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A Construction of Maximally Recoverable Codes
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Abstract—We construct maximally recoverable codes (corre-

sponding to partial MDS codes) which are based on linearized

Reed-Solomon codes. The new codes have a smaller field size

requirement compared with known constructions. For certain

asymptotic regimes, the constructed codes have order-optimal

alphabet size, asymptotically matching the known lower bound.

Index Terms—Distributed storage, linearized Reed-Solomon

codes, locally repairable codes, maximally recoverable codes,

partial MDS codes, sum-rank metric.

I. INTRODUCTION

D
ISTRIBUTED storage systems use erasure codes to

recover from node failures. Compared with the naive

replication solution, erasure-correcting codes, such as the max-

imum distance separable (MDS) codes, can provide similar

protection ability but with a far smaller redundancy. However,

as the scale of system grows, new challenges arise for MDS

codes, such as repair bandwidth [40] and repair complexity

[29], due to the large number of nodes that need to be

contacted during the recovery process - even for a single erased

node.

One of the approaches that have been suggested to overcome

those issues is locally repairable codes (LRCs) [15]. In such a

code, k information symbols are encoded into n code symbols,

which are arranged in repair sets (perhaps overlapping) of

size r + δ − 1. Each repair set is capable of recovering from

δ− 1 erasures by using the contents of the r non-erased code

symbols. Those codes are called LRCs with (r, δ)-locality.

Compared with MDS codes, even to recover just one erasure,
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LRCs may dramatically reduce the required repair bandwidth

and repair complexity, since for MDS codes we always need

to contact k code symbols, whereas in LRCs we only contact

r ≪ k code symbols. For instances, in Microsoft Azure, an

LRC with n = 16, k = 12, r = 6, and δ = 2, is used to

reduce the repair bandwidth [24].

The original definition of LRCs with (r, δ = 2)-locality

was introduced in [15]. Several generalizations have followed

later. The definition of LRCs was expanded to (r, δ)-locality

with δ > 2 in [36], to allow repair sets to recover from

more than one erasure. The concept of availability was studied

in [6], [38], [44] to allow simultaneous recovery of a given

code symbol from multiple repair sets. To allow different re-

quirements for local recovery, hierarchical and unequal locality

were introduced in [39] and [26], [47], respectively. Over the

past decade, many bounds and constructions for LRCs have

been introduced, e.g., [4], [7], [8], [10], [19], [23], [28], [33],

[37], [42], [45], [46] for (r, δ)-locality [5], [6], [25], [38], [43]

for multiple repair sets, [11], [30], [39], [48] for hierarchical

locality, and [26], [47] for unequal locality.

As is usually the case, locality comes at a cost of reduced

code rate and minimum Hamming distance. It was shown

in [15] that, except for trivial cases, the minimum Hamming

distance of LRCs cannot attain the well known Singleton

bound [41]. To make the most out of this restriction, one

natural problem is whether LRCs can recover from some

predetermined erasure patterns beyond those guaranteed by

their minimum Hamming distance. A subclass of LRCs named

maximally recoverable (MR) codes [15] offer a positive an-

swer to this question, by correcting the maximal possible set

of erasure patterns beyond the minimum Hamming distance.

Partial MDS (PMDS) codes [1], that form a subclass of MR

codes, improve the storage efficiency of RAID systems, where

h extra erasures may be recovered in addition to δ−1 erasures

in each repair set.

Motivated by their efficiency and applicability, [n, k, d]q MR

codes with (r, δ)-locality, and h global parity-check symbols,

have received much attention over the recent few years, where

http://arxiv.org/abs/2011.13606v2
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[n, k, d]q denotes a linear code with length n, dimension

k, and minimum Hamming distance d, over a field of size

q. For [n, k, d]q MR codes with (r, δ)-locality, of particular

interest have been the asymptotic regime in which h and δ are

constants, and the goal to construct codes with the smallest

possible field size q. For the case of h = 1, MR codes were

constructed over a finite field of size q = Θ(r + δ − 1) [1]

and a characterization was given in [21]. When h = 2, MR

codes were constructed in [2] with q = Θ(n(δ − 1)), and

later, with q = Θ(n) [17] (see [22] for n = 2(r + δ − 1)).

For h = 3, MR codes were constructed with q = Θ(n3/2)

for a constant r + δ − 1, and q = Θ(n3) for an odd q

[17]. For the case of δ = 2, constructions for MR codes

were provided for finite fields with size q = Θ(kh−1) [14].

For the case r = 2, the existence of MR codes was proved

in [3] using a field of size q = Θ(nh−1). For general δ

and h, a construction of MR codes with flexible parameters

was introduced based on Gabidulin codes [9], which requires

a field with size q = Θ((r + δ − 1)nr/(r+δ−1)). Addition-

ally, MR codes were constructed over finite fields with size

q = Θ((r + δ − 1)nhδ−1) and q = Θ(max( n
r+δ−1 , (r +

δ − 1)h+δ−1)h) [12]. In [18], MR codes were constructed

with q = Θ(max( n
r+δ−1 , (2r)

h+δ−1)min( n
r+δ−1 ,h)) and

q = Θ(max( n
r+δ−1 , (2r)

r+δ−1)min( n
r+δ−1 ,h)), respectively.

Recently, based on linearized Reed-Solomon codes, MR codes

were constructed with q = Θ(max(r + δ − 1, n
r+δ−1 )

r) [32],

which is independent of the number of global parity-check

symbols h, thus outperforming other known constructions

when h is relatively large, namely, h > r. In [20], the authors

construct MR codes with optimal repairing bandwidth inside

repair sets. The parameters of MR codes from the known

constructions, as well as a new one of this paper, are listed in

Table I.

