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Abstract—We study common randomness generation problems
where n players aim to generate same sequences of random coin
flips where some subsets of the players share an independent
common coin which can be tossed multiple times, and there is a
publicly seen blackboard through which the players communicate
with each other. We provide a tight representation of the optimal
communication rates via linear programming, and more impor-
tantly, propose explicit algorithms for the optimal distributed
simulation for a wide class of hypergraphs. In particular, the
optimal communication rate in complete hypergraphs is still
achievable in sparser hypergraphs containing a path-connected
cycle-free cluster of topologically connected components. Some
key steps in analyzing the upper bounds rely on two different
definitions of connectivity in hypergraphs, which may be of
independent interest.

Index Terms—Common randomness, blackboard communica-
tion, optimal communication rate, combinatorics, hypergraph
connectivity.

I. INTRODUCTION

Common randomness, or shared randomness, refers to some
external randomness known to all agents which enables them
to take coordinated actions. The most classical application
of common randomness is the generation of the secret key
in cryptography [1]. This is also a valuable resource which
aids diverse applications including developing randomized
algorithms [2], reducing the communication complexity in
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distributed computing [3], reducing the sample complexity in
distributed inference [4], coordination among players in game
theory [5], and quantum mechanics [6]. In these applications,
generating common randomness, or distributed simulation of
the same random sequence, is of the utmost importance.

In many scenarios, there is shared randomness within certain
subsets of the agents, and sound communication strategies
are necessary to generate common randomness for all agents.
Consider the following simple example: Alice shares inde-
pendent randomness with Bob and Carlo respectively, and
Alice aims to broadcast as few messages as possible to
Bob and Carlo so that they have access to some common
randomness. The simplest strategy for Alice is to broadcast
any random bit R0, then they generate 1 bit of common
randomness with 1 bit of communication. However, if Alice
broadcasts R1 ⊕ R2 where the bits R1 and R2 come from
the shared randomness with Bob and Carlo, respectively, then
they successfully generate 2 bits of common randomness still
with 1 bit of communication (see Appendix A-A for more
details). Hence, the communication resources may be saved
under better strategies.

In this paper, we consider a natural generalization of the
above scenario: we are given a hypergraph G = (V,E),
where the vertex set V = [n] is the set of n players, and the
edge set E = {e1, · · · , em} consists of hyperedges ei ⊆ V
representing the subsets of players sharing a common fair coin.
We assume that the coins for different hyperedges are mutually
independent. The players can toss the shared coins multiple
times as a part of the communication strategy. In particular,
the number of coin tosses for each hyperedge is not pre-
determined and this allows for the scenario where different
hyperedges could be used different times depending on the
structure of the hypergraph. We also assume that the players
may communicate with each other via a blackboard communi-
cation protocol [7], i.e. each player may write some messages
on a publicly seen blackboard based on his shared coins
and all current message on the blackboard. The blackboard
communication protocol allows for interactive strategies and
is stronger than both the simultaneous message passing (SMP)
protocol where each player writes messages on the blackboard
independently of each other, and the sequential message pass-
ing protocol where players write messages sequentially but in a
fixed order. The objective of the players is to generate the same

random variable (or vector) X following a given target discrete
distribution while minimizing the communication cost, i.e. the
entropy of the message M written on the blackboard. We
define the communication rate as the ratio H(M)/H(X),
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where H(·) denotes the Shannon entropy of discrete random
variables. We provide a tight representation of the optimal
communication rates via linear programming (see Theorem 1
and discussions followed). More importantly, we also propose
explicit algorithms and investigate combinatorial properties for
the optimal common randomness generation for a wide class
of hypergraphs (Theorem 2).

A. Related works

The role of common randomness (CR) has been given
considerable attention in information theory literature starting
from Gács and Körner [8] who characterized the maximum
rate of common randomness that can be extracted from a
pair of correlated random variables. Wyner [9] character-
ized the minimum rate of CR required for two processors
to produce (approximately) independent copies of correlated
random variables. CR was used for encoding and decoding
in arbitrary varying channels by Ahlswede [10], and Csiszár
and Narayan [11]. CR generation with interactive communi-
cation between two players was studied by Ahlswede and
Csiszár [12]. CR generation with a helper was studied by
Csiszár and Narayan [13]. CR generation via a network of
discrete memoryless channels was studied by Venkatesan and
Anantharam [14]. Zhao and Chia [15] studied the relation
between Hirschfeld-Gebelein-Renyi maximal correlation and
CR generation. CR generation between two players which
should be hidden from an eavesdropper was studied in secret
key (SK) agreement by Maurer [16], and Ahlswede and
Csiszár [1]. Secret key agreement between multiple players
was studied by Csiszár and Narayan [17]. This is closely
related to communication for omnicience [18], [19]. The
minimum communication rate required to generate secret key
between two players was studied by Tyagi [20], and Ghazi and
Jayram [21]. Liu et al. [22] characterized the trade-off between
secret key and communication rates for a fixed number of
communication rounds. Building on Tyagi [20], Mukherjee et
al. [23] derived a lower bound on this communication rate for
SK agreement in the multiterminal source model.

A special source model, i.e. the hypergraphical source

model [24], [25], where clusters of players share independent
randomness, has received attention in various works which
studied SK capacity as a function of the total communication
rate [23], [26]–[29]. Courtade and Halford [26] considered the
non-asymptotic one-shot version of the SK generation problem
and characterized the minimum amount of communication
needed under an assumption that communication is a linear
function of the sources. Chan et al. [27] studied the optimality
of SK agreement via omniscience. Zhou and Chan [28] stud-
ied minimally connected hypergraphs and characterized the
optimal trade-off between secret key rate and communication
rate tuple. Chan [29] characterized a similar achievable rate
region for any general hypergraph in terms of a polynomial-
time computable linear program. Hypergraphical source model
is a generalization of the Pairwise Independent Network
(PIN) Model, where every pair of players share independent
randomness, first introduced by Ye and Reznik [30] and
studied in [18], [23], [31], [32]. Our work is also on the

hypergraphical source model, but differs from the previous
works in that we exploit the combinatorial nature of general
hypergraphs. We remark that the hypergraph theory plays an
important role in Theorem 2. Specifically, the two different
notions of hypergraph connectivity presented in Theorem 2
aim to generalize the following folklore in different ways (see
Lemmata 1 and 3):

Folklore. A tree on n vertices has exactly n− 1 edges.

For k ≥ 3, a proper definition of trees in hypergraphs is
required to generalize the above folklore. Recall that a tree en-
joys two essential properties, i.e., connectivity and cycle-free,
therefore a proper definition of connectivity is important. In
combinatorics, the most common definition of connectivity is
the path connectivity or its variants [33]–[35], which imposes
constraints on vertices and requires that any two vertices can
reach each other through the 1-dimensional skeleton of the
hyperedges. Consequently, the cycle-free property can also be
defined in terms of paths (cycles). There is also another less
famous notion of hypergraph connectivity due to Kalai [36]
which imposes constraints on the facets of the hypergraph and
requires them to be connected topologically. In the language
of algebraic topology, a k-uniform hypergraph can be treated
as a (k−1)-dimensional simplicial complex C, with the facets
being the hyperedges. Then the hypergraph is topologically
connected if and only if the (k− 2)-skeleton of C is full. The
cycle-free property can then be defined as that the (k − 1)-th
simplicial homology of C is 0 [36], [37]. From both directions
we may obtain appropriate generalizations of the previous
folklore (see Lemmas 1 and 3, respectively), which constitute
the key ingredients of Theorem 2.

The work by Mukherjee et al. [23] deserves special mention.
Specifically, it showed that if the k-uniform hypergraph,
or in general any multiterminal source model, is of type

S (a notion introduced in [23]), then there is a strategy
achieving the optimal communication rate n−k

n−1 and outputting
each hyperedge (from a multi-hypergraph) exactly once. The
main differences between our work and [23] are as follows.
First, our achievability scheme is non-asymptotic (i.e. no
blocklengths required) and combinatorial, while the scheme
in [23] potentially requires large blocklengths and is more
information-theoretic. Second, although the type S condition
is a nice “if and only if” result and could be checked efficiently
in polynomial time for a given hypergraph (see also [38]),
a rich combinatorial characterization about which family of
hypergraphs are of type S remains unclear. Our work aims to
provide a partial answer to this combinatorial problem, and
based on the fundamental notions of connectivity, proposes
rich families of hypergraphs that achieve the optimal n−k

n−1
communication rate. Although our families of hypergraphs
must be of type S, it is worth noting that so far we do
not have a direct argument to connect them. Thus, our work
presents an alternative approach which sheds more lights on
the combinatorial perspective.

We also review some literature on the communication
complexity. First introduced in [39], the blackboard communi-
cation protocol serves as an elegant mathematical framework
for the study of communication complexity. A series of
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research is devoted to the lower bounds in communication
complexity, where the log rank is the prominent tool for all the
deterministic [40], [41], nondeterministic [42] and randomized
communication complexities [43]–[45]. We refer to [3] for a
survey of these methods. Another closely-related problem is
distributed inference under communication constraints [46],
where distributed simulation of common randomness is useful
for distributed learning and property testing [47], [48]. To
establish lower bounds on the communication complexity in
distributed inference, the copy-paste property of the black-
board communication model typically plays an important role
[49], [50]. However, our technique to establish the lower bound
is different, where only the sequential nature of the blackboard
communication protocol is used in the proof of Theorem 1,
which may be of independent interest.

