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Quantum LDPC Codes with Almost Linear

Minimum Distance
Pavel Panteleev and Gleb Kalachev

Abstract—We give a construction of quantum LDPC codes
of dimension Θ(logN) and distance Θ(N/ logN) as the code
length N → ∞. Using a product of chain complexes this
construction also provides a family of quantum LDPC codes of
distance Ω(N1−α/2/ logN) and dimension Ω(Nα logN), where
0 6 α < 1. We also introduce and study a new operation called
lifted product, which naturally generalizes the product operations
for quantum codes and chain complexes. Moreover, as a simple
byproduct of our results on quantum codes, we obtain a new
result on classical codes. We show that for any fixed R < 1
there exists an asymptotically good family of classical quasi-
cyclic LDPC codes of rate at least R with, in some sense, optimal
circulant size Ω(N/ logN) as the code length N → ∞.

Index Terms—CSS code, quantum LDPC, quasi-cyclic (QC)
LDPC, hypergraph product code, chain complex.

I. INTRODUCTION

C
LASSICAL LOW-DENSITY parity-check (LDPC)

codes [1] are a very important class of linear codes

widely used in theory and practise. The definitive property of

a family of LDPC codes is that there exists some constant

w such that for any code from this family both the row and

the column weights of its parity-check matrix are bounded

above by w. The theoretical importance of LDPC codes

stems mostly from the fact that they contain asymptotically

good codes of any positive rate with a linear time decoding

that can attain the Shannon capacity [2], [3]. Their quantum

analogs, called quantum LDPC (QLDPC) codes (see [4] for

a good review), may play a very important role in design of

future fault-tolerant quantum computers [5], [6]. However,

it is still unknown whether there exists an asymptotically

good family of QLDPC codes with a positive rate. More

dramatically, to the best of our knowledge, there are even

no such examples of constant dimension and linear distance,

while in the classical case we have the repetition code as

a trivial example.

Up until very recently, the minimum distance of all

known examples of QLDPC codes [7]–[11] was bounded

above by O(N1/2 logα N ) for some α > 0 as the code

length N → ∞. In [12] it was shown that there exists a family

of QLDPC codes of distance and dimension bounded below by

Ω(N3/5/ polylogN). The QLDPC codes from the all above-

mentioned papers belong to a wide class of quantum codes

called CSS codes [13], [14]. A CSS code Q of dimension K
is defined by a pair of classical linear codes CZ, CX ⊆ FN

2

such that C⊥
X ⊆ CZ, and K = dim CZ/C⊥

X . Its minimum

distance d is defined as min(dZ, dX), where dZ and dX are

the minimal Hamming weights of the vectors from CZ \ C⊥
X
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and CX \ C⊥
Z , respectively. In this case we often say that Q

is an [[N,K, d]] code, or, if we want to be more precise,

an [[N,K, dZ, dX]] code. The code CZ is usually represented

by a parity-check matrix HX, and the code CX by a parity-

check matrix HZ, and C⊥
X ⊆ CZ implies that HXH

T
Z = 0.

The approach used in [10]–[12] is, first, to construct a quan-

tum code Q with dZ ≫ dX, dZdX > Ω(N), and then to

apply the homological product [11], [15], [16] of the quantum

code Q with a classical code C of minimal distance d ≈ dZ/dX
in order to obtain a new quantum code Q′ of distance

min(dZ, d · dX). In [12] this “distance balancing” procedure

was applied to a family of codes (called fiber bundle codes)

with parameters dZ = Ω(N3/4/ polylogN), dX = Ω(N1/2),
and K = Θ(N1/2). We should note that this particular family

of fiber bundle codes coincides1 with an earlier proposed [17]

family of quasi-cyclic GHP codes2, defined by some quasi-

cyclic matrix A of circulant size ℓ and the polynomial

b = 1 + x, which is a parity polynomial of the cyclic repetition

code of length ℓ. The parity-check matrices HX, HZ for such

codes are binary block matrices that look as follows:

HX =







A11 . . . A1n

...
. . .

...

Am1 . . . Amn

B . . . 0

...
. . .

...

0 . . . B






;

HZ =







BT . . . 0

...
. . .

...

0 . . . BT

AT
11 . . . AT

m1
...

. . .
...

AT
1n . . . AT

mn






;

(1)

where each Aij is an ℓ× ℓ-circulant matrix (see Appendix A),

and B is the ℓ × ℓ circulant matrix that is the parity-check

matrix for the cyclic code with the parity polynomial b. Since

we want to obtain low-density matrices, the circulants in

the above block matrices should be as sparse as possible. This

is the reason why in all the examples of such codes in [17]

the matrices Aij are circulants of weight 1, i.e., permutation

matrices of some cyclic shifts modulo ℓ.
In the terminology of [12], the polynomial b corresponds

to the fiber, and the matrix A to the parity-check matrix of

the base with twists. In [17] this class of codes was studied in

the case of arbitrary parity polynomial b, and in the case of

odd ℓ a formula for the dimension of such codes was given.

Moreover, several examples of these codes were constructed,

and one of them was shown to outperform under the BP-OSD

decoder (also proposed in [17]) a relatively large surface code

decoded by a near-optimal decoder from [18].

1The definition of these codes in [12] is given in terms of chain complexes,
while in [17] these codes are defined by parity-check matrices HX and HZ.

2In the current paper we further generalize these codes and call them lifted

product codes.
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In this paper we show that if we carefully choose a low-

density quasi-cyclic matrix A and use b = 1 + x, then

the corresponding GHP code has distance Θ(N/ logN) and

dimension Θ(logN) as the code length N → ∞. This gives

us our first main result.

Theorem 1. There exists a family of QLDPC codes of

dimension Θ(logN) and distance Θ(N/ logN) as the code

length N → ∞.

The main technical tool in the proof of the above theorem

is expander codes [2], [19], [20]. Such codes are defined by

a graph G and a small linear code C0. In order to obtain a good

expander code, the second largest eigenvalue of the adjacency

matrix of G should be sufficiently small. A graph3 that satisfies

this condition is called an expander graph (see [21] for a good

survey). An important result, we rely on in our proof, is

Theorem 1.2 from [22], which gives us a way to construct

quasi-cyclic matrices A with the desired properties of very

large circulant size ℓ = Ω(N/ logN). Using this result, we

first construct a large expander graph G with a quasi-cyclic

adjacency matrix of circulant size ℓ from a small expander

graph; then we apply to G the expander code construction

to obtain a code T (G, C0) and define A as its parity-check

matrix. Since the adjacency matrix of G is quasi-cyclic, it is

possible to define T (G, C0) in such a way that its parity-check

matrix A is also quasi-cyclic of circulant size ℓ.
As a byproduct of the proof of Theorem 1 we also obtain

(Corollary 1) that there exists a family of classical quasi-

cyclic LDPC codes with distance Θ(N) and circulant size

Ω(N/ logN). Using the well-known upper bound [23] on

the minimal distance of quasi-cyclic LDPC codes we show

that, in some sense, this circulant size is optimal.

Though the distance of the obtained quantum codes is

almost linear as N → ∞, their dimension is only Θ(logN).
In fact, the dimension can be easily increased by a moderate

reduction of the code distance. The idea is somewhat similar

to the mentioned above “distance balancing” procedure, but

instead of the code distance, we increase the code dimension.

As it was shown4 in [10, Theorem 2.3], if we have a quantum

[[N,K, dZ , dX ]] code Q and a classical [n, k, d] code C, then

we can obtain the quantum [[N ′, kK, d′Z, d
′
X]] code Q ⊗ C

called the homological product of Q and C such that:

N ′
6 2nN, d′Z > d · dZ, d′X > dX.

Now if we consider the quantum code (Q ⊗ C)∗, where

we change the roles of codes CZ and CX in Q ⊗ C, and

again apply the homological product with C, then we get

the [[N ′′, k2K, d′′Z, d
′′
X]] code5 (Q⊗ C)∗ ⊗ C such that:

N ′′
6 4n2N, d′′Z > d · dZ, d′′X > d · dX. (2)

Therefore in order to obtain codes of large dimension out of

the constructed in this work codes of dimension Θ(logN) and

3Formally, we should rather talk about an infinite family of graphs.
4Note that a similar bound on the distance was obtained earlier in [16,

Theorem 1] in the language of chain complexes.
5It is not hard to see that this construction is equivalent to the homological

product of a quantum code and a hypergraph product code defined by C.

v

v′

base graph G

v1
. . .

vℓ

v′1
. . .

v′ℓ

π ∈ Sℓ

ℓ-lift Ĝ of G

Fig. 1. Lifting of the base graph G.

distance Θ(N/ logN) it remains to let C be from a family6 of

classical LDPC [n, k, d] codes such that k = Θ(n), d = Θ(n),
and n = Θ(N

α

2(1−α) ) as N → ∞, where α > 0. Indeed, we

can easily check using (2) that as the end result we obtain

the quantum [[N ′′,K ′′, d′′]] code such that:

N ′′ = O(n2N) = O(N
1

1−α ), and hence N = Ω
(

(N ′′)1−α
)

;

K ′′ = k2K = Θ(N
α

1−α logN) = Ω((N ′′)α logN ′′);

d′′ = Ω(d ·N/ logN) = Ω(n ·N/ logN)

= Ω
(

(N ′′)α/2 ·N/ logN
)

= Ω
(

(N ′′)1−α/2 logN ′′
)

.

We should emphasize that all the codes involved in the above

construction have low-density parity-check matrices. Hence

the obtained quantum codes are QLDPC codes, and we get

the following result.

Theorem 2. For every α such that 0 6 α < 1 there exists

a family of QLDPC codes of dimension Ω(Nα logN) and

distance Ω(N1−α/2/ logN) as the code length N → ∞.

Remark 1. Let us note that the case α = 0 of the above

theorem corresponds to the codes of distance Θ(N/ logN)
and dimension Θ(logN) from Theorem 1.

Lifted Product Codes

In this paper, we continue our study of the codes from [17]

in a more general form, and call them lifted product (LP)

codes. Roughly speaking, LP codes are the lifted versions of

hypergraph product codes proposed in [9], [24]. As we will

see later in Section III, LP codes generalize many well-known

examples of QLDPC codes [9], [25]–[27], of which they are

mostly motivated. We should also note that quasi-cyclic LP

codes can be shown to be equivalent to a special case of

hyperbicycle codes [27], when the parameter χ = 1 (see, more

in Subsection III-E).

Large classical LDPC codes are often constructed as lifts of

a small graph called the base graph or the protograph [28].

In graph theory, the Tanner graphs [19] of such ℓ times larger

codes are called ℓ-lifts or ℓ-fold cover graphs for the base

graph. Let us remind that an ℓ-lift Ĝ of a base graph7 G is

obtained if we replace in the base graph each vertex v ∈ V (G)
with ℓ replicas v1, . . . , vℓ; and replace each edge e ∈ E(G)
that connects vertices v, v′ ∈ V (G) with ℓ replicas e1, . . . , eℓ

6As we already mentioned before, asymptotically good classical LDPC
codes of non-vanishing rate do exist [1].

7Multiple edges and loops are usually allowed in the base graph G.
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such that ei connects in Ĝ the vertices vi and v′π(i), where

π ∈ Sℓ is some permutation on the set {1, . . . , ℓ} (see Fig. 1).

Note that the permutations for different edges may be different.

