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Abstract—Several applications in communication, control, and
learning require approximating target distributions to within
small informational divergence (I-divergence). The additional
requirement of invertibility usually leads to using encoders that
are one-to-one mappings, also known as distribution matchers.
However, even the best one-to-one encoders have I-divergences
that grow logarithmically with the block length in general.
To improve performance, an encoder is proposed that has an
invertible one-to-many mapping and a low-rate resolution code.
Two algorithms are developed to design the mapping by assigning
strings in either a most-likely first or least-likely first order. Both
algorithms give information rates approaching the entropy of
the target distribution with exponentially decreasing I-divergence
and with vanishing resolution rate in the block length.

I. INTRODUCTION

Approximating target distributions has applications such as

energy-efficient communication, random number generators,

distributed control, coordination, learning, stealth, and others.

We are motivated by applications that require both good

distribution matching and invertibility. For example, informa-

tional divergence (I-divergence)-minimization and invertibility

are useful for variational inference [1], [2] and image pro-

cessing [3]. Another example is the stealth communication

problem [4]–[6] where two parties try to hide communication

from a “warden”. The model has two possible states: one party

sends either “noise” with per-letter statistics QA or it sends a

string an = a1, . . . , an of symbols that carries a message but

resembles the noise. The warden observes an and makes a

hypothesis test. One finds that if the I-divergence of the noise

and message statistics is zero, then the best that the warden

can do is to guess.

We are interested in block codes and encoders that:

1) map uniformly-distributed messages to strings an;

2) transmit messages at rate near the entropy H (QA);
3) exhibit vanishing I-divergence in the block length n;

4) permit recovering the transmitted message from an.

The last requirement suggests that the encoder should be a

one-to-one mapping. However, invertibility makes the problem

trickier than usual. For example, we find that:
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Fig. 1: (a) Distribution matching (DM); (b) resolution coding

(RC); and (c) invertible low-divergence (ILD) coding.

• distribution matching (DM) encoders such as constant

composition distribution matching (CCDM) [7], [8] or

shell mapping [9], [10] have rates that approach H (QA)
from below and are one-to-one mappings, see Fig. 1a; de-

coding is therefore invertible but the I-divergence grows

with n [11];

• random number generators (RNGs) [12], [13] or reso-

lution codes (RCs) [14], [15] have rates that approach

H (QA) from above and I-divergences that vanish with

n; however, the encoders are many-to-one mappings, see

Fig. 1b, and decoding is not invertible.

We refer to [13], [16] for more discussion and references on

the relations between DM and RC/RNG and their applications

to, e.g., shaping for communication. Results for learning,

stealth, control, and coordination are developed and reviewed

in, e.g., [1]–[6], [17]–[20].

The above discussion suggest that invertible low-divergence

(ILD) coding might be impossible. There is, however, one

more option. Observe that one-to-many mappings are invert-

ible if the images of any pair of inputs are disjoint, see Fig. 1c.

This opens the possibility to combine DM and RC/RNG to

create an invertible one-to-many mapping. To ensure that the

RC is efficient, we add the requirement that

5) the RC rate vanishes with n.

Our main contribution is to construct invertible one-to-many

encoders with rates approaching H (QA), exponentially decay-

ing I-divergence, and vanishing RC rate in n.

This paper is organized as follows. Sec. II introduces

notation and bounds and Sec. III specifies the model and

requirements. Sec. IV develops an encoder with a one-to-

many mapping and a RC. Sec. V treats DM and generalizes

results of [11]. Sec. VI introduces the most-likely first (MLF)

and least-likely first (LLF) algorithms for encoder design.

Sec. VII develops lower bounds on the I-divergence. Sec. VIII

provides numerical results and compares them to the bounds.

Sec. IX concludes the paper. Appendixes A-C provide proofs

of Lemmas and Theorems.

http://arxiv.org/abs/2010.10583v1
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II. PRELIMINARIES

A. Notation

Sets are written with calligraphic letters A and the empty

set with ∅. The cardinality of A is |A| and the n-fold Cartesian

product of A is An.