II. MAIN RESULTS

The first theorem presents a general lower bound of the
communication rate for any hypergraph.

Theorem 1. Let G = (V,E) be any hypergraph. Let X be the

discrete random variable outputted by each vertex through a

blackboard communication protocol, and M be the message

written on the blackboard. Then H(M)/H(X) ≥ t(G), where

t(G) is the solution to the following linear program:

t(G) =



























min
∑

v∈V rv,

subject to
∑

v∈U rv ≥
∑

e∈E:e⊆U se, ∀U ( V,
∑

e∈E se ≥ 1,

rv, se ≥ 0, ∀v ∈ V, e ∈ E.

A detailed proof of Theorem 1 is in Appendix B-A. The
linear program in Theorem 1 can be seen as a special case
of a linear program [29, Corollary 2] (see also [19]) in a
closely related problem of secret-key agreement where it is
also shown to be solvable in polynomial time. In fact, [29,
Corollary 2] implies the result in Theorem 11. Intuitively, the
quantity rv denotes the length of the messages sent by player
v, and se denotes the number of random bits extracted from
the hyperedge e to generate the common output X . Therefore,
the first inequality constraints require that for any graph cut
U ( V , the amount of information communicated from the
players in U should at least cover the amount of randomness
extracted out of hyperedges totally contained in U . These
constraints also turn out to be tight in the sense that the optimal
communication rate t(G) can be attained asymptotically (as
H(X) goes to infinity) via linear network coding [18] - see
Appendix B-D for details.

Although Theorem 1 (together with the asymptotic up-
per bounds) provides a tight characterization of the optimal
communication rates for common randomness generation, the
picture is still incomplete due to the following reasons. First,

1We thank Chung Chan for pointing out to us that Theorem 1 follows
from [29, Corollary 2] and the fact that the associated linear program
is solvable in polynomial-time. We note that Theorem 1 appeared in a
version of the current paper [51] (arXiv:1904.03271v2) slightly earlier than
[29] (arXiv:1910.01894v1) but without the observation of polynomial-time
solvability.

the existential proof of the network coding approach in Ap-
pendix B-D does not give an explicit communication strategy,
and the result is asymptotic in the sense that large blocklengths
are required and the communication rate only approaches but
may never reach t(G). Second, the linear program tells little
about the combinatorial properties of the hypergraphs where
a small communication rate is possible. For example, which
hypergraphs are as good as the complete graphs?

To answer these questions, in this paper we propose ex-
plicit algorithms of communication strategies and investigate
the combinatorial properties of hypergraphs which lead to a
small communication rate, at the expense of losing certain
generalities. First we investigate some basic properties of t(G)
for general hypergraphs.

Corollary 1. It always holds that t(G) ≤ 1 for any hyper-

graph G, with equality if and only if G is disconnected (in the

usual sense of path connectivity formally defined in Definition

4).

A proof of Corollary 1 is given in Appendix B-B. Next we
turn to the lower bound of t(G), and investigate the hypergraph
structures which perform equally well as the complete k-
uniform hypergraphs. Note that a hypergraph G = (V,E) is
called k-uniform if for all hyperedges e ∈ E we have |e| = k.
The following corollary follows immediately from Theorem
1.

Corollary 2. If G = (V,E) is a k-uniform hypergraph, then

t(G) ≥
n− k

n− 1
.

A proof of Corollary 2 is given in Appendix B-C. By
Corollary 2, it remains to find hypergraph structures and
explicit communication strategies where the optimal rate
(n − k)/(n − 1) is achievable. It turns out that the simple
graph case k = 2 admits an explicit characterization of t(G).

Corollary 3. If G is a simple graph (i.e. 2-uniform), then

t(G) =

{

1 if G is not connected,

n−2
n−1 if G is connected.

In Corollary 3, the case of disconnected graphs follows from
Corollary 1, and that of connected graphs follows from the
lower bound of t(G) in Corollary 2 and an explicit achiev-
ability strategy in Appendix A. Therefore, both Corollaries 1
and 3 show that hypergraph connectivity plays a central role
in achieving a small communication rate t(G), and one may
wonder whether the lower bound of Corollary 2 is achievable
whenever the hypergraph is connected. However, this does not
generalize to any k-uniform hypergraphs with k ≥ 3 under the
usual notion of path connectivity for graphs, and a number of
path-connected hypergraphs are too sparse to achieve a small
communication rate. It also becomes challenging to propose
an achievability scheme even if k = 3. The following theorem
shows that under the correct definitions of connectivity, the
optimal rate of communication is attainable.

Theorem 2. Let G = (V,E) be a k-uniform hypergraph,

with 1 ≤ k ≤ n. If G is a path-connected cycle-free cluster

http://arxiv.org/abs/1904.03271
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(cf. Definition 6) of topologically connected components (cf.

Definition 1), then there exists an explicit communication

strategy under the simultaneous message passing protocol such

that for some m ∈ N, each vertex can output the same random

vector X ∼ Unif({0, 1}m) while the message M written on

the blackboard satisfies

H(M)

H(X)
=

n− k

n− 1
.

Remark 1. Although Theorem 2 restricts the output X to

be an independent and identically distributed (i.i.d.) Bernoulli

random vector, the same communication rate can also be

generalized to any i.i.d. random vectors in an asymptotic

manner. This is precisely because a common randomness of

rate H(X) suffices to generate i.i.d. copies of a random

variable X with asymptotically (in the number of shared

coin tosses) vanishing Kullback-Leibler divergence or total

variation distance [9], [52], [53].

A detailed description and proof of Theorem 2 are deferred
to Sections III and IV. Theorem 2 shows that the optimal
rate (n − k)/(n − 1) is attainable non-asymptotically when
the underlying hypergraph satisfies suitable connectivity con-
ditions, which are generalizations of the classical connectivity
for k = 2 from two different angles. We remark that a
path-connected cycle-free cluster of topologically connected
components differs significantly from the usual notion of
path connectivity in hypergraphs, where the topological con-
nectivity, the central concept in Theorem 2 and a stronger
notion than path connectivity, views the hypergraph as a
simplicial complex in the context of algebraic topology. For
example, when k = 3 and n = 4, the hyperedges may
be viewed as surfaces of a pyramid; two surfaces suffice to
make the hypergraph path-connected, while three surfaces are
necessary to make it topologically connected. We leave more
discussions to the related works on hypergraph theory and
formal definitions in Section III.

The new notion of connectivity contains a rich family of
hypergraphs which suggests that Theorem 2 covers all hyper-
graphs for which the optimal communication rate (n−k)/(n−
1) is achievable. Surprisingly, there are indeed richer families
of hypergraphs which do not follow the previous connectivity
notion but still achieve the optimal communication rate. We
discuss these examples in Section IV-C, where we characterize
the complete class of optimal hypergraphs in certain cases
such as k = 2, and k = 3 star-shaped hypergraphs, which are
discussed in Appendix F. It is an outstanding open problem
to figure out the complete class of optimal hypergraphs.

A. Organization

The rest of this paper is organized as follows. Section III
gives the formal definition of topological connectivity in k-
uniform hypergraphs and proposes the optimal communication
strategy on topologically k-connected hypergraphs, and Sec-
tion IV generalizes the path connectivity and presents a general
algorithm for Theorem 2. Proofs of main results are deferred
to the appendices, where Appendix A also provides examples

where the achievability scheme is comparatively simple, in-
cluding the complete picture of k-uniform hypergraphs with
k = 2.

B. Notations

Let N be the set of all non-negative integers, and F2 be the
binary field. We denote by ⊕ the addition operator in F2, and
for n ∈ N, we denote [n] , {1, 2, · · · , n}. For discrete random
variables X,Y , let H(X) be the Shannon entropy of X (in
bits), and I(X ;Y ) be the mutual information between X and
Y . For a set A and k ∈ N, let |A| be the cardinality of A, and
(

A
k

)

be the collection of all size-k subsets of A. Consequently,
a k-uniform hypergraph G = (V,E) is complete if E =

(

V
k

)

.

III. ACHIEVABILITY: TOPOLOGICAL CONNECTIVITY

In this section we provide an achievability scheme for
general topologically k-connected hypergraphs. We introduce
the definition and properties of topological connectivity in
Section III-A and the corresponding achievability strategy in
Section III-B.

A. Topological connectivity

In Appendix A-B, general achievability schemes have been
proposed for all connected simple graphs when k = 2. A
natural conjecture would be that similar ideas should also work
for general “connected” k-uniform hypergraphs. We will show
that this conjecture is true, while we need the correct definition
of connectivity for k-uniform hypergraphs.