If the set of permutations π is restricted to some finite

permutation subgroup Γ ⊆ Sℓ such that8 |Γ| = ℓ, then we

also say that Ĝ is a Γ-lift of G, and a shift ℓ-lift when

Γ = 〈(1, 2, . . . , ℓ)〉 ⊆ Sℓ is the cyclic group of size ℓ generated

by the permutation (1, 2, . . . , ℓ) ∈ Sℓ.

Note that the parity-check matrix of an LDPC code that was

obtained as a shift ℓ-lift of some base graph is a quasi-cyclic

matrix of circulant size ℓ. Let us briefly remind that quasi-

cyclic (QC) matrices are block matrices, where each block is

an ℓ × ℓ-circulant. They are usually represented by matrices

over the quotient polynomial ring Rℓ = F2[x]/(x
ℓ − 1).

In a more general case of Γ-lifts the corresponding binary

block matrices can be represented by matrices over a group

algebra F2G, where G is an abstract group of order ℓ that is

isomorphic to the permutation subgroup Γ ⊆ Sℓ.

The idea of the lifted product is to start from two small

Tanner graphs A and B that have some shift ℓ-lifts Â and B̂,

respectively. Let A be the corresponding matrix over Rℓ for Â,

and B be the corresponding matrix for B̂. Since the ring Rℓ

is commutative, we will show in Section III that one can

use a slightly modified hypergraph product construction [9] in

order to obtain the parity-check matrices HX and HZ over Rℓ.

Finally, we will see that HX and HZ (considered as binary

block matrices) define a CSS code denoted by LP(A,B).
In fact, the idea of the lifted product is more general and can

be used not only with the ring Rℓ. Later we will show that this

construction works for matrices A and B over any ring R that

is a commutative ℓ-dimensional F2-algebra. For example, if

G is an abelian group of order ℓ, then the group algebra F2G
can be used as the ring R. Hence, we can use not only shift ℓ-
lifts, but also Γ-lifts when the permutation group Γ is abelian.

In fact, the general definition of lifted product codes, given

in Section III, can also be used with non-abelian groups as

well. However, in this paper, we consider only abelian groups,

while the non-abelian case is left for future work.

We should emphasize that the codes from Theorem 1

correspond to the case when B is a 1×1 matrix with only one

element b ∈ Rℓ. We denote the code LP(A,B) by LP(A, b)
in this case. Later we will show how to find or estimate

the dimension of LP(A,B) and LP(A, b) in many special

cases.

In Fig. 2 you can see the parameters of the LP codes from

Theorems 1 and 2 (shown in red) against the parameters

of the fiber bundle (FB) codes [12] (shown in green) and

the hypergraph product (HP) codes [9] (shown in blue). In fact,

if we apply the method used in Theorem 2 to the fiber bundle

codes, then we can also increase their dimension in the same

way as for LP codes. The parameters of the quantum codes

obtained in this way are also shown in green. We can see

from Fig. 2 that (up to polylog factors) the parameters of

the all mentioned above codes converge to the parameters

8Such groups are obtained from some abstract finite group as the group of
all its left actions on itself.

N/ logN

logN

N1/2

N3/5/ polylogN

N3/5/ polylogN N

HP

LP

FB

?

K

d

Fig. 2. HP – hypergraph product codes, FB – fiber-bundle codes, LP –
lifted product code LP(A, 1+x). The parameters of all codes (the minimum
distance d and the dimension K) are shown in the logarithmic scale up to
polylogarithmic factors as the code length N → ∞.

of the hypergraph product codes as the dimension K grows

asymptotically up to the code length N .

Lifted products of chain complexes

Let us briefly show how to extend the idea of the lifted

product to chain complexes. It is known that 2-dimensional

chain complexes correspond to CSS codes [29]. Nevertheless,

s-dimensional chain complexes for s > 2 can also be useful

in the context of single-shot error correction [30].

Consider some commutative ring R. Let us remind that

a free R-module of rank r is an R-module M , where there

exists a set of elements {m1, . . . ,mr} ⊆ M called basis such

that every m ∈ M is uniquely represented as:

m = a1m1 + · · ·+ armr,

where a1, . . . , ar ∈ R. Hence M ∼= Rr, and if the ring R
is a field, then M is simply an r-dimensional vector space

over R. A canonical example of a free R-module of rank r is

the module of formal R-linear combinations of the elements

of some set S, where |S| = r.

By a chain complex over a commutative ring R we mean

a free R-module C =
⊕

i∈Z
Ci with an R-linear map ∂ : C → C

called a boundary map such that ∂2 = 0, and ∂(Ci) ⊆ Ci−1.

We suppose that each free R-module Ci has finite rank, and

Ci = 0 when i < 0 or i > n, where the parameter n is called

the dimension of C. We also assume that each Ci comes with

some preferred basis C̃i ⊆ Ci, and we call its elements i-cells.

An n-dimensional chain complex C is usually written as

Cn ∂n−→ Cn−1
∂n−1−−−→ · · · ∂2−→ C1 ∂1−→ C0,

where ∂i = ∂|Ci
, i = 1, . . . , n.

The lifted product of two chain complexes is obtained in

a similar way as for codes. We just consider the standard tensor

product A⊗B of chain complexes A, B over a commutative9

9For simplicity we define here the lifted product only for commutative
rings, though it may be easily extended to any ring R if we consider a tensor
product A⊗ B of a free right R-module A and a free left R-module B.
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ring R with boundary maps ∂A, ∂B, respectively. Thus if R is

in turn an ℓ-dimensional F2-algebra with some fixed basis10

R̃ = {r1, . . . , rℓ} ⊆ R,

then the boundary map ∂ = ∂A⊗ idB + idA⊗ ∂B of A⊗B is

an R-linear map, and hence an F2-linear map. Therefore we

can consider A⊗ B also as a chain complex over F2, which

we call the lifted product of the chain complexes A and B,

and denote by A ⊗R B in order to emphasize the role of R.

When R = Rℓ we use a shorter notation A⊗ℓB. The n-cells of

the obtained chain complex A⊗RB take the form: ra(i)⊗b(j);
where r ∈ R̃, a(i) is an i-cell from Ãi, b

(j) is a j-cell from B̃j ,

and i+ j = n.

Note that any matrix over an ℓ-dimensional F2-algebra R
defines some binary linear code as its parity-check matrix11.

For example, any matrix over Rℓ defines a quasi-cyclic code.

Any such linear code can be identified with the corresponding

1-dimensional chain complex C1 ∂1−→ C0 such that A is a matrix

of the R-linear map ∂1. Let A, B be 1-dimensional chain

complexes over R that correspond to the classical codes with

parity-check matrices A, B over R, respectively. Then it is not

hard to see that the CSS code LP(A,B) defined in Section III

corresponds to the 2-dimensional chain complex A⊗R B.

The remainder of the paper is structured as follows.

Section II contains some standard definitions and notations

related to codes. In Section III we give the definition of lifted

product codes, where we also demonstrate that they contain

many well-known QLDPC codes. Expanders are described in

Section IV. Then we proceed with the proof of Theorem 1 in

Section V, and in the last section, we give some final remarks.

The paper also contains three appendices, where we describe

some well-known facts on the ring Rℓ (Appendix A), study

the decomposition of quasi-abelian LP codes when the lift

size is odd (Appendix12 B), and give the list of frequently

used symbols and abbreviations (Appendix C).

II. BASIC FACTS AND DEFINITIONS

Here we fix notations and briefly recall some standard

definitions related to classical and quantum codes. More

information can be found in a survey [4]. In what follows, we

assume that the reader is familiar with the standard algebraic

objects like rings, fields, vector spaces, and modules (see [31]

for a good reference).

In this paper, it is convenient to consider vectors over a field

or a ring as column vectors. Hence the matrix-vector product

is written as Av instead of AvT. Besides, we denote by kerA
and imA the kernel and the image of the corresponding linear

operator v 7→ Av, respectively. Note that imA coincides

with the column space of the matrix A. In many places

we use the standard notation [n] = {1, 2, . . . , n}, where

n is a natural number. If x, y are two binary vectors of

length n, then we denote by x ∩ y their intersection, i.e.,

10For example, for Rℓ the standard basis is R̃ℓ = {1, x, . . . , xℓ−1}; for
F2G the standard basis is G.

11Any m×n matrix over R can be also considered as an ℓm× ℓn binary
block matrix (see Section III).

12Our main results do not rely on this supplementary material.

the vector x ∩ y = (x1y1, . . . , xnyn). We say that an event

An occurs with high probability (w.h.p) if P(An) → 1 as

n → ∞. Please, refer to Appendix C for the list of symbols

and abbreviations frequently used in our work.

A. Classical codes

Consider a finite field13 Fq and an n-dimensional vector

space Fn
q over Fq . A linear [n, k]q code is a k-dimensional

subspace C ⊆ Fn
q , where the parameters n and k are called

the length and the dimension of C, respectively. We denote

the dimension k of the code C by dim C. The rate of the code C
is equal to k/n. The elements of C are called codewords.

The Hamming distance d(v, v′) between vectors v, v′ ∈ F
n
q

is the number of positions in which they differ. The parameter

d(C) = min{d(c, c′) | c 6= c′; c, c′ ∈ C}

is called the minimal distance of C. By definition, we

put d(C) = ∞ when k = 0. It is easy to see that d(C) is

equal to the minimal weight |c| of non-zero codewords, where

the weight |c| is the number of non-zero components in c.
When d(C) = d for a linear [n, k]q code C, we say that C is

an [n, k, d]q code.

A linear [n, k]q code is usually defined either as the row

space of a matrix G called the generator matrix or as the kernel

of a matrix H called the parity-check matrix. It is easy to see

that GHT = 0, rkG = k, and rkH = n−k. The code defined

by a parity-check matrix H is denoted by C(H).
The vector space Fn

2 usually comes with the standard scalar

product 〈x, y〉 = x1y1 + · · · + xnyn. The dual code C⊥ for

a linear [n, k]q code C is the [n, n− k]q code

C⊥ = {x ∈ F
n
q | 〈x, y〉 = 0 for all y ∈ C}.

It is not hard to see that a generator matrix for C is a parity-

matrix for C⊥ and vice versa.

Let π ∈ Sn be a permutation on the set [n]. Given a vector

v = (v1, . . . , vn), we denote by π(v) the permuted vector

(vπ(1), . . . , vπ(n)). We also extend this notation to sets of

vectors of length n in a straightforward way:

π(S) = {π(v) | v ∈ S}.

We say that two codes C, C′ ⊆ Fn
q are (permutation) equivalent

and write C ∼ C′ if C′ = π(C) for some π ∈ Sn. It is clear

that equivalent codes have the same parameters [n, k, d]q.

In this paper we mostly deal with binary linear codes, i.e.,

when q = 2. In such cases we omit q and simply write [n, k]
or [n, k, d] code.

B. Quantum CSS codes

Consider the 2n-dimensional Hilbert space C2n , where

the 2n standard basis vectors are indexed by binary vectors

u ∈ Fn
2 and denoted by |u〉. The space C2n = (C2)⊗n is

usually called the n-qubit space, where each component in

the tensor product corresponds to one qubit.

13In this paper we consider only finite fields of characteristic 2, but most
of the results are valid for arbitrary finite fields.
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A quantum code Q of length n and dimension k is

a 2k-dimensional subspace of C
2n . As in the classical case,

we denote the dimension k of the quantum code by dimQ.

In [13], [14] a very important subclass of quantum codes called

the Calderbank-Shor-Steane (CSS) codes, which is related to

classical linear codes, was introduced. A quantum CSS [[n, k]]
code Q of length n and dimension k is defined by two

classical linear codes CZ, CX ⊆ Fn
2 such that C⊥

X ⊆ CZ and

k = dim CZ/C⊥
X in the following way:

Q = spanC
{
∑

x∈C⊥

X
|z + x〉 | z ∈ CZ

}

.