Random variables (RVs) are written with uppercase letters

such as A, their realizations with corresponding lowercase

letters a, and their alphabets as A. A probability mass function

(pmf) of a RV A is denoted by PA or QA. We use QA for

target pmfs and PA for synthesized pmfs. We discard the

subscripts when referring to generic pmfs. A pmf or function

is sometimes written as a vector, e.g., pmf QA with alphabet

A = {1, . . . , |A|} is written as [QA(1), . . . , QA(|A|)]. The

uniform pmf over a set of K elements is denoted by UK .

A random string is denoted by An = A1A2 . . .An and its

realizations by an = a1a2 . . . an ∈ An. We write QAn =
Qn

A
for the pmf of a string of independent and identically

distributed (iid) RVs. The probability of a set S ⊆ An of

strings with respect to Qn
A

is written as

Qn
A
(S) :=

∑

an∈S

Qn
A
(an) (1)

and as qS = Qn
A
(S) for short. Probabilities conditioned on the

event S are written as

Qn
A|S(a

n) :=

{
Qn

A
(an)

Qn
A
(S) , an ∈ S

0, an 6∈ S.
(2)

Let ni = ni(a
n) be the number of occurrences of the letter

i in an for i = 1, . . . , |A|. The empirical pmf (or type) of

an is πan = 1
n [n1, . . . , n|A|]. Let Pn be the set of empirical

pmfs with denominator n (the n-types). The string an is called

typical with respect to P and ǫ if (see [21, Ch. 2.4])

|πan(i)− P (i)| ≤ ǫ P (i) (3)

for all i ∈ A. The set of typical strings is denoted Tǫ(P ).
The expectation of a real-valued function f of a random

variable A with respect to P is

EP [f(A)] =
∑

a∈supp(P )

P (a)f(a) (4)

where supp(P ) ⊆ A is the support of P , i.e., the set of a ∈ A
with P (a) > 0. For example, the variance of f(A) is

VP [f(A)] = EP

[
f(A)2

]
− EP [f(A)]2 . (5)

The self-information of a with respect to a pmf P is

ιP (a) = − log2 P (a). (6)

The entropy of P is

H (P ) = EP [ιP (A)] = EP [− log2 P (A)] . (7)

The binary entropy function is h(p) = −p log2(p) − (1 −
p) log2(1 − p) for 0 < p < 1 and h(p) = 0 otherwise. The

average conditional entropy is written as

H
(
PA|W

)
=

∑

w∈supp(PW)

PW(w)H
(
PA|W(·|w)

)
. (8)

The cross entropy of two pmfs P and Q is

X (P‖Q) = EP [− log2 Q(A)] . (9)

For example, we have ιQn
A
(an) = nX (πan‖QA). The

I-divergence of two pmfs P and Q is

D (P‖Q) = EP

[

log2
P (A)

Q(A)

]

(10)

and we have

X (P‖Q) = H (P ) + D (P‖Q) . (11)

I-divergence is also known as relative entropy and Kullback-

Leibler divergence [22, Ch. 2.3].

The ℓ1 distance between two pmfs P and Q on A is

d1 (P,Q) =
∑

a∈A

|P (a)−Q(a)| (12)

where d1 (P,Q) ≤ 2 with equality if and only if the supports

of P and Q are disjoint. For sequences f(n) and g(n),
n = 1, 2, . . . , the little-o notation f(n) = o(g(n)) means that

limn→∞ f(n)/g(n)→ 0, see [23, p. 61].

B. Bounds for Entropy and I-divergence

We state several results that we need below. The shorthand

d1 refers to d1 (P,Q).

Lemma 1 ( [22, Ch. 2.6]). D (P‖Q) ≥ 0 and X (P‖Q) ≥
H (P ), both with equality if and only if P = Q.