However, there is still an asymptotic gap between the known

lower bounds on the minimum field size of MR codes [17] and

the known constructions. The main contribution of this paper

is a new construction of MR codes over small finite fields

when h is relatively small, namely, h < r. Our construction

is inspired by the construction in [32], and we also use

linearized Reed-Solomon codes, yielding MR codes with field

size Θ(max{r+ δ − 1, n
r+δ−1}h). Compared with the known

constructions in [9], [12], [18], [32], our construction generates

MR codes with a smaller field size. In particular, our MR

codes have order-optimal field size, asymptotically matching

the lower bound in [17] when r + δ − 1 = Θ(
√
n) and

h 6 min{ n
r+δ−1 , δ + 1}. Our construction also answers an

open problem from [17], by providing MR codes over a field

with even (or odd) characteristic. We would like to comment

that shortly after we published our results, we learned that [16]

have independently obtained a similar construction.

The remainder of this paper is organized as follows. Section

II introduces basic notation and definitions of LRCs and MR

codes, known bounds, as well as required facts on linearized

Reed-Solomon codes. Section III presents our construction

of MR codes. Section IV concludes this paper by summa-

rizing and comparing our codes with the known codes, and

discussing important cases.

II. PRELIMINARIES

Let us introduce the notation, definitions, and known results

used throughout this paper. For a positive integer n, we denote

[n] , {1, 2, · · · , n}. If q is a prime power, let Fq denote the

finite field with q elements.

An [n, k]q linear code C over Fq is a k-dimensional subspace

of F
n
q with a k × n generator matrix G = (g1,g2, · · · ,gn),

where gi is a column vector of length k for all i ∈ [n].

Specifically, C is called an [n, k, d]q linear code if the min-

imum Hamming distance of C is d. For an m × n matrix

A = (A1, A2, . . . , An) ∈ F
m×n
q and I ⊆ [n], let A|I

denote the projection of A upon columns specified by I , i.e.,

A|I = (Ai)i∈I . For any codeword C = (c1, c2, . . . , cn) ∈ C,

we say that ci, i ∈ [n], is the ith code symbol.

Definition 1 ([15], [36]): The ith code symbol of an

[n, k, d]q linear code C is said to have (r, δ)-locality if there

exists a subset Si ⊆ [n] (an (r, δ)-repair set) such that

• i ∈ Si and |Si| 6 r + δ − 1; and

• The minimum Hamming distance of the punctured code

C|Si
obtained by deleting the code symbols cj (j ∈ [n] \

Si) is at least δ.

Furthermore, an [n, k, d]q linear code C is said to have in-

formation (r, δ)-locality (denoted as (r, δ)i-locality) if there

exists a k-subset I ⊆ [n] with rank(G|I) = k such that for

each i ∈ I , the ith code symbol has (r, δ)-locality, and all

symbol (r, δ)-locality (denoted as (r, δ)a-locality) if all the n

code symbols have (r, δ)-locality.

An upper bound on the minimum Hamming distance of

linear codes with (r, δ)i-locality was derived as follows (for

δ = 2 in [15], and for general δ in [36]):

Lemma 1 ([15], [36]): For an [n, k, d]q code C with

(r, δ)i-locality,

d 6 n− k + 1−
(⌈

k

r

⌉

− 1

)

(δ − 1). (1)

A linear code with information (r, δ)i-locality (or (r, δ)a-

locality) is said to be optimal if its minimum Hamming

distance achieves the bound in (1).
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TABLE I

KNOWN (n, r, h, δ, q)-MR CODES (PMDS CODES) IN THE ASYMPTOTIC REGIME WHERE h AND δ ARE CONSTANT, AND WHERE m , n
r+δ−1

r δ h Size of Alphabet (q)
Cases with order

Restrictions Ref
.

optimal field size

any any 1 Θ(r + δ − 1) all possible cases [1, Thm. 5.4]

any any 2

Θ(nδ) all possible cases [2, Thm. 7]

Θ(n) all possible cases q is odd [17, Thm. IV.4]

n · exp(O(
√
logn)) None q is even [17, Thm. IV.4]

Θ(n) all possible cases q is even, n = Θ(m2) Construction A

any any 3

Θ(n3/2)

None

r is a constant, q is even [14, Cor. 23]

Θ(n3) q is odd [17, Thm. V.4]

n3 · exp(O(
√
logn)) q is even [17, Thm. V.4]

Θ(n3) Construction A

2 any any O(nh−1) h = 2 m > h [3, Cor. 7.14]

any 2 any Θ(k⌈(h−1)(1−1/2r)⌉)
h = 3,

[14, Cor. 18]
m > 3 is a constant

any any any Θ((r + δ − 1)nr/(r+δ−1)) None [9, Cor. 11]

any any any Θ((r + δ − 1)nhδ−1) None q1 = r + δ − 1, 2n = qt1 [12, Lem. 7]

any any any Θ(max{m, (r + δ − 1)h+δ−1}h) None q1 = r + δ − 1, m+ 1 = qt1 [12, Cor. 10]

any any any Θ(max{m, (2(r + δ − 1))h+δ−1}min(m,h)) None [18, Thm. 17]

any any any Θ(max{m, (2(r + δ − 1))r+δ−1}min(m,h)) None [18, Thm. 19]

any any any Θ(max{r + δ − 1,m}r) None [32, Cor. 8]

any any any Θ(max{r + δ − 1,m}h) h 6 min{m, δ + 1},
Construction A

n = Θ(m2)

Definition 2: Let C be an [n, k, d]q code with (r, δ)a-

locality, and define S , {Si : i ∈ [n]}, where Si is an

(r, δ)-repair set for coordinate i. The code C is said to be a

maximally recoverable (MR) code if S is a partition of [n],

and for any Ri ⊆ Si such that |Si \Ri| = δ−1, the punctured

code C|∪16i6nRi
is an MDS code.

Of particular interest are MR codes for which S is a

partition of [n] with equal-size parts.