In our paper, we adopt the tree definition in [36] and
reinterpret it as topological connectivity:

Definition 1 (Topologically k-connected hypergraph). For any

k-uniform hypergraph G = (V,E) with k ≥ 2, define the

following generation step: for hyperedges e1, · · · , em ∈ E and

any hyperedge e /∈ E, if all (k−1)-tuples in
(

V
k−1

)

appearing

in e1, · · · , em, e appear an even number of times, we may add

the hyperedge e to the hypergraph. We call G is topologically
k-connected if G becomes a complete k-uniform hypergraph

after a finite number of generation steps.

Definition 2 (Minimal topologically k-connected hypergraph).
For k ≥ 2, a k-uniform hypergraph G is called minimal
topologically k-connected if G is topologically k-connected

and removing any hyperedge of G makes it become not

topologically k-connected.

The generation step has a natural topological interpretation.
Think of embedding the k-uniform hypergraph G into Rk,
and treat hyperedges of G as (k − 1)-dimensional facets (cf.
Figure 1). Note that the technical condition that all (k − 1)-
tuples appearing in e1, · · · , em, e appear an even number of
times essentially says that the faces e1, · · · , em, e form the
closed surface of a polygon. Then the generation step states
that, if there is a k-dimensional polygon with all but one faces
in the hypergraph, we are allowed to add this missing face to
the hypergraph. When k = 2, this definition coincides with
the usual path-connectivity for undirected graphs, where we
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(a) The hypergraph

1

2 3

4

5

(b) Embedding in R3

Fig. 1: Example of a minimal topologically 3-connected hypergraph on 5 vertices with 6 hyperedges
{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 5}, {2, 3, 5}, {2, 4, 5}}.

are allowed to add an edge (u, v) to form a cycle (i.e. a 2-
dimensional polygon) if there is a path from u to v.

The main property for minimally topologically k-connected
hypergraphs is summarized in the following lemma. We re-
mark that this property is implicitly implied by the main
theorem in [36].

Lemma 1. Any minimal topological k-connected hypergraph

with n vertices has exactly
(

n−1
k−1

)

hyperedges.

A detailed proof of Lemma 1 is in Appendix E-A. When
k = 2, Lemma 1 generalizes the fact that a tree on n vertices
has exactly n − 1 edges. The topological interpretation of
Lemma 1 is as follows: embed the hypergraph into Rk and
think of hyperedges as faces (as in Figure 1 as an example).
For a minimal topologically k-connected hypergraph, the
minimality ensures that the facets cannot be the boundary of
a closed domain. As a result, these facets can be shrunk into
a single point topologically, which is of Euler characteristic
1. Moreover, for 1 ≤ j ≤ k − 1, let Fj be the number
of (j − 1)-dimensional edges, the topological connectivity
condition ensures that Fj =

(

n
j

)

. Now by Euler’s formula
[54], the number F of faces equals to

F = (−1)k−1



1−
k−1
∑

j=1

(−1)j−1Fj





=

k−1
∑

j=0

(−1)k−1−j

(

n

j

)

=

(

n− 1

k − 1

)

,

confirming Lemma 1.

B. Achievability scheme

In this subsection we propose the achievability scheme for
general topologically k-connected hypergraph G. Without loss
of generality we assume that G is minimal topologically k-
connected, for we can always ignore the other edges and
consider a minimal topologically connected subgraph. For

each i ∈ [n], we define the induced hypergraph Gi from G
as follows: the vertex set of Gi is Vi = [n]\{i}, and the edge
set of Gi is Ei = {e\{i} : i ∈ e ∈ E}. Hence, the induced
hypergraph Gi is (k− 1)-uniform, and e is a hyperedge of Gi

if and only if e ∪ {i} ∈ E. We have the following lemma.

Lemma 2. For k ≥ 3, if G is topologically k-connected,

then all induced hypergraphs Gi are topologically (k − 1)-
connected.

A detailed proof of Lemma 2 is in Appendix E-B. We pro-
pose the following communication strategy for topologically
k-connected hypergraphs. For each edge e ∈ E, we define an
independent random variable Re ∼ Unif({0, 1}) by tossing
the associated common coin.

Definition 3 (Communication strategy for k-connected hyper-
graphs). For a minimal topologically k-connected hypergraph

G with k ≥ 3, the communication strategy is as follows: for

each i ∈ [n],

1) Player i constructs the induced hypergraph Gi, and

choose an arbitrary minimal topologically (k − 1)-
connected subgraph G⋆

i ⊆ Gi (existence of G⋆
i is

ensured by Lemma 2);

2) For each hyperedge e of Gi which is not in G⋆
i , let e be

generated by e1, · · · , em in G⋆
i (cf. Definition 1). Player

i then writes Re∪{i} ⊕Re1∪{i} ⊕ · · · ⊕Rem∪{i} on the

blackboard.

Although the previous scheme is defined for k ≥ 3,
it is straightforward to see that it reduces exactly to the
achievability scheme in Appendix A-B when k = 2 (by
adapting the definition of topologically 1-connected graph
appropriately). Moreover, this strategy can be implemented
under the simultaneous message passing model. We refer to
Figure 2 for an example.

Assuming for a moment that every player may decode
the random vector X = (Re : e ∈ E), we show that the
communication rate of this strategy is optimal. Firstly, by
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1

2 3

4

5

1 → R124 ⊕R134 ⊕R123

(a) Induced graph G1 (solid lines) and G⋆
1

(red lines).

1

2 3

4

5

2 → R124 ⊕R125 ⊕R245

R123 ⊕R125 ⊕R235

(b) Induced graph G2 (solid lines) and G⋆
2

(red lines).

Fig. 2: The communication strategy on the minimally topo-
logically connected 3-uniform hypergraph in Figure 1, which
achieves the optimal communication rate 1/2.

Lemma 1 and the minimality of G, H(X) = |E| =
(

n−1
k−1

)

.
Moreover, the number of bits player i writes on the blackboard
is |Mi| = |{e ∈ E : i ∈ e}| −

(

n−2
k−2

)

, where Lemma 1 again

shows that each G⋆
i has

(

n−2
k−2

)

hyperedges. As a result, the
total length of the message M is

|M | =
n
∑

i=1

|Mi| =
n
∑

i=1

(

|{e ∈ E : i ∈ e}| −

(

n− 2

k − 2

))

= k|E| − n

(

n− 2

k − 2

)

=

(

n− 2

k − 1

)

.

Hence, the communication rate can be upper bounded as

H(M)

H(X)
≤

|M |

H(X)
=

(

n−2
k−1

)

(

n−1
k−1

) =
n− k

n− 1
,

which is optimal by Corollary 2. Therefore it remains to prove
the following theorem.

Theorem 3. Let G = (V,E) be a topologically k-connected

hypergraph. Then under the communication strategy in Defi-

nition 3, every player may decode the random vector X .

The proof of Theorem 3 requires delicate algebraic and
combinatorial arguments for topological connectivity, which
is deferred to Appendix C.

IV. GENERALIZATION: CLUSTERS OF CONNECTED

COMPONENTS

In this section, we generalize the achievability scheme in
Section III to incorporate the cases where the hypergraph
is not topologically connected but consists of topologically
connected components.

A. Path connectivity

First we review the notion of path connectivity in general
(and not necessarily uniform) hypergraphs. Recall that a
general hypergraph G = (V,E) consists of a finite vertex
set V and a finite hyperedge set E = {A1, · · · , Am}, where
Ai ⊆ V are non-empty subsets of V . Path connectivity in
hypergraphs is defined as follows.

Definition 4 (Path and path connectivity). In a hypergraph

G = (V,E) and any vertices u, v ∈ V , a simple path from u
to v is a sequence of distinct vertices v0, v1, · · · , vk ∈ V and

distinct hyperedges A1, · · · , Ak ∈ E such that v0 = u, vk = v,

and vi−1, vi ∈ Ai for any i ∈ [k]. The hypergraph G is path-
connected iff for any u, v ∈ V , there is a simple path from u
to v.

We also need the notion of cycle-free hypergraphs as
follows.

Definition 5 (Simple cycle and cycle-free hypergraph). In

a hypergraph G = (V,E), a simple cycle is a sequence of

distinct vertices v0, v1, · · · , vk−1 ∈ V and distinct hyperedges

A1, · · · , Ak ∈ E such that vi−1, vi ∈ Ai for any i ∈ [k],
where vk = v0. The hypergraph G is cycle-free iff there is no

simple cycle in G.

Note that a path-connected cycle-free 2-uniform hypergraph
is a tree. The next lemma is another generalization of the fact
that a tree on n vertices has exactly n− 1 edges. Recall that
for each v ∈ V , the degree of v is defined as deg(v) = |{A ∈
E : v ∈ A}|.

Lemma 3. Let G = (V,E) be a path-connected cycle-

free hypergraph. Then
∑

A∈E (|A| − 1) = |V | − 1, and
∑

v∈V (deg(v)− 1) = |E| − 1.

A detailed proof of Lemma 3 is in Appendix E-C.

B. Achievability scheme

In this section we formally define the cluster of connected
components, and present a communication strategy achieving
the upper bound in Theorem 2 under the simultaneous message
passing procotol.