Lemma 2 ( [22, Ch. 2.7]). D (P‖Q) is convex in the pmf-

pair (P,Q). X (P‖Q) is linear in P and convex in Q. H (P )
is concave in P .

Lemma 3 ( [22, Sec. 17.3]). If d1 ≤ 1/2 then

|H (P )−H (Q)| ≤ −d1 log2
d1
|A| . (13)

Lemma 4. Let pmin and pmax be the respective minimum and

maximum probabilities of P . If d1 ≤ 2pmin then

H (P )−H (Q) ≤ d1
2

log2
pmax + d1/2

pmin − d1/2
. (14)

Proof. See Appendix A and [11, Lemma 1].

Lemma 5 (Pinsker Inequalities [22, Ch. 11], [24, Eq. (23)]).

1

2 ln 2
d21 ≤ D (P‖Q) ≤ 1

qmin ln 2
d21 (15)

where qmin = mina∈supp(P ) Q(a). For instance, the right-

hand side of (15) is ∞ if Q(a) = 0 when P (a) > 0.

We remark that one advantage of Lemma 4 over Lemmas 3

and 5 is that its bound is effectively linear in d1 for small d1
rather than behaving as −d1 log d1 or d21.
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C. Probability Bounds for Sums and Sets

The following Lemma specializes a result of [25] to iid

discrete random variables.

Lemma 6 (Hoeffding [25, Thm. 1]). Consider the iid string

An of random variables where A := A1 has pmf P with

alphabet A. Let Sn = 1
n

∑n
i=1 f(Ai) for a real-valued

function f satisfying 0 ≤ f(a) ≤ 1 for all a ∈ A. We have

Pr [Sn − EP [f(A)] ≥ t] ≤ e−2nt2 (16)

for t ≥ 0.

The next lemma gives basic bounds for typical strings.

Lemma 7 ( [21, Ch. 2.4]). Consider the pmf P with alphabet

A. Let an ∈ Tǫ(P ) and let pmin = mina∈supp(A) P (a). We

have

1− δǫ ≤ P (Tǫ(P )) ≤ 1 (17)

2−nH(P )(1+ǫ) ≤ Pn(an) ≤ 2−nH(P )(1−ǫ) (18)

(1− δǫ)2
nH(P )(1−ǫ) ≤ |Tǫ(P )| ≤ 2nH(P )(1+ǫ) (19)

where δǫ = 2|A| exp
(
−2n p2min ǫ

2
)
.

Proof. The left-hand side of (17) follows by Lemma 6 and

the union bound, the bounds (18) by the definition of typical

strings, and the bounds (19) by (17) and (18).

D. Bounds for Binomial and Multinomial Coefficients

We state several results for binomial coefficients.

Lemma 8 (see [26, p. 166]). For a non-negative integer k
and a positive integer n with k ≤ n we have

k∑

i=0

(
n

i

)(n

2
− i
)

=
k + 1

2

(
n

k + 1

)

=
n− k

2

(
n

k

)

. (20)

Lemma 9. For 0 < p = k/n < 1 we have [27, p. 530]

2nh(p)
√

8np(1− p)
≤
(
n

np

)

≤ 2nh(p)
√

2πnp(1− p)
. (21)

Lemma 10. For 0 ≤ p = k/n < 1/2 we have [28, Eq. (25)]

(see also [11, Lemma 3])

αβ

(
n

np

)

≤
np
∑

i=0

(
n

i

)

≤ α

(
n

np

)

(22)

where

α =
1− p+ 1/n

1− 2p+ 1/n
, β =

(1− 2p)2

(1− 2p)2 + 1/n
. (23)

Multinomial coefficients are written as
(

n

n1 . . . n|A|

)

=
n!

∏|A|
i=1 ni!

(24)

with the integers 0 ≤ ni ≤ n and n =
∑|A|

i=1 ni. An analog of

Lemma 9 is as follows.