Definition 3: Let C be an [n, k, d]q MR code, as in

Definition 2. If each Si ∈ S is of size |Si| = r + δ − 1,

then r + δ − 1|n. Define

m ,
n

r + δ − 1
, h , mr − k.

Then C is said to be an (n, r, h, δ, q)-MR code.

We note that in general, MR codes need not have repair sets

of equal size, nor do the repair sets have to form a partition

of [n]. In this paper we choose to follow the more restrictive

definition from [14], [15].

We also note that it is easy to verify that (n, r, h, δ, q)-MR

codes are optimal [n, k, d]q LRCs with (r, δ)a-locality. We can

regard each codeword of an (n, r, h, δ, q)-MR code, as an m×
(r + δ − 1) array, by placing each repair set in S as a row.

When viewed in this way, (n, r, h, δ, q)-MR codes match the

definition of partial MDS (PMDS) codes, as defined in [1],

where in a codeword, each entry of the array corresponds to

a sector, and each column of the array corresponds to a disk.

For the sake of completeness, we would like to mention that

aside from PMDS codes, there are other codes with locality

that can recover from predetermined erasure patterns beyond

the minimum Hamming distances [8], [13], [27], [35]. As an

example, sector-disk (SD) codes [35] with (r, δ)a-locality can

correct δ−1 disk erasures together with any additional h sector

erasures, where h denotes the number of global parity-check

symbols.

One interesting problem arising from the definition of MR

codes is to determine the minimum alphabet size for fixed n,

r, h, and δ. For the case h = 1, it is easy to check that an

(n, r, 1, δ, q)-MR code is an optimal LRC with (r, δ)a-locality

and d = δ + 1, where (r + δ − 1)|n and k = rn
r+δ−1 − 1. For

this case, the field size requirement may be as small as q =

Θ(r + δ − 1), which is asymptotically optimal for the simple

reason that the punctured code over any repair set together with

the only global parity check is an [r+ δ, r, δ+1]q MDS code

when (r+ δ− 1)|n. For the case h > 2, in [17], the following

asymptotic lower bounds on the field size are derived. We

emphasize that here, and throughout the paper, we assume h

and δ are constants.

Lemma 2 ([17, Theorem I.1]): Let h > 2 and C be an

(n, r, h, δ, q)-MR code. If m , n
r+δ−1 > 2, then

q = Ω(nrε),

where ε = min{δ − 1, h − 2⌈ h
m⌉}/⌈ h

m⌉, and h and δ
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are regarded as constants. The above lower bound may be

simplified as

1) If m > h:

q = Ω
(

nrmin{δ−1,h−2}
)

.

2) If m 6 h, m|h, and δ − 1 6 h− 2h
m :

q = Ω
(

n1+m(δ−1)
h

)

.

3) If m 6 h, m|h, and δ − 1 > h− 2h
m :

q = Ω
(

nm−1
)

.

Definition 4: An (n, r, h, δ, q)-MR code is order-optimal

if it attains one of the bounds of Lemma 2 asymptotically for

h > 2, or if it has q = Θ(r + δ − 1) for h = 1.

A. The Sum-Rank Metric and Linearized Reed-Solomon

Codes

We turn to introduce some necessary definitions for lin-

earized Reed-Solomon codes, which form the main tool used

in this paper. We first recall the definition of the sum-rank

metric as defined in [34] and [31].

Definition 5 ([31]): Let Fq be a subfield of Fq1 and N ,

Li for 1 6 i 6 g, be positive integers with N =
∑g

i=1 Li.

Let C = (C1,C2, . . . ,Cg) ∈ F
N
q1 , where Ci ∈ F

Li
q1 for

1 6 i 6 g. The sum-rank weight in F
N
q1 , with length partition

(L1, L2, . . . , Lg), is defined as

wtSR(C) =

g
∑

i=1

rankq(Ci),

where rankq(Ci) denotes the rank of Ci ∈ F
Li
q1 over Fq.

Furthermore, for C,C ′ ∈ F
N
q1 , define the sum-rank distance

as

dSR(C,C ′) = wtSR(C −C ′).

For a code C ⊆ F
N
q1 , with length partition (L1, L2, . . . , Lg)

as before, we define the minimum sum-rank distance by

dSR(C) = min {dSR(C,C ′) : C,C ′ ∈ C, C 6= C ′} .

In an analogy with the Hamming metric, there is also a

Singleton bound for the sum-rank metric codes.

Lemma 3 ([31]): Let q1 = qm and C ⊆ F
N
q1 . Then we

have

|C| 6 qm(N−dSR(C)+1).

Similar to MDS codes, codes that attain the above Singleton

bound with equality are called maximum sum-rank distance

(MSRD) codes [31].

This general definition of the sum-rank metric includes the

Hamming metric as a special case when the length partition

is g = N and L1 = L2 = · · · = Ln = 1. It also includes

the rank metric as a special case when the length partition is

g = 1 and L1 = N . In what follows, we introduce one class

of MSRD codes called linearized Reed-Solomon codes [31].

Let Fq ⊆ Fq1 and define σ : Fq1 → Fq1 as

σ(α) , αq.

For any α ∈ Fq1 and i ∈ N, define

Normi(α) , σi−1(α) · · ·σ(α)α.

The Fq-linear operator Di
α : Fq1 → Fq1 is defined by

Di
α(β) , σi(β)Normi(α).

Let α ∈ Fq1 , and let B = (β1, β2, · · · , βL) ∈ F
L
q1 . For i ∈

N ∪ {0} and k, ℓ ∈ N, where ℓ 6 L, define the matrices

D(αi,B, k, ℓ)

,













β1 β2 · · · βℓ

D1
αi(β1) D1

αi(β2) · · · D1
αi(βℓ)

...
...

...

Dk−1
αi (β1) Dk−1

αi (β2) · · · Dk−1
αi (βℓ)













∈ F
k×ℓ
q1 .