Definition 6. Let G = (V,E) be a k-uniform hypergraph. We

call G is a cluster of connected components if and only if

there is another hypergraph (not necessarily k-uniform) Gc =
(V, {A1, · · · , Am}) such that (where the subscript c stands for

“cluster”):

1) the hypergraph Gc is path-connected and cycle-free;

2) for each i ∈ [m], the restriction of G on the vertices in

Ai is topologically k-connected.
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Fig. 3: An example of a cluster of connected components.

Definition 6 essentially says that to form a cluster, the
topologically k-connected components of G should be path-
connected without cycles in terms of components. Figure 3
illustrates an example of such a cluster, where

G = ([6], {{1, 2, 3}, {1, 4, 5}, {1, 4, 6}, {4, 5, 6}}),

Gc = ([6], {{1, 2, 3}, {1, 4, 5, 6}}).

Next we define the communication strategy for clusters of
connected components.

Definition 7 (Communication strategy for clusters of con-
nected components). Let the k-uniform hypergraph G =
(V,E) be a cluster of connected components, with the cor-

responding cluster hypergraph Gc = (V, {A1, · · · , Am}). The

communication strategy is as follows:

1) For each i ∈ [m], remove hyperedges properly so that

the restriction of G on Ai is minimally topologically

k-connected;

2) Messages within components: for each i ∈ [m], repeat

(for different realizations of coin tosses) the strategy in

Definition 3 for Mi times in the restricted graph on Ai,

where Mi is chosen so that

Mi ·

(

|Ai| − 2

k − 2

)

= C (1)

for some common constant C > 0. We choose C large

enough so that each Mi is an integer;

3) Messages across components: for each v ∈ V belonging

to at least two connected components Ai1 , · · · , Aiℓ (i.e.,

ℓ = degGc
(v) ≥ 2) and j ∈ [ℓ], let G⋆

j be the

minimal topologically (k − 1)-connected subgraph of

v-induced hypergraph in the connected component Aij

(cf. Definition 3) used in the previous step. Let Rj ∈ FC
2

be the binary vector consisting of the outcomes of coin

tosses corresponding to every hyperedge in G⋆
j repeated

Mij times2, in an arbitrary order. Then the vertex v
writes

Mv = (R1 ⊕R2, R1 ⊕R3, · · · , R1 ⊕Rℓ)

on the blackboard.

The intuition behind the strategy in Definition 7 is as fol-
lows. Firstly, each connected component employs the strategy
in Definition 3 so that each vertex in this component may

2Note that G⋆
j has exactly

(|Aij
−2|

k−2

)

hyperedges by Lemma 1, the choice

of Mij in (1) ensures that the dimension of the vector Rj is exactly C.

decode all coin tossing outcomes within that component. Sec-
ondly, for vertices which link multiple connected components,
they employ the strategy in Appendix A-B to share coin
tossing outcomes from different components. Finally, since
different connected components may be of different sizes,
proper repetitions are necessary to ensure that all components
have the same amount of information to be shared across
components.

For example, for the previous hypergraph in Figure 3, we
have |A1| = 3, |A2| = 4. Consequently, we may choose M1 =
2,M2 = 1 and C = 2. Let R123, R

′
123 be independent out-

comes of the common coin shared among {1, 2, 3} (i.e., toss
coin twice), then the message within components (broadcast by
player 4) is R145⊕R146⊕R456, and the messages across com-
ponents (broadcast by player 1) are R123⊕R145, R

′
123⊕R146.

It is straightforward to see that each player may decode the
random vector (R123, R

′
123, R145, R146, R456), and thus the

previous strategy achieves the optimal communication rate 3/5
in this example.

The following theorem states that for general clusters of
connected components, the strategy in Definition 7 achieves
the optimal communication rate. Let X be the binary vector
consisting of all coin tossing outcomes during the strategy in
Definition 7.

Theorem 4. For any k-uniform hypergraph G = (V,E) which

is a path-connected cycle-free cluster of topologically con-

nected components (cf. Definition 6), every player may decode

the entire outcome vector X under the strategy in Definition

7, with communication rate H(M)/H(X) = (n−k)/(n−1).

A detailed proof of Theorem 4 is in Appendix D.

C. Further discussions on star graphs

Motivated by Theorem 4, a natural question arises on
whether any k-uniform hypergraph which is possible to
achieve the optimal communication rate (n−k)/(n−1) must
contain a path-connected cycle-free cluster of topologically
connected components. For k = 2, examples in Appendix A
show that the answer is affirmative. However, in this section
we show that even for k = 3 a richer class of hypergraphs
achieves the optimal communication rate. Also, for the spe-
cial case of star graphs (a hypergraph with a single vertex
contained in all hyperedges), we characterize a necessary and
sufficient condition for any 3-uniform star graph to achieve the
optimal communication rate. Hence, it is an outstanding open
problem to characterize the entire class of communication-
optimal hypergraphs.

We first construct an example of a 3-uniform hypergraph
not satisfying the assumption of Theorem 4 but achieves the
optimal communication rate of (n− k)/(n− 1). The graph G
is shown in Figure 4, with

G = ([6], {{1, 2, 3}, {1, 3, 4}, {1, 4, 5}, {1, 5, 6}, {1, 2, 6}}).

It is not hard to show that G is not a path-connected cycle-
free cluster of topologically connected components, as the only
topologically connected components are the single triangles
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Fig. 4: An example hypergraph not satisfying the condition of
Theorem 4.

and the resulting hypergraph Gc will not be cycle-free. Hence,
G does not satisfy the condition of Theorem 4. However, the
optimal communication rate 3/5 can be achieved for G, where
a feasible strategy is that player 1 writes the following message
M on the blackboard:

M = (R123 ⊕R145, R134 ⊕R156, R123 ⊕R134 ⊕R126).

One can easily verify that given the 3-bit message M , each
player is able to decode the entire 5-bit randomness.

The above example is a special case of a 3-uniform star

graph, i.e. a 3-uniform hypergraph where every edge contains
a common vertex v⋆. In fact, the above strategy can be
generalized for general star graphs, and the following theorem
completely characterizes the family of 3-uniform star graphs
where the optimal communication rate (n − 3)/(n − 1) is
achievable.

Theorem 5. Let G be a 3-uniform star graph with n vertices

and the central vertex v⋆, and Gv⋆ be the induced graph

(which is a classical graph) at vertex v⋆ as per Section III-B.

Then the optimal communication rate (n − 3)/(n − 1) can

be achieved for G if and only if Gv⋆ contains a vertex-

disjoint union of simple edges or Hamilton cycles of odd length

including all vertices.

For example, the induced graph G1 for the hypergraph G in
Figure 4 is a Hamilton cycle on all vertices {2, 3, · · · , 6}, and
therefore satisfies the condition of Theorem 5. The if part of
Theorem 5 is shown by providing an explicit communication
strategy in same spirits to the above example, and the only if

part is more challenging and requires the theory of fractional
graphs. The complete proof is presented in Appendix F.

APPENDIX A
SIMPLE EXAMPLES

In this section we provide some examples where the hy-
pergraph G = (V,E) is rather simple, and propose the
corresponding achievability schemes.

A. Star graph with k = 2

In the star graph case with k = 2, there are n ≥ 3
players where the last player shares a common fair coin
with any other player (i.e., the associated graph G is a star
graph with center vertex n). First consider n = 3, and let

Ri, i ∈ {1, 2} be the outcome (head or tail) of the first toss of
the common coin shared between player i and 3. Clearly R1

and R2 are independent Unif({0, 1}) random variables, and
we consider the strategy that player 3 writes M = R1 ⊕ R2

on the blackboard (cf. Figure 5). Since R2 = R1 ⊕ M and
R1 = R2 ⊕ M , all players may know R1, R2 perfectly and
generate X = (R1, R2). Note that

H(X) = 2, H(M) = 1,

we have achieved the optimal communication rate 1
2 , confirm-

ing Theorem 2.

R1

R2

3 → R1 ⊕R2

1

2

3

Fig. 5: Communication strategy for star graph with n = 3,
k = 2.

The achievability scheme for n ≥ 3 is similar. Let Ri, 1 ≤
i ≤ n−1 be independent Unif({0, 1}) random variables shared
between player i and n, consider the case where the last player
broadcasts the following message on the blackboard:

M = (R1 ⊕R2, R1 ⊕R3, · · · , R1 ⊕Rn−1).

Based on the message M , player 1 may decode any other Ri

using the knowledge of R1. For any player j ∈ {2, · · · , n−1},
knowing both R1 ⊕Rj from M and Rj , player j can decode
R1 and further all Ri based on M . Hence, in this case all
player may generate X = (R1, · · · , Rn−1), with

H(X) = n− 1, H(M) = n− 2,

achieving the optimal communication rate n−2
n−1 .

B. General connected graph with k = 2

We may generalize the strategy in Appendix A-A to the case
where k = 2 and the graph G is connected. For each edge
e ∈ E, we may associate an independent random variable
Re ∼ Unif({0, 1}) by tossing the associated common coin.
Since G is connected, it contains a spanning tree T ⊆ G.
Now consider the following strategy: for each player i ∈ [n],

1) if the degree of i in T is 1, player i writes nothing on
the blackboard (i.e., Mi = ∅);

2) if the degree of i in T is at least 2, let e1, · · · , emi

be all of its neighboring edges in an arbitrary order,
with mi = degT (i). player i then writes Mi = (Re1 ⊕
Re2 , Re1 ⊕Re3 , · · · , Re1 ⊕Remi

) on the blackboard.