Encoder

RNG

ZWSource

D(PAn‖Qn

A
)

Decoder
W

A
n = f(W,Z)

Fig. 2: Transmission experiment.

Lemma 11. For the pmf P = [p1, . . . , p|A|] and 0 < pi =
ni/n < 1 for all i, we have

2nH(P )

[

(8n)|A|−1
∏|A|

i=1 pi

]1/2
≤
(

n

np1 . . . np|A|

)

≤ 2nH(P )

[

(2πn)|A|−1
∏|A|

i=1 pi

]1/2
. (25)

Proof. Use the binomial expansion

(
n

np1 . . . np|A|

)

=

|A|−1
∏

i=1

(
n
(

1−∑i−1
j=1 pj

)

npi

)

(26)

and apply the bounds (21) to (26).

III. MODEL AND REQUIREMENTS

Consider the model depicted in Fig. 2. The source generates

a message W with pmf PW = UK . The information rate is

Rinfo =
H (PW)

n
=

log2 K

n
. (27)

To permit randomization, the encoder is given a RNG that

generates an index Z(w) with pmf PZ|W(·|w) given W = w.

For example, one may choose Z(w) = An(w). We consider

two types of RNGs, namely idealized RNGs and RNGs based

on RCs. One can measure the RNG rates in two ways: with

the average conditional entropy H
(
PZ|W

)
and with the number

Brng of RC bits. The resulting rates are

Hrng =
H
(
PZ|W

)

n
, Rrng =

Brng

n
(28)

and Hrng ≤ Rrng because Z(w) is a function of the RC bits

for all w.

The encoder output is An = f(W,Z) for some function f .

The resolution quality is measured via the I-divergence

D (PAn‖Qn
A
) (29)

for a specified pmf QA. For instance, for the stealth problem

a warden knows the target pmf QA, the code statistics PAn ,

and the RNG statistics PZ|W. Given an the warden must decide

whether a code word was transmitted or not. One can show [4],

[5] that the best the warden can do is to guess if (29) vanishes

with the block length n.

The problem requirements are thus as follows: the decoder

must recover W without error, D (PAn‖Qn
A
) must vanish with

growing n, and Rrng must vanish with growing n. The rate

Rinfo is said to be achievable if these requirements are met. We
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wish to maximize the achievable rate. In fact, these require-

ments are coupled, as shown below. For example, vanishing
1
nD (PAn‖Qn

A
) and Rrng imply that Rinfo → H (QA).

Observe that if QA = U|A′| for any A′ ⊆ A then one

achieves zero I-divergence at maximal rate Rinfo = log2 |A′|
without a RNG by choosing K = |A′|n and putting out the

|A′|-ary representation of w − 1. We hence focus on QA that

are not uniformly distributed over any subset.

A. Rate Bounds

We use the bounding approach of [5, Sec. 1.3.3]. The

linearity of cross entropy gives

X (PAn‖Qn
A) = nX

(
P̄A‖QA

)
(30)

where P̄A = 1
n

∑n
i=1 PAi is the average letter pmf of An.

Lemma 2 and (11) further give

H (PAn) ≤
n∑

i=1

H(PAi) ≤ nH
(
P̄A

)
(31)

D (PAn‖Qn
A
) = nX

(
P̄A‖QA

)
−H (PAn)

≥ nD
(
P̄A‖QA

)
. (32)

We have the following lemmas.

Lemma 12. Vanishing 1
nD (PAn‖Qn

A
) requires

Rinfo ≤ H (QA) . (33)

Moreover, if the decoder can recover both the message W and

the RNG index Z, then we have the stronger bound

Rinfo +Hrng ≤ H (QA) . (34)

Proof. Consider 0 ≤ ξ ≤ 1
2 and

1

n
D (PAn‖Qn

A) ≤
ξ2

2 ln 2
. (35)

The bound (32) and Lemmas 3 and 5 give

∣
∣H
(
P̄A

)
−H (QA)

∣
∣ ≤ −ξ log2

ξ

|A| (36)

and therefore

H
(
P̄A

)
≤ H (QA)− ξ log2

ξ

|A| . (37)

We further have H (PW) ≤ H (PAn) since W is a function of

An. Combining this bound with (31) and (37) proves (33) for

ξ → 0. To prove (34), note that if W and Z are functions of

An then H (PWZ) ≤ H (PAn).

