (n) + 8

− (n− 5) log(n− 1) + 1

− (n− logn− 6) log(n− 1) + 1

In inequality (a) we used the inequality ⌊a⌋ > a− 1.

Using the fact that (2n−logn−11) log
(

n
n−1

)
is less than 2n log

(
n

n−1

)
which is less than or equal to 2 log 2e = 2+2 log e,

we can write

Rexplicit = 2n+ 9 logn+ (2n− log n− 10) log

(
n

n− 1

)
+ 10

< 2n+ 9 logn+ 12 + 2 log e.

VIII. CONCLUSION

This paper considers the problem of criss-cross insertion/deletion in an n × n array. We have shown that every (t)-criss-

cross deletion correcting code is a (t)-criss-cross insertion correcting code by extending the equivalence between insertion and

deletion correcting codes from the one-dimensional case to the considered two-dimensional case.

We derived a bound which shows that the redundancy of any (1)-criss-cross deletion/insertion correcting code is bounded

from below by 2n−3+2 logn for n > 41. We then constructed CrissCross code. This code can correct a single row and single

column deletion in an n×n array. The redundancy of the CrissCross code is bounded from above by 2n+4 logn+7+2 loge
bits. We have presented an explicit decoder for correcting deletions and insertions with this CrissCross code. We also modified

this code construction to an explicit construction that has an explicit encoder and an explicit decoder. The explicit encoder is

based on systematic VT codes and comes at the expense of increasing the redundancy of the code by 5 logn+ 5 bits.

In this work, we have considered deletions of one row and one column. Although our CrissCross code can correct a more

general type of deletions, our bound on the redundancy and the equivalence proof do not directly hold in the more general

model. Thus, as a future research direction, we are interested in investigating the case where any combination of tr rows and

tc columns, such that tr + tc is equal to a predetermined constant t, can be deleted or inserted. Another open problem of

interest is also the case of mixed errors in which any tc columns may be deleted or inserted and any tr rows may be inserted

or deleted. We expect the techniques presented in this work to provide valuable insights on solving the more general problem.

Preliminary results can be found in [30].
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APPENDIX A

PROOF OF CLAIM 6

We prove that for any two arrays X1,Xt+1 ∈ Σn×n
q , It(X1)∩It(Xt+1) 6= ∅ if and only if there exist t−1 arrays X2, . . . ,Xt

such that I1(Xi) ∩ I1(Xi+1) 6= ∅ for all 1 6 i 6 t.
We prove the “if” part by induction. The proof of the “only if” part follows similarly and is omitted.

a) Base case: We need to show that if I1(X1) ∩ I1(X2) 6= ∅ then I1(Xi) ∩ I1(Xi+1) 6= ∅ for all i = 1 which follows

from the assumption.

b) Induction step: Assume the property holds for t ∈ [n − 2] and we show that the property holds for t + 1. Let

X1,Xt+2 be such that It+1(X1) ∩ It+1(Xt+2) 6= ∅. Then, there exists X
(1)
1 ,X

(1)
t+1 resulting from a criss-cross insertion of

X1 and Xt+2, respectively, such that It(X
(1)
1 ) ∩ It(X

(1)
t+1) 6= ∅. Thus, according to the induction hypothesis, there exist t− 2

arrays X
(1)
1 , . . . ,X

(1)
t that satisfy I1(X

(1)
i ) ∩ I1(X

(1)
i+1) 6= ∅ for all 1 6 i 6 t.
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According to Theorem 1, there exist t arrays X2, . . . ,Xt+1 such that for all 2 6 i 6 t + 1, Xi ∈ D(X
(1)
i−1) ∩ D(X

(1)
i ).

Therefore, it holds that for 1 6 i 6 t+ 1,

X
(1)
i ∈ I1(Xi) ∩ I1(Xi+1).

This completes the “if” part of the proof. �

APPENDIX B

PROOF OF COROLLARY 12

We want to prove that when n goes to infinity the redundancy of a criss-cross deletion correcting code is bounded from

below by 2n− 2 + 2 logq n.

To that end, we redefine a good array X to have a deletion ball greater than or equal to n2/2. From Claim 8 we know that

if an array X has more than n/
√
2 good rows and n/

√
2 good columns, then X is good.

Following the same steps of Lemma 10 we can bound the number of bad arrays (following this new definition) as

|Bn| 6 2

n∑

j=n− n√
2
+1

(
n

j

)
(bn)

jqn·(n−j) 6
√
2n2n(2n2)nq

n2
√

2
−n

6
√
2q

1√
2
n2−n+logq(n)+n logq(4n

2)

6
√
2q

1√
2
n2−n+log2(n)+n log2(4n

2)

6
√
2qn

2−3n,

where bn , 3
(
n
2

)
and the last inequality holds for n > 54.