An example of this strategy is illustrated in Figure 6. The
next lemma shows that every player may generate the random
vector X = (Re : e ∈ ET ), where ET is the edge set of the
spanning tree T .

Lemma 4. Based on the message M = (M1, · · · ,Mn), every

player can decode X = (Re : e ∈ ET ).

Proof. By symmetry, it suffices to prove that the first player
can decode X . We prove the following statement: for any edge
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R6

3→ R1 ⊕R2
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4→ R3 ⊕R4

5→ R5 ⊕R6

R5 ⊕R4
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Fig. 6: Communication strategy for a tree with n = 7, k = 2.

(i, j) ∈ ET , if player 1 can decode (Re : i ∈ e ∈ ET ), then he
can also decode (Re : j ∈ e ∈ ET ). The proof of this state-
ment exactly follows from the arguments in Appendix A-A
based on the star graph centered at i and the message Mi.
Now since T is connected, we may start from i = 1 in the
previous statement and visit all vertices of T , completing the
proof.

Next we evaluate H(X) and H(M). Clearly

H(X) = |ET | = n− 1,

H(M) ≤ |M | =
n
∑

i=1

(degT (i)− 1) = 2|ET | − n = n− 2.

As a result, H(M) ≤ n−2
n−1H(X), proving Theorem 2 for the

case k = 2.

C. Forehead model with k = n− 1

In the forehead model, we have k = n − 1, and G is a
complete k-uniform hypergraph. As usual, for each i ∈ [n], we
associate an independent random variable R\i ∼ Unif({0, 1})
via coin tossing, and player i knows all random variables
except R\i. This is where the name forehead model comes
from: the random variable R\i is written on the forehead of
player i which he cannot see [55]. The communication strategy
for this model is as follows: player 1 writes

M = R\2 ⊕R\3 ⊕ · · · ⊕R\n

on the blackboard, and other players write nothing. It is
clear that everyone then may know and generate X =
(R\2, R\3, · · · , R\n), with

H(X) = n− 1, H(M) = 1.

Hence, this strategy provides an achievability scheme of
H(M) = 1

n−1H(X) in the forehead model, conforming to
Theorem 2.

APPENDIX B
ASYMPTOTICALLY OPTIMAL COMMUNICATION RATES

This section is devoted to the asymptotically optimal com-
munication rates for common randomness generation. Specif-
ically, we first prove the lower bounds in Theorem 1 and
Corollary 2, and then show that the rate given by the linear
programming is attainable asymptotically.

A. Proof of Theorem 1

We start with some notations. Recall that X is the outputted
common randomness, and M is the message written on the
blackboard. Fix any complete order relationship (E,<) on the
edge set E, and for e ∈ E, let Re be the randomness associated
with edge e, and R<e be the set of randomness associated with
edges preceding e under the order (E,<). Furthermore, for
any U ⊆ V we denote by RU the set of randomness known
to the player set U .

By scaling, it suffices to find non-negative parameters
(rv)v∈V , (se)e∈E such that the following inequalities hold:

∑

v∈U

rv ≥
∑

e∈E:e⊆U

se, ∀U ( V (2)

∑

v∈V

rv ≤ H(M), (3)

∑

e∈E

se ≥ H(X). (4)

Intuitively, the quantity rv denotes the length of the messages
sent by player v, and se denotes the number of bits in Re

used to generate the common output X . To specify the choices,
recall that a blackboard communication protocol can be treated
as an infinite-round sequential communication, and we write
M = (M1,M2, · · · ) where Mt is outputted by the player
t mod n and may be an empty string. Now we set

rv =

∞
∑

t=0

H(Mtn+v|M
tn+v−1), ∀v ∈ V = [n],

se = I(X ;Re|R<e), ∀e ∈ E.

We verify the inequalities (2)–(4). To establish (2), note that

∑

v∈U

rv =
∞
∑

t=0

∑

v∈U

H(Mtn+v|M
tn+v−1)

≥
∞
∑

t=0

∑

v∈U

H(Mtn+v|M
tn+v−1, RUc)

(a)
=

∞
∑

t=0

∑

v∈V

H(Mtn+v|M
tn+v−1, RUc)

(b)
= H(M |RUc)

(c)

≥ H(X |RUc)

(d)
= H(X |RUc)−H(X |RUc , (Re)e⊆U )

= I(X ; (Re)e⊆U |RUc)

=
∑

e∈E:e⊆U

I(X ;Re|RUc , (Re′)e′∈U,e′<e)

(e)

≥
∑

e∈E:e⊆U

I(X ;Re|R<e)

=
∑

e∈E:e⊆U

se,

where (a) follows from the fact that under the black-
board communication protocol Mtn+v must be a function of
(M tn+v−1, RUc) whenever v ∈ U c, (b) is due to the chain
rule of the Shannon entropy, (c) is due to that X is a function
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of (M,RUc) since each player v ∈ U c can output X based on
the message M and her known randomness, (d) is due to that
the output X is a function of all randomness (Re)e∈E , and
(e) follows from the inequality I(A;B|C,D) ≥ I(A;B|C)
whenever B and D are conditionally independent given C.
Therefore (2) holds. The inequality (3) holds with equality
due to the chain rule of the Shannon entropy. For inequality
(4), the chain rule gives

∑

e∈E

se = I(X ; (Re)e∈E) = H(X)

since the output X is a function of (Re)e∈E .

B. Proof of Corollary 1

We first show that t(G) ≤ 1 for all hypergraphs. As-
signing non-negative weights (se)e∈E in an arbitrary way
with

∑

e∈E se = 1, consider the following feasible solution
(rv)v∈V :

rv =
∑

e∈E:v∈e

se
|e|

,

where |e| denotes the number of vertices in the hyperedge e.
It is then clear that for all U ⊆ V ,

∑

v∈U

rv =
∑

v∈U

∑

e∈E:v∈e

se
|e|

=
∑

e∈E

se ·
# of vertices v in U with v ∈ e

|e|

≥
∑

e∈E:e⊆U

se,

showing that (rv)v∈V is indeed a feasible solution. Conse-
quently,

t(G) ≤
∑

v∈V

rv =
∑

v∈V

∑

e∈E:v∈e

se
|e|

=
∑

e∈E

se = 1.

Next we prove that t(G) = 1 if and only if G is discon-
nected. For the if part, for disconnected G, we may split the
vertex set V into two non-empty sets U and V \U , such that for
every hyperedge e, either e ⊆ U or e ⊆ V \U . Consequently,
for any feasible solution (rv)v∈V and (se)e∈E ,
∑

v∈V

rv =
∑

v∈U

rv +
∑

v∈V \U

rv ≥
∑

e∈E:e⊆U

se +
∑

e∈E:e⊆V \U

se

=
∑

e∈E

se ≥ 1,

giving t(G) ≥ 1. Since t(G) ≤ 1 for all hypergraphs, we have
t(G) = 1.

For the only if part, we prove the contrapositive that t(G) <
1 if G is connected. We construct a new graph G′ = (V,E′)
based on G: the new edge set E′ consists of all simple edges
(v, v′) such that {v, v′} ⊆ e for some hyperedge e ∈ E (with
multiplicities for each such e). We show that t(G) ≤ t(G′):
in fact, for any feasible solution (r′v)v∈V and (s′e)e∈E′ to the
linear program for G′, the following solution

rv = r′v, ∀v ∈ V, se =
∑

e′∈E′:e′⊆e

s′e, ∀e ∈ E,

is also feasible to the linear program for G, while with the
same objective value. It remains to prove that t(G′) < 1.
Since G is connected, so is the 2-uniform hypergraph G′. Now
there are two ways to establish t(G′) < 1. The first proof
uses the operational meaning of t(G′), and it is shown in
Appendix A that a communication rate (n− 2)/(n− 1) could
be achieved for any connected 2-uniform graph G′. The second
proof directly provides a feasible solution to the linear program
for G′: find an arbitrary spanning tree T = (V,ET ) of G′ with
|ET | = n− 1, and set

se =
1

n− 1
· 1(e ∈ ET ), rv =

degT (v) − 1

n− 1
.

Clearly
∑

e∈E se = 1 and
∑

v∈V rv = (n − 2)/(n− 1) < 1.
Now it suffices to check that this solution is feasible, i.e. for
all non-empty U ( V , it holds that

∑

v∈U

(degT (v)− 1) ≥
∑

e∈ET

1(e ⊆ U).

Let cut(U) be the cut size of U in T , and m(U) be the number
of edges in the tree T restricted to vertex set U . By simple
algebra, the LHS is 2m(U)+cut(U)−|U |, the RHS is m(U),
so it remains to show that cut(U)+m(U) ≥ |U |. Since T is a
tree, it is clear that cut(U) ≥ C(U) and m(U) = |U |−C(U),
where C(U) is the number of connected components in the
restriction of T to U ; therefore, cut(U)+m(U) ≥ |U | holds.

C. Proof of Corollary 2

Choosing U = V \{v} in Theorem 1 for all v ∈ V and
summing up give

(n− 1)
∑

v∈V

rv =
∑

v∈V

∑

u∈V \{v}

ru

(a)

≥
∑

v∈V

∑

e∈E:e⊆V \{v}

se

(b)
= (n− k)

∑

e∈E

se

(c)

≥ n− k,

where inequalities (a) and (c) are due to the constraints in the
linear program, and (b) follows from the fact that every edge
e is counted n − k times in the summation in a k-uniform
hypergraph. A rearrangement gives the proof.

D. An Asymptotic Achievability Scheme

The lower bound in Theorem 1 is attainable asymptotically
via linear network coding. The idea is essentially contained in
[18], and we present it here for completeness.

Let t⋆ be the minimum objective value of the linear program
in Theorem 1. Then for any t > t⋆, there exists some feasible
solution (rv)v∈V , (se)e∈E with

∑

v∈V rv/
∑

e∈E se ≤ t and
all inequality constraints being strict. Let N > 0 be a
large integer, and without loss of generality we assume that
Nrv, Nse are all integers. Consider the following scheme:

1) For any e ∈ E, toss the coin associated with the edge
e exactly Nse times, and represent the outcomes by a
binary vector Re ∈ FNse

2 ;
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2) For each player v ∈ V , she concatenates all vectors
Re known to her into a long vector zv with length ℓv,
generates a random matrix Lv uniformly distributed on
FNrv×ℓv
2 , and writes the product Mv = Lvzv on the

blackboard;
3) For decoding, each player v ∈ V solves the linear

system with observations (zv, (Mu)u6=v) to recover all
vectors (Re)e∈E .

Clearly, the total length of the message written on the
blackboard is N

∑

v∈V rv , and the length of the output se-
quence is N

∑

e∈E se. Consequently, the communication rate
is
∑

v∈V rv/
∑

e∈E se which is at most t. It remains to show
that with positive probability, the above scheme is error free.
Since the coding scheme is linear, a decoding error occurs iff
there exists some non-zero vector z = (zv)v∈V 6= 0 such that
zv = 0 for some v ∈ V , and Lvzv = 0 for all v ∈ V . By the
union bound, the probability of error perror satisfies

perror ≤
∑

∅(U(V

P (∃z = (zv)v∈V supported on U s.t. Lvzv = 0, ∀v) ,

(5)

where we call that z is supported on U ⊆ V iff zu 6= 0 for all
u ∈ U while zu = 0 for all u /∈ U . For each individual term in
(5), note that if z is supported on U , then all random outcomes
Re must be zero except for (Re)e∈E:e⊆U . Furthermore, for
each fixed z supported on U , the probability of Lvzv = 0 for
all v is exactly

2−
∑

v∈U
Nrv = 2−N

∑
v∈U

rv .

Hence, by a union bound again, we conclude that for all ∅ (

U ( V ,

P (∃z = (zv)v∈V supported on U s.t. Lvzv = 0, ∀v)

≤ 2
∑

e∈E:e⊆U
Nse · 2−N

∑
v∈U

rv (6)

= 2−N(
∑

v∈U rv−
∑

e∈E:e⊆U se). (7)

Since all inequality constraints of the linear program are strict
for (rv)v∈V and (se)e∈E , the above quantity is exponentially
small, and (5)–(6) gives perror < 1 by choosing N large
enough. Therefore, there exists one realization of the random
matrices such that the resulting scheme is error free, as desired.

APPENDIX C
PROOF OF THEOREM 3

In this subsection, we show that every player may decode
the random vector X under the communication strategy in
Definition 3, and thereby complete the proof of Theorem 3.

First we introduce some notations. Given the minimal
topologically k-connected graph G = ([n], E), let A be the
incidence matrix of G (as per the proof of Lemma 1). For
linear subspaces S, T of V , denote by S⊥ the orthogonal
complement of S, and by S ⊕ T the direct sum of S and
T . For any column vector v and hyperedge e ∈ E, denote by
v(e) ∈ F2 the entry of v corresponding to the hyperedge e. For
any (k − 1)-tuple t ∈

(

[n]
k−1

)

, denote by at the corresponding
column vector of A. Note that at(e) = 1(t ⊆ e) ∈ F2

for e ∈ E, and we will abuse notation slightly to write
at(e) = 1(t ⊆ e) for any e ∈

(

[n]
k

)

. Finally, for any e ∈
(

[n]
k

)

,

denote by χe ∈ F
|E|
2 the characteristic column vector of the

hyperedge e defined as χe(e
′) = 1(e = e′) for any e′ ∈ E.

To show that every player knows the random vector X ,
by symmetry it suffices to prove that player 1 may decode
X . Note that the available information for player 1 comes
from two sources: firstly, he directly knows (Re : 1 ∈ e ∈
E) based on the random coins shared with him; secondly,
he may see the messages M2, · · · ,Mn written by others on
the blackboard. Since each bit of message corresponds to one
linear equation of X , player 1 may solve X via a linear system
of the form BX = y, where each entry of y is either the
randomness already known at player 1 or the message written
on the blackboard, and the matrix B takes the form in Figure
7.













































































I 0

B2

Bi

Bn

...

...

Source I

Source II Player i

Fig. 7: Structure of the matrix B.

Clearly the number of unknowns in this linear system is
|E| =

(

n−1
k−1

)

, and the number of linear equations is also

|{e ∈ E : 1 ∈ e}|+
n
∑

i=2

(

|{e ∈ E : i ∈ e} −

(

n− 2

k − 2

))

= k|E| − (n− 1)

(

n− 2

k − 2

)

=

(

n− 1

k − 1

)

,

we conclude that B is a square matrix. Hence, to prove that
BX = y has a unique solution X , it suffices to show that the
matrix B is of full rank, or equivalently, the row vectors of B
span the entire vector space F

|E|
2 . Let Ti ⊆ F

|E|
2 be the row

space of Bi for i ∈ [n] (where B1 , [I, 0]), it further suffices
to show that ⊕n

i=1Ti = F
|E|
2 .

Next we characterize the vector spaces Ti. For i = 1, clearly

T1 = spanF2
(χe : 1 ∈ e ∈ E) = [spanF2

(χe : 1 /∈ e ∈ E)]⊥.
(8)

For i > 1, let Ai be the incidence matrix of the induced
hypergraph Gi (an illustration is shown in Figure 10, with
A′ replaced by Ai). By the construction of the strategy in
Definition 3, each row of Bi corresponds to some selection
of rows in Ai such that the selected rows sum into zero.
Moreover, since player i does not know (Re : i /∈ e ∈ E)
when writing on the blackboard, each row of Bi is also
supported on (e ∈ E : i ∈ e). Hence, the restriction of
rows of Bi on the coordinates {e ∈ E : i ∈ e} exactly span
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the nullspace of Ai, regardless of the choice of the minimal
(k−1)-connected subgraph G⋆

i . Adding the support constraint
together, we conclude that

Ti =

[

spanF2

((

at : i ∈ t ∈

(

[n]

k − 1

))

, (χe : i /∈ e ∈ E)

)]⊥

(9)

for i > 1. By (8) and (9), writing

S1 = spanF2
(χe : 1 /∈ e ∈ E),

Si = spanF2

((

at : i ∈ t ∈

(

[n]

k − 1

))

, (χe : i /∈ e ∈ E)

)

for i > 1, the identity (⊕n
i=1Ti)

⊥ = ∩n
i=1T

⊥
i implies that the

desired result ⊕n
i=1Ti = F

|E|
2 is further equivalent to ∩n

i=1Si =
{0}.

Now suppose that v ∈ ∩n
i=1Si, then by definitions of Si,

we may write

v =
∑

e∈E:1/∈e

β(1)
e χe =

∑

t:i∈t

α
(i)
t at +

∑

e∈E:i/∈e

β(i)
e χe, ∀i > 1,

(10)

where α
(i)
t , β

(i)
e ∈ F2 are some binary coefficients. We may

define α
(1)
t = 0 for any t ∋ 1 to make (10) symmetric in i ∈

[n]. Now for any hyperedge e⋆ = (i1, · · · , ik) ∈ E, evaluating
both sides of (10) at coordinate e⋆ yields

∑

t:ij∈t⊆e⋆

α
(ij)
t = v(e⋆), ∀j ∈ [k]. (11)

As a result, we have arrived at another system of linear
equations with unknowns (α

(i)
t : i ∈ t) and (v(e) : e ∈ E).

The number of unknowns for this system is
(

n

k − 1

)

· (k − 1) + |E| =
(n− 1)k + 1

n− k + 1
·

(

n− 1

k − 1

)

.

However, the number of linear equations of type (11) is only
k|E|, and we need an additional number of

(n− 1)k + 1

n− k + 1
·

(

n− 1

k − 1

)

− k|E| = (k − 1) ·

(

n− 1

k − 2

)

boundary conditions. We claim that the boundary condition
can be α

(i)
t = 0 whenever 1 ∈ t. For i = 1, this is simply

our special treatment for the player 1. For i > 1, we need the
following lemma.

Lemma 5. Let G be a minimal topologically k-connected

hypergraph with incidence matrix A. Then the column vectors

(at : 1 /∈ t) constitute a linearly independent column basis of

A.

Proof. Since rank(G) =
(

n−1
k−1

)

= |{t ∈
(

[n]
k−1

)

: 1 /∈ t}|, it
suffices to prove that the column vectors (at : 1 /∈ t) are
linearly independent over F2. Suppose that

∑

t:1/∈t αtat = 0
for coefficients αt ∈ F2, evaluating both sides at hyperedge
e ∈ E yields

∑

t:1/∈t

αtat(e) = 0, ∀e ∈ E.

Recall that we have slightly abused the notation and defined

at(e) = 1(t ⊆ e) for any e ∈
(

[n]
k

)

. Under the general notation,
if the hyperedge e is generated by e1, · · · , em ∈ E, then

m
∑

i=1

at(ei) = at(e). (12)

In fact, (12) can be shown by comparing the number of
occurrences of each (k − 1)-tuple t at both sides, and the
generation step in Definition 1 ensures that they are of the
same parity. With the help of (12), and using the fact that G
is topologically k-connected, we have

∑

t:1/∈t

αtat(e) = 0, ∀e ∈

(

[n]

k

)

.

Now for any t⋆ ∈
(

[n]
k−1

)

, choosing e⋆ = t⋆ ∪ {1} in the
previous identity yields to αt⋆ = 0, which proves the desired
linear independence.

Remark 2. Lemma 5 is the first occurrence where we require
that G is topologically k-connected, while previously we only

assume this property without really using it. The key to this

property is equation (12), which implies that as long as some

linear equations of column vectors at hold for all e ∈ E, it

will hold for any k tuples e ∈
(

[n]
k

)

.

Applying Lemma 5 to the incidence matrix of the induced
hypergraphs (i.e., the matrix A′ in Figure 10), we conclude that
the column vectors (at : i ∈ t, 1 /∈ t) is a linearly independent
basis of (at : i ∈ t). Therefore, we may set α(i)

t = 0 whenever
1 ∈ t in (11) to remove the redundant variables.

Let the vector γ be the collection of all unknowns α(i)
t and

v(e), by the previous discussion, we arrive at a system of linear
equations Dγ = 0, where D is a square matrix. Specifically,
the top rows of D constitute the identity matrix concatenated
with zeros corresponding to the boundary conditions α(i)

t = 0
whenever 1 ∈ t. For other rows, each e = (i1, · · · , ik) ∈ E
(where possibly 1 ∈ e) gives rise to k linear equations of
the form (11), where v(e) appears in all equations, and the

variables α
(ij)
t only appear in one equation for each j ∈ [k].

A pictorial illustration of the previous structures is shown in
Figure 8.

Note that it remains to prove that γ = 0, it suffices to
show that D is of full rank. Let D⋆ be the sub-matrix of D
at the lower right corner of Figure 8, it further suffices to
prove that D⋆ is of full rank, and in particular, the columns
of D⋆ are linearly independent over F2. Let (d(i)t : 1 /∈ t, i ∈
t) and (dv(e) : e ∈ E) be the column vectors of D⋆, and
for each e ∈ E, we overload our notation v(e) to denote
the k-dimensional projection of the column vector v to the k
coordinates corresponding to e. Suppose that

0 =

n
∑

i=2

∑

t:i∈t,1/∈t

δ
(i)
t d

(i)
t +

∑

e∈E

δedv(e) (13)

holds for some coefficients δ(i)t , δe ∈ F2. Note that for e ∈ E,
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I 0

⋆ · · · · · · · · · · · ·

1 1 1

1 1 1

1 1 1

1

1

1

boundary equations

e = (i1, · · · , ik)

{α
(i1)
t : 1 /∈ t} {α

(i2)
t : 1 /∈ t} {α

(ik)
t : 1 /∈ t} v(e)

Fig. 8: Structure of the matrix D.

we have

d
(i)
t (e) ∈



































0

0

...

0













,













1

0

...

0













,













0

1

...

0













, · · · ,













0

0

...

1



































,

dv(e′)(e) ∈



































0

0

...

0













,













1

1

...

1



































. (14)

In fact, we may write d
(i)
t (e) = at(e) · eji(t), where at(e) =

1(t ⊆ e) is the evaluation of the t-th column vector of the
incidence matrix A on the vertex v, and ej is the j-th canonical
vector of Fk

2 . Note that the index ji(t) only depends on the
choice of the permutation of elements of e, and thus ji(t) 6=
ji′(t) for i 6= i′ ∈ t. By equality (12) and the topological k-
connectivity of G, we may evaluate both sides of (13) on all
e ∈

(

[n]
k

)

, with projections of column vectors given by (14).
Hence, given any t⋆ ∈

(

[n]
k−1

)

with 1 /∈ t, we may form the
hyperedge e⋆ = t⋆ ∪ {1}, and evaluating e⋆ on both sides of
(13) yields

0 =
∑

i∈t⋆

δ
(i)
t⋆ d

(i)
t⋆ (e

⋆) + c













1

1

...

1













, (15)

where c ∈ F2 is some scalar. By our previous discussion,
there are (k − 1) terms in the summation, each of which is
some canonical vector in Fk

2 with coefficient δ(i)t⋆ . Moreover,
these canonical vectors (for different i ∈ t⋆) must be different.
Hence, in order for (15) to hold, we must have δ

(i)
t⋆ = 0 for

all i ∈ t⋆ and c = 0. By the arbitrariness of our choice of t⋆,
we conclude that all coefficients in (13) are zero, and thus D⋆

is linearly independent. Therefore, we have shown that every
player may decode the random vector X under the strategy in
Definition 3, and thus completed the proof of Theorem 3.

APPENDIX D
PROOF OF THEOREM 4

Firstly we compute H(X) and H(M) to verify that this
strategy achieves the optimal communication rate. In i-th
connected component, the strategy in Definition 3 is employed
Mi times, and thus

H(X) =

m
∑

i=1

Mi ·

(

|Ai| − 1

k − 1

)

=
C

k − 1

m
∑

i=1

(|Ai| − 1) (16)

=
C(n− 1)

k − 1
, (17)

where we have used Lemma 3 in the last step. Similarly, sum-
ming the messages within components and across components,
we arrive at

H(M) =

m
∑

i=1

Mi ·

(

|Ai| − 2

k − 1

)

+
∑

v∈V

C · (degGc
(v)− 1)

=
C

k − 1

m
∑

i=1

(|Ai| − k) + C
∑

v∈V

(degGc
(v)− 1)

=
C(n− k)

k − 1
, (18)

where (18) follows from both statements of Lemma 3. Com-
bining (16) and (18), we arrive at the desired communication
rate.

It remains to show that every player may decode the entire
vector X based on his own information and messages written
on the blackboard. First we recall the following fact: for a
topologically k-connected hypergraph G = (V,E), a new
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player who is not in this hypergraph can decode all outcomes
after seeing the messages on the blackboard following the
strategy in Definition 3, as well as all coin tossing outcomes
corresponding to edges of G⋆

v (cf. Definition 3) for an arbitrary

player v ∈ V . In fact, using the additional information in
G⋆

v together with the messages v writes on the blackboard,
by the rules in Definition 3, the new player can decode the
outcomes of all coins shared with v. Hence, the new player
is effectively “equivalent to” v in the sense that they have
the same observations, and the new player can decode all
outcomes (as v can) by the proof in Section C.

By symmetry it suffices to show that any player v1 ∈ A1

may decode the entire vector X . Firstly, by Theorem 2 and the
messages within the component A1, the player v1 can decode
all outcomes in the component A1. Since the hypergraph Gc

is path-connected, the component A1 must intersect with other
components, say A2, at some point v2. Now by the messages
across the components A1 and A2 written by v2, the player
v1 knows all coin tossing outcomes corresponding to edges of
G⋆

v2 in the component A2. By the previous fact, now v1 can
decode all outcomes in the component A2. This process may
continue to cover all connected components due to the path
connectivity of Gc, and we conclude that v1 can decode the
entire outcome vector X , as claimed.

APPENDIX E
PROOFS OF MAIN LEMMAS

A. Proof of Lemma 1

For a k-uniform hypergraph G = (V,E), define the follow-
ing version of the incidence matrix A of G: each row of A
corresponds to a hyperedge e ∈ E, and each column of A
corresponds to a (k − 1)-tuple in [n]. The entries of A are
defined as

Ae,t = 1(t ⊆ e) ∈ F2, e ∈ E, t ∈

(

[n]

k − 1

)

.

Hence, the dimension of A is |E| ×
(

n
k−1

)

(see Figure 9 for
an example).

(12) (13) (14) (15) (23) (24) (25) (34) (35) (45)




























(123) 1 1 1
(124) 1 1 1
(134) 1 1 1
(125) 1 1 1
(235) 1 1 1
(245) 1 1 1

Fig. 9: Incidence matrix of the hypergraph in Figure 1.

According to the definition of topological k-connectivity, a
hyperedge e can be generated by hyperedges e1, · · · , em if and
only if the rows corresponding to e, e1, · · · , em sum into the
zero vector in F2. Let A⋆ be the incidence matrix of the com-
plete k-uniform hypergraph, then a minimal topologically k-
connected hypergraph is simply a linearly independent basis of
the row vectors of A⋆. Hence, the number of hyperedges in any
minimal topologically k-connected hypergraph is rank(A⋆).

Consider the incidence matrix A of a star graph, i.e., E =
{e ∈

(

[n]
k

)

: 1 ∈ e}. We show that the rows of A are linearly

independent: for any tuple t ∈
(

[n]
k−1

)

with 1 /∈ t, there is
only one hyperedge of A which contains t. Furthermore, any
hyperedge e ∈

(

[n]
k

)

in the complete k-uniform hypergraph
can be generated from this star graph: clearly e ∈ E if 1 ∈ e,
and e can be generated by e1, · · · , ek if 1 /∈ e, where ei =
e ∪ {1}\{i-th element of e}. Hence the rows of A constitute
a linearly independent basis of A⋆, and

rank(A⋆) = |E| =

(

n− 1

k − 1

)

,

as desired.

B. Proof of Lemma 2

It suffices to prove that G1 is topologically (k − 1)-
connected, and the proof relies on linear algebra. Let A be
the incidence matrix of G (as per the proof of Lemma 1), and
A′ be the sub-matrix of A consisting of rows (hyperedges)
e ∋ 1 and columns (tuples) t ∋ 1. Relabeling the rows and
columns of A′ by removing the common element 1 in the
indices, it is clear that A′ is the incidence matrix of G1. A
pictorial illustration is displayed in Figure 10.

















































A′

0

⋆

{e ∈ E : 1 ∈ e}

{t ∈
(

[n]
k−1

)

: 1 ∈ t}

A

Fig. 10: An illustration of matrices A and A′.

To show that G1 is topologically (k − 1)-connected, it is
equivalent to show that the row space of A′ contains all re′ for
e′ ∈

(

[n]\{1}
k−1

)

, where re′ is the row vector corresponding to
the hyperedge e′. Note that each re′ gives rise to a row vector
re for the original hypergraph G, with e = e′ ∪ {1}. Since G
is k-connected, the row vector re can be written as the sum
of some rows of A. Restricting to rows {e ∈ E : 1 ∈ e}, it
is clear from the pictorial illustration that the corresponding
rows of A′ will sum into re′ , as desired.

C. Proof of Lemma 3

We prove the first statement by induction on |E|. For the
base case, if E = {A} only consists of one hyperedge, then
the path connectivity ensures A = V , and the result is obvious.
Now suppose that the results holds for any hypergraph G =
(V,E) with |E| < m. We first show that there cannot be
two hyperedges A1, A2 ∈ E such that |A1 ∩ A2| > 1 in the
cycle-free hypergraph G. In fact, if u, v ∈ A1 ∩ A2, then

u
A1→ v

A2→ u is a simple cycle in G, a contradiction. Hence,
any two hyperedges A1, A2 are either disjoint or intersecting
at one vertex.
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Next we show that there must be a leaf hyperedge in
G, where A ∈ E is defined to be a leaf hyperedge iff
|A∩

(

∪B∈E\{A}B
)

| = 1. Start from any hyperedge A0 ∈ E:
if A0 is a leaf hyperedge, we are done. Otherwise, by path
connectivity there must be some v0 ∈ A0 and A1 ∈ E\{A0}
such that v0 ∈ A1. We are done if A1 is a leaf hyperedge,
and otherwise A1 intersects with other hyperedges at more
than one point, i.e., we may find some v1 ∈ A1\{v0}, A2 ∈
E\{A0, A1} such that v1 ∈ A2. Continuing this process, we
either arrive at some leaf hyperedge, or find some vk = vℓ
with k < ℓ in this process. The latter case is impossible, for

vk
Ak+1

→ vk+1
Ak+2

→ · · ·
Aℓ→ vℓ is a cycle in G. Therefore, there

must be a leaf hyperedge A in G.
Now remove A and all isolated |A| − 1 vertices from G. It

is straightforward to see that the remaining hypergraph is still
path-connected and cycle-free, then by induction hypothesis

∑

B∈E−{A}

(|B| − 1) = |V | − (|A| − 1)− 1.

Rearranging gives the desired result.
For the second statement, by a double counting argument

we have
∑

v∈V

deg(v) =
∑

v∈V

∑

A∈E

1(v ∈ A)

=
∑

A∈E

∑

v∈V

1(v ∈ A)

=
∑

A∈E

|A|.

Now the desired inequality follows from Lemma 3.

APPENDIX F
PROOF OF THEOREM 5

A. The if part

We first prove the if part by providing an explicit com-
munication strategy. Without loss of generality we assume
that the induced graph Gv⋆ is exactly a simple edge or a
Hamilton cycle of odd length, as the general disjoint union can
be handled in exactly the same way as Definition 7. Further, if
Gv⋆ is a simple edge, then G is a triangle and there is nothing
to prove. Hence, it remains to consider the case where Gv⋆ is
a Hamilton cycle of odd length:

Gv⋆ =

{[2m+ 1], {(1, 2), (2, 3), · · · , (2m, 2m+ 1), (2m+ 1, 1)}}.

By definition of induced graphs in Section III-B, we may use
R1,2 to denote the randomness associated with R(1,2,v⋆) in the
original star graph, and similarly for others.

The communication strategy is as follows. The central
node v⋆ writes the following three sets of messages on the
blackboard:

M1 = {R1,2 ⊕R3,4, R1,2 ⊕R5,6, . . . , R1,2 ⊕ R2m−1,2m},

M2 = {R2,3 ⊕R4,5, R2,3 ⊕R6,7, . . . , R2,3 ⊕ R2m,2m+1},

M3 = {R1,2 ⊕R2,3 ⊕R2m+1,1}.

Note that there are 2m − 1 = n − 3 bits in the message
M1 ∪M2 ∪M3, and the total amount of randomness is 2m+
1 = n − 1 bits. Hence, if each player can decode all listed
random bits then the communication rate is optimal. This can
be easily shown as follows: first, the central vertex v⋆ knows
all random bits; second, the special player 2 can decode all
other random bits directly as all messages involves either R1,2

or R2,3; finally, all other players can decode R2,3 based on
M2 and R1,2 based on M1 (the player 2m + 1 additionally
requires M3), and are therefore as informative as the player 2.
The above arguments show that all players are able to decode
all random bits, and therefore complete the proof of the if part
of Theorem 5.

B. The only if part

The only if part is slightly more challenging. First, by
the proof of Corollary 2, the assumption that the optimal
communication rate (n− 3)/(n− 1) is achievable implies the
existence of non-negative scores rv assigned to each vertex v
and se assigned to each hyperedges e such that

∑

v∈V

rv =
n− 3

n− 1
, (19)

∑

e∈E

se = 1, (20)

∑

v∈V−{v0}

rv =
∑

e∈E:e⊆V −{v0}

se, ∀v0 ∈ V. (21)

Choosing v0 = v⋆ in (21), the RHS is zero, and the non-
negativity of rv implies that rv = 0 for all v 6= v⋆. Further,
(19) shows that rv⋆ = (n − 3)/(n − 1). Now choosing any
v0 ∈ V − {v⋆} in (21) leads to

∑

e∈E:e⊆V −{v0}

se =
n− 3

n− 1
,

which together with (20) gives
∑

e∈E:v0∈e

se =
2

n− 1
, ∀v0 ∈ V − {v⋆}. (22)

Now we relate the condition (22) to the notion of fractional
matchings in fractional graph theory. Let G = (V,E) be a
classical graph (not a hypergraph), a fractional matching f
of G is an assignment {f(e)}e∈E to all edges of G such
that f(e) ≥ 0 for all e ∈ E,

∑

e:v∈e f(e) ≤ 1 holds for
all v ∈ V , and

∑

e∈E f(e) = |V |/2. To see the relationship,
consider the induced graph Gv⋆ which is a classical graph, and
since G is a star graph, there is a bijection between E(G) and
E(Gv⋆). Hence, if we do not distinguish between e ∈ E(G)
and e ∈ E(Gv⋆), we may define f(e) = (n − 1)se/2 for all
e ∈ E(Gv⋆). We claim that f is a fractional matching of the
graph Gv⋆ : in fact, (22) shows that

∑

e:v0∈e

f(e) =
n− 1

2
·

∑

e∈E:v0∈e

se = 1, ∀v0 ∈ V (Gv⋆),

and (20) shows that
∑

e∈E(Gv⋆ )
f(e) = (n−1)/2·

∑

e∈E se =
(n − 1)/2 = |V (Gv⋆)|/2. Then the claimed result follows
from the following fractional Tutte’s theorem [56, Proposition
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2.2.2] which provides a necessary and sufficient condition for
the existence of a fractional matching.

Theorem 6. A simple graph G has a fractional matching if

and only if G contains a vertex-disjoint union of simple edges

or Hamilton cycles of odd length including all vertices.
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