A reverse bound to (34) holds more generally.

Lemma 13. Vanishing 1
nD (PAn‖Qn

A
) requires

Rinfo +Hrng ≥ H (QA) . (38)

Proof. Consider the bound (35). We have

Rinfo +Hrng

(a)

≥ 1

n
H (PAn) +

(
1

n
D (PAn‖Qn

A
)− ξ2

2 ln 2

)

(b)
= X

(
P̄A‖QA

)
− ξ2

2 ln 2
(c)

≥ H
(
P̄A

)
− ξ2

2 ln 2
(d)

≥ H (QA) + ξ log2
ξ

|A| −
ξ2

2 ln 2
(39)

where (a) follows because An is a function of W and Z and

by hypothesis (35), (b) follows by (11) and (30), (c) follows

by Lemma 1, and (d) follows by (36). Finally, let ξ → 0.

Lemma 13 is valid for DM, RC, and for one-to-many

mappings. For example, if Rinfo → 0 as n → ∞ then we

asymptotically require Rrng ≥ Hrng ≥ H (QA). Finally, we

remark that the inequalities (34) and (38) are usually strict

for finite n and hence it is not clear whether ILD coding is

possible.

B. Discussion

Sec. I reviews two approaches to approximate target pmfs,

namely DM and RC. DM uses a one-to-one mapping which is

a special case of the above model without a RNG. Vanishing

normalized (or un-normalized) I-divergence thus implies that

Rinfo is asymptotically upper bounded by H (QA), see (33).

In fact, the I-divergence of the best binary DM grows as
1
2 log2 n with n [11]. Applications of DM, such as probabilistic

shaping for energy-efficient communication, usually require

only vanishing normalized I-divergence. Algorithms for DM

that have Rinfo → H (QA) for large n include CCDM [7], [8]

and shell mapping [9], [10], [29], [30].

RC uses a many-to-one mapping and the RC rate for vanish-

ing I-divergence is asymptotically lower bounded by H (QA),
see (39). To approach the lower bound, one can, e.g., apply

random coding arguments [15], [31], interval algorithms [13],

fixed-to-variable length codes [32], variable-to-fixed length

codes [33], or fixed-to-fixed length codes [16], [34] such as

polar codes [35], [36]. These algorithms use deterministic

many-to-one mappings that are not invertible in general.

ILD coding uses a one-to-many mapping that combines DM

and RC, see Fig. 1c. This is similar to randomized encoding

which is a common tool in multi-user information theory,

e.g., for RC/RNG and wiretap channels [37]. The differences

between the approaches are subtle. In particular, we require

zero error while the randomization for wiretap and other

problems permits small error. Also, we must carefully design

the DM encoder and RC because D (PAn‖Qn
A
) should vanish.

IV. ENCODER DESIGN

An ILD encoder is a one-to-many mapping into disjoint sets,

see Fig. 1c. All strings an assigned to message w are collected

in the set Sw and we require Sv ∩ Sw = ∅ for v 6= w. We

denote the set of all strings under consideration as

S =
⋃

w

Sw (40)
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where {Sw : w = 1, . . . ,K} partitions S. A basic choice for

S is supp(QA)
n.

A. Two-Step Encoding

Encoding involves two-steps. First, the message w chooses

the set Sw. The encoder then requests an index Z(w) = An(w)
from the RNG PZ|W(·|w) that uniquely identifies a string an =
f(w, z) from Sw. For this an, we have

PAn|W (an|w) = PZ|W(z|w) (41)

and for each an ∈ Sw we have

PAn(an) = PAnW (an, w) =
1

K
PAn|W (an|w) . (42)

Suppose that n and QA are given. Encoder design involves

choosing the:

• number K of messages;

• code: the set S of strings;

• encoder map: sets Sw, w = 1, . . . ,K , that partition S;

• RNG: pmfs PZ|W(·|w), w = 1, . . . ,K .

The encoder output is An = f(W,Z) and f is invertible, so

we are in the case described for the bound (34) and with

H (PAn) = H (PWZ) = n (Rinfo +Hrng) . (43)

One might, therefore, consider the transmission rate to be

Rinfo +Hrng rather than Rinfo. However, Z is non-uniform and

generated by a many-to-one mapping in general so that one

cannot necessarily recover the Brng = nRrng bits that generate

Z. Thus, we consider the information rate to be Rinfo. At the

same time, the encoder does “share randomness” via Z.

B. Idealized RNG

Recall that qS = Qn
A
(S) and Qn

A|S(a
n) = Qn

A
(an)/qS for

an ∈ S, see (2). We expand (29) by using (42) as follows:

K∑

w=1

∑

an∈Sw∩ supp(PAn )

PAn|W (an|w)
K

log2

1
KPAn|W (an|w)

Qn
A
(an)

= D (UK‖[qS1 , . . . , qSK ])

+

K∑

w=1

1

K
D
(

PAn|W(·|w)‖Qn
A|Sw

)

. (44)

The effects of the two-step encoding are apparent in (44): the

first term accounts for the choice of set Sw and the second

term accounts for the RNG. We will study the I-divergences

D (UK‖[qS1 , . . . , qSK ]) (45)

D
(

PAn|W(·|w)‖Qn
A|Sw

)

(46)

separately. The identity (44) and Lemma 1 give the following

result.

Proposition 1. The encoder RNG with

PAn|W(·|w) = Qn
A|Sw

(47)

for all w gives the smallest I-divergence

D (PAn‖Qn
A) = D (UK‖[qS1 , . . . , qSK ]) . (48)

Proposition 1 gives intuition on how to choose the partition

{S1, . . . ,SK}: the pmf [qS1 , . . . , qSK ] should be close to

uniform. Sec. VI develops algorithms that separate the an into

approximately equally likely sets with respect to Qn
A

.

C. RNG via RC

The idealized RNG of (47) cannot be implemented in

general. To approximate it, various authors have developed

theory and algorithms for RCs with vanishing I-divergence

(46), see Sec. III-B. We study fixed-to-fixed length encoders

generated by Algorithm 2 in [16]. Consider the subset Sw
and suppose we are given nRrng independent and uniformly-

distributed random bits. Proposition 4 in [16] specifies that if

|Sw| ≤ 2nRrng then fixed-to-fixed length encoding gives

D
(

PAn|W(·|w)‖Qn
A|Sw

)

≤ log2

(

1 +
|Sw|

2 qmin(w) 22nRrng

)

≤ |Sw|
(2 ln 2) qmin(w) 22nRrng

(49)

where qmin(w) = minan∈supp(PAn|W(·|w))Q
n
A|Sw

(an).
It remains to bound |Sw| and qmin(w) and this is done in

Theorem 2 and Appendix C below. The result is that Rrng can

be made to vanish with growing n, and the I-divergence (46)

can be made to decay exponentially in n for all w = 1, . . . ,K .

D. Code for Minimum I-divergence

We next consider code design for the I-divergence (45).

Proposition 2. The code S = supp(QA)
n gives the smallest

I-divergence (45).

Proof. Suppose S ( supp(QA)
n so that qS = Qn

A
(S) < 1.

The encoder has sets Sw with probabilities qSw . Now assign

the unassigned strings with positive probability to obtain new

sets S ′w with probabilities qS′
w

satisfying qS′
w
≥ qSw and where

at least one inequality is strict. We thus have

D
(
UK‖[qS′

1
, . . . , qS′

K
]
)
=
∑

w

1

K
log

1/K

qS′
w

< D (UK‖[qS1 , . . . , qSK ]) . (50)

Proposition 2 shows that one should use all strings with

positive probability if an ideal RNG is available. Moreover,

inflating S by strings outside supp(QA)
n does not change the

I-divergence.

E. Code Empirical Distribution and I-divergence

The I-divergence (29) simplifies by applying (30) that one

can interpret in terms of the code empirical pmf. Let

n̄i =
∑

an∈S

PAn(an)ni(a
n) (51)

be the average number of occurrences of letter i in S and

define the code empirical pmf as

P̄ =
∑

an∈S

PAn(an)πan =
1

n
[n̄1, . . . , n̄|A|]. (52)
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Using (11) and (30), we have (see (32))

D (PAn‖Qn
A
) = nX

(
P̄‖QA

)
−H (PAn) . (53)

We next use (53) to analyze the performance of DMs.

V. DISTRIBUTION MATCHING

This section generalizes results of [11] to non-binary alpha-

bets. Recall that DM is a special case of the model in Sec. III

where (46) is zero because there is no RNG. Furthermore,

from (44) and (53) we have

D (PAn‖Qn
A) = D (UK‖Qn

A)

= nX
(
P̄‖QA

)
− log2 K

= n
(
X
(
P̄‖QA

)
−Rinfo

)

= n
(
H
(
P̄
)
+ D

(
P̄‖QA

)
−Rinfo

)
. (54)

A. CCDM Performance

Consider the target pmf QA = [q1, . . . , q|A|] and a CCDM

where all an have the empirical pmf P = [p1, . . . , p|A|] where

npi is an integer for all i. We clearly have P̄ = P and

K =

(
n

np1 . . . np|A|

)

, Qn
A(a

n) =

|A|
∏

i=1

qnpi

i (55)

for all an ∈ S and the rate is

Rinfo =
1

n
log2

(
n

np1 . . . np|A|

)

. (56)

The bounds (25) imply

|A| − 1

2n
log2(2πn c) ≤ H (P )−Rinfo ≤

|A| − 1

2n
log2(8nc)

(57)

where

c =





|A|
∏

i=1

pi





1/(|A|−1)

(58)

and hence Rinfo → H (P ) for large n. Moreover, we obtain

H (P )→ H (QA) by choosing P appropriately. For example,

Algorithm 1 of [16] gives a P with d1 (P,QA) ≤ |A|/(2n)
(for |A| = 2, we obtain p = ⌊nq⌋/n). Lemma 3 (or Lemma 4)

gives the desired rate but by combining (54) and (57) we have

|A| − 1

2
log2(2πn c) + D (P‖QA)

≤ D (PAn‖Qn
A
) ≤ |A| − 1

2
log2(8nc) + D (P‖QA) . (59)

The I-divergence thus grows as 1
2 (|A| − 1) logn with n if

D (P‖QA)→ 0 or H (P )→ H (QA).

B. Improving CCDM

We consider two classes of pmfs for which the CCDM pre-

log factor 1
2 (|A| − 1) is suboptimal.

1) Product Distributions: Suppose the target pmf QA splits

into a product of pmfs:

QA(a) = QA(f(a
′, a′′)) = QA′(a′)QA′′(a′′) (60)

where f is an invertible function.

Example 1. Consider A = [A1,A2] where A1 and A2 are

independent with pmfs [p, 1 − p] and [q, 1 − q], respectively.

The 4-ary pmf is [pq, p(1− q), (1 − p)q, (1− p)(1− q)].