(2)

The matrix defined by (2) satisfies the following column

linearity:

Proposition 1: With the setting as in (2), for any A ∈
F
ℓ×ℓ1
q we have

D(αi,B, k, ℓ)A = D(αi,B|[ℓ]A, k, ℓ1).

Proof: Write B|[ℓ]A = (β′
1, β

′
2, . . . , β

′
ℓ1
). Then, by (2),

D(αi,B, k, ℓ)A

=













β1 β2 · · · βℓ

D1
αi(β1) D1

αi(β2) · · · D1
αi(βℓ)

...
...

...

Dk−1
αi (β1) Dk−1

αi (β2) · · · Dk−1
αi (βℓ)













A

=













β′
1 β′

2 · · · β′
ℓ1

D1
αi(β′

1) D1
αi(β′

2) · · · D1
αi(β′

ℓ1
)

...
...

...

Dk−1
αi (β′

1) Dk−1
αi (β′

2) · · · Dk−1
αi (β′

ℓ1
)













= D(αi,B|[ℓ]A, k, ℓ1).

Definition 6 ([31]): For positive integers N , M , L, and g,

let N = L1+L2+ · · ·+Lg, g 6 q−1, and 1 6 Li 6 L 6 M .

Set Fq1 = FqM . Let B be a sequence of elements that

are linearly independent over Fq. Then the linearized Reed-

Solomon code with dimension k, primitive element γ ∈ FqM ,
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and basis B, is the linear code Cσ
L,k(B, γ) ⊆ F

N
qM with

generator matrix

D =
(

D(γ0,B, k, L1), D(γ1,B, k, L2),

· · · , D(γg−1,B, k, Lg)
)

k×N
.

We comment that Definition 6 is a narrow-sense linearized

Reed-Solomon code, which suffices for this paper. For a more

general definition of linearized Reed-Solomon code the reader

is referred to [31]. We also point out that linearized Reed-

Solomon codes are MSRD codes [31]. For more details on

sum-rank metric codes and their applications to LRCs, the

reader may refer to [32].

Let diag(W1,W2, · · · ,Wg) denote the block-diagonal ma-

trix, whose main-diagonal blocks are W1,W2, · · · ,Wg , i.e.,

diag(W1,W2, · · · ,Wg) =













W1 0 · · · 0

0 W2 · · · 0
...

...
. . .

...

0 0 · · · Wg













.

Since linearized Reed-Solomon codes are MSRD codes, the

dimension k of the code C is k = N − dSR(C) + 1. When it

comes to correcting erasures, if the non-erased part has sum-

rank weight at least k, the code can correctly recover the

codeword. This is more formally described in the following

lemma from [32].

Lemma 4 ([32]): Let g 6 q − 1, and let Cσ
L,k(B, γ) be

the [N, k,N − k + 1]qM linearized Reed-Solomon code from

Definition 6, with N = L1 + L2 + · · · + Lg, and 1 6 Li 6

L 6 M . Then for all integers ni > 1, and all matrices Wi ∈
F
Li×ni
q , i ∈ [g], satisfying

g
∑

i=1

rank(Wi) > k,

there exists a decoder

Dec : Cσ
L,k(B, γ) diag(W1,W2, · · · ,Wg) → Cσ

L,k(B, γ)

such that

Dec(C diag(W1,W2, · · · ,Wg)) = C for any C ∈ Cσ
L,k(B, γ),

where

Cσ
L,k(B, γ) diag(W1,W2, · · · ,Wg)

,{C diag(W1,W2, · · · ,Wg) : C ∈ Cσ
L,k(B, γ)}.

Furthermore, when we analyze the case in which the non-

erased part has sum rank less than k, we arrive at the following

property of generator matrices for linearized Reed-Solomon

codes, which is a direct application of the previous lemma.

Theorem 1: Let g 6 q − 1, and D be generator matrix

of a linearized Reed-Solomon code from Definition 6 with

N = L1 + L2 + · · · + Lg, and 1 6 Li 6 L 6 M . For all

integers ni > 1 and all matrices Wi ∈ F
Li×ni
q , for i ∈ [g],

satisfying
g
∑

i=1

rank(Wi) > k,

we have

rank(D diag(W1,W2, . . . ,Wg))

= rank((D(γ0,B, k, L1)W1, D(γ1,B, k, L2)W2,

· · · , D(γg−1,B, k, Lg)Wg))

=k.

For the case
g
∑

i=1

rank(Wi) < k,

we have

rank(D diag(W1,W2, . . . ,Wg))

= rank((D(γ0,B, k, L1)W1, D(γ1,B, k, L2)W2,

· · · , D(γg−1,B, k, Lg)Wg))

=

g
∑

i=1

rank(Wi).

Proof: The first claim is exactly Lemma 4. For the second

one, we assume to the contrary that there exist Wi ∈ F
Li×ni
q ,

for all i ∈ [g], with

g
∑

i=1

rank(Wi) < k,

and

rank(D diag(W1,W2, . . . ,Wg)) <

g
∑

i=1

rank(Wi), (3)

where we apply a fact that rank(D diag(W1,W2, . . . ,Wg)) 6

rank(diag(W1,W2, . . . ,Wg)) =
∑g

i=1 rank(Wi). Note that

there exist W ′
i ∈ F

Li×n′
i

q for all i ∈ [g], such that rank(W ′
i ) =

n′
i,

g
∑

i=1

rank(W ′
i ) = k −

g
∑

i=1

rank(Wi),

and
g
∑

i=1

rank(Wi,W
′
i ) = k.

By the first claim,

rank(D diag((W1,W
′
1), (W2,W

′
2), . . . , (Wg,W

′
g))) = k.