Following the same steps of Theorem 11, we can bound the number of good arrays as |CG | 6 qn
2−1

n2

2

. We can now write

|C| = |CG |+ |CB|
6 |CG |+ |Bn|

6
q(n−1)2

n2

2

+
√
2qn

2−3n

=
qn

2

q2n−1 · n2

2

(
1 +

n2

√
2 · qn+1

)

≈ qn
2

q2n−1 · n2

2

,

where the last inequality is an asymptotic statement.

This concludes the proof. �

APPENDIX C

PROOFS OF CLAIM 16 AND CLAIM 17

Proof of Claim 16: Remember that we have defined ℓ = logn. We first show that the redundancy of U⊥ is given by

RU⊥ = (n− logn− 1) log

(
n

n− 1

)
.

Recall that U⊥ is defined as the set of all n × n arrays in which any two consecutive columns, from column 1 to n− ℓ, are

different when restricted to the first ℓ entries, i.e.,

U⊥ ,
{
X : X[ℓ],j 6= X[ℓ],j+1, j ∈ [n− ℓ− 1]

}
.

We count the number of arrays that satisfy those constraints. The first ℓ entries of the first column can take 2ℓ different

values. For every other column from 2 to n − ℓ, the first ℓ entries can take 2ℓ − 1 different values because they have to be

different from the entries of the column before. All other entries have no constraints and can take 2n
2−ℓ(n−ℓ) values. We can

then write,

|U⊥| = 2ℓ(2ℓ − 1)n−ℓ−12n
2−ℓ(n−ℓ)

= 2n
2

2−(n−ℓ−1)ℓ(2ℓ − 1)n−ℓ−1

= 2n
2

(1− 2−ℓ)n−ℓ−1.
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Thus, the redundancy can be computed as

RU⊥ = n2 − log |U⊥|

= −(n− logn− 1) log

(
1− 1

n

)

= (n− logn− 1) log

(
n

n− 1

)
.

To complete the proof we need to show that

RV⊥ = (n− logn− 2) log

(
n

n− 1

)
+ 1.

Recall that V⊥ is defined as the set of all n×n arrays in which the entry Xℓ+1,n is fixed to a predetermined value and any

two consecutive rows, from row ℓ+ 1 to n− 1, are different when restricted to the last ℓ entries, i.e.,

V⊥ ,

{
X :

Xi,[n−ℓ+1,n] 6= Xi+1,[n−ℓ+1,n], ℓ < i < n− 1

Xℓ+1,n ≡ ℓ mod 2

}
.

We count the number of arrays that satisfy those constraints. The last ℓ entries of row ℓ+1 can take 2ℓ−1 different values,

because Xℓ+1,n is predetermined. For every other row from ℓ + 2 to n − 1, the last ℓ entries can take 2ℓ − 1 different

values because they have to be different from the entries of the row before. All other bits have no constraints and can take

2n
2−ℓ(n−ℓ−1) values. We can then write,

|U⊥| = 2ℓ−1(2ℓ − 1)n−ℓ−22n
2−ℓ(n−ℓ−1)

= 2n
2

2−(n−ℓ−2)ℓ(2ℓ − 1)n−ℓ−22−1

= 2n
2

(1− 2−ℓ)n−ℓ−22−1.

The redundancy can then be computed as

RU⊥ = n2 − log |U⊥|

= −(n− logn− 2) log

(
1− 1

n

)
+ 1

= (n− logn− 2) log

(
n

n− 1

)
+ 1.

Next we prove Claim 17, i.e. we show that the redundancy of S∩ is upper bounded by

RS∩ < logn+ 5.

Proof of Claim 17: Recall that S∩ is defined as the set of n× n arrays in which the ℓ× ℓ sub array ending at the last

bit of the first row of the original array has distinct consecutive columns, distinct consecutive rows, the last row fixed to a

predetermined value and the first 4 bits of the second to last column are also predetermined. S∩ also guarantees that the first

column of the ℓ× ℓ sub array is different from the ℓ entries of column n− ℓ and similarly to the last row., i.e.,

S∩ ,





X :

X[ℓ],j 6= X[ℓ],j+1, n− ℓ 6 j < n,

Xi,[n−ℓ+1,n] 6= Xi+1,[n−ℓ+1,n], i ∈ [ℓ],

X[4],n−1 = [0000]T ,

X[ℓ],n = [010101 · · · ]T





.