It is easy to see that the property C⊥
X ⊆ CZ is equivalent

to C⊥
Z ⊆ CX. Moreover, if HX is a parity-check matrix of CZ,

HZ is the parity-check matrix of CX; then this property can

be expressed as the following orthogonality condition:

HXH
T
Z = 0. (3)

Hence in order to define a CSS code, we need two parity-

check matrices HX and HZ such that every row of HX is

orthogonal to every row of HZ. The dimension k = dimQ of

the obtained quantum code Q is given by

k = n− rkHX − rkHZ, (4)

since k = dim CZ/C⊥
X .

Given a quantum CSS code Q, we call the codewords from

the codes CZ = CZ(Q) and CX = CX(Q) the Z-codewords and

X-codewords of Q, respectively. Furthermore, the Z-codewords

from C⊥
X and the X-codewords from C⊥

Z are called degenerate.

This name can be explained if we interpret the codewords

from CZ and CX as undetected errors in a quantum system

protected by the quantum code Q. It can be shown that

the degenerate errors are precisely the ones that don’t change

the state of the system. Therefore it makes sense to consider

the quotient spaces CZ/C⊥
X , CX/C⊥

Z instead of CZ, CX. We say

that codewords c, c′ from the same equivalence class in these

quotient spaces are equivalent and denote this fact by c ∼ c′.
It is obvious that a codeword c is degenerate iff c ∼ 0, where

0 is the zero vector. Let us note that the degenerate codewords

correspond to the stabilizers of the quantum code Q; while

the quotient spaces CZ/C⊥
X , CX/C⊥

Z correspond to the logical

operators, acting on the quantum states protected by Q.

Let us note that the spaces of degenerate Z-codewords C⊥
X

and degenerate X-codewords C⊥
Z are generated by the rows of

the parity-check matrices HX and HZ, respectively. Hence the

difference c−c′ of two equivalent codewords is always a linear

combination of the rows from the corresponding parity-check

matrix.

Since CSS codes have two types of codewords, they also

have two types of minimum distances:

dZ(Q) = min
z∈CZ\C⊥

X

|z|, dX(Q) = min
x∈CX\C⊥

Z

|x|.

The minimum of these distances

d(Q) = min{dZ(Q), dX(Q)}
is called the minimum distance of Q. As in the case of

the classical codes, we say that a quantum CSS [[n, k]] code

is an [[n, k, d]] code if d(Q) = d.

As in the case of classical codes, we also say that two CSS

codes Q,Q′ of length n are (permutation) equivalent and write

Q ∼ Q′ if CZ(Q) = π(CZ(Q′)) and CX(Q) = π(CX(Q′))
for some π ∈ Sn. It is clear that equivalent codes have

the same parameters [[n, k, d]], and, moreover, we see that

dZ(Q) = dZ(Q′), dX(Q) = dX(Q′). For any CSS code Q we

can also define the CSS code Q∗ with CZ(Q∗) := CX(Q) and

CX(Q∗) := CZ(Q). It is obvious that:

dZ(Q∗) = dX(Q), dX(Q∗) = dZ(Q). (5)

The CSS codes defined so far are binary quantum codes.

In some cases, we also need non-binary CSS codes. They

are defined by two matrices HX and HZ over Fq that satisfy

equation (3). The definitions of dimension, minimum distance,

degenerate codewords, equivalent codewords are obtained

from the corresponding definitions for binary CSS codes if

we replace F2 by Fq.

C. Classical and quantum LDPC codes

A classical low density parity check (LDPC) code [1] is

a linear code defined by a sparse binary parity-check matrix

H = (hij)m×n. The sparseness usually means that the weights

of all rows and columns in H are upper bounded by some

constant w as the code length n grows to infinity. It is helpful

to define the bipartite graph T = T (H) called the Tanner

graph [19]. In this graph the first part of nodes v1, . . . , vn
(called the v-nodes) corresponds to the columns of H (the

variables), the second part of nodes c1, . . . , cm (called the

c-nodes) corresponds to the rows of H (the checks), and we

connect a v-node vj with with a c-note ci whenever hij = 1,

i ∈ [m], j ∈ [n].
If the parity-check matrix H is (wc, wr)-regular (i.e., each

column has weight wc and each row has weight wr) then the

corresponding Tanner graph is also (wc, wr)-regular (i.e., each

v-node has degree wc and each c-node has degree wr). We say

that an LDPC code is w-limited if the degree of each node

in its Tanner graph is upper bounded by w. It is obvious that

any LDPC code with (wc, wr)-regular parity-check matrix is

max(wc, wr)-limited.

In this paper by a quantum LDPC (QLDPC) we mean a CSS

[[n, k, d]] code with sparse parity-check matrices HX and HZ.

We can also introduce the Tanner graph T = T (HX, HZ) for

any CSS [[n, k, d]] code Q defined by HX and HZ. In this case,

the v-nodes correspond to n qubits and the c-nodes to the rows

of HX and HZ called the X-checks and Z-checks, respectively.

We connect a v-node with a c-node if the corresponding qubit

participates in the corresponding check. Similar to the classic

case we say that a QLDPC code is w-limited if the degree of

each node in its Tanner graph is upper bounded by w. This

property is much more important in the quantum case due to

the faulty nature of the current quantum hardware. It is clear

that any CSS code with (wc, wr)-regular matrices HX and

HZ is max(2wc, wr)-limited.

III. LIFTED PRODUCT

In this section, we give our main definition of lifted product

codes and show how it generalizes several known types of
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quantum codes [9], [25]–[27]. We also show how to estimate

the dimension of our codes in some important special cases,

and give several examples. Finally, in Subsection III-F, we

consider a more specific case of our codes, first defined in [17],

and show how to find the dimension. Later, in Section V, we

will use this special case to construct quantum LDPC with

almost linear distance.

Before we move to the description of our codes, we need

some standard definitions and notations from algebra. Let

R be a ring. We denote the set of all m × n matrices

over R by Mm×n(R) or by Mn(R) in the case m = n.

Consider a field F. In what follows by an F-algebra we always

mean an associative algebra with a multiplicative identity. It

is well known [32, Theorem 1.3.1] that every such algebra has

a faithful representation by ℓ× ℓ matrices over F, and for any

element a ∈ R we denote by B(a) the corresponding ℓ × ℓ
matrix over F. In the cases when R is already a matrix ring

over F we assume that B(a) = a. Moreover, if A = (aij)m×n

is a matrix over R, then we consider the corresponding block

matrix

B(A) = [B(aij)]m×n ∈ Mℓm×ℓn(F).

It is easy to see that for any matrices A, B over R we have:

B(AB) = B(A)B(B); (6)

In this work we are mostly interested in the case when R is

a group algebra F2G for some finite group G. The elements

of F2G are formal sums
∑

g∈G αgg, where αg ∈ F2. Consider

elements a =
∑

g∈G αgg and b =
∑

g∈G βgg from F2G. Their

sum a+ b and product ab are defined as follows:

a+ b =
∑

g∈G

(αg + βg)g, ab =
∑

g∈G

(

∑

hr=g
h,r∈G

αhβr

)

g.

If we index the elements of the group G = {g1, . . . , gℓ}, then

for every element a =
∑

g∈G αgg ∈ F2G we define

b(a) = (αg1 , . . . , αgℓ) ∈ F
ℓ
2;

B(a) =
∑

g∈G

αgB(g),

where B(g) is the permutation ℓ×ℓ matrix, defined as follows:

B(g)ij =

{

1, if gi = ggj ;

0, otherwise.

For every vector v ∈ (F2G)n we also consider the block vector

b(v) = [b(v1), . . . ,b(vn)] ∈ Fℓn
2 .

It is not hard to see that for any a ∈ F2G the weight of each

row and each column of the binary matrix B(a) is the same

and equal to |b(a)|. Thus the row and column weights of

the block matrix B(A), where A = (aij)m×n is a matrix

over F2G, can be easily found from the corresponding weight

matrix (also called the base matrix) W = W (A) = (wij)m×n,

where wij = |b(aij)|. For example, B(A) is w-limited iff

the sum of elements of any row and column in W is bounded

above by w. The matrix W can be interpreted as the adjacency

matrix for the base Tanner graph T that was used to obtain

the G-lifted Tanner graph T̂ for the code C(A) with the parity-

check matrix B(A), where wij is equal to the number of edges

between nodes vi and vj in the base Tanner graph T .

Sometimes, where it does not cause confusion, we identify

matrices and vectors over R = F2G with the corresponding

block matrices B(·) and vectors b(·) over F2. For example,

if we say that A is w-limited, then it means that B(A)
is w-limited. For any vector v ∈ Rn we denote by |v|
the Hamming weight |b(v)| of the corresponding block vector

b(v) ∈ Fn
2 . We also often implicitly use the following trivial

equality:

b(Av) = B(A)b(v); (7)

where v is a vector, and A is a matrix over F2G.

If H is a matrix over R = F2G where |G| = ℓ, then by

C(H) we denote the set

C(H) = {c ∈ Rn | Hc = 0}.
It is clear that the set C(H) is also a vector space over F2, and

from (7) we see that it corresponds to the binary linear code

C(B(H)) ⊆ Fℓn
2 defined by the binary block matrix B(H).

Let us note that if G is abelian then F2G is a commutative

ring. Specifically, if G is a cyclic group Cℓ of order ℓ generated

by x, then F2Cℓ is isomorphic as a ring to the polynomial

quotient ring F2[x]/(x
ℓ − 1). We denote this ring by Rℓ and

usually represent its elements by polynomials in x. If we index

the elements of the group Cℓ as gi = xi−1, i ∈ [ℓ], then the set

of binary matrices B(a) where a ∈ Rℓ is the ring of circulant

ℓ × ℓ matrices over F2. More details on Rℓ can be found in

Appendix A.

In this paper, with some small abuse of terminology,

a matrix A over Rℓ and the corresponding binary block matrix

B(A) are called quasi-cyclic (QC) of lift size ℓ (also called

the circulant size). Thus every ℓm × ℓn binary QC matrix

of lift size ℓ can be represented by some polynomial matrix

A ∈ Mm×n(Rℓ). The class of QC matrices is well known

in coding theory since they are the parity-check matrices of

quasi-cyclic codes. At the same time, if G is a finite abelian

group, then matrices over F2G and the corresponding binary

classical error-correcting codes are called quasi-abelian. Note

that most of the best practical classical LDPC codes have

QC parity-check matrices.

Example 1. Consider a matrix A ∈ M2×3(R3) defined as

follows:

A =

(

1 0 1 + x2

1 + x 1 + x+ x2 x2

)

.

It has the corresponding block matrix of lift size ℓ = 3

B(A) =

















1 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 1 1
0 0 1 0 0 0 1 0 1
1 0 1 1 1 1 0 1 0
1 1 0 1 1 1 0 0 1
0 1 1 1 1 1 1 0 0

















,

and the corresponding integer weight matrix

W (A) =

(

1 0 2
2 3 1

)

.
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A. Generalized bicycle (GB) codes

The orthogonality condition (3) from the definition of CSS

codes for the parity-check matrices HX and HZ is a serious

obstacle to designing good QLDPC codes using random-like

constructions similar to the constructions used for classical

LDPC codes. Thus it makes sense to consider large families

of matrices of some particular form, where the orthogonality

condition is always satisfied. One such quite general form

for CSS codes was proposed in [27]. We call these codes

the generalized bicycle (GB) codes since they include bicycle

QLDPC codes [33] as a special case. Let us briefly remind this

construction. Consider two commuting binary ℓ×ℓ matrices A
and B, i.e., AB = BA. Let us define the parity-check matrices

as follows:

HX = [A,B] and HZ = [BT, AT]. (8)

Then we see that HXH
T
Z = AB + BA = 0. Hence

the commutativity condition (3) is always satisfied, and we

obtain a CSS code. It was proposed in [27] to use binary

circulant matrices A and B since they always commute.

The corresponding class of codes includes the bicycle codes

from [33] as a special case when B = AT.

Furthermore, we can obtain a more general class of codes

if A and B are some ℓ × ℓ matrices representing elements

from a group algebra F2G for an abelian group G, |G| = ℓ.
For example, the quasi-cyclic CSS codes from [25] can be

considered as GB codes with G = CP ×CL/2. At the same

time, Haah’s cubic codes [26] can also be considered as GB

codes with G = CL ×CL ×CL, where L is the lattice size.

B. Hypergraph product (HP) codes

Before we formally describe the LP codes in the next

section, let us first remind the definition of the hypergraph

product (HP) codes from [9]. Note that originally these codes

were defined in terms of hypergraphs, but here it will be more

convenient for us to give their definition in a matrix form.

Suppose that we have an [nA, kA, dA] linear code C(A) and

an [nB, kB , dB] linear code C(B) with parity-check matrices14

A ∈ MmA×nA
(F2) and B ∈ MmB×nB

(F2), respectively.

Then the hypergraph product (HP) code is the CSS [[N,K, d]]
code denoted HP(A,B) with the parity-check matrices:

HX = [A⊗ ImB
, ImA

⊗B],

HZ = [InA
⊗BT, AT ⊗ InB

],
(9)

where the length N and the dimension K are as follows:

N = nAmB + nBmA,

K = 2kAkB − kA(nB −mB)− kB(nA −mA).
(10)

As it was shown in [9], the minimum distance d of the

hypergraph product code HP(a, b) satisfies the following lower

bound:

d > min(dA, dB, d
T
A, d

T
B),

where the parameters dTA and dTB are the minimal distances

of the “transposed” codes C(AT) and C(BT) defined by

the parity-check matrices AT and BT, respectively.

14The parity-check matrices are not necessary full rank.

It is important to note that if the matrices A and B are

(wc, wr)-limited then the parity-check matrices HX and HZ of

the code HP(A,B) are w-limited, where w = 2max(wc, wr).
Hence, using known asymptotically good families of classi-

cal LDPC codes with (wc, wr)-limited parity check-matrices,

it is possible [9] to construct w-limited CSS codes with

asymptotically non-zero rate and d = Θ(
√
N) as the code

length N → ∞.

C. Non-binary HP codes

Though HP codes in the previous section are defined as

binary CSS codes, it is also quite straightforward to define

their non-binary versions over an arbitrary finite field Fq.

Suppose that the characteristic of Fq is 2; then the parity-check

matrices HX and HZ for the non-binary HP code HP(A,B)
are obtained from matrices A and B over Fq by (9) as for the

case of binary HP codes.

If the characteristics of Fq is not 2, we need a slightly

modified version of (9) in order to satisfy the orthogonality

condition HXH
T
Z :

HX = [A⊗ ImB
,−ImA

⊗B],

HZ = [InA
⊗BT, AT ⊗ InB

].
(11)

D. Lifted product (LP) codes

Here we consider a large family of quantum CSS codes

that simultaneously generalize the GB codes and the HP

codes. These codes first appeared in our previous work [17] in

a more restricted form under the name generalized hypergraph

product (GHP) codes. In this work we present them in

a more general form and propose a more informative name —

lifted product (LP) codes. In some sense, we can view these

codes as lifted versions of HP codes from [9], where we lift

the coefficients in the matrices from the binary field F2 up

to some ring R that is also a finite dimensional F2-algebra.

Let us remind that the elements of R can be represented by

binary ℓ × ℓ matrices. Hence when we define the LP code

over R we identify R with the corresponding matrix ring15.

Therefore without loss of generality in the definition below

we assume that R ⊆ Mℓ(F2), and B(a) = a for every a ∈ R.

Thus LP codes are essentially HP codes, where we replace

elements in their binary matrices A and B by some elements

of a matrix ring R ⊆ Mℓ(F2). As the result, we have matrices

A ∈ MmA×nA
(R) and B ∈ MmB×nB

(R) over some matrix

ring R ⊆ Mℓ(F2). If M = (mij)m×n is a matrix over R we

can consider its conjugate transpose M∗ = (mT
ji)n×m, where

mT
ji is the standard transpose of the matrix mji ∈ Mℓ(F2).

Let us emphasize that B(M∗) = B(M)T. Now, as in the case

of HP codes, we also introduce matrices:

HX = [A⊗ ImB
, ImA

⊗B],

HZ = [InA
⊗B∗, A∗ ⊗ InB

].
(12)

These matrices have coefficients from the matrix ring R,

but we can consider the corresponding binary block matrices

15In each example of a finite dimensional F2-algebra below we always
provide the corresponding matrix representation.
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B(HX) and B(HZ). In order to define a CSS code, we need to

make sure that these block matrices satisfy the orthogonality

condition B(HX)B(HZ)
T = 0. Since B(HZ)

T = B(H∗
Z),

using (6) we see that condition is equivalent to HXH
∗
Z = 0,

and thus can be rewritten as:

[A⊗ ImB
, ImA

⊗B]

[

InA
⊗B

A⊗ InB

]

= 0,

which can be further simplified to

(A⊗ ImB
)(InA

⊗B) + (ImA
⊗B)(A⊗ InB

) = 0. (13)

It is not hard to see that if every element of A commutes

with every element of B (we call such matrices element-wise

commuting) then using the mixed-product formula

(X ⊗ Y )(X ′ ⊗ Y ′) = (XX ′ ⊗ Y Y ′)

for the Kronecker product ⊗ we have:

(A⊗ ImB
)(InA

⊗B) = (ImA
⊗B)(A⊗ InB

) = A⊗B.

Since R is a ring of characteristic16 2, condition (13) is

satisfied, and every pair of element-wise commuting matrices

A and B defines the CSS code with the parity-check matrices

B(HX) and B(HZ). We denote this code by LP(A,B) and

call the lifted product (LP) code. In what follows HX and HZ

are also called the parity-check matrices for LP(A,B)
One can easily verify that if we take R = F2

∼= M1(F2)
then LP codes coincide with HP codes. We can also see that

the generalized bicycle (GB) codes with two commuting ℓ× ℓ
matrices A and B given in (8) are also a special case of LP

codes if we consider the matrices A and B as 1× 1 matrices

over Mℓ(F2).
The code length N of the CSS code LP(A,B) is given by

N = ℓ(nAmB + nBmA). We are not aware of any simple

way to find the dimension K of the code LP(A,B) in the

general case, but it is possible to find or estimate K in some

special cases. For example, if mA < nA and mB > nB , then

by counting the number of rows in B(HX) and B(HZ) we

obtain from (4) the following lower bound:

K > ℓ(nA −mA)(mB − nB).

Below we consider some other examples.

Example 2. If R is a finite field Fq with q = 2r elements and

A, B are some matrices over Fq, then the code LP(A,B) is

obtained from the non-binary code HP(A,B) if we replace

each non-binary element α in the parity-check matrix HX

of HP(A,B) by the corresponding associated r × r binary

matrix17 Mα. At the same time, in the parity-check matrix

HZ each non-binary element α is replaced by MT
α . Thus

we obtain binary block matrices that define the binary CSS

code LP(A,B). It is clear that the length of the binary code

LP(A,B) is r times the length of the corresponding non-

binary code HP(A,B). It is also not hard to check that

the dimension of LP(A,B) is also r times bigger:

dimLP(A,B) = r dimHP(A,B). (14)

16If charR 6= 2 we should define HX = [A⊗ ImB
,−ImA

⊗ B].
17The finite field Fq , q = 2r , is an r-dimensional vector space over F2.

The associated matrix Mα for α ∈ Fq is the matrix of the F2-linear transform
x 7→ αx.

Example 3. If A is some m × n matrix over a commutative

ring R ⊆ Mℓ(F2) and B = A∗, then we have the LP code

LP(A) = LP(A,A∗) of length

N = ℓ(n2 +m2)

and dimension

K > ℓ(n−m)2,

with parity-check matrices

HX = [A⊗ In, Im ⊗A∗],

HZ = [In ⊗A,A∗ ⊗ Im].

The lower bound for K easily follows from the CSS dimension

formula (4) if we take into account that matrices HX and HZ

have no more than 2ℓmn rows in total. Moreover, if A is full

rank (as a binary block matrix), then the matrices A ⊗ ImB

and InA
⊗A are also full rank. Hence all rows in B(HX) and

B(HZ) are independent and we see that:

K = ℓ(n−m)2.

E. Quasi-cyclic and quasi-abelian LP codes

One simple way to make all matrices over R to be element-

wise commuting is to enforce R to be a commutative ring.

In this section we consider one particularly important special

case of LP codes with commutative ring R = Rℓ that we

call quasi-cyclic (QC) LP codes, and its generalization called

quasi-abelian (QA) LP codes when R = F2G for some finite

abelian group G. As we saw at the beginning of this section,

if R is one of these rings we can easily control the density

of the parity-check matrices B(HX) and B(HZ) by looking

at the weight matrices W (HX) and W (HZ). In what follows,

we are going to identify matrices and vectors over R = F2G
with the corresponding block matrices B(·) and vectors b(·)
over F2.

One big advantage of QC LP codes is that they are

constructed from classical QC LDPC codes. There are many

examples of such codes with very good parameters.

Example 4. Consider the [155, 64, 20] QC LDPC code C(A)
of circulant size ℓ = 31 from [34].

A =





x x2 x4 x8 x16

x5 x10 x20 x9 x18

x25 x19 x7 x14 x28





We can construct the 8-limited code LP(A) = LP(A,A∗)
(see Example 3) with parameters [[1054, 140, d]]. We should

note that after an extensive simulation under the BP-OSD

decoder [17] we have not found any non-degenerate codeword

of weight less than 20.

If an element a =
∑

g∈G αgg ∈ F2G is represented by

the matrix B(a) ∈ Mℓ(F2), then we have B(a)T = B(ā),
where ā =

∑

g∈G αgg
−1 ∈ F2G. The map a 7→ ā is called

the antipode map for F2G. If the group G is abelian, then

the antipode map is an automorphism of F2G that respects

the weight of elements, i.e., for any u, v ∈ F2G we have:

u+ v = ū+ v̄, uv = ūv̄, |ū| = |u|.
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For example, for any a = a0 + a1x + · · · + aℓ−1x
ℓ−1 ∈ Rℓ

we have ā = a0 + aℓ−1x+ · · ·+ a1x
ℓ−1, i.e., ā = xℓa(x−1).

If A = (aij)m×n is a matrix over F2G, then it is clear

that the conjugate transpose defined in subsection III-D is

the matrix A∗ = (āji)n×m. Since the antipode map is

an automorphism of F2G, one can easily check that:

rkF2 A = rkF2 A
T = rkF2 A

∗ = rkF2 Ā, (15)

where Ā = (āij)m×n = (A∗)T. At the same time, since

the map u 7→ ū just permutes the bits in u, it is not

hard to verify that LP(A,B) ∼ LP(Ā, B̄). Besides, for

Q = LP(A,B) we see from equation (12) that when we

change the roles of the matrices HX and HZ, we obtain

the code Q∗ that is permutation equivalent to LP(B∗, A∗)
and also to LP(A∗, B∗). Hence we have that:

Q∗ ∼ LP(A∗, B∗) ∼ LP(A∗, B∗) = LP(AT, BT),

and by (5) we have:

dZ(LP(A,B)) = dX(LP(A
T, BT));

dX(LP(A,B)) = dZ(LP(A
T, BT)).

(16)

Equations (16) allow us to reduce a problem of finding

dX(LP(A,B)) to a similar problem for dZ(LP(A,B) and vice

versa.

Let us note that QC LP codes are permutation equivalent

to a special case of hyperbicycle codes [27]. If we let χ = 1
in equation (19) from [27], then the obtained CSS code is

permutation equivalent to the code LP(A,B); where ℓ := c,
A :=

∑

i aix
i, B :=

∑

i bix
i. We should also note that some

general results on hyperbicycle codes, such as Theorem 3

from [27], can be applied to QC LP codes if we assert that

χ = 1.

F. Special case of QC LP codes

Let us describe a more specific case of QC LP codes

used in [17] in order to construct several examples18 with

good error-correcting performance in the depolarizing channel.

In [17] for simplicity we considered only the case when the

lift size is odd. Here we consider the general case.

Let polynomial b ∈ F2[x] be an irreducible factor of

xℓ − 1 and A = (aij)m×n be a matrix over Rℓ. Consider

the code LP(A, b), where we understand b as a 1 × 1 matrix

over Rℓ. Hence the parity-check matrices for this code have

the following form19

HX = [A, bIm], HZ = [b̄In, A
∗]. (17)

We denote by ϕb the homomorphism from Rℓ to the quo-

tient ring R(b) = F2[x]/(b) given by the map u 7→ umod b.
Since b is an irreducible polynomial over F2, the quotient

ring R(b) is isomorphic to the finite field Fq, where q = 2deg b.

Thus we can describe this homomorphism as

ϕb(u) = u(β) = u0 + u1β + · · ·+ uℓ−1β
ℓ−1 ∈ Fq,

18In [17] these codes were called GHP codes. The parity-check matrices
of three examples were described in the appendix.

19See also equation (1) in the introduction.

where β ∈ Fq is a root of b and u =
∑ℓ−1

i=0 uix
i ∈ Rℓ.

For example, if b = 1+ x then the ring R(b) = F2[x]/(1 + x)
can be identified with F2 and ϕb(u) = u(1) = u0+ · · ·+uℓ−1

is just the number of ones modulo 2 in the binary vector u.

The homomorphism ϕb can be also extended to vectors and

matrices over Rℓ if we apply it to each element. For a vector v
and a matrix M , the result of its action is denoted by v(β)
and M(β), respectively.

Lemma 1. Let b ∈ F2[x] be an irreducible factor of xℓ−1, and

A be a matrix over Rℓ. The dimension of the code LP(A, b)
is equal to

dimLP(A, b) = deg b
(

dim C(A(β)) + dim C(AT(β))
)

,

where β is a root of the polynomial b in the field Fq
∼= R(b).

Proof. Trivially, using (15) we have:

dimF2kerH
T
X = ℓm− rkF2HX;

dimF2kerH
∗
Z = ℓn− rkF2HZ.

Besides, from (17), taking into account that HT
X =

[

AT

bIm

]

, and

H∗
Z =

[

bIn
A

]

, it follows that:

HT
Xu = 0 ⇐⇒ ATu = 0, bu = 0;

H∗
Zu = 0 ⇐⇒ Au = 0, bu = 0;

and we have20 kerHT
X = C(AT) ∩ Cm

b , kerH∗
Z = C(A) ∩ Cn

b ,

where Cb = {c ∈ Rℓ | bc = 0} is the cyclic [ℓ, deg b]-code

defined by the parity polynomial b. Clearly, g = (xℓ − 1)/b is

the generator polynomial for Cb, and the elements of the finite

field R(b)
∼= Fq are in one-to-one correspondence, given

by the map r 7→ gr, with the elements of Cb. Indeed, since

gb = 0, and hence g(r + bRℓ) = gr, we see that this one-to-

one correspondence is defined correctly. Moreover, for every

r ∈ Rℓ it follows that gϕb(r) = g(r + bRℓ) = gr, where we

used that the homomorphism ϕb : Rℓ → F2[x]/(b) can be also

defined as ϕb : r 7→ r+bRℓ. Therefore for every c = gu ∈ Cn
b

we have:

c∈C(A) ⇐⇒ gAu = 0 ⇐⇒ gϕb(Au) = 0 ⇐⇒ u∈C(ϕb(A)),

and the map u 7→ gu also gives a one-to-one correspon-

dence between C(A) ∩ Cn
b and C(ϕb(A)). Since R(b)

∼= Fq,

q = 2deg b, we see that dimF2C(A)∩Cn
b = deg b·dimC(A(β)).

By exactly the same arguments as before, we also find that

dimF2C(AT) ∩ Cm
b = deg b · dim C(AT(β)). Finally, using

CSS dimension formula (4) we get:

dimLP(A, b) = ℓ(n+m)− rkF2HX − rkF2HZ

= dimF2kerH
T
X + dimF2kerH

∗
Z

= dimF2C(AT) ∩ Cm
b + dimF2C(A) ∩ Cn

b

= deg b
(

dim C(AT(β)) + dim C(A(β))
)

,

and the lemma is proved.

Remark 2. An alternative proof of Lemma 1 in the case of

odd ℓ can be found in Appendix B.

20Here C(H) = {c | Hc = 0} is considered as a vector space over F2.
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Remark 3. If b = 1 + x then Rb
∼= F2, β = 1, and we obtain

a slightly simpler dimension formula:

dimLP(A, 1 + x) = dim C(A(1)) + dim C(AT(1)). (18)

We should also emphasize that in this case the cyclic code Cb
is the [ℓ, 1, ℓ] repetition code with g =

∑ℓ−1
i=0 x

i.

IV. EXPANDERS

In this section, we remind some standard definitions and

facts related to expander graphs and codes. A more detailed

treatment of these subjects can be found in [21]. The main

theoretical result of this section is Proposition 1, which gives

us a way to construct quasi-cyclic matrices of very larger lift

sizes with good expansion properties. We use this construction

to obtain our main result in Section V. As a byproduct of this

construction, we also get Corollary 1, which shows us how

to get asymptotically good families of classical quasi-cyclic

LDPC codes with a close to optimal lift size.

A. Expander graphs

Let G be a simple21 graph with the set of vertices V (G)
and the set of edges E(G). If vertices v, v′ ∈ V (G) are

connected by an edge e ∈ E(G), we call v, v′ adjacent and

denote this fact by v ∼ v′ or by v ∼e v′ when we want to

emphasize the edge e. We also say that a vertex v ∈ V (G) is

incident to an edge e ∈ E(G) if v is one of the two vertices

that e connects. The degree of a vertex v denoted by deg v
is the number of edges connected to it. A graph G is called

w-regular if all its vertices have degree w. The adjacency

matrix for a graph G with V (G) = {v1, . . . , vn} is the

matrix A(G) = (aij)n×n, where aij is the number of edges

e ∈ E(G) such that vi ∼e vj . Since A(G) is a symmetric

matrix, it has n real-valued eigenvalues λ1 > · · · > λn.

Let λ(G) = max(|λ2|, |λn|). We call an n-vertex w-regular

graph G an (n,w, λ)-expander if λ(G) = λ.

For any S ⊆ V (G) we denote by E(S) the set of internal

edges for S, i.e.,

E(S) = {e ∈ E(G) | ∃v, v′ ∈ S : v ∼e v
′}.

In the next section, we will need the following very well-

known property of the expander graphs.

Lemma 2. If G is an (n,w, λ)-expander and |S| 6 αn, then

|E(S)| 6 1

2

(

α+
λ

w

)

w|S|.

Proof. If G is an (n,w, α)-expander and S ⊆ V (G), then by

the expander mixing lemma [21, Lemma 2.5] we have:
∣

∣

∣

∣

|E(S, S)| − w|S||S|
n

∣

∣

∣

∣

6 λ
√

|S||S|, (19)

where E(S, S) = {(v, v′) ∈ S×S | v ∼ v′}. Let us emphasize

that each edge e ∈ E(G) that connects v, v′ ∈ S gives two

21Simple graphs do not have loops and multiple edges.

different pairs (v, v′) and (v′, v) in the set E(S, S). Hence

|E(S, S)| = 2|E(S)| and we obtain:

2|E(S)| 6 w

n
|S|2 + λ|S| 6

( |S|
n

+
λ

w

)

w|S|.

Since |S| 6 αn, we have |E(S)| 6 1
2

(

α+ λ
w

)

w|S|.

B. Expanding binary matrices

We say that a binary m× n matrix H is (α, β)-expanding,

where α, β are some positive real numbers, if for all x ∈ Fn
2

such that |x| 6 αn we have |Hx| > β|x|. It is obvious that if

H is a parity-check matrix of some code C, then d(C) > αn.

Furthermore, we also say that an m × n matrix A over Rℓ

is (α, β)-expanding if the corresponding binary block matrix

H = B(A) is (α, β)-expanding. It is clear that if B(A) is

a parity-check matrix of some QC code C, then d(C) > αℓn.

The following important proposition shows that for a wide

range of parameters there exists a w-limited QC matrix A such

that A and AT are both (α, β)-expanding.

Proposition 1. For every ε ∈ (0, 1) there exist α, β, γ, w
such that for any natural numbers ℓ > 1 and n > γ ln ℓ there

exists a w-limited QC matrix A ∈ Mm×wn(Rℓ), m 6 εwn,

such that the matrices A and AT are both (α, β)-expanding.

In order to prove this proposition, we need to describe some

particular type of Tanner codes [19] used in [2], [20]. Consider

a simple w-regular graph G with 2n vertices and a linear

[w,w − r] code C0. The idea of the Tanner code T (G, C0)
is to assign its code bits to the wn edges of G and for

each vertex v ∈ V (G) constrain the bits connected to v by

the code C0. More formally, if we index the edges of G by

the set [wn] and for each vertex v ∈ V (G) denote by N(v)
the set of indexes for the edges connected to v; then the Tanner

code is defined as

T (G, C0) = {c ∈ F
wn
2 | ∀v ∈ V (G) : c|N(v) ∈ C0},

where c|N(v) is obtained from c by deleting all the bits with

indexes outside of N(v).
We suppose that C0 always comes with the some fixed

parity-check matrix22 H0 ∈ Mr×w(F2). The parity-check

matrix H for the code T (G, C0) consists of 2n groups of

rows (Rv)v∈V (G), where each group Rv corresponds to the r
parity-checks of C0 related to the vertex v ∈ V (G), i.e.,

ρ|N(v) is one of the rows from H0 for ρ ∈ Rv. Hence

H ∈ M2rn×wn(F2), and the code T (G, C0) has non-zero

dimension whenever 2r < w. Moreover, it is not hard to see

that if 2r < w then H is a w-limited matrix.

Remark 4. Let us warn the reader that the code T (G, C0)
depends on how we index the edges of G by the set [wn].
Moreover, the parity-check matrix H for the code T (G, C0)
also depends on how we order its rows. Let Ĝ be an ℓ-
lift of a smaller base graph G, obtained by fixing in G
an arbitrary edge orientation and assigning to each oriented

edge e = (v, v′) some shift s = s(e), which corresponds to

the permutation π ∈ Sℓ (the right cyclic shift by s positions)

22Since C0 is a [w,w− r] code, the rows of H0 are linearly independent.
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from Fig. 1. Denote by h(e) (resp. h′(e)) the column of

H0 ∈ Mr×w(F2), corresponding to the connection of the edge

e to the vertex v (resp. v′) in the Tanner code T (G, C0).
The parity-check matrix of this code looks as follows:

H =













0

· · · h′(e) · · ·
0

· · · h(e) · · ·
0













if we arrange its rows to make each group of rows

(Rv)v∈V (G) a contiguous block. Then it is not hard to see

that T (Ĝ, C0) is a QC code of lift size ℓ with the follow-

ing QC parity-check matrix Ĥ , defined as a matrix over

the ring Rℓ = F2[x]/(x
ℓ − 1):

Ĥ =













0

· · · xs(e)h′(e) · · ·
0

· · · h(e) · · ·
0













.

The next lemma shows that if G is a sufficiently good

expander and C0, C⊥
0 have relatively large minimum distances,

then both H and HT are (α, β)-expanding for any size of G.

Lemma 3. Let H be the parity-check matrix of T (G, C0),
where G is a (2n,w, λ)-expander; C0 is a [w,w − r, d] code.

If λ < δw, d > δw and d(C⊥
0 ) > δw, then the binary matrices

H , HT are (α, β)-expanding for all α < δ
w

(

1− λ
δw

)

and

β = 1
δw

(

δ − αw − λ
w

)

.

Proof. Let us start with a quick remark that the conditions

λ < δw and α < δ
w

(

1− λ
δw

)

imply that δ
w

(

1− λ
δw

)

> 0 and

β > 0. We divide the proof into two parts. In the first part we

show that the matrix H ∈ M2rn×wn(F2) is (α, β)-expanding,

while in the second part that the same holds for HT.

Consider a binary vector x ∈ Fwn
2 such that |x| 6 αwn.

Let X ⊆ E(G) be the corresponding set of edges, where

the bits from x are equal to 1. We divide the set of vertices

incident to some edges from X into two parts: the set S of

vertices incident to at least δw edges from X ; and the set S′ of

vertices incident to less than δw edges from X . One can easily

check23 that |S| 6 2|X |/δw. Hence from |X | 6 αwn it also

follows that |S| 6 2αn/δ, and we can estimate the number of

edges from X connected only to S by Lemma 2:

|E(S)| 6 1

2

(

α

δ
+

λ

w

)

w|S| 6
(

α

δ2
+

λ

δw

)

|X |.

Therefore we have:

|X \E(S)| > |X | − |E(S)| >
(

1− α

δ2
− λ

δw

)

|X |.

For each edge from X \ E(S) one of the two vertices it

connects is outside of S; hence this vertex is in S′. Since S′

is connected to less than δw edges from X , we can estimate

the size of S′ as follows:

|S′| > |X \ E(S)|
δw

>
1

δw

(

1− α

δ2
− λ

δw

)

|X |.

23Each edge from X is connected to at most 2 vertices from S.

Since d(C0) > δw, for each v ∈ S′ the parity-checks of

the code C0 that correspond to v can not be simultaneously

satisfied. Therefore we have

|Hx| > |S′| > 1

δw

(

1− α

δ2
− λ

δw

)

|X |

>
1

δw

(

1− αw

δ
− λ

δw

)

|X | = β

δ
|x| > β|x|,

where we used that 1/δ 6 w and δ 6 1. Hence we see that

|x| 6 αwn implies |Hx| > β|x|. Thus H is (α, β)-expanding,

and the first part of the proof is complete.

Now let us prove that HT is also (α, β)-expanding. Hence

we need to show that for any y ∈ F2rn
2 such that |y| 6 2αrn

we have
∣

∣HTy
∣

∣ > β|y|. As we already mentioned, H consists

of 2n groups of rows (Rv)v∈V (G), where each group Rv

corresponds to the r parity-checks of C0 related to the vertex

v ∈ V (G). Thus HTy =
∑

v∈S ρv, where ρv is a linear

combination of the rows from the group Rv and S is the set

of vertices v ∈ V (G) such that Rv contains at least one row

from the linear combination HTy. Since ρv|N(v) is a linear

combination of rows from H0 and d(C⊥
0 ) > δw, we see24 that

|ρv| > δw for all v ∈ S. Let us note that |ρv ∩ ρv′ | = 0
for v 6= v′ unless the vertices v, v′ are connected by an edge

from E(S), in which case we have |ρv ∩ ρv′ | 6 1. Moreover,
∣

∣

⋂

v∈I ρv
∣

∣ = 0 if |I| > 2. Therefore we obtain that

∣

∣HTy
∣

∣ =
∣

∣

∣

∑

v∈S

ρv

∣

∣

∣ =
∑

v∈S

|ρv| − 2
∑

v 6=v′

v,v′∈S

|ρv ∩ ρv′ |

>
∑

v∈S

|ρv| − 2|E(S)| > δw|S| − 2|E(S)|.

Since |S| 6 |y| 6 2αrn, if we apply Lemma 2 to the set S,

we obtain that |E(S)| 6 1
2

(

αr + λ
w

)

w|S| and

∣

∣HTy
∣

∣ > δw|S| − 2|E(S)| >
(

δ − αr − λ

w

)

w|S|

>

(

δ − αw − λ

w

)

|y| = δwβ|y| > β|y|,

where we used that w > r, w|S| > r|S| > |y|, and δw > 1.

Hence we proved that |y| 6 2αrn implies
∣

∣HTy
∣

∣ > β|y| and

the second part is complete.

Proof of Proposition 1. It is known [35], [36] that a random

w-regular graph G w.h.p. has λ(G) < 2
√
w − 1 + 1. Thus

for any sufficiently large n > n0 there exists25 a w-regular

graph G with 2n vertices such that λ(G) < 2
√
w − 1 + 1.

At the same time, it is known [22] that for some positive

constants c1, c2 for a random shift ℓ-lift Ĝ of G we have

λ(Ĝ) 6 c1λ(G) with probability at least 1−ℓ exp(−c2n/w
2).

Hence if we choose a sufficiently large26 γ this probability is

positive for all ℓ > 1, n > γ log2 ℓ; and therefore there exists

a shift ℓ-lift Ĝ of G such that

λ(Ĝ) < c1
(

2
√
w − 1 + 1

)

. (20)

24We have ρv 6= 0 since the rows in H0 are linearly independent.
25We should also mention the reference [37, Theorem 1.3] where an explicit

construction of such graphs is given.
26It is enough to use γ = max(

⌈

w2/c2
⌉

, n0).
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Now consider ε ∈ (0, 1), and let δ be some real number

from the interval (0, 1/2) such that the following inequality

holds:

max(1 − ε/2, ε/2) + ε/4 < 1− h2(δ), (21)

where h2(x) = −x log2 x− (1− x) log2(1− x) is the binary

entropy function. Let C0 be a code defined by a uniformly ran-

dom parity-check matrix H0 ∈ Mr×w(F2), where r =
⌊

ε
2w

⌋

.

Since 1− r/w → 1− ε/2 and r/w → ε/2 as w → ∞, taking

into account (21), the Gilbert–Varshamov bound implies that

for every sufficiently large w w.h.p. we have

d(C0) > δw, d(C⊥
0 ) > δw, (22)

and the matrix H0 is full rank. Indeed, let us remind that

the Gilbert–Varshamov bound can be proved [38] using a code

defined either by a random parity-check matrix or a random

generator matrix (i.e., the parity-check matrix of the dual

code), and w.h.p. those matrices are full rank. Therefore by

the union bound we see that w.h.p C0 is a [w,w − r] code

that satisfy (22) as w → ∞. Hence if we consider a Tanner

code T (Ĝ, C0) with the code C0 that satisfy (22), and choose

a sufficiently large w such that we also have

c1
(

2
√
w − 1 + 1

)

< δw,

then using (20) by Lemma 3 we obtain that the matrices

H,HT are (α, β)-expanding for some positive constants α, β;

where H is the parity-check matrix of the code T (Ĝ, C0).
Since Ĝ is a shift ℓ-lift for G, according to Remark 4 we can

assume that the matrix H is a QC matrix of lift size ℓ, i.e.,

H = B(A) for some w-limited matrix A ∈ Mm×wn(Rℓ),
where n > γ log2 ℓ, and m = 2

⌊

ε
2w

⌋

n 6 εwn. Now since

the matrices H = B(A), HT = B(A∗) are (α, β)-expanding,

we see that A and A∗ are (α, β)-expanding. Finally, since

the antipode map u 7→ ū is an automorphism of Rℓ, and

|ATu| = |ATu| = |A∗ū|, we also obtain that the matrix AT

is (α, β)-expanding, and the proof is complete.

C. Asymptotically good QC LDPC codes with large lift sizes

Proposition 1 can be used to construct asymptotically good

families of classical QC LDPC codes of very large lift sizes ℓ.
Indeed, if we put n = ⌈γ ln ℓ⌉ and ε = 1−R in Proposition 1,

then we obtain the code C(A) of rate at least R and distance

at least αN , where N is the code length. Moreover since

logN ∼ log ℓ, and n = Θ(logN) as N → ∞, we obtain

the following corollary.

Corollary 1. For any R < 1 there exists a family of classical

QC LDPC codes of length N and rate at least R with

distance Ω(N) and lift size Ω(N/ logN) as N → ∞.

We will see below that the lift size Ω(N/ logN) from

Corollary 1 is in some sense the best possible for QC LDPC

codes and even for quasi-abelian LDPC codes with linear

minimum distance. More specifically, we will show using

the results from [23] that: for any family of quasi-abelian

LDPC codes of distance Ω(N), defined by m × n parity-

check matrices with m < n over commutative group algebras,

the lift size grows at most like O(N/ logN) as the code

length N → ∞.

Before we prove this we need some definitions and notations

from [23]. If A is an m × n matrix and I ⊆ [n], then

we denote by AI the m × |I| submatrix of A that contains

only the columns of A with indexes from the set I . If X is

a finite set and f is a real-valued function on X , we denote by

min∗
x∈X

f(x) the minimum nonzero value of f(x) on X ; if there

are no nonzero values then min∗ gives +∞. Let us remind

that the permanent of an integer matrix A = (aij)n×n denoted

by permA is given by the following formula:

permA =
∑

π∈Sn

a1,π(1) . . . an,π(n).

Thus permA is essentially detA if we ignore the signatures

of the permutations π ∈ Sn. If all elements from A are non-

negative integers then we have the following trivial upper

bound:

permA 6
∏

j∈[n]

(a1j + · · ·+ anj). (23)

If we have a matrix H = (hij)m×n over F2G, where G is

some abelian group of size ℓ; then we can consider its weight

matrix W = (wij)m×n, where wij = |hij | is the row and

the column weight of each ℓ × ℓ block in H (considered as

a binary block matrix), i ∈ [m], j ∈ [n]. If we fix the weight

matrix W and consider matrices H with ℓ → ∞, it is natural

to expect that d(C(H)) → ∞. However it turns out [23,

Theorem 7] that when m < n there is an upper bound27 on

the minimum distance d of the code C(H) that depends only

the weight matrix W , which implies that d doesn’t grow with

the lift size ℓ. The upper bound is as follows:

d 6 min∗
S⊆[n]

|S|=m+1

∑

i∈S

permWS\i. (24)

Remark 5. We should emphasize that if m = n, then this

bound does not work anymore, and the distance d can grow

linearly with the lift size ℓ. For example, if H ∈ Mn(Rℓ) is

given by the formula:

H =













1 1 0 . . . 0
0 1 1 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 . . . 1 1
x 0 . . . 0 1













,

then H is a 2-limited matrix, but d = ℓn.

Let us now return to the case when m < n. If the matrix

H is w-limited and28 w > 2, then the sum of elements in any

row and column of the weight matrix W is bounded above

by w. Hence the same holds for every its submatrix WS\i

from bound (24). Thus using (23) we obtain from (24) that

d 6 (m + 1)wm. Now suppose that the minimum distance d

27In [23] the bound is proved only for QC matrices, but the way it is proved
in [39] can be easily extended to matrices over abelian group algebras.

28The w-limited matrices with w 6 1 define trivial codes with minimum
distance 1.



13

of the code C(H) is Ω(N) as N → ∞, i.e., d > αN for some

fixed α > 0. In this case we have:

αN 6 (m+ 1)wm
6 2mwm

6 w2m < w2n.

Hence αN < w2n, n = Ω(logN), and finally we obtain that

ℓ = N/n is bounded above by O(N/ logN) as N → ∞.

V. LP CODES WITH ALMOST LINEAR DISTANCE

This section contains the proof of our main result. We con-

sider the special case of QC LP codes, studied in Section III-F,

and prove Proposition 2, which is the main technical tool

to establish the lower bound on the code distance. Finally,

we combine this lower bound with our results on expanding

matrices from Section IV to show the existence of QLDPC

codes with almost linear distance.

Proposition 2. Let A ∈ Mm×n(Rℓ) be a w-limited QC

matrix such that A and AT are (α, β)-expanding. Consider

a quantum code Q = LP(A, 1 + x). There exists a constant

γ > 0, that depends only on α, β, and w, such that:

1) d(Q) > γℓ;
2) If dim C(AT(1)) = 0 then dZ(Q) > γℓn;

3) If dim C(A(1)) = 0 then dX(Q) > γℓm.

In order to prove Proposition 2 we need two simple lemmas.

Below by jℓ we denote the all one polynomial
∑ℓ−1

i=0 x
i.

Lemma 4. Consider a quantum code Q = LP(A, 1 + x),
where A ∈ Mm×n(Rℓ), and let B = A(1)∈Mm×n(F2).
Then every non-degenerate codeword [u, v] ∈ CZ(Q) \ C⊥

X (Q)
satisfies one of the following two conditions:

1) u(1) is a non-zero codeword from C(B) ⊆ Fn
2 ;

2) [u, v] ∼ [0, jℓv
′] for some v′ ∈ Fm

2 \ imB; and we have

u = (1+x)h, v = jℓv
′+Ah, where h ∈ Rn

ℓ , |hi| 6 ℓ/2,

i ∈ [n].

Proof. First, we describe the equivalence classes of codewords

in CZ = CZ(Q). From the definition of Q it easily follows that

[u, v] ∈ CZ ⇐⇒ Au = (1 + x)v;

[u, v] ∈ C⊥
X ⇐⇒ ∃h ∈ Rn

ℓ : u = (1 + x)h, v = Ah;
(25)

and [u, v] ∈ CZ is equivalent to [u′, v′] ∈ CZ iff there exists

h ∈ Rn
ℓ such that

u′ − u = (1 + x)h, v′ − v = Ah. (26)

Hence if [u, v] ∈ CZ(Q) then A(1)u(1) = 0, and we have

u(1) ∈ C(B). Therefore when u(1) 6= 0 we obtain that [u, v]
satisfies the first condition of the lemma.

Now let us suppose that u(1) = 0. In this case we see

that u = (1 + x)h for some h ∈ Rn
ℓ . Let us note that we can

always choose h such that |hi| 6 ℓ/2, i ∈ [n]. Indeed, if it

does not have this property, then we can replace it with h′

such that (1 + x)h′ = (1 + x)h, defined by

h′
i =

{

hi, if |hi| 6 ℓ/2;

hi + jℓ, if |hi| > ℓ/2.

Hence we can assume that we have h with the desired property,

and from (26) it follows that [u, v] ∼ [0, r], where r = v+Ah.

Since [0, r] is a non-degenerate codeword from CZ(Q), we see

that r 6= 0, and (1 + x)r = 0. Thus we have r = jℓv
′, where

v′ ∈ Fm
2 , and obtain that:

v = r +Ah = jℓv
′ +Ah.

We claim that v′ 6∈ imB. Indeed, otherwise v′ = Bs for

some s ∈ Fn
2 , and it is easy to see that r = Ajℓs in this case.

Hence we have [0, r] ∼ [0,0], and obtain a contradiction with

the fact that [0, r] is a non-degenerate codeword. This proves

that v′ 6∈ imB, and [u, v] satisfies the second condition of

the lemma.

Lemma 5. For any vector a ∈ Rn
ℓ , where |ai| 6 ℓ/2, i ∈ [n],

there exists t such that |(1 + xt)a| > |a|.
Proof. Since |a| = |xta| for any t, we have

|(1 + xt)a| = |a|+ |xta| − 2|a ∩ xta| = 2(|a| − |a ∩ xta|).
It is not hard to see that:

ℓ−1
∑

i=0

|a ∩ xia| =
n
∑

j=1

ℓ−1
∑

i=0

|aj ∩ xiaj | =
n
∑

j=1

|aj |2.

Since |ai| 6 ℓ/2, i ∈ [n], we obtain

ℓ−1
∑

i=0

|a ∩ xia| =
n
∑

j=1

|aj |2 6

n
∑

j=1

|aj |
ℓ

2
=

1

2
|a|ℓ.

Therefore we have:

ℓ−1
∑

t=0

|(1+xt)a| = 2

ℓ−1
∑

i=0

|a|−2

ℓ−1
∑

t=0

|a∩xta| > 2|a|ℓ−|a|ℓ = |a|ℓ,

and there should exists t such that |(1 + xt)a| > |a|.
Proof of Proposition 2. Since A and AT are (α, β)-expanding

matrices, we see that

d(C(A)) > αℓn, d(C(AT)) > αℓm.

Let B = A(1) ∈ Mm×n(F2) be the base matrix for the QC

matrix A. It is clear that if c ∈ C(B) then jℓc ∈ C(A). Hence

we obtain that d(C(A)) 6 ℓd(C(B)) and by the same argument

d(C(AT)) 6 ℓd(C(BT)). Thus we have

d(C(B)) > αn, d(C(BT)) > αm.

Consider a non-degenerate codeword c =[u, v]∈CZ(Q)\C⊥
X(Q).

From Lemma 4 it follows that u(1) ∈ C(B), and we have only

two cases:

1) u(1) 6= 0, and thus |u(1)| > αn, since u(1) ∈ C(B);
2) u(1) = 0, and thus c ∼ [0, jℓv

′] for some v′ ∈ Fm
2 \{0}.

Let us consider each case separately.

Case 1. In this case we have |u(1)| > αn. Let us show

that |c| = |u| + |v| > γ1ℓn, where γ1 = min(α/2, αβ/4).
If |u| > αℓn/2 then we are done. Now suppose we have

|u| 6 αℓn/2. We claim that |v| > αβℓn/4. Indeed, consider

u(t) = jtu, s(t) = Au(t),

where jt =
∑t−1

i=0 x
i, t ∈ [ℓ]. Since for any t ∈ [ℓ] we have

(1 + x)jt = 1 + xt, it follows that:

s(t) = Aujt = (1 + x)vjt = (1 + xt)v,
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where we use that Au = (1+x)v by (25). Besides, we see that
∣

∣u(1)
∣

∣ = |u| 6 αℓn/2 and
∣

∣u(ℓ)
∣

∣ = |jℓ · u(1)| > αℓn. Hence

we can consider the minimal t0 such that
∣

∣u(t0+1)
∣

∣ > αℓn.

Since u(t0+1) = u(t0) + xt0+1u and
∣

∣xt0+1u
∣

∣ = |u| 6 αℓn/2,

we obtain
∣

∣

∣u(t0)
∣

∣

∣ >

∣

∣

∣u(t0+1)
∣

∣

∣− |u| > αℓn/2.

Finally, using that s(t0) = (1+xt0)v, αℓn/2 6
∣

∣u(t0)
∣

∣ < αℓn,

and the fact that A is (α, β)-expanding, we have:

|v| > 1

2

∣

∣

∣s(t0)
∣

∣

∣ =
1

2

∣

∣

∣Au(t0)
∣

∣

∣ >
β

2

∣

∣

∣u(t0)
∣

∣

∣ >
αβ

4
ℓn,

and the claim is proved. Therefore in all cases we see that

|c| > γ1ℓn.

Case 2. In this case u = (1 + x)h, v = jℓv
′ + Ah; where

v′ ∈ F
m
2 \ {0}, h ∈ Rn

ℓ , and |hi| 6 ℓ/2, i ∈ [n]. We show

that either |u| > γ2ℓ or |v| > γ2ℓ, where γ2 = α
4w min(β, 1).

Assume the converse, then |u| < γ2ℓ and |v| < γ2ℓ. Since

Ah = v + jℓv
′, for every t ∈ [ℓ] we get:

|(1 + xt)Ah| = |v + jℓv
′ + xtv + xtjℓv

′| = |v + xtv| < 2γ2ℓ,

where we use that xtjℓ = jℓ. Further, since A is w-limited,

|jℓv′| > ℓ, |v| 6 γ2ℓ 6 ℓ/2, and α < 1, we obtain:

|h| > |Ah|
w

=
|v + jℓv

′|
w

>
|jℓv′| − |v|

w
>

ℓ

2w
>

αℓ

2w
.

Moreover, if we consider wt = |(1 + xt)h|, then by Lemma 5

there exists t such that wt >
αℓ
2w . Let us denote by t0

the smallest such t. Since 1 + xt0 = (1 + x) + x(1 + xt0−1),
|(1 + x)h| = |u| 6 γ2ℓ, and

∣

∣x(1 + xt0−1)h
∣

∣ = wt0−1 < αℓ
2w ,

we see that

∣

∣(1 + xt0)h
∣

∣ 6 |(1 + x)h|+
∣

∣x(1 + xt0−1)h
∣

∣

<
(

γ2 +
α

2w

)

ℓ 6
( α

4w
+

α

2w

)

ℓ =
3

4w
αℓ < αℓn.

Therefore, if we recall that the matrix A is (α, β)-expending,

then from |(1 + xt0)h| < αℓn it follows that

∣

∣A(1 + xt0)h
∣

∣ > βwt0 > β
αℓ

2w
> 2γ2ℓ.

However, we showed earlier that |A(1 + xt)h| < 2γ2ℓ for

every t ∈ [ℓ]. Hence we have a contradiction and obtain that

in the second case |c| = |u|+ |v| > γ2ℓ.
Now, in order to finish the proof of Proposition 2, we

need to set γ = min(γ1, γ2) and notice that dZ(Q) > γℓ
in the both considered cases. Besides, if dim C(AT(1)) = 0
then imA(1) = C⊥(AT(1)) = Fm

2 , and by Lemma (4) we do

not have case 2. Thus in this situation we obtain a better lower

bound dZ(Q) > γℓn. At the same time, from (16) it follows

that dX(Q) = dZ(LP(A
T, 1+x)). Therefore since AT is also

(α, β)-expanding, we see, using exactly the same arguments

as before, that dX(Q) > γℓ, and dX(Q) > γℓm in the case

when dim C(A(1)) = 0. This completes the proof.

Now we are ready to prove our main result.

Proof of Theorem 1. By Proposition 1 for every ℓ > 1 there

exists a w-limited matrix A ∈ Mm×wn(Rℓ), n = ⌈γ ln ℓ⌉,
m 6

1
2wn, such that A and AT are (α, β)-expanding,

where α, β, γ, and w are some fixed constants. Consider

a quantum code Q = LP(A, 1 + x). It has the code length

N = ℓ(wn+m), and since logN ∼ log ℓ, and n = Θ(logN)
as N → ∞, using (18) the dimension of Q is equal to

K = Θ(n) = Θ(logN). Moreover, Proposition 2 implies that

d(Q) > γℓ.
Let us show the upper bound d(Q) 6 ℓ = Ω(N/ logN).

Indeed, from (16) it follows that dX(Q) = dZ(Q′), where

Q′ = LP(AT, b). If we apply Lemma 4 to the code Q′,

then we obtain that [0, jℓv
′] is a non-degenerate codeword

from CZ(Q′) if v′ 6∈ imBT, where B = A(1)∈Mm×wn(F2).
Since m < wn, the column space of BT does not contain some

standard basis vector ei = (0, . . . , 1, . . . , 0) ∈ Fwn
2 . Therefore

c = [0, jℓei] is a non-degenerate codeword from CZ(Q′), and

dX(Q) = dZ(Q′) 6 |c| = ℓ. Hence we finally obtain that

d(Q) = Θ(ℓ) = Θ(N/ logN), and the proof is complete.

VI. CONCLUSION

We have demonstrated that the family of lifted product

codes from our previous work [17] contains QLDPC codes of

dimension Θ(logN) and distance Θ(N/ logN) as the code

length N → ∞. Moreover, we have shown a way how

to increase their dimension and obtained QLDPC codes

of dimension Ω(Nα logN) and distance Ω(N1−α/2/ logN),
where 0 6 α < 1. To the best of our knowledge, the pa-

rameters of the obtained codes are better than for previous

QLDPC constructions. Let us note that the obtained distance

Θ(N/ logN) is also asymptotically larger than the currently

best-known distance N1−ε for sparse subsystem codes [40],

where ε = O(1/
√
logN).

We should emphasize that Proposition 2 allows us, in

principle, to obtain (with some extra work) QLDPC codes,

where dZ = Θ(N) and dX = Θ(N/ logN). Though we think

that we know how to achieve this, we do not present a formal

proof here in order to make our construction of the Tanner

code T (G, C0) as simple as possible.

As a simple byproduct of the proof of Theorem 1 we have

also constructed a family of classical QC LDPC codes of any

design rate and distance Θ(N) with, in some sense, optimal

circulant size Ω(N/ logN).
Besides, we have further generalized our construction

from [17], and obtained a large class of CSS codes called

lifted product codes. The proposed codes are quite general and

contain many of the best-known quantum LDPC codes such

as the hypergraph product codes [9], the bicycle codes [33],

the Haah’s cubic codes [26]. Some of the codes from this

class (e.g., the codes LP(A,A∗) from Example 3) have

the dimension K = Θ(N) as N → ∞, but the only upper

bound on the minimum distance we have now is O(N/ logN).
However, we should warn the reader that the methods we used

in the proof of Proposition 2 cannot be directly applied here.

Therefore it is an interesting open problem whether some of

these codes have distance that matches this upper bound. It is

also interesting weather this distance can be made linear using

other matrix rings R ⊆ Mℓ×ℓ(F2), e.g. non-commutative

ones.

We have also extended the lifted product operation from

codes to chain complexes. It naturally generalizes the standard
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tensor product of two complexes, widely used in the context

of quantum codes. Though we do not discuss it here, this

operation can be used to obtain quantum codes out of quantum

and classical codes. For example, any quasi-cyclic (classical

or quantum) code C of lift size ℓ can be combined with some

other quasi-cyclic code (classical or quantum) C′ of the same

lift size in order to produce a quantum code from the lifted

product C ⊗ℓ C′. We think that obtaining such codes, and

estimating their parameters can also be an interesting line of

future research.
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APPENDIX A

RING OF CIRCULANTS

An ℓ× ℓ circulant matrix A over F2 takes the form

A =









a0 al−1 . . . a1
a1 a0 . . . a2
. . . . . . . . . . . . . . . . . . . .
aℓ−1 aℓ−2 . . . a0









,

where a0, . . . , aℓ−1 ∈ F2. It is readily seen that the matrix A
can be represented in the form

A = a0I + a1P + . . . aℓ−1P
ℓ−1,

where I is the ℓ× ℓ identity matrix and

P =













0 0 . . . 1
1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . . .
0 0 . . . 0













is the ℓ × ℓ permutation matrix representing the right cyclic

shift by one position. Since P ℓ = I , we see that the ring

of all ℓ × ℓ circulant matrices over F2 is isomorphic to the

ring Rℓ = F2[x]/(x
ℓ − 1) of polynomials over F2 modulo

the polynomial xℓ − 1. Hence the circulant matrix A can be

uniquely represented by the polynomial:

a = a0 + a1x+ · · ·+ aℓ−1x
ℓ−1.

The algebraic structure of the ring Rℓ is well studied in

the coding literature (see, e.g., [41]). We briefly review it here.

First, let us consider the special case when ℓ is odd. In this

case the polynomial xℓ−1 factors into a product of irreducible

polynomials over F2

xℓ − 1 = f1(x) · · · fs(x). (27)

This is true, since

gcd
(

(xℓ − 1)′, xℓ − 1
)

= gcd
(

ℓxℓ−1, xℓ − 1
)

= 1,

and the polynomial xℓ − 1 is square-free.

In the general case we have ℓ = 2eℓ′, where ℓ′ is odd. Hence

it follows that

xℓ − 1 = x2eℓ′ − 1 = (xℓ′ − 1)2
e

.

Moreover, since ℓ′ is odd, we can apply the factorization (27)

to the polynomial xℓ′ − 1 and obtain that

xℓ − 1 =
(

f1(x)
)2e · · ·

(

fs(x)
)2e

. (28)

Since the polynomials (f1(x)
)2e

, . . . , (fs(x)
)2e

are pair-

wise coprime, from the Chinese remainder theorem it follows

that the ring Rℓ is isomorphic to the direct product

R(1) × · · · ×R(s) (29)

of the rings R(i) = F2[x]/
(

fi(x)
)2e

, i ∈ [s].

When ℓ is odd we have e = 0 and the rings R(1), . . . , R(s)

are in fact fields, since the polynomials f1(x), . . . , fs(x) are

irreducible over F2.
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APPENDIX B

DECOMPOSITION OF QUASI-ABELIAN LP CODES

Consider a commutative group algebra R = F2G, where

|G| = ℓ. Suppose that R is a direct product of rings:

R ∼= R(1) × · · · ×R(s) (30)

with the corresponding morphisms ϕi : R → R(i), i ∈ [s].
Let us note that since R is a finite dimensional algebra

over F2, the same holds for the rings R(1), . . . , R(s), and

we have
∑

i∈[s] dimR(i) = ℓ. This direct product structure

implies that any matrix M over R can be uniquely represented

by the collection of matrices
(

ϕi(M)
)

i∈[s]
, where ϕi(M) is

the matrix over R(i) obtained by the action of ϕi on each

element of M .

Using this idea, we can represent any code LP(A,B)
constructed from matrices A and B over R by the collection of

s codes
(

LP(Ai, Bi)
)

i∈[s]
, where Ai = ϕi(A), Bi = ϕi(B)

are matrices over the ring R(i). Since the direct product

gives us a one-to-one correspondence between the elements

a ∈ R and the tuples
(

ϕi(a)
)

i∈[s]
, we also get a one-to-

one correspondence between the codewords c from LP(A,B)
and the tuples of codewords

(

ϕi(c)
)

i∈[s]
from the collection

(

LP(Ai, Bi)
)

i∈[s]
. Moreover, it is not hard to check that

this one-to-one correspondence also respects the degeneracy

of the codewords, i.e., c is degenerate iff all the codewords
(

ϕi(c)
)

i∈[s]
are degenerate. This yields that:

dimLP(A,B) =
∑

i∈[s]

dimLP(Ai, Bi).

In addition, if in decomposition (30) every ring R(i) is

a finite field Fqi , then every LP(Ai, Bi) can be uniquely

represented (see Example 2) by a non-binary HP code defined

by the matrices Ai and Bi over Fqi , where qi = 2ri , i ∈ [s].
Hence using (14) we obtain the following formula:

dimLP(A,B) =
∑

i∈[s]

ri dimHP(Ai, Bi). (31)

At the same time, dimHP(Ai, Bi) for each i ∈ [s] can be

found by formula (10).

If the lift size ℓ = |G| is odd, then from Maschke’s theorem

it follows that the algebra F2G is semisimple and hence is

isomorphic [32, Theorem 2.4.1] to the direct product of finite

fields Fq1 × · · · × Fqs . Hence, for matrices A and B over F2G,

the dimension of the quasi-abelian code LP(A,B) is given by

formula (31).

Let us also note that if ℓ is odd, then Lemma 1 is just

a special case of formula (31). Indeed, it is well known

(see Appendix A) that if ℓ is odd, then the ring Rℓ is

isomorphic to the direct product of finite fields:

R ∼= Fq1 × · · · × Fqs ,

where each field Fqi , qi = 2ri , corresponds to an irreducible

factor fi ∈ F2[x], deg fi = ri, of the polynomial xℓ − 1. We

have the following homomorphisms ϕi : Rℓ → Fqi defined by

ϕi : u 7→ u(βi), where βi is a root of fi in the field Fqi ,

i ∈ [s]. Without loss of generality we can assume that f1 = b,
and β1 = β. Hence by (31) we have29:

dimLP(A, b) =
∑

i∈[s]

ri dimHP(A(βi), b(βi)).

Since b(βi) 6= 0 whenever i 6= 1, it is easy to see that

dimHP(A(βi), b(βi)) = 0 for i 6= 1. At the same time, it is

clear that:

dimHP(A(β), 0) = n+m− rk[A(β), 0]− rk[0, AT(β)]

= dim C(A(β)) + dim C(AT(β)),

where n,m are the number of columns and rows in A,

respectively. Thus

LP(A, b) = r1
(

dim C(A(β)) + dim C(AT(β))
)

,

where r1 = deg b, and we obtain the formula from Lemma 1.

APPENDIX C

LIST OF SYMBOLS AND ABBREVIATIONS

[n] set {1, 2, . . . , n}
|u| Hamming weight of the vector u

x ∩ y intersection of binary vectors

Fq finite field with q elements

Sn set of all permutations on [n]
Cn cyclic group of order n
ℓ lift size or circulant size

Rℓ quotient ring F2[x]/(x
ℓ − 1) ∼= F2Cℓ

jt all one polynomial
∑t−1

i=0 x
i

FG group algebra over F for the group G
ā antipode ā =

∑

g∈G αgg
−1 for a ∈ FG

C⊥ dual code for C
C(H) code with the parity-check matrix H
kerA kernel of the linear map v 7→ Av
imA image of the linear map v 7→ Av

Mm×n(R) set of all m× n matrices over R
Mn(R) set of all n× n matrices over R
B(A) block matrix for A∈Mm×n(R)
AT standard transpose for A
A∗ conjugate transpose for A
Q∗ quantum code Q with swapped CZ, CX

Q ∼ Q′ permutation equivalent codes

HP(A,B) hypergraph product code

LP(A,B) lifted product code

QLDPC quantum low-density parity-check

LDPC classical low-density parity-check

QC quasi-cyclic

w.h.p with high probability

29Let us note that in this sum we consider non-binary HP codes.
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