But now, combining this with (3), we get

rank(D diag(W ′
1,W

′
2, . . . ,W

′
g))

>

g
∑

i=1

n′
i = rank(diag(W ′

1,W
′
2, . . . ,W

′
g)),

which is a contradiction. Thus, the desired result follows.
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III. CODE CONSTRUCTION

In this section, we describe a construction for (n, r, h, δ, q)-

MR codes. The main idea of our construction is to use gen-

erator matrices of linearized Reed-Solomon codes for global

parity-check symbols of MR codes.

Throughout this section, we use the (δ − 1)× (r + δ − 1)

matrix

P1 ,













1 1 · · · 1

α1 α2 · · · αr+δ−1

...
...

...

αδ−2
1 αδ−2

2 · · · αδ−2
r+δ−1













∈ F
(δ−1)×(r+δ−1)
q ,

(4)

and the h× (r + δ − 1) matrix

P2 ,













αδ−1
1 αδ−1

2 . . . αδ−1
r+δ−1

αδ
1 αδ

2 . . . αδ
r+δ−1

...
...

...

αδ+h−2
1 αδ+h−2

2 · · · αδ+h−2
r+δ−1













∈ F
h×(r+δ−1)
q ,

(5)

where αi ∈ Fq \ {0}, and αi 6= αj for i 6= j. Let

γ1, γ2, . . . , γh ∈ Fqh form a basis of Fqh over Fq . Define

Γ , (γ1, γ2, . . . , γh) ∈ F
h
qh , and

β , (β1, β2, . . . , βr+δ−1) = ΓP2 ∈ F
r+δ−1
qh

, (6)

namely, each column of P2 is translated to an element of Fqh .

Construction A: For m ∈ N, let C be the linear code

with length n over Fqh given by the parity-check matrix

H ,
















P1 0 · · · 0

0 P1 · · · 0
...

...
. . .

...

0 0 · · · P1

D(γ0,β, h, a) D(γ1,β, h, a) · · · D(γm−1,β, h, a)

















,

(7)

where γ ∈ Fqh is a primitive element and a = r + δ − 1.

Theorem 2: Let q > max{r+δ,m+1}. Then the code C
from Construction A is an (n = m(r+ δ− 1), r, h, δ, qh)-MR

code with the minimum Hamming distance d = (⌊h
r ⌋+1)(δ−

1) + h+ 1.

Proof: To simplify the notation, let us denote the ((i −
1)(r+δ−1)+j)th coordinate by the pair (i, j), where i ∈ [m]

and j ∈ [r + δ − 1]. Using this notation, the ith repair set is

given by Si = {(i, j) : j ∈ [r + δ − 1]}, for i ∈ [m].

Recall from (4) that P1 is a Vandermonde matrix. Therefore,

by (7), C|Si
is a subcode of an [r + δ − 1, r, δ]q MDS code,

which implies that the code C has (r, δ)a-locality. We shall

now prove the code can recover from all erasure patterns E =

{Ei1 , Ei2 , . . . , Eit} such that Eiℓ ⊆ Siℓ , |Eiℓ | > δ, and

t
∑

ℓ=1

|Eiℓ | − t(δ − 1) 6 h, (8)

namely, C is an (n, r, h, δ, qh)-MR code.

For ℓ ∈ [t], assume Eiℓ =

{(iℓ, j1), (iℓ, j2), . . . , (iℓ, j|Eiℓ
|)}, and the columns of

P1 are denoted by P1 = (P1,1, P1,2, . . . , P1,r+δ−1). Define

the projections of P1 and D(γi−1,β, h, r + δ − 1) onto the

erased coordinates as

P1|Eiℓ
, (P1,j1 , P1,j2 , · · · , P1,j|Eiℓ

|
),

and

D(γi−1,β, h, r + δ − 1)|Eiℓ

,















βj1 βj2 · · · βj|Eiℓ
|

D1
γi−1(βj1) D1

γi−1(βj2 ) · · · D1
γi−1(βj|Eiℓ

|
)

...
...

...

Dh−1
γi−1(βj1) Dh−1

γi−1(βj2 ) · · · Dh−1
γi−1(βj|Eiℓ

|
)















.
(9)

Proving that E is recoverable is equivalent to showing that the

matrix

HE ,

















P1|Ei1
0 · · · 0

0 P1|Ei2
· · · 0

...
...

. . .
...

0 0 · · · P1|Eit

Di1,Ei1
Di2,Ei2

· · · Dit,Eit

















has full column rank, where Diℓ,Eiℓ
= D(γiℓ−1,β, h, a)|Eiℓ

for ℓ ∈ [t]. Otherwise, we cannot distinguish between a

codeword C ∈ C from C+C′, where the nonzero components

of C′ is a nonzero solution of HEX = 0.

Since P1 is a Vandermonde matrix, for any E∗
iℓ
⊆ Eiℓ with

|E∗
iℓ
| = δ−1, ℓ ∈ [t], we have that P1|E∗

iℓ
has full rank. Denote

Eiℓ = Eiℓ \E∗
iℓ

. Thus, there exists a matrix Aiℓ ∈ F
|E∗

iℓ
|×|Eiℓ

|
q

such that
(

P1|E∗
iℓ

P1|Eiℓ

P2|E∗
iℓ

P2|Eiℓ

)(

IE∗
iℓ

−Aiℓ

0 IE∗
iℓ

)

=

(

P1|E∗
iℓ

0

P2|E∗
iℓ

Wiℓ

)

(10)

i.e.,

P1|Eiℓ

= P1|E∗
iℓ
Aiℓ , (11)

and

Wiℓ = P2|Eiℓ

− (P2|E∗
iℓ
)Aiℓ , (12)

where Wiℓ is an h× |Eiℓ | matrix over Fq. Denote

β∗
iℓ = ΓWiℓ (13)
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for ℓ ∈ [t]. For τ ∈ Eiℓ , write

P1,τ =
∑

a∈E∗
iℓ

e(iℓ)a,τ P1,a (14)

with e
(iℓ)
a,τ ∈ Fq determined by Aiℓ . Then, it follows from (6)

and (11)-(14) that

β∗
iℓ,τ

= βτ −
∑

a∈E∗
iℓ

e(iℓ)a,τ βa.