Let Sc,r be the set of arrays that have different consecutive columns and different consecutive rows. S∩ is the intersection

between Sc,r and the set of all arrays that have the first ℓ entries of the last column for an alternating sequence and the first

4 entries of the second to last columns fixed to 0. We shall prove in the sequel that |Sc,r| > 2ℓ
2−1. Once we have this bound,

we can write

|S∩| >
|Sc,r|
2ℓ24

>
2ℓ

2

2ℓ25
. (10)

The first inequality follows from the fact that fixing the last column to a predetermined value reduces the number of arrays

in S∩ by at most 2ℓ arrays and fixing 4 bits of the second to last column reduces the number of arrays by at most 24.

Therefore, using (10) we have

RS∩ = ℓ2 − |S∩| 6 ℓ+ 5 < logn+ 5.
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The remainder of the proof is to show that |Sc,r| > 2ℓ
2−1. We start by showing that the number of ℓ × ℓ arrays is lower

bounded by 2ℓ
2−1. This means that with one bit of redundancy we can guarantee the constraints on the rows and columns.

To that end, we count the number of arrays that have at least two identical consecutive columns. Let j and j + 1, j =
n− ℓ, . . . , n− 1, be the indices of two identical consecutive columns. Column j can take 2ℓ − 1 possible values and column

j + 1 can only take one value. Not imposing any constraints on the other (ℓ − 2) columns, each column can have 2ℓ values

and we have (ℓ− 1) possible values for j. Therefore, the number of arrays having at least two identical consecutive columns

is (ℓ − 1)(2ℓ − 1)(2ℓ)ℓ−2.
Following the same counting argument, the number of ℓ × ℓ arrays that have at least two identical consecutive rows is

(ℓ− 1)2ℓ(2ℓ)ℓ−2.

The number of arrays in Sc,r is lower bounded by the total number of ℓ × ℓ arrays minus the number of arrays that have

at least two identical consecutive columns and minus the number of arrays that have at least two identical consecutive rows.

Thus, we can write

|Sc,r| > 2ℓ
2 − 2(ℓ− 1)(2ℓ − 1)(2ℓ)ℓ−2

> 2ℓ
2 − 2(ℓ− 1)2ℓ(2ℓ)ℓ−2 (11)

> 2ℓ
2−1. (12)

The inequality in (11) follows from

2(ℓ− 1)(2ℓ − 1)(2ℓ)ℓ−2 < 2(ℓ− 1)2ℓ(2ℓ)ℓ−2, (13)

which is true because 2ℓ − 1 < 2ℓ. The inequality in (12) follows from

2(ℓ− 1)2−ℓ 6
1

2
. (14)

which is equivalent to 4(ℓ− 1) 6 2ℓ and is true for all ℓ > 3.

APPENDIX D

PROOF OF CLAIM 19

We prove that for a vector u = (u−4, . . . , un−5) ∈ Σn
n, there exists a value of u0 such that the following holds:

1) u1, . . . , un−5 can take arbitrary values such that any two consecutive symbols are different.

2) u−2 and u−1 are the n-ary representation of two complement binary alternating sequences i.e., u−2 = −u−1, of length

logn each.

3) u−4 =
∑n−5

i=0 ui mod n.

4) u−3 is equal to
n−4∑

i=1

(i− 1)si mod (n− 4)

where, s = (s1, . . . , sn−4) is the signature vector computed as s1 = 1 and

si =

{
1 if ui−1 > ui−2

0 otherwise.

5) u0 is chosen such that u−4 6= u−3, u−3 6= u−2, u−1 6= u0 and u0 6= u1.

Let u−2, u−1 and u1, . . . , un−5 be fixed. The symbol u−3 can take two different values depending whether the chosen u0 is

less than or equal to u1 or not. The value of u−4 can take n different values depending on the value of u0. Therefore, we start

by ensuring that u−3 is different than u−2, i.e., we choose if u0 6 u1 or u0 > u1. Assume that u0 6 u1. Once u−3 is fixed,

we must choose a given value of u0 such that u0 6= u−1 that makes u−4 different than u−3. Notice that there is a one-to-one

mapping between the value of u0 and the value of u−4. Thus, since u−1 is a large number, as long as u−3 > 2, u0 has at

least two options (0 and 1) out of which at least one satisfies all the aforementioned requirements. However, if u−3 = 1, u0

must be equal to 0. In this case, if u−4 is equal to u−3 (then u0 must be non zero) we switch the symbols u−2 and u−1 so

that u0 can now be greater than u1 and has more than two different options that satisfy the aforementioned requirements. A

similar argument holds for the case where u0 > u1. �


