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A Class of Optimal Structures for Node
Computations in Message Passing Algorithms

Xuan He, Kui Cai, and Liang Zhou

Abstract—Consider the computations at a node in a message
passing algorithm. Assume that the node has incoming and
outgoing messages x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn),
respectively. In this paper, we investigate a class of structures
that can be adopted by the node for computing y from x, where
each yj , j = 1, 2, . . . , n is computed via a binary tree with leaves
x excluding xj . We make three main contributions regarding
this class of structures. First, we prove that the minimum
complexity of such a structure is 3n − 6, and if a structure
has such complexity, its minimum latency is δ + dlog(n − 2δ)e
with δ = blog(n/2)c, where the logarithm always takes base
two. Second, we prove that the minimum latency of such a
structure is dlog(n − 1)e, and if a structure has such latency,
its minimum complexity is n log(n − 1) when n − 1 is a power
of two. Third, given (n, τ) with τ ≥ dlog(n − 1)e, we propose
a construction for a structure which we conjecture to have the
minimum complexity among structures with latencies at most
τ . Our construction method runs in O(n3 log2(n)) time, and
the obtained structure has complexity at most (generally much
smaller than) ndlog(n)e − 2.

Index Terms—Binary structure, Complexity, latency, low-
density parity-check (LDPC) code, message passing algorithm.

I. INTRODUCTION

Message passing algorithms are widely applied for the
decoding of error correction codes such as the low-density
parity-check (LDPC) codes [1]–[6]. The algorithms can be
considered as working on a graph, in which messages are
passing along edges, and each node receives incoming mes-
sages from its connecting edges and then computes outgoing
messages that will be passed back along the connecting edges.
More specifically, consider a node, such as a check/variable
node of LDPC codes, which has n connecting edges. (We
assume n ≥ 3 throughout this paper and specify cases for
n < 3 separately.) The incoming messages are denoted by
x = (x1, x2, . . . , xn), where for j ∈ [n] = {1, 2, . . . , n}, xj
comes from the j-th connecting edge. This node then computes
n outgoing messages, denoted by y = (y1, y2, . . . , yn), where
for j ∈ [n], yj will be passed back along the j-th connecting
edge. The corresponding node computations are to compute
each yj , j ∈ [n] from x excluding xj . We remark that the
messages need not to be real numbers.
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Fig. 1. A structure for realizing the forward-backward computation of y [7],
where squares, circles, and dotted circles represent input, internal, and output
nodes, respectively.

In this paper, we consider a class of structures, in which
each yj , j ∈ [n] is computed by using a binary tree with leaves
x excluding xj . For example, assume

yj = min
i∈[n]\{j}

xi,∀j ∈ [n], (1)

which is used in the computation at the check node in the min-
sum decoding of LDPC codes [3] (messages considered here
are real numbers). Fig. 1 shows a classical structure [7] for the
computation of (1). This structure realizes the computation of
a given yj based on a binary tree whose leaves correspond to
{xi : i ∈ [n] \ {j}} and whose internal nodes correspond to
the two-input min operations. Taking n = 6 as an example,
the six binary trees resulted from Fig. 1 are shown in Fig 2.

The structure in Fig. 1 actually carries out the forward-
backward computation [7]. Taking the computation of (1) as
an example, the forward and backward computations are given
by

fj = min
i=1,...,j

xi =

{
x1, j = 1,

min{fj−1, xj}, 1 < j < n,
and

bj = min
i=j,...,n

xi =

{
xn, j = n,

min{bj+1, xj}, 1 < j < n,
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Fig. 2. Examples of directed binary trees (DBTs) used for computing yj , ∀j ∈
[n] = [6], where squares, circles, and dotted circles represent leaves, internal
nodes, and roots, respectively.

respectively. Then, we have

yj = min
i∈[n]\{j}

xi =


bj+1, j = 1,

min{fj−1, bj+1}, 1 < j < n,

fj−1, j = n.

The complexity of this structure is defined as the number of
internal nodes (min operations) which is given by 3n − 6:
each of {f2, . . . , fn−1, b2, . . . , bn−1, y2, . . . , yn−1, } takes one
min operation. The latency of the structure is defined as the
longest distance between any pair of (xi, yj), i 6= j, which is
given by n− 2 (e.g., from x1 to yn).

It is natural to ask what are the minimum complexity and
minimum latency of such a class of structures? Accordingly,
this paper derives the following results.
• We prove that the minimum complexity of such a struc-

ture is 3n − 6. If a structure has such complexity (i.e.,
complexity-optimal), its minimum latency is δ+dlog(n−
2δ)e with δ = blog(n/2)c, where the logarithm always
takes base two in this paper. We also propose a sim-
ple construction for complexity-optimal structures which
have such latency.

• We prove that the minimum latency of such a structure is
dlog(n−1)e. If a structure has such latency (i.e., latency-
optimal), its minimum complexity is n log(n−1) for n =
2k+1 with k > 0, and we propose a simple construction
for this case.

• Given (n, τ) with τ ≥ dlog(n − 1)e, we propose a
construction for a structure Sn,τ which we conjecture
to have the minimum complexity among structures with
latencies at most τ . Our construction method runs in
O(n3 log2(n)) time, and the obtained Sn,τ has complex-
ity at most (generally much smaller than) ndlog(n)e− 2.

The complexities of Sn,τ , denoted by φ(n, τ), are derived in
Section VI, and some typical values of φ(n, τ) are presented

in Table I of Section VI. It is worth mentioning that structures
that are both complexity-optimal and latency-optimal only
exist for n = 2, 3, 4, 6. Assume that the min-sum algorithm
[3] (or its variants) is applied to decode the 802.11n LDPC
code [8] which has check node degrees of 7 and 8. For each
degree-7 check node (n = 7), using the structure of Fig. 1
to implement (1) leads to complexity 15 and latency 5. On
the contrary, Table I shows that there exist a structure of
complexity 15 and latency 4, and also a structure of complexity
18 and latency 3. Moreover, for each degree-8 check node
(n = 8), using the structure of Fig. 1 for implementing (1)
results in complexity 18 and latency 6. Table I, however, shows
that there exist a structure of complexity 18 and latency 4, and
a structure of complexity 22 and latency 3.

We remark that there exist some other structures [9], [10]
which are specially designed for the computation of (1). They
do not belong to the class of structures considered in this
paper. To make a fair comparison in terms of complexity and
latency, more factors need to be taken into consideration: the
comparators with different bit widths, the multiplexers, the
latency of comparators and multiplexers, and so on, which
are out of the scope of the current paper. We thus only make
two more remarks. First, the structures proposed in [9], [10]
can never achieve the minimum latency dlog(n−1)e. Second,
they are only suitable for the min operations, while the class
of structures considered in this paper is always applicable
for the node computation no matter what binary operations
are involved. For example, the considered class of structures
is perfectly suitable for the mutual information-maximizing
lookup table (MIM-LUT) decoding [11]–[21], which recently
attracts much attention as it takes two-input table lookup
operations to eliminate arithmetic operations.

The remainder of this paper is organized as follows. Sec-
tion II introduces preliminaries regarding graphs and trees.
Section III defines the structures considered in this paper for
node computation. Sections IV and V investigate complexity-
optimal and latency-optimal structures, respectively. Section
VI considers the construction of the aforementioned structure
Sn,τ . Finally, Section VII concludes this paper.

II. PRELIMINARIES

In this section, we introduce preliminaries regarding graphs
and trees, mainly based on their definitions in [22, Appendix
B].

A directed (resp. undirected) graph G is a pair (Gv, Ge),
where Gv and Ge are the node/vertex set and edge set,
respectively, and any element in Ge is called a directed
(resp. undirected) edge which is denoted by an ordered (resp.
unordered) pair (a, b) ∈ Gv ×Gv . The term “ordered” (resp.
“unordered”) implies that (a, b) 6= (b, a) (resp. (a, b) = (b, a)).
(Note that self-loops are forbidden in this paper, i.e., we
have a 6= b,∀(a, b) ∈ Ge.) When drawing a graph, we
use arrows and lines to represent directed and undirected
edges, respectively. For convenience, we also consider that
G = Gv ∪ Ge, and accordingly, we also write a ∈ Gv as
a ∈ G and (a, b) ∈ Ge as (a, b) ∈ G. A graph G′ is called a
subgraph of G if G′ ⊆ G.
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In a directed graph G, we say that (a, b) ∈ G leaves a
and enters b; accordingly, (a, b) is a leaving/outgoing edge
of a and an entering/incoming edge of b. Instead, in an
undirected graph G, we simply say that (a, b) ∈ G connects
a and b; accordingly (a, b) is an edge of a and b. We use
the subtraction/addition (i.e., −/+) to describe the operation
of removing/adding a node a or an edge (a, b) from/into a
graph G = (Gv, Ge), where (a, b) is a directed edge if and
only if (iff) G is a directed graph. Specifically, G − a =
(Gv \ {a}, Ge \ {(a1, a2) ∈ Ge : a1 = a or a2 = a}),
G + a = (Gv ∪ {a}, Ge), G − (a, b) = (Gv, Ge \ {(a, b)}),
and G+ (a, b) = (Gv ∪ {a, b}, Ge ∪ {(a, b)}).

A path P of length k from a ∈ G to b ∈ G is a node
sequence P = (v0, v1, . . . , vk) such that v0 = a, vk = b,
and (vi−1, vi) ∈ G,∀i ∈ [k]. The distance from a to b is
the length of the shortest path from a to b (the distance is
defined as ∞ if there is no such a path). P is a simple path if
vi 6= vj ,∀ 0 ≤ i < j ≤ k. Moreover, P forms a (simple) cycle
if k ≥ 2, v0 = vk, (v0, v1) 6= (v1, v2), and (v1, v2, . . . , vk) is
a simple path. A graph with no cycle is acyclic. We refer to
a directed acyclic graph by a DAG. If there is a path P from
a to b, we say that b is reachable from a (via P ), denoted
by a  b. For any directed graph G and a ∈ G, we say that
E(a,G) = ({b ∈ G : b  a}, {(b′, b′′) ∈ G : b′′  a}) is
the subgraph entering a in G, and L(a,G) = ({b ∈ G : a  
b}, {(b′, b′′) ∈ G : a  b′}) is the subgraph leaving a in G.
An undirected graph is connected if every node is reachable
from all other nodes.

A tree is a connected, acyclic, undirected graph. For any
tree T and any node a ∈ T , a is called an internal node (resp.
external node or leaf) if a has more than one (resp. only one)
edge. There is a unique simple path between any pair of nodes
in T . The diameter of T , denoted by d(T ), is the length of
the longest simple path in T .

A rooted tree is a tree in which there is a unique node called
the root of the tree. Consider a rooted tree T , and denote its
root by r(T ). The distance between any node a ∈ T and r(T )
is called the depth of a in T . A level of T consists of all nodes
at the same depth. The height of T is equal to the largest depth
of any node in T . For any edge (a, b) ∈ T , assuming that a
has a larger depth (which is equal to one plus the depth of
b), then, b is called the parent of a, and a is called a child
of b. The directed version of T , say T ′, is to change each
undirected edge, say (a, b) ∈ T with a being a child of b, into
the directed edge (a, b) ∈ T ′. T ′ is called a directed rooted
tree (DRT), and we say that T is the undirected version of
T ′. For any a ∈ T ′, E(a, T ′) is the subtree of T ′ rooted at a;
accordingly, the undirected version of E(a, T ′) is the subtree
of T rooted at a.

A (full) binary tree T is a rooted tree in which each node
has either zero or two children (left child and right child).
Assume that the height of an arbitrary binary tree T is hT . T
is called a complete binary tree iff for 0 ≤ i < hT , the i-th
level of T contains 2i nodes, and nodes in the hT -th level of
T are as far left as possible. Moreover, T is called a perfect
binary tree iff for 0 ≤ i ≤ hT , the i-th level of T contains 2i

nodes. The subtree rooted at the left (resp. right) child of r(T )
is called the left (resp. right) subtree of T . Similar to DRTs,

we have directed binary trees (DBTs). Meanwhile, we refer to
the directed version of a complete (resp. perfect) binary tree
as a complete (resp. perfect) DBT.

For any graph G = (Gv, Ge), G is labelled iff every node
in G is given a unique label, such as 1, 2, . . . , |Gv| (as a
result, each edge is also given a unique label). Otherwise,
G is partially unlabelled (even if no node is labelled). Two
labelled graphs G and G′ are the same, i.e., G = G′, iff
G and G′ have same labelled nodes and edges (and root for
rooted trees). Two partially unlabelled graphs G and G′ are
the same iff there exists a way to label all unlabelled nodes in
G and G′ such that G and G′ become labelled and the same.

III. STRUCTURES FOR NODE COMPUTATION

Recall that x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
denote the incoming and outgoing messages, respectively.
In this paper, we consider the case where for j ∈ [n], a
DBT Tj is used to describe the computation of yj from x
excluding xj . More specifically, in Tj , leaves correspond to
incoming messages x excluding xj , internal nodes correspond
to binary operations, and the root r(Tj) corresponds to yj .
Some examples of such DBTs for n = 6 are shown in Fig. 2.

Define an input node set X = {xj : j ∈ [n]} and an output
node set Y = {yj : j ∈ [n]}, where node xj (resp. yj) is
called the j-th input (resp. output) node which corresponds to
the j-th incoming message xj (resp. outgoing message yj).
In this paper, we remark that for any graph G and any node
a ∈ G, a is labelled in G iff a is an input node from X or
an output node from Y . As a result, G is generally partially
unlabelled. We consider to use a structure, defined below, to
describe a computation process.

Definition 1: A structure S considered in this paper is a
DAG fulfilling the following three properties.
• For any a ∈ S, we have a ∈ X iff a has no incoming

edge in S.
• For any a ∈ S, E(a, S) is a DBT.
• For two different nodes a, b ∈ S, E(a, S) 6= E(b, S)

(the inequality corresponds to comparison between two
partially unlabelled graphs).

For any a ∈ S ∩X , we also call a an input node of S, and
we say that S has input size |S∩X| (the number of input nodes
in S). Any other node in S is called a computation node, and
it must have exactly two incoming edges in S. In particular,
any computation node with no outgoing edge is also called an
output node (may not belong to Y ). For any a ∈ S, we call
E(a, S) the subtree of S rooted at a. The third property in
Definition 1 indicates that S does not have the same subtrees.
For convenience, let E(S) = {E(a, S) : a ∈ S} be the set
of all subtrees of S. For any two structures S and S′, denote
the union of S and S′ by S ∨S′, where only one copy of the
same subtrees is kept such that S ∨ S′ is still a structure. We
have E(S ∨S′) = E(S)∪E(S′). For example, the six DBTs
(structures) in Fig. 2 can be united (under ∨) into the structure
shown in Fig. 1 with n = 6.

Definition 2: A structure S used for computing y is a
structure (see Definition 1) additionally fulfilling the following
property.
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(a) (b)

Fig. 3. (a) The only structure S ∈ S3 and (b) only T-tree T ∈ T3, and we
have S = h(T ).

• S contains n output nodes, which are exactly Y =
{y1, y2, . . . , yn}, where for j ∈ [n], E(yj , S) is a DBT
with leaves X \ {xj}.

We remark that any structure defined by Definition 2 can
be used for computing y, but that defined by Definition 1 may
not. From Definition 2, we have S = ∨j∈[n]E(yj , S), and S
has input size n. Let Sn be the set of all structures used for
computing y (and with input size n). Fig. 1 shows an instance
in Sn. Meanwhile, the only structure in S3 is shown by Fig.
3(a). For any S ∈ Sn, it is easy to see that for any j ∈ [n],
each output node in Y \ {yj} is reachable from input node
xj via a unique path in S, but yj is not reachable from xj .
Moreover, after removing any nodes and/or edges from S, we
can no longer have S ∈ Sn.

Definition 3: For any structure S, the complexity of S,
denoted by c(S), is equal to the number of computation nodes
in S. The latency of S, denoted by l(S), is equal to the length
of the longest simple path in S.

As an example, the complexity and latency of the structure
in Fig. 1 are 3n−6 and n−2, respectively. It is reasonable to
use complexity and latency as two key criteria for evaluating
the performance of a structure. In this paper, one of our main
purpose is to discover complexity-optimal and/or latency-
optimal structures in Sn, as defined below.

Definition 4: Let cmin
n = minS∈Sn c(S) and lmin

n =
minS∈Sn l(S). Moreover, let Sco

n = {S ∈ Sn : c(S) = cmin
n }

and S lo
n = {S ∈ Sn : c(S) = cmin

n }. For any structure S ∈ Sn,
S is complexity-optimal (resp. latency-optimal) iff S ∈ Sco

n

(resp. S ∈ S lo
n ).

IV. COMPLEXITY-OPTIMAL STRUCTURES

In this section, we first investigate the properties of
complexity-optimal structures, including deriving the value of
cmin
n . Then, we propose to use a class of trees, called T-trees,

to equivalently describe complexity-optimal structures. T-trees
make it easy to find the minimum latency of complexity-
optimal structures, and also lead to a simple construction for
complexity-optimal structures.

A. Properties of Complexity-Optimal Structures

For any directed graph G and any node a ∈ G, converting
a into a directed edge (a1, a2) is to split a into two new
nodes a1 and a2 in G such that they keep only the incoming
and outgoing edges of a, respectively, and the directed edge
(a1, a2) is also added into G (a no longer exists in G). An
example is shown in Fig. 4, where Gc is the resulting graph
after converting a and b in Gd into (a1, a2) and (b1, b2),

(a) (b)

(c)(d)

Fig. 4. An example for illustrating functions f and g. (For simplicity, only the
subgraphs of interest, but not the whole graphs, are drawn.) Gd = f(Ga): (I)
Gb = Ga−yn, (II) Gc = Gb−xn, and (III) Gd is the resulting graph after
converting (a1, a2) and (b1, b2) in Gc into a and b, respectively. (Steps (I)–
(III) correspond to steps (A1)–(A3).) On the other hand, Ga = g(a, b,Gd):
(i) Gc is the resulting graph after converting a and b in Gd into (a1, a2)
and (b1, b2), respectively, (ii) Gb = Gc + (xn, a2) + (xn, b2), and (iii)
Ga = Gb + (a1, yn) + (b1, yn). (Steps (i)–(iii) correspond to steps (B1)–
(B3).)

respectively. Conversely, for (a1, a2) ∈ G, converting (a1, a2)
into node a is to merge a1 and a2 into the new node a in
G such that a keeps all edges of a1 and a2 except for the
edge (a1, a2) (nodes a1 and a2 no longer exist in G). An
example is also shown in Fig. 4, where Gd is the resulting
graph after converting (a1, a2) and (b1, b2) in Gc into a and
b, respectively.

For n ≥ 4, define a function f : Sn → Sn−1 which works
with the following three steps for any S ∈ Sn. (An example
is shown in Fig. 4 to illustrate how f works.)

(A1) For any output node a ∈ S (i.e., a has no outgoing edge)
such that a /∈ Y \ {yn}, remove a from S in a recursive
manner. Denote the resulting graph by S′.

(A2) Let S′′ = S′ − xn.
(A3) For any (a, b) ∈ S′′ such that (a, b) is the only incoming

edge of b in S′′, convert (a, b) into a new node. (Actually,
b is a computation node in S with incoming edges (a, b)
and (xn, b).) Denote the resulting graph by f(S).

Lemma 1: For n ≥ 4 and any S ∈ Sn, we have f(S) ∈
Sn−1 and c(S) ≥ c(f(S)) + 3.

Proof: Assume n ≥ 4 and S ∈ Sn. We can easily
verify that f(S) ∈ Sn−1. In step (A1) of f(S), at least
the computation node yn is removed from S. The number of
additional computation nodes removed from S in steps (A2)
and (A3) is equal to the number of edges of xn in S. Therefore,
to prove c(S) ≥ c(f(S)) + 3, we only need to prove that xn
has at least two outgoing edges in S.

Since each output node in Y \{yn} is reachable from xn in
S, xn must have at least one outgoing edge, say (xn, a) ∈ S.
Note that a is a computation node in S, indicating that a is
reachable from at least an input node xi, i 6= n in S. Since yi
is not reachable from xi in S, then yi must not be reachable
from a. Therefore, xn must have another outgoing edge such
that yi can be reachable from xn in S. This completes the
proof.
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Theorem 1: We have cmin
n = minS∈Sn c(S) = 3n− 6.

Proof: We have cmin
n = 3n − 6 for n = 3, since S3

contains only one structure, as shown in Fig. 3(a). Then,
according to Lemma 1, we have cmin

n ≥ 3n − 6 for n ≥ 4.
Further noting that the structure in Fig. 1 has complexity
3n− 6, the theorem is proved.

According to the discussions on Lemma 1 and Theorem
1, we know that for n ≥ 4 and any S ∈ Sco

n , we have
c(S) = c(f(S)) + 3. More specifically, only one computation
node, i.e., yn, is removed in step (A1) of f(S), xn has exactly
two outgoing edges in S, and we have f(S) ∈ Sco

n−1. This
motivates us to construct another function, which works like
the inverse process of f , to convert a structure in Sco

n−1 to a
structure in Sco

n .
For any a, b ∈ S ∈ Sn, the unordered pair 〈a, b〉 is called

a complement pair of S iff xj ∈ E(a, S) ⇐⇒ xj /∈
E(b, S),∀j ∈ [n]. For example, 〈x3, y3〉 = 〈y3, x3〉 is a
complement pair of S in Fig. 3(a). Let P (S) denote the set
of all complement pairs of S. For n ≥ 4, S ∈ Sco

n−1, and
〈a, b〉 ∈ P (S), define g(a, b, S) as the graph obtained by the
three steps described as follows. (An example is shown in Fig.
4 to illustrate how g works.)
(B1) Convert a and b into directed edges (a1, a2) and (b1, b2),

respectively. Denote the resulting graph by S′.
(B2) Let S′′ = S′ + (xn, a2) + (xn, b2).
(B3) Let g(a, b, S) = S′′ + (a1, yn) + (b1, yn).

Theorem 2: Structures in Sco
n fulfill the following properties.

(C1) For any S ∈ Sco
n , any non-output node in S has exactly

two outgoing edges.
(C2) For any S ∈ Sco

n , a ∈ S, and j ∈ [n], we have xj ∈
E(a, S) ⇐⇒ yj /∈ L(a, S).

(C3) For any S ∈ Sco
n and a ∈ S, there exists a unique b ∈ S

such that 〈a, b〉 ∈ P (S).
(C4) For n ≥ 4, Sco

n = {g(a, b, S) : S ∈ Sco
n−1, 〈a, b〉 ∈

P (S)}.
(C5) |Sco

n | = (2n− 5)!! = (2n− 5)× (2n− 7)× · · · × 1.
Proof: See Appendix A.

B. T-Trees

Definition 5: A T-tree T used for computing y is a
(undirected) tree fulfilling the following two properties.
• T has n leaves, which are exactly X .
• Each internal node in T has exactly three edges.
The letter ‘T’ in “T-tree” actually comes from the second

property above (‘T’ is short for “Triplet”, and it also looks
like an internal node with three edges). Denote Tn as the set
of all T-trees. In particular, the only T-tree in T3 is shown in
Fig. 3(b). For any T ∈ Tn, T has n − 2 internal nodes and
2n − 3 edges. For any (a, b) ∈ T , let D(a, b, T ) = E(a, Tb),
where Tb is the directed version of the tree resulted by making
T as a rooted tree with root b. Obviously, D(a, b, T ) is a DBT
with root a. Let D(T ) = {D(a, b, T ) : (a, b) ∈ T}. We have
|D(T )| = 4n − 6, since D(a1, b1, T ) 6= D(a2, b2, T ) for any
(a1, b1), (a2, b2) ∈ T with a1 6= a2 or b1 6= b2.

Theorem 3: For any T ∈ Tn, let

h(T ) = ∨j∈[n],(a,xj)∈TD(a, xj , T ).

Fig. 5. The T-tree T ∈ Tn with h(T ) ∈ Sco
n given by Fig. 1.

Then h is a bijection from Tn to Sco
n .

Proof: See Appendix B.
According to Theorem 3, it suffices to investigate Tn when
Sco
n is of interest. In particular, for any T ∈ Tn, T is a much

simpler graph than h(T ) ∈ Sco
n , with respect to that i) T is

a simple tree as described in Definition 5 and ii) T contains
2n − 2 nodes and 2n − 3 edges while h(T ) contains 4n − 6
nodes and 6n − 12 edges. As an example, let S denote the
structure in Fig. 1, and we have S ∈ Sco

n . The T-tree T with
h(T ) = S is shown in Fig. 5. A simpler example for h is
shown in Fig. 3.

Lemma 2: For any T ∈ Tn, we have l(h(T )) = d(T )− 1,
where d(T ) is the diameter of T .

Proof: Note that d(T ) must be equal to the distance be-
tween a certain pair of leaves in T . Without loss of generality,
assume that d(T ) is equal to the distance between xi and xj
in T . As a result, D(a, xj , T ) with (a, xj) ∈ T has the largest
height among D(T ). Therefore, l(h(T )) is equal to the height
of D(a, xj , T ), i.e., l(h(T )) = d(T )− 1.

Lemma 3: Let δ = blog(n/2)c. We have

dmin
n = min

T∈Tn
d(T ) = δ + dlog(n− 2δ)e+ 1.

Proof: See Appendix C.
Theorem 4: Let δ = blog(n/2)c. We have

min
S∈Sco

n

l(S) = dmin
n − 1 = δ + dlog(n− 2δ)e.

Proof: This is the result by combining Theorem 3,
Lemma 2, and Lemma 3.

The proof of Lemma 3 in Appendix C also leads to the
following construction for complexity-optimal structures with
latency dmin

n − 1.
Construction 1: Let T ∈ Tn be a T-tree, in which there

exists an edge (a, b) ∈ T such that D(a, b, T ) and D(b, a, T )
are two complete DBTs with leaves {x1, x2, . . . , x2δ} and
{x2δ+1, x2δ+2, . . . , xn}, respectively, where δ = blog(n/2)c.
Return h(T ) as the constructed structure.

As an example, for n = 6, Construction 1 may lead to
the T-tree T ∈ T6 in Fig. 6(a). We have d(T ) = dmin

6 = 4.
The constructed structure h(T ) ∈ Sco

6 is shown in Fig. 6(b),
which has the optimal complexity c(h(T )) = cmin

6 = 12 and
the minimum latency l(h(T )) = dmin

6 − 1 = 3 among Sco
6 .

It is worth mentioning that h(T ) in Fig. 6(b) was used in
[20] and [21] to implement check node update for decoding
regular LDPC codes with variable node degree 3 and check
node degree 6.

V. LATENCY-OPTIMAL STRUCTURES

In this section, we first derive the value of lmin
n . Then, for

n = 2k + 1 with k > 0, we propose an optimal construction
for an S ∈ S lo

n such that c(S) = minS′∈S lo
n
c(S′). (The



6

(b)

(a)

Fig. 6. An example of Construction 1 for n = 6. (a) A resulted T-tree
T ∈ T6. (b) The constructed structure h(T ) ∈ Sco

6 corresponding to T .

construction of latency-optimal structures with other values
of n will be addressed later in Construction 4 of Section VI.)

Theorem 5: We have lmin
n = minS∈Sn l(S) = dlog(n−1)e.

Proof: For any S ∈ Sn and j ∈ [n], E(yj , S) is a DBT
with leaves X \ {xj}. As a result, the minimum height of
E(yj , S) is dlog(n−1)e which is achievable when E(yj , S) is
a complete DBT. Since S = ∨j∈[n]E(yj , S), we have l(S) ≥
dlog(n− 1)e, where the equality holds when each E(yj , S) is
a complete DBT. This completes the proof.

According to Theorems 1 and 5, the structure S in Fig. 6(b)
is both complexity-optimal and latency-optimal, i.e., S ∈ Sco

6 ∩
S lo
6 . However, structures that are both complexity-optimal and

latency-optimal rarely exist. In fact, according to Theorems 4
and 5, we can easily derive the following corollary.

Corollary 1: For n ≥ 3, we have Sco
n ∩ S lo

n 6= ∅ iff n =
3, 4, 6.

We now propose a simple construction for latency-optimal
structures when n− 1 is a power of two.

Construction 2 (For n = 2k + 1 with k > 0): Let
S = ({v0,j : j ∈ [n]}, ∅) with v0,j = xj . For i =
1, 2, . . . , k and j ∈ [n], create a new node vi,j /∈ S,
and let S = S + (vi−1,j , vi,j) + (vi−1,j+2i−1 , vi,j), where
vi−1,j+2i−1 = vi−1,j+2i−1−n if j + 2i−1 > n. Return S as
the constructed structure.

Theorem 6: Assume n = 2k + 1 with k > 0. S returned by
Construction 2 belongs to S lo

n , and we have

c(S) = n log(n− 1) = nk = min
S′∈S lo

n

c(S′).

Proof: See Appendix D.
Note that Construction 2 is deterministic, i.e., the result of

Construction 2 is unique for any n = 2k + 1 with k > 0.
An example of Construction 2 for n = 5 is shown in Fig. 7,
which has latency 2 and complexity 10.

VI. TRADEOFF BETWEEN COMPLEXITY AND LATENCY

A general problem is to find the minimum complexity of
structures in Sn that have latencies at most τ for any given
(n, τ). We give a solution to this problem in this section.

Fig. 7. An example of Construction 2 for n = 5.

For n = 2, outgoing messages are given by y1 = x2 and
y2 = x1. Accordingly, the graph that only consists of nodes
{x1, x2}, say G, can be considered as a valid (and the only)
structure used for computing y for n = 2. Moreover, G is both
complexity-optimal and latency-optimal. For convenience, we
let S2 = {G}.

For any S ∈ Sn, recall that P (S) is the set of all
complement pairs of S. Note that we must have P (S) 6= ∅.
Let π(S) = min〈a,b〉∈P (S) π(a, b) and Pπ(S) = {〈a, b〉 ∈
P (S) : π(a, b) = π(S)}, where π(a, b) is equal to one plus
the maximum height of E(a, S) and E(b, S). As a result, we
have π(S) ≥ dlog(n)e.

Lemma 4: For n ≥ 3, we have π(S) = dlog(n)e with S
returned by Construction 1.

Proof: Let S be returned by Construction 1 and let
T = h−1(S), where h−1 is the inverse function of h defined
in Theorem 3. We have d(T ) = dmin

n = l(S) + 1 =
δ + dlog(n − 2δ)e + 1 with δ = blog(n/2)c. There exist two
leaves, say xi, xj ∈ T , such that the distance between xi and
xj is d(T ). Moreover, given xi and xj , there exists a unique
node a (resp. b) such that a (resp. b) is contained in the path
from xi to xj and the distance between xi and a (resp. b)
is bd(T )/2c (resp. bd(T )/2c+ 1). Note that (a, b) ∈ T . As a
result, there exists a complement pair 〈a′, b′〉 ∈ P (S) such that
D(a, b, T ) = E(a′, S) and D(b, a, T ) = E(b′, S). Accord-
ingly, the heights of E(a′, S) and E(b′, S) are bd(T )/2c and
d(T )− bd(T )/2c − 1, respectively. We then have π(a′, b′) =
1 + max{bd(T )/2c, d(T ) − bd(T )/2c − 1} = 1 + bd(T )/2c.
Note that 2δ+1 ≤ n < 2δ+2. If n = 2δ+1, we have
π(a′, b′) = 1 + bd(T )/2c = 1 + b(δ + dlog(n − 2δ)e +
1)/2c = 1 + δ = dlog(n)e. If 2δ+1 < n < 2δ+2, we have
π(a′, b′) = 1 + δ + 1 = dlog(n)e. As π(S) ≥ dlog(n)e, we
finally have π(S) = dlog(n)e.

For two integers i and j, let [i, j] = {i, i+ 1, . . . , j}, where
[i, j] = ∅ if i > j. We now propose a method to construct
larger (in terms of input size) structures based on smaller
structures.

Construction 3: If there exist (m,n0, . . . , nm) such that
m ∈ [n − 1], n0 ≥ m, and

∑
i∈[0,m] ni = n + m with ni ∈

[2, n−1], we can construct an S ∈ Sn from any Si ∈ Sni ,∀i ∈
[0,m] with the following steps.

(D1) For each i ∈ [0,m] and j ∈ [ni], refer to xj ∈ Si
and yj ∈ Si by ai,j and bi,j , respectively. (Note that if
ni = 2, we have ai,1 = bi,2 and ai,2 = bi,1.)

(D2) Let S be the joint graph of all Si, i ∈ [0,m]. (Simply
put all Si, i ∈ [0,m] together into S without extra
operations, such as merging nodes or edges.)
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(a)

(b)

(c)

Fig. 8. An example of Construction 3 for (n,m, n0, n1, n2) = (6, 2, 3, 3, 2).
(a) S formed in steps (D1) and (D2). (Note that a2,1 = b2,2 and a2,2 = b2,1.)
(b) S formed in steps (D3) and (D4), where for easy reference, the edges
added into S in steps (D3) and (D4) are represented by dotted and dashed
arrows, respectively. (c) S formed in step (D5), which is also the constructed
structure returned in step (D6).

(D3) For each i ∈ [m] and an arbitrary complement pair
〈ui, vi〉 ∈ Pπ(Si), let S = S + (ui, a0,i) + (vi, a0,i).

(D4) For each i ∈ [m] and j ∈ [ni], create a new node vi,j /∈
S, and let S = S + (bi,j , vi,j) + (b0,i, vi,j).

(D5) For the nodes in S, label those with no incoming edges
by x1, x2, . . . , xn; label those with no outgoing edges
by y1, y2, . . . , yn such that for any j ∈ [n], E(yj , S) has
leaves {x1, x2, . . . , xn} \ {xj}; unlabel all other nodes.

(D6) Return S as the constructed structure.

An example of Construction 3 for (n,m, n0, n1, n2) =
(6, 2, 3, 3, 2) is shown in Fig. 8. Moreover, we have the
following result.

Lemma 5: Use the notations in Construction 3 and let S be

the returned structure. We have S ∈ Sn. Moreover, we have

c(S) = c(S0) +
∑
i∈[m]

(
c(Si) + ni + 1

)
,

π(S) ≤ π(S0) + max
i∈[m]

π(Si), and

l(S) ≤ max

{
max
i∈[m]

l(Si) + 1, l(S0) + 1 + max
i∈[m]

π(Si)

}
.

Proof: Note that at the end of step (D1) (in Construction
3), for each i ∈ [0,m] and j ∈ [ni], E(bi,j , Si) is a DBT with
leaves {ai,j′ : j′ ∈ [ni]} \ {ai,j}. At the end of step (D3),
for each i ∈ [m], E(a0,i, S) is a DBT of height π(Si) and
with leaves {ai,j′ : j′ ∈ [ni]}. At the end of step (D4), for
each i ∈ [m] and j ∈ [ni], E(vi,j , S) is a DBT of height
at most max

{
l(Si) + 1, l(S0) + maxi′∈[m] π(Si′) + 1

}
and

with leaves {ai′,j′ : i′ ∈ [m], j′ ∈ [ni′ ]} \ {ai,j}. We can
then easily verify the correctness of Lemma 5.

For any non-negative integer τ , let

Sn,τ = {S ∈ Sn : l(S) ≤ τ, π(S) = dlog(n)e}.

We remark that Sn,τ ⊆ Sn,τ ′ for τ ≤ τ ′. Moreover, for n = 2,
we have S2,0 = S2. For n ≥ 3, we have S ∈ Sn,dmin

n −1
if S is returned by Construction 1 (according to Lemma 4),
and have S ∈ Sn,log(n−1) if S is returned by Construction 2.
Given these observations and motivated by Construction 3, we
have the following construction for a structure Sn,τ ∈ Sn,τ if
Sn,τ 6= ∅; otherwise, we say that Sn,τ does not exist.

Construction 4: Let n̂ and τ̂ be the maximum values of n
and τ , respectively. For n = 2, 3, . . . , n̂ and τ = 0, 1, . . . , τ̂ ,
we construct a structure Sn,τ based on the following cases.
(E1) If n = 2, let Sn,τ be the only structure in S2.
(E2) Else if τ ≥ dmin

n − 1, construct Sn,τ via Construction 1.
(E3) Else if τ < dlog(n− 1)e, Sn,τ does not exist.
(E4) Else if 2τ = n− 1, construct Sn,τ via Construction 2.
(E5) Otherwise, let φ(n, τ) = ∞. For any (m,n0, . . . , nm,

τ0, . . . , τm) such that

m ∈ [n− 1], n0 ≥ m,∑
i∈[0,m] ni = n+m,ni ∈ [2, n− 1],

∀i ∈ [0,m], Sni,τi exists,
maxi∈[m]dlog(ni)e ≤ dlog(n)e − dlog(n0)e,
maxi∈[m]dlog(ni)e ≤ τ − 1− τ0,
maxi∈[m] τi ≤ τ − 1,

(2)

construct S from Sni,τi ,∀i ∈ [0,m] via Construction 3.
If c(S) < φ(n, τ), let φ(n, τ) = c(S) and Sn,τ = S.

Theorem 7: Iff n ≥ 2 and τ ≥ dlog(n− 1)e, Construction
4 can obtain a structure Sn,τ ∈ Sn,τ 6= ∅. Moreover, if Sn,τ
exists, we have

c(Sn,τ ) ≤ ndlog(n)e − 2. (3)

Proof: See Appendix E.
We remark that in case (E5) of Construction 4, we try

to reuse the same subtrees (same intermediate computation
results) as often as possible. This implies that for n ≥ 2 and
τ ≥ dlog(n− 1)e, we likely have

c(Sn,τ ) = min
S∈Sn,τ

c(S),
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which is guaranteed to be true for cases (E1), (E2), and (E4).
On the other hand, there likely exists a structure S ∈ {S′ ∈
Sn : l(S′) ≤ τ} such that c(S) = minS′∈Sn,l(S′)≤τ c(S

′) and
π(S) = dlog(n)e (i.e., S ∈ Sn,τ ). As a result, we likely have

c(Sn,τ ) = min
S∈Sn,l(S)≤τ

c(S), (4)

which is guaranteed to be true for cases (E1), (E2), and
(E4). However, we currently are not able to prove this result.
Formally, we give the following conjecture.

Conjecture 1: Let Sn,τ be returned by Construction 4. Then,
Sn,τ satisfies (4).

In general, it is not possible to enumerate (m,n0, . . . , nm,
τ0, . . . , τm) by using the brute-force method in case (E5)
of Construction 4. However, finding a (m,n0, . . . , nm,
τ0, . . . , τm) to minimize c(Sn,τ ) is of great interest to practice.
In the rest of this section, we illustrate how to efficiently find
such a (m,n0, . . . , nm, τ0, . . . , τm).

For n ≥ 2, let φ(n, τ) = c(Sn,τ ), where φ(n, τ) = ∞ if
Sn,τ does not exist. For any i1, i2 ∈ [0, n̂], i3 ∈ [0, dlog(n̂)e]
and i4 ∈ [0, τ̂ ], let η(i1, i2, i3, i4) denote the minimum value
of
∑
j∈[i2](φ(nj , i4) + nj + 1), where nj ∈ [1, 2i3 ] and∑

j′∈[i2] nj′ = i1. We remark that φ(nj , i4) + nj + 1 actually
corresponds to the complexity related to Snj ,i4 when it is used
to construct a larger structure with input size i1. For example,
the complexity related to S1 in Fig. 8 is φ(3, 1) + 3 + 1.
We further remark that in (E5) of Construction 4, we require
nj ≥ 2. However, to simplify the computation in Algorithm
1, here we allow nj = 1 and define φ(1, τ) = −2 for any τ
to make φ(1, τ) + 1 + 1 = 0. Taking Fig. 8 as an example, we
have (n1, n2, n3) = (3, 2, 1), where n3 = 1 is associated with
the single node a0,3. Note that we have φ(n, τ) ≥ φ(n, τ ′) for
τ ≤ τ ′, and we also have η(i1, i2, i3, i4) ≥ η(i1, i2, i

′
3, i
′
4) for

i3 ≤ i′3 and i4 ≤ i′4. We can compute φ and η by using the
proposed Algorithm 1.

In Algorithm 1, line 1 is to initialize η by using
φ(1, τ),∀τ ≥ 0. Lines 13–18 correspond to case (E5) in
Construction 4. More specifically, for any n0 ∈ [2, n− 1] and
τ0 ∈ [0, τ − 1] such that ω < ∞, without loss of generality,
assume that η(n, n0, θ, τ−1) =

∑
i∈[n0]

(φ(ni, τ−1)+ni+1)
with n1 ≥ n2 ≥ · · · ≥ nm ≥ 2 > nm+1 = nm+1 = · · · =
nn0

= 1. Then, (m,n0, . . . , nm, τ0, . . . , τm) satisfy (2), and
we have c(S) = ω with S constructed from Sni,τi ,∀i ∈ [0,m]
via Construction 3. As a result, according to the definition of η,
φ(n, τ) computed via lines 13–18 is equal to c(Sn,τ ) with Sn,τ
given in case (E5) of Construction 4. Moreover, lines 21–24
are to update η by using φ(n, τ), so as to keep η(i1, i2, i3, τ)
to be the minimum value of

∑
j∈[i2](φ(nj , τ)+nj+1), where

nj ∈ [1, n] and
∑
j′∈[i2] nj′ = i1.

Theorem 8: For n ≥ 2 and τ ≥ 0, let φ(n, τ) be computed
via Algorithm 1, and let Sn,τ be returned by Construction 4.
We have φ(n, τ) = c(Sn,τ ) if τ ≥ dlog(n−1)e, and φ(n, τ) =
∞ otherwise.

Proof: The statement is true according to the above
discussions regarding Algorithm 1.

Note that φ(n, τ) = 3n−6 for τ ≥ dmin
n −1, where dmin

n ≤
2 log(n)+1 according to Lemma 3. We only need to compute
φ(n, τ) for τ < dmin

n − 1. As a result, the complexity of

Algorithm 1 Computation of φ and η
Input: n̂ and τ̂ .
Output: φ and η.

1: For any i1, i2 ∈ [0, n̂], i3 ∈ [0, dlog(n̂)e] and i4 ∈ [0, τ̂ ], set
η(i1, i2, i3, i4) as 0 if i1 == i2 and as ∞ otherwise.

2: for n = 2, 3, . . . , n̂ and τ = 0, 1, . . . , τ̂ do
3: //Compute φ(n, τ)
4: if n == 2 then
5: φ(n, τ) = 0.
6: else if τ ≥ dmin

n − 1 then
7: φ(n, τ) = 3n− 6.
8: else if τ < dlog(n− 1)e then
9: φ(n, τ) =∞.

10: else if 2τ == n− 1 then
11: φ(n, τ) = nτ .
12: else
13: φ(n, τ) =∞.
14: for n0 = 2, 3, . . . , n− 1 and τ0 = 0, 1, . . . , τ − 1 do
15: θ = min {dlog(n)e − dlog(n0)e, τ − 1− τ0}.
16: ω = φ(n0, τ0) + η(n, n0, θ, τ − 1).
17: φ(n, τ) = min{φ(n, τ), ω}.
18: end for
19: end if
20: //Update η by using φ(n, τ)
21: for i1 = n, n + 1, . . . , n̂, i2 = 1, 2, . . . , n̂, and i3 =

dlog(n)e, dlog(n)e+ 1, . . . , dlog(n̂)e do
22: λ = η(i1 − n, i2 − 1, i3, τ) + φ(n, τ) + n+ 1.
23: η(i1, i2, i3, τ) = min{η(i1, i2, i3, τ), λ}.
24: end for
25: end for

Algorithm 1 for computing φ(n, τ) is O(n3 log2(n)). For easy
reference, we present φ(n, τ) for some typical (n, τ) in Table
I. We can see that φ(n, τ) is generally much smaller than
ndlog(n)e − 2, the upper bound given by (3).

To find a (m,n0, . . . , nm, τ0, . . . , τm) to minimize c(Sn,τ )
in case (E5) of Construction 4, we only need to record the
solutions to φ(n, τ) and η(i1, i2, i3, τ) in lines 17 and 23 of
Algorithm 1, respectively. More specifically, record (n0, τ0)
such that φ(n, τ) = φ(n0, τ0) + η(n, n0, θ, τ − 1), and record
(n, i3) such that η(i1, i2, i3, τ) = η(i1 − n, i2 − 1, i3, τ) +
φ(n, τ) + n + 1. In this case, we can find a (m,n0, . . . , nm,
τ0, . . . , τm) by traceback.

We remark that for the computation at a variable node
of LDPC codes, there exists a unique incoming message,
say x1, which corresponds to the received channel message.
In this case, y1 is used for hard decision of the corre-
sponding transmitted bit and should be computed from x
without excluding x1. We can slightly modify the struc-
ture Sn,τ returned by Construction 4 to perfectly match the
aforementioned variable node computation. More specifically,
for an arbitrary complement pair 〈a, b〉 ∈ Pπ(Sn,τ ), let
S = Sn,τ − y1 + (a, y1) + (b, y1). Then, E(y1, S) is a DBT
of height dlog(n)e and with leaves X = {x1, x2, . . . , xn},
and E(yj , S) = E(yj , Sn,τ ),∀j = 2, 3, . . . , n. This indicates
that S can be used to implement the aforementioned variable
node computation. Moreover, we have c(S) = c(Sn,τ ), and
l(S) = l(Sn,τ ) + 1 if n = 2τ + 1; otherwise, l(S) = l(Sn,τ ).

VII. CONCLUSION

Let S ∈ Sn be an arbitrary structure satisfying Definition
2. First, we have proved that the minimum complexity of S
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TABLE I
SOME TYPICAL VALUES AND UPPER BOUNDS (UBS) OF φ(n, τ): n ≥ 2, τ = dlog(n− 1)e+ i, i = 0, 1, . . .; φ(n, τ) IS THE COMPLEXITY OF THE

STRUCTURE Sn,τ OBTAINED FROM CONSTRUCTION 4; Sn,τ HAS n INPUT NODES AND ITS LATENCY IS AT MOST τ ; FOR τ < τ = dlog(n− 1)e, Sn,τ
DOES NOT EXIST; FOR τ ≥ τ = δ + dlog(n− 2δ)e WITH δ = blog(n/2)c, WE HAVE φ(n, τ) = 3n− 6; THE UB IS ndlog(n)e − 2 GIVEN BY (3).

n, τ , τ \ i 0 1 2 3 UB n, τ , τ \ i 0 1 2 3 4 UB

1, –, – – – – – – 33, 5, 9 165 114 99 94 93 196
2, 0, 0 0 0 0 0 0 34, 6, 9 118 102 97 96 96 202
3, 1, 1 3 3 3 3 4 35, 6, 9 122 105 100 99 99 208
4, 2, 2 6 6 6 6 6 36, 6, 9 126 108 103 102 102 214
5, 2, 3 10 9 9 9 13 37, 6, 9 133 115 106 105 105 220
6, 3, 3 12 12 12 12 16 38, 6, 9 137 118 109 108 108 226
7, 3, 4 18 15 15 15 19 39, 6, 9 141 122 112 111 111 232
8, 3, 4 22 18 18 18 22 40, 6, 9 145 125 115 114 114 238
9, 3, 5 27 22 21 21 34 41, 6, 9 159 132 122 117 117 244
10, 4, 5 25 24 24 24 38 42, 6, 9 163 135 125 120 120 250
11, 4, 5 32 27 27 27 42 43, 6, 9 168 139 128 123 123 256
12, 4, 5 36 30 30 30 46 44, 6, 9 172 142 131 126 126 262
13, 4, 6 45 36 33 33 50 45, 6, 9 179 146 135 129 129 268
14, 4, 6 50 39 36 36 54 46, 6, 9 183 149 138 132 132 274
15, 4, 6 57 43 39 39 58 47, 6, 9 188 153 141 135 135 280
16, 4, 6 62 46 42 42 62 48, 6, 9 192 156 144 138 138 286
17, 4, 7 68 51 46 45 83 49, 6, 10 243 176 153 144 141 292
18, 5, 7 54 49 48 48 88 50, 6, 10 250 180 156 147 144 298
19, 5, 7 61 52 51 51 93 51, 6, 10 259 184 159 150 147 304
20, 5, 7 65 55 54 54 98 52, 6, 10 266 188 162 153 150 310
21, 5, 7 72 62 57 57 103 53, 6, 10 277 192 167 156 153 316
22, 5, 7 76 65 60 60 108 54, 6, 10 284 196 170 159 156 322
23, 5, 7 80 69 63 63 113 55, 6, 10 293 200 173 162 159 328
24, 5, 7 84 72 66 66 118 56, 6, 10 300 204 176 165 162 334
25, 5, 8 108 81 72 69 123 57, 6, 10 325 210 182 169 165 340
26, 5, 8 114 84 75 72 128 58, 6, 10 332 214 185 172 168 346
27, 5, 8 122 89 78 75 133 59, 6, 10 341 218 189 175 171 352
28, 5, 8 128 92 81 78 138 60, 6, 10 348 222 192 178 174 358
29, 5, 8 138 98 85 81 143 61, 6, 10 359 226 196 181 177 364
30, 5, 8 144 102 88 84 148 62, 6, 10 366 230 199 184 180 370
31, 5, 8 152 106 91 87 153 63, 6, 10 375 234 203 187 183 376
32, 5, 8 158 110 94 90 158 64, 6, 10 382 238 206 190 186 382

is 3n− 6, and if S has such complexity, its minimum latency
is δ + dlog(n − 2δ)e with δ = blog(n/2)c. Next, we have
proved that the minimum latency of S is dlog(n− 1)e, and if
S has such latency, its minimum complexity is n log(n − 1)
for n = 2k + 1 with k > 0. Finally, given (n, τ) with
τ ≥ dlog(n − 1)e, we have proposed a construction, i.e.,
Construction 4, for a structure Sn,τ which we conjecture to
have the minimum complexity among structures with latencies
at most τ . Construction 4 can run in O(n3 log2(n)) time,
and the obtained Sn,τ has complexity at most (generally
much smaller than) ndlog(n)e − 2. One left problem is to
verify whether Sn,τ returned by Construction 4 achieves the
minimum complexity among structures with latencies at most
τ , i.e., to prove/disprove Conjecture 1.

APPENDIX A
PROOF OF THEOREM 2

For n = 3, the only structure in Sco
n , as shown in Fig. 3(a),

fulfills properties (C1)–(C5). Assume that for n = k − 1 ≥ 3,

structures in Sco
k−1 fulfill properties (C1)–(C5). We now prove

for n = k, structures in Sco
k also fulfill properties (C1)–(C5).

Let S ∈ Sco
k be an arbitrary structure.

Proof of (C1): yk has exactly two incoming edges in S, say
(a1, yk), (b1, yk) ∈ S. Moreover, as discussed earlier, xk has
exactly two outgoing edges in S, say (xk, a2), (xk, b2) ∈ S,
and we have f(S) ∈ Sco

k−1 such that f(S) fulfills properties
(C1)–(C3). As a result, nodes yk, xk, a1, b1, a2, b2 and their
edges must form a subgraph of S exactly the same as that
in Fig. 4(a) (with n = k), and this subgraph changes to a
subgraph in f(S) exactly the same as that in Fig. 4(d). Note
that we have S− yk−xk−a1− b1−a2− b2 = f(S)−a− b.
Hence, S fulfills property (C1).

Proof of (C2): Note that in the following proof, the
definitions of (a1, b1, a2, b2) are from inside the proof of
(C1) and Fig. 4(a). We first have E(a1, S) = E(a, f(S)),
E(b1, S) = E(b, f(S)), L(a2, S) = L(a, f(S)), and
L(b2, S) = L(b, f(S)). As a result, we have 〈a, b〉 ∈ P (f(S)),
since X \ {xk} = {x1, x2, . . . , xk−1} ⊆ E(yk, S). This
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indicates that E(a, f(S))− a,E(b, f(S))− b, L(a, f(S))− a,
and L(b, f(S)) − b pairwise do not share the same node
in f(S), and we have Y \ {yk} = {y1, y2, . . . , yk−1} ⊆
L(a, f(S)) ∪ L(b, f(S)) since f(S) fulfills property (C2).
On the other hand, E(a, f(S)) and E(b, f(S)) are two
DBTs. Meanwhile, since f(S) fulfills property (C1), the
undirected versions of L(a, f(S)) and L(b, f(S)) are two
binary trees rooted at a and b in f(S), respectively. There-
fore, E(a, f(S)) − a,E(b, f(S)) − b, L(a, f(S)) − a, and
L(b, f(S))−b contain 4(k−1)−8 nodes, which are exactly all
the nodes in f(S)−a−b. Accordingly, E(yk, S) and L(xk, S)
contain 4k − 6 nodes, which are exactly all the nodes in S.

For any v ∈ E(yk, S), if v = yk, we obviously have xj ∈
E(v, S) ⇐⇒ yj /∈ L(v, S),∀j ∈ [k]. Assume v 6= yk.
As discussed above, there exists a unique v′ ∈ E(a, f(S)) ∪
E(b, f(S)) such that E(v′, f(S)) = E(v, S). Meanwhile, we
have yj ∈ L(v′, f(S)) ⇐⇒ yj ∈ L(v, S),∀j ∈ [k−1]. Since
f(S) fulfills property (C2), we have xj ∈ E(v′, f(S)) ⇐⇒
yj /∈ L(v′, f(S)),∀j ∈ [k − 1]. Therefore, we have xj ∈
E(v, S) ⇐⇒ yj /∈ L(v, S),∀j ∈ [k] by further noting that
xk /∈ E(v, S) and yk ∈ L(v, S).

On the other hand, for any v ∈ L(xk, S), if v = xk, we
obviously have xj ∈ E(v, S) ⇐⇒ yj /∈ L(v, S),∀j ∈
[k]. For v 6= xk, let v′ ∈ L(a, f(S)) ∪ L(b, f(S)) such
that L(v′, f(S)) = L(v, S). We can similarly derive xj ∈
E(v, S) ⇐⇒ yj /∈ L(v, S),∀j ∈ [k]. As a result, S fulfills
property (C2).

Proof of (C3): For any v ∈ E(yk, S), if v = yk, we
obviously have 〈v, v̄〉 ∈ P (S) ⇐⇒ v̄ = xk. Assume v 6= yk.
There exists a unique v′ ∈ E(a, f(S)) ∪ E(b, f(S)) such
that E(v′, f(S)) = E(v, S). Since f(S) fulfills property (C3),
there exists a unique v̄′ ∈ f(S) such that 〈v′, v̄′〉 ∈ P (f(S)).
On the one hand, we must have v̄′ ∈ L(a, f(S))∪L(b, f(S)).
As a result, there exists a unique v̄ ∈ L(xk, S) such that
L(v̄, S) = L(v̄′, f(S)). On the other hand, since f(S) fulfills
property (C2), we have for j ∈ [k−1], xj ∈ E(v′, f(S)) ⇐⇒
xj /∈ E(v̄′, f(S)) ⇐⇒ yj ∈ L(v̄′, f(S)). Therefore, we have
for j ∈ [k], xj ∈ E(v, S) ⇐⇒ yj ∈ L(v̄, S) ⇐⇒ xj /∈
E(v̄, S) by further noting that xk /∈ E(v, S), yk /∈ L(v̄, S)
and S fulfills property (C2). This indicates that 〈v, v̄〉 ∈ P (S).
Note that E(yk, S) contains half nodes of S, L(xk, S) contains
another half nodes of S, and each v ∈ E(yk, S) leads to
a unique v̄ ∈ L(xk, S) such that 〈v, v̄〉 ∈ P (S). Hence, S
fulfills property (C3), and we also have |P (S)| = 2k − 3.

Proof of (C4): On the one hand, for any S′ ∈ Sco
k−1 and

〈a, b〉 ∈ P (S′), we have g(a, b, S′) ∈ Sco
k . This implies

{g(a, b, S′) : S′ ∈ Sco
k−1, 〈a, b〉 ∈ P (S′)} ⊆ Sco

k . On the other
hand, for any S ∈ Sco

k , we have f(S) ∈ Sco
k−1, and there exists

〈a, b〉 ∈ P (f(S)) such that S = g(a, b, f(S)). This implies
Sco
k ⊆ {g(a, b, S′) : S′ ∈ Sco

k−1, 〈a, b〉 ∈ P (S′)}. As a result,
we have Sco

k = {g(a, b, S′) : S′ ∈ Sco
k−1, 〈a, b〉 ∈ P (S′)},

indicating that Sco
k fulfills property (C4).

Proof of (C5): For any S′ ∈ Sco
k−1, on the one hand, we

have g(a, b, S′) 6= g(a′, b′, S′) for any 〈a, b〉, 〈a′, b′〉 ∈ P (S′)
with 〈a, b〉 6= 〈a′, b′〉. This implies |{g(a, b, S′) : 〈a, b〉 ∈
P (S′)}| = |P (S′)| = 2(k − 1) − 3, since S′ fulfills property
(C3). On the other hand, for any S′ 6= S′′ ∈ Sco

k−1, we
have {g(a, b, S′) : 〈a, b〉 ∈ P (S′)} ∩ {g(a, b, S′′) : 〈a, b〉 ∈

P (S′′)} = ∅. Therefore, we have |Sco
k | = |{g(a, b, S′) : S′ ∈

Sco
k−1, 〈a, b〉 ∈ P (S′)}| = |Sco

k−1| · (2(k− 1)− 3) = (2k− 5)!!,
indicating that Sco

k fulfills property (C5).

APPENDIX B
PROOF OF THEOREM 3

For any T ∈ Tn and j ∈ [n], xj is a leaf in T . Let
(a, xj) ∈ T be the only edge of xj . D(a, xj , T ) is a
DBT with root yj and leaves X \ {xj}. As a result, we
have h(T ) ∈ Sn. On the other hand, we have E(h(T )) =
∪j∈[n],(a,xj)∈TE(D(a, xj , T )) = D(T ), leading to c(h(T )) =
|E(h(T ))| − n = |D(T )| − n = 3n − 6. Therefore, we have
h(T ) ∈ Sco

n . Moreover, for any T 6= T ′ ∈ Tn, we obviously
have h(T ) 6= h(T ′), indicating that h is an injection from Tn
to Sco

n . In the following, we prove |Tn| = |Sco
n | = (2n − 5)!!

such that h is surjective and the proof is completed.
Assume n ≥ 4. For any T ′ ∈ Tn−1 and (a, b) ∈ T ′, let

β(a, b, T ′) = T ′ − (a, b) + (xn, v) + (a, v) + (b, v), where
v is a new internal node (unlabelled) added into T ′. We
have β(a, b, T ′) ∈ Tn. This implies {β(a, b, T ′) : T ′ ∈
Tn−1, (a, b) ∈ T ′} ⊆ Tn. On the other hand, for any
T ∈ Tn, let α(T ) = T − xn − v + (a, b), where v, a, b fulfill
(xn, v), (a, v), (b, v) ∈ T (note that v and (a, b) are unique
given T ). We have α(T ) ∈ Tn−1 and T = β(a, b, α(T )). This
implies Tn ⊆ {β(a, b, T ′) : T ′ ∈ Tn−1, (a, b) ∈ T ′}. As a
result, we have Tn = {β(a, b, T ′) : T ′ ∈ Tn−1, (a, b) ∈ T ′}.

Moreover, note that for any T ′ ∈ Tn−1, we have
β(a, b, T ′) 6= β(a′, b′, T ′) for (a, b), (a′, b′) ∈ T ′ with
(a, b) 6= (a′, b′). This implies |{β(a, b, T ′) : (a, b) ∈ T ′}| =
2(n−1)−3. Meanwhile, we have {β(a, b, T ′) : (a, b) ∈ T ′}∩
{β(a, b, T ′′) : (a, b) ∈ T ′′} = ∅ for any T ′ 6= T ′′ ∈ Tn−1.
As a result, we have |Tn| = (2(n − 1) − 3) · |Tn−1| =
(2(n − 1) − 3) · (2(n − 2) − 3) · |Tn−2| = (2n − 5)!!, since
|T3| = 1 = (2 · 3− 5)!!. This completes the proof.

APPENDIX C
PROOF OF LEMMA 3

Let δ = blog(n/2)c. We have 2δ+1 ≤ n < 2δ+2. Let T1 and
T2 be two complete binary trees with leaves {x1, x2, . . . , x2δ}
and {x2δ+1, x2δ+2, . . . , xn}, respectively. Since T1 is a perfect
binary tree, T1 has height h1 = δ and diameter d(T1) = 2δ.
Meanwhile, T2 has height h2 = dlog(n− 2δ)e ≤ δ + 2, since
n − 2δ < 3 · 2δ . More specifically, the left subtree of T2 has
height h2 − 1, and the right subtree of T2 has height at most
δ, leading to d(T2) ≤ max{2(h2 − 1), 2δ, h2 − 1 + δ + 2} =
h2 + δ + 1. Furthermore, there exists a T ∈ Tn and an edge
(a, b) ∈ T such that D(a, b, T ) and D(b, a, T ) are the directed
versions of T1 and T2, respectively. We have dmin

n ≤ d(T ) =
max{d(T1), d(T2), h1+h2+1} = h1+h2+1 = δ+dlog(n−
2δ)e+ 1.

On the other hand, for any T ∈ Tn, assume that the distance
between xi and xj is equal to d(T ). The height of D(v, xi, T )
with (v, xi) ∈ T is d(T )− 1 such that D(v, xi, T ) contains at
most 2d(T )−1 leaves. We must have 2d(T )−1 ≥ n− 1, leading
to d(T ) ≥ dlog(n− 1)e+ 1 ≥ δ + 1. As a result, there exists
a unique node a (resp. b) such that a (resp. b) is contained
in the path from xi to xj and the distance between xi and a
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(resp. b) is δ (resp. δ+ 1). Note that we have (a, b) ∈ T . The
height of D(a, b, T ) is δ and hence D(a, b, T ) contains at most
2δ leaves. Meanwhile, the height of D(b, a, T ) is d(T )− δ −
1 and hence D(b, a, T ) contains at most 2d(T )−δ−1 leaves.
Therefore, we must have 2δ + 2d(T )−δ−1 ≥ n, leading to
d(T ) ≥ δ + dlog(n − 2δ)e + 1. This implies dmin

n ≥ δ +
dlog(n−2δ)e+1. Combining with the previous result dmin

n ≤
δ + dlog(n− 2δ)e+ 1, the proof is completed.

APPENDIX D
PROOF OF THEOREM 6

Use the notations in Construction 2 and let S be the returned
structure. For each j ∈ [n], E(vk,j , S) is a perfect DBT of
height k and with leaves X \ {xj−1}, where we let x0 = xn.
This indicates yj = vk,j and S ∈ S lo

n . On the other hand,
the computation nodes in S are {vi,j : i ∈ [k], j ∈ [n]}. We
thus have c(S) = n log(n − 1) = nk. We are now to prove
minS′∈S lo

n
c(S′) = nk.

Given an arbitrary structure S′ ∈ S lo
n . For any j ∈ [n],

E(yj , S
′) must be a perfect DBT of height k. This also implies

that for any a ∈ S′, E(a, S′) is a perfect DBT. For i ∈ [k],
let Ai = {a ∈ S′ : E(a, S′) has height i}. Accordingly, we
have Ak = Y = {y1, y2, . . . , yn}. Our idea is to prove |Ai| ≥
n, ∀i ∈ [k] such that c(S′) =

∑
i∈[k] |Ai| ≥ nk, which can

complete the proof.
For any a ∈ S′, let Γ(a) = (γ1, γ2, . . . , γn), where for

any j ∈ [n], γj = 1 if xj ∈ E(a, S′) and γj = 0
otherwise. Meanwhile, for any i ∈ [k] and A ⊆ Ai, let
Γ(A) = ⊕a∈Aγ(a), where ⊕ is the component-wise XOR
operation. If A = ∅, let Γ(A) = (0, 0, . . . , 0) (n zeros in total).
Moreover, let Γ(i) = {Γ(A) : A ⊆ Ai, |A| is even},∀i ∈ [k].

On the one hand, we have Γ(a) = Γ(a1) ⊕ Γ(a2) for any
(a1, a), (a2, a) ∈ S′. This leads to Γ(k) ⊆ Γ(k − 1) ⊆ · · · ⊆
Γ(1). On the other hand, for any A ⊆ Ak = Y with even
|A|, we have Γ(A) = (γ1, γ2, . . . , γn), where for any j ∈ [n],
γj = 1 if yj ∈ A and γj = 0 otherwise. This leads to |Γ(k)| =
2n−1. As a result, we have |Γ(i)| ≥ 2n−1,∀i ∈ [k], indicating
that |Ai| ≥ n. This completes the proof.

APPENDIX E
PROOF OF THEOREM 7

First of all, we have Sn,τ 6= ∅ iff n ≥ 2 and τ ≥ dlog(n−
1)e. Assume n ≥ 2 and τ ≥ dlog(n − 1)e. If (n, τ) fulfill
case (E1) (in Construction 4), we have Sn,τ ∈ Sn,0 ⊆ Sn,τ
and (3) holds. Else if (n, τ) fulfill case (E2), we have Sn,τ ∈
Sn,dmin

n −1 ⊆ Sn,τ and c(Sn,τ ) = 3n−6 ≤ ndlog(n)e−2. Else
if (n, τ) fulfill case (E4), we have Sn,τ ∈ Sn,τ and c(Sn,τ ) =
n log(n − 1) ≤ ndlog(n)e − 2. Otherwise, (n, τ) fulfill case
(E5) and we have n ≥ 4 and τ ≥ dlog(n)e. We continue the
proof for this case.

For any (m,n0, . . . , nm, τ0, . . . , τm) fulfilling (2), con-
struct S from Sni,τi ,∀i ∈ [0,m] via Construction 3. Ac-
cording to Lemma 5, and further noting that π(S) ≥
dlog(n)e, we have S ∈ Sn,τ . Let (m,n0, n1, n2, τ0, τ1, τ2) =
(2, 2, dn/2e, bn/2c, 0, τ − 1, τ − 1). Since n ≥ 4 and τ ≥
dlog(n)e, for any i ∈ [0, 2], we have ni ∈ [2, n − 1] and
τi ≥ dlog(ni − 1)e. To continue proof by induction, we

assume that for any i ∈ [0, 2], Sni,τi exists and fulfills (3),
which must be true for ni < 4 as discussed previously.
We can then easily verify that (m,n0, n1, n2, τ0, τ1, τ2) =
(2, 2, dn/2e, bn/2c, 0, τ − 1, τ − 1) fulfill (2). Construct S
from Sni,τi ,∀i ∈ [0, 2] via Construction 3. As a result,
we have S ∈ Sn,τ . Moreover, according to Lemma 5, we
have c(S) = c(Sn0,τ0) +

∑
i∈[2]

(
c(Sni,τi) + ni + 1

)
≤∑

i∈[2]
(
nidlog(ni)e + ni − 1

)
≤ ndlog(n)e − 2. Since S is

a candidate for Sn,τ , we have Sn,τ ∈ Sn,τ and c(Sn,τ ) ≤
ndlog(n)e − 2. This completes the proof.
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