Note that

D(γiℓ−1,β, h, r + δ − 1)|Eiℓ

(

IE∗
iℓ

−Aiℓ

0 IE∗
iℓ

)

=D(γiℓ−1,Γ(P2|E∗
iℓ
, P2|Eiℓ

), h, |Eiℓ |)
(

IE∗
iℓ

−Aiℓ

0 IE∗
iℓ

)

=D(γiℓ−1,Γ(P2|E∗
iℓ
,Wiℓ), h, |Eiℓ |)

=(Diℓ , D(γiℓ−1,β∗
iℓ , h, |Eiℓ |)),

where the second equality holds by the linearity of Di
α(·)

(Proposition 1) and (10), and the last equality holds by (13).

This is to say that HE is equivalent with


















P1|E∗
i1

0 0 0 · · · 0 0

0 0 P1|E∗
i2

0 · · · 0 0
...

...
...

...
...

...

0 0 0 0 · · · P1|E∗
it

0

Di1 D∗
i1,Ei1

Di2 D∗
i2,Ei2

· · · Dit D∗
it,Eit



















,

where D∗
iℓ,Eiℓ

= D(γiℓ−1,β∗
iℓ
, h, |Eiℓ |) for ℓ ∈ [t]. Recall

that P1|E∗
ij

for j ∈ [t] has full rank. Hence, HE is equivalent

with

H∗
E ,


















P1|E∗
i1

0 0 0 · · · 0 0

0 0 P1|E∗
i2

0 · · · 0 0
...

...
...

...
...

...

0 0 0 0 · · · P1|E∗
it

0

0 D∗
i1,Ei1

0 D∗
i2,Ei2

· · · 0 D∗
it,Eit



















,

where D∗
iℓ,Eiℓ

= D(γiℓ−1,β∗
iℓ
, h, |Eiℓ |) for ℓ ∈ [t]. Then,

HE has full column rank if and only if

(D∗
i1,Ei1

, D∗
i1,Ei1

, · · · , D∗
i1,Ei1

)

=(D(γi1−1,β∗
i1 , h, |Ei1 |), D(γi2−1,β∗

i2 , h, |Ei2 |),
· · · , D(γit−1,β∗

it , h, |Eit |))

has full column rank. Note from (4) and (5), that
(

P1

P2

)

forms

an (h + δ − 1) × (r + δ − 1) Vandermonde matrix. Clearly,

|Eiℓ | 6 min{h+ δ − 1, r + δ − 1} for ℓ ∈ [t], which means

rank

(

P1|E∗
iℓ

P1|Eiℓ

P2|E∗
iℓ

P2|Eiℓ

)

= |E∗
iℓ |+ |Eiℓ |,

and rank(P1|E∗
iℓ
) = |E∗

iℓ
|. Thus, (10) implies rank(Wiℓ) =

|Eiℓ | for ℓ ∈ [t]. Now, according to (2), (13) and the linearity

of Di
α(·), we have

rank((D(γi1−1,β∗
i1 , h, |Ei1 |), D(γi2−1,β∗

i2 , h, |Ei2 |),
· · · , D(γit−1,β∗

it , h, |Eit |)))
= rank((D(γi1−1,Γ, h, h)Wi1 , D(γi2−1,Γ, h, h)Wi2 ,

· · · , D(γit−1,Γ, h, h)Wit))

= rank((D(γ0,Γ, h, h)W ′
1, D(γ1,Γ, h, h)W ′

2,

· · · , D(γm−1,Γ, h, h)W ′
m)), (15)

where

W ′
i ,







Wi, if i ∈ {iℓ : ℓ ∈ [t]},
0, otherwise.

(16)

We observe that

(D(γ0,Γ, h, h), D(γ1,Γ, h, h), · · · , D(γm−1,Γ, h, h))

can be regarded as the generator matrix of a linearized

Reed-Solomon code with parameters [mh, h]qh according to

Definition 6. Then, applying Theorem 1 to (15) and (16), we

conclude that

rank((D(γi1−1,β∗
i1 , h, |Ei1 |), D(γi2−1,β∗

i2 , h, |Ei2 |),
· · · , D(γit−1,β∗

it , h, |Eit |)))

=

m
∑

i=1

rank(W ′
i )

=

t
∑

ℓ=1

rank(Wiℓ)

=

t
∑

ℓ=1

|Eiℓ |,

which means H∗
E has full rank, i.e., HE has full rank for all

possible E that satisfy (8). Therefore, C can recover all the

erasure patterns required by MR codes.

Having reached this point, the desired result follows from

the fact that MR codes are optimal LRCs. Hereafter, for

the sake of completeness, we derive the minimum Hamming

distance for the reader’s convenience. We know the code C
can recover from any erasure pattern that affects at most δ−1

coordinates in each repair set, and any additional h erased

positions. Let us consider the other erasure patterns, obviously

where all the affected repair sets have at least δ erasures each.

In particular, we consider the minimal erasure configurations,

namely, configurations in which the removal of any one erasure

makes it recoverable. Assume that a repair sets are affected.

Then, the total number of erasures is a(δ− 1)+ h+1, where
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the h+1 erasures are distributed among the a affected repair

sets, i.e., it requires a(δ− 1)+ h+1 6 a(r+ δ− 1) and thus

a >

⌈

h+ 1

r

⌉

=

⌊

h

r

⌋

+ 1.

Therefore, a lower bound on the Hamming distance of C is

d >

(⌊

h

r

⌋

+ 1

)

(δ − 1) + h+ 1.

Note from (7) that k > n− h−m(δ− 1) = mr− h which

implies
⌈

k
r

⌉

+
⌊

h
r

⌋

> m. Since C is a locally repairable code

with (r, δ)a-locality, by Lemma 1 we have

d 6 n− k −
(⌈

k

r

⌉

− 1

)

(δ − 1) + 1

6 n− k −
(

m−
⌊

h

r

⌋

− 1

)

(δ − 1) + 1

6 h+

(⌊

h

r

⌋

+ 1

)

(δ − 1) + 1.

Combining this with the lower bound on d, we obtain

d =

(⌊

h

r

⌋

+ 1

)

(δ − 1) + h+ 1.

Thus, C is an (n, r, h, δ, qh)-MR code with d = (⌊h
r ⌋+1)(δ−

1) + h+ 1.

Corollary 1: Let q > max{r + δ,m+ 1} and δ > 2. If

m = Θ(q) and r = Θ(q) (implying n = Θ(q2)), then for fixed

h 6 min{m, δ+1} the code C generated by Construction A is

an (n = m(r+δ−1), r, h, δ, qh)-MR code with asymptotically

order-optimal field size qh = Θ(nh/2).

Proof: By our setting, the field size of the code generated

by Construction A is Θ(qh). According to Lemma 2, the field

size must be at least

Ω(nrmin{δ−1,h−2}) = Ω(m(r + δ − 1)rh−2) = Ω(qh),

where the first equality holds by h 6 δ + 1, and the second

one follows from m = Θ(q), r = Θ(q), and the fact that

h, δ are regarded as constants. Thus, the code C generated

by Construction A has asymptotically order-optimal field size

Θ(qh).

Example 1: Let r = 2, δ = 2, q = 4, and m = 3. By

Construction A and Theorem 2, an (n = 9, r = 2, h = 2, δ =

2, q2 = 16)-MR code can be given by the following parity-

check matrix
















1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

α6 α9 α10 α7 α10 α11 α8 α11 α12

α10 α7 α11 α0 α12 α1 α5 α2 α6

















,

where α is a primitive element of F16.

IV. CONCLUDING REMARKS

In this paper, we introduced a construction of maximally

recoverable codes with uniform-sized disjoint repair sets,

also known as partial MDS (PMDS) codes. Our construction

is based on linearized Reed-Solomon codes, and it yields

maximally recoverable codes with field size Θ((max{r+ δ−
1, n

r+δ−1})h), where h and δ are constants. Compared with

known constructions, our construction can generate maximally

recoverable codes with a smaller field size in certain cases. In

some particular regimes, described in Corollary 1, the con-

struction produces code families with order-optimal field size.

For more details about parameters for MR codes, a summary

of the results in comparison with known constructions is given

in Table I, where q and q1 are prime powers, and m = n
r+δ−1 .

We would like to highlight some interesting cases from

Table I. In [17], a construction for (n, r, 3, δ, q)-MR codes was

provided, achieving q = Θ(n3), but only for odd characteris-

tic. Finding a comparable construction for even characteristic

was left as an open question. Here, Construction A provides

an answer to this question, since our construction does not

impose a restriction on the parity of the field characteristic,

and it achieves the same order q = Θ(n3).

Another case we would like to point out involves the

asymptotic regime where r = Θ(n). In this regime, our

construction achieves a field size of q = Θ(nh). For odd q

or δ > 2, this improves upon the best known construction

from [12], which achieves q = Θ(nhδ). When δ = 2, q is

even, and r = Θ(n), the best known result is still the one in

[14] with q = Θ(kh−1) = Θ(nh−1).

In addition, [12] challenged researchers to find families of

PMDS codes with smaller field sizes than max{m, (r + δ −
1)h+δ−1}h. The construction in [32] does so for the case

h < r and (r + δ − 1)h+δ−1 > m. Similarly, the construction

in [3] also improves upon [12] for the case r = 2. In this

paper, the MR codes generated by Construction A provide an

improvement over [12] for (r+δ−1)h+δ−1 > m, since in this

case max{r+ δ−1, n
r+δ−1}h < max{m, (r+ δ−1)h+δ−1}h.

The broad problem of closing the gap between the field-

size requirements of known constructions and the theoretic

bounds is still largely open. Further closing this gap, beyond

the results of this paper, is left for future work.
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[34] R. W. Nóbrega and B. F. Uchôa-Filho, “Multishot codes for network

coding using rank-metric codes,” in 2010 Third IEEE International

Workshop on Wireless Network Coding. IEEE, 2010, pp. 1–6.

[35] J. S. Plank and M. Blaum, “Sector-disk (SD) erasure codes for mixed

failure modes in RAID systems,” ACM Transactions on Storage (TOS),

vol. 10, no. 1, pp. 1–17, 2014.

[36] N. Prakash, G. M. Kamath, V. Lalitha, and P. V. Kumar, “Optimal linear

codes with a local-error-correction property,” in 2012 IEEE International

Symposium on Information Theory Proceedings, 2012, pp. 2776–2780.

[37] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath,

“Optimal locally repairable and secure codes for distributed storage

systems,” IEEE Trans. Inform. Theory, vol. 60, no. 1, pp. 212–236,

2014.

[38] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath,

“Locality and availability in distributed storage,” IEEE Trans. In-

form. Theory, vol. 62, no. 8, pp. 4481–4493, 2016.

[39] B. Sasidharan, G. K. Agarwal, and P. V. Kumar, “Codes with hierarchical

locality,” in 2015 IEEE International Symposium on Information Theory

(ISIT), 2015, pp. 1257–1261.

[40] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,

R. Vadali, S. Chen, and D. Borthakur, “Xoring elephants: novel erasure

codes for big data,” Proceedings of the VLDB Endowment, vol. 6, no. 5,

pp. 325–336, 2013.



10

[41] R. Singleton, “Maximum distance q-nary codes,” IEEE Trans. In-

form. Theory, vol. 10, no. 2, pp. 116–118, 1964.

[42] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,”

IEEE Trans. Inform. Theory, vol. 60, no. 8, pp. 4661–4676, 2014.

[43] I. Tamo, A. Barg, and A. Frolov, “Bounds on the parameters of locally

recoverable codes,” IEEE Trans. Inform. Theory, vol. 62, no. 6, pp.

3070–3083, 2016.

[44] A. Wang and Z. Zhang, “Repair locality with multiple erasure tolerance,”

IEEE Trans. Inform. Theory, vol. 60, no. 11, pp. 6979–6987, 2014.

[45] ——, “An integer programming-based bound for locally repairable

codes,” IEEE Trans. Inform. Theory, vol. 61, no. 10, pp. 5280–5294,

2015.

[46] C. Xing and C. Yuan, “Construction of optimal locally recoverable codes

and connection with hypergraph,” in 46th International Colloquium

on Automata, Languages, and Programming (ICALP 2019). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[47] A. Zeh and E. Yaakobi, “Bounds and constructions of codes with mul-

tiple localities,” in 2016 IEEE International Symposium on Information

Theory (ISIT), 2016, pp. 640–644.

[48] G. Zhang and H. Liu, “Constructions of optimal codes with hierarchical

locality,” IEEE Trans. Inform. Theory, vol. 66, no. 12, pp. 7333–7340,

2020.

Han Cai (S’16-M’18) received the B.S. and M.S. degrees in mathematics

from Hubei University, Wuhan, China, in 2009 and 2013, respectively and

received the Ph.D. degree from the Department of Communication Engi-

neering, Southwest Jiaotong University, Chengdu, China, in 2017. During

Oct. 2015 to Oct. 2017, he was a visiting Ph.D. student in the Faculty of

Engineering, Information and Systems, University of Tsukuba, Japan. From

2018 to 2021, he was a postdoctoral fellow at the School of Electrical &

Computer Engineering, Ben-Gurion University of the Negev, Israel. In 2021,

he joined Southwest Jiaotong University, where he currently hold a tenure-

track position. His research interests include coding theory and sequence

design.

Ying Miao received the D.Sci. degree in mathematics from Hiroshima

University, Hiroshima, Japan, in 1997.

From 1989 to 1993, he worked for Suzhou Institute of Silk Textile

Technology, Suzhou, Jiangsu, P. R. China. From 1995 to 1997, he was a

Research Fellow of the Japan Society for the Promotion of Science. During

1997–1998, he was a Postdoctoral Fellow at the Department of Computer

Science, Concordia University, Montreal, QC, Canada. In 1998, he joined

the University of Tsukuba, Tsukuba, Ibaraki, Japan, where he is currently

a Full Professor at the Faculty of Engineering, Information and Systems.

His current research interests include combinatorics, coding theory, and

information security.

Dr. Miao is on the Editorial Boards of several journals such as Graphs and

Combinatorics, and Journal of Combinatorial Designs. He received the 2001

Kirkman Medal from the Institute of Combinatorics and its Applications.

Moshe Schwartz (Senior Member, IEEE) is a professor in the School of Elec-

trical and Computer Engineering, Ben-Gurion University of the Negev, Israel.

His research interests include algebraic coding, combinatorial structures, and

digital sequences.

Prof. Schwartz received the B.A. (summa cum laude), M.Sc., and Ph.D. de-

grees from the Technion – Israel Institute of Technology, Haifa, Israel, in

1997, 1998, and 2004 respectively, all from the Computer Science Department.

He was a Fulbright post-doctoral researcher in the Department of Electrical

and Computer Engineering, University of California San Diego, and a post-

doctoral researcher in the Department of Electrical Engineering, California

Institute of Technology. While on sabbatical 2012–2014, he was a visiting

scientist at the Massachusetts Institute of Technology (MIT).

Prof. Schwartz received the 2009 IEEE Communications Society Best

Paper Award in Signal Processing and Coding for Data Storage, and the 2020

NVMW Persistent Impact Prize. He served as an Associate Editor for Coding

Techniques and coding theory for the IEEE Transactions on Information

Theory during 2014–2021, and since 2021 he has been serving as an Area

Editor for Coding and Decoding for the IEEE Transactions on Information

Theory. He is also an Editorial Board Member for the Journal of Combinatorial

Theory Series A since 2021.

Xiaohu Tang (M’04-SM’18) received the B.S. degree in applied mathematics

from the Northwest Polytechnic University, Xi’an, China, the M.S. degree

in applied mathematics from the Sichuan University, Chengdu, China, and

the Ph.D. degree in electronic engineering from the Southwest Jiaotong

University, Chengdu, China, in 1992, 1995, and 2001 respectively.

From 2003 to 2004, he was a research associate in the Department of

Electrical and Electronic Engineering, Hong Kong University of Science and

Technology. From 2007 to 2008, he was a visiting professor at University

of Ulm, Germany. Since 2001, he has been in the School of Information

Science and Technology, Southwest Jiaotong University, where he is currently

a professor. His research interests include coding theory, network security,

distributed storage and information processing for big data.

Dr. Tang was the recipient of the National excellent Doctoral Dissertation

award in 2003 (China), the Humboldt Research Fellowship in 2007 (Ger-

many), and the Outstanding Young Scientist Award by NSFC in 2013 (China).

He served as Associate Editors for several journals including IEEE Transac-

tions on Information Theory and IEICE Transactions on Fundamentals, and

served on a number of technical program committees of conferences.


	I Introduction
	II Preliminaries
	II-A  The Sum-Rank Metric and Linearized Reed-Solomon Codes

	III Code Construction
	IV Concluding Remarks
	References
	Biographies
	Han Cai
	Ying Miao
	Moshe Schwartz
	Xiaohu Tang