For pmfs (60) one can use product distribution matching

(PDM) [38]–[40, Sec. III] that operates two or more compo-

nent DMs in parallel. The I-divergence (54) is then the sum of

the I-divergences of the component DMs, e.g., the PDM pre-

log factor for Example 1 is 1
2 + 1

2 = 1 while a 4-ary CCDM

has the pre-log factor 3
2 .

2) Unique Probabilities: The best DM for the target pmf

QA = U|A| has zero I-divergence by putting out the |A|-ary

representation of w−1. We extend this observation to sources

where QA and the empirical pmfs P have the following form.

Let U = {1, . . . , |U|} enumerate the unique probabilities in

P = [p1, . . . , p1
︸ ︷︷ ︸

ν1 times

, . . . , p|U|, . . . , p|U|
︸ ︷︷ ︸

ν|U| times

] (61)

where pj 6= pk for j 6= k. The entropy is

H (P ) = H
(
[r1, . . . , r|U|]

)
+

|U|
∑

j=1

rj log2 νj (62)

where rj = νjpj for j = 1, . . . , |U|.
The key step now is as follows. Consider an with empirical

pmf P , and consider the nrj positions where there are letters

with empirical probability pj . For these positions, we expand

the CCDM set S to include all an with any of the ν
rjn
j patterns

of νj letters. These new strings all have the same probability

Qn
A
(an). The new DM again has P̄ = P but now

K =

(
n

nr1 . . . nr|U|

)

·
|U|
∏

j=1

ν
rjn
j , Qn

A(a
n) =

|U|
∏

j=1

q
nrj
j (63)

for all an ∈ S and therefore

Rinfo =
1

n
log2

(
n

nr1 . . . nr|U|

)

+

|U|
∑

j=1

rj log2 νj . (64)

Equations (57) and (58) are therefore updated as follows:

|U| − 1

2n
log2(2πn c) ≤ H (P )−Rinfo ≤

|U| − 1

2n
log2(8nc)

(65)

where

c =





|U|
∏

j=1

rj





1/(|U|−1)

. (66)
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Hence we again have Rinfo → H (P ) for large n and we can

make H (P ) → H (QA) by choosing P appropriately as for

CCDM. Using the same approach as for (59) we further obtain

|U| − 1

2
log2(2πn c) + D (P‖QA)

≤ D (PAn‖Qn
A
) ≤ |U| − 1

2
log2(8nc) + D (P‖QA) . (67)

The I-divergence now grows as 1
2 (|U|− 1) log n with n rather

than 1
2 (|A| − 1) logn if D (P‖QA)→ 0 or H (P )→ H (QA).

Example 2. Consider the pmf QA = [0.6, 0.2, 0.2] and strings

of length 5. The code S has all strings with empirical pmfs

[3, 2, 0]/5, [3, 1, 1]/5, and [3, 0, 2]/5. We compute

K =

(
5

3, 2

)

· 22 = 40. (68)

The code size of the corresponding CCDM is instead
(

5

3, 1, 1

)

= 20. (69)

For large n, the bounds (59) show that the I-divergence of the

new DM scales as log2 n rather than 3
2 log2 n as for CCDM.

C. Optimal DM Codes

The following result generalizes [11, Lemma 5] to non-

binary alphabets.

Proposition 3. The DM code S that minimizes D (UK‖Qn
A
)

has all an with at least a specified probability with respect to

Qn
A

, i.e., S has all an satisfying Qn
A
(an) ≥ 2−nI for some I .

Alternatively, S has all strings an satisfying

1

n
ιQn

A
(an) = X (πan‖QA) ≤ I. (70)

Proof. Consider some values Î and I with Î < I . Define

S = S ′ ∪ S ′′ where S ′ = {an : X (πan‖QA) ≤ Î} and

S ′′ has ℓ strings an with X (πan‖QA) = I . We thus have

K = |S| = |S ′|+ ℓ and

D (UK‖Qn
A
) = − log2(|S ′|+ ℓ) +

n|S ′|
|S ′|+ ℓ

Ī +
nℓ

|S ′|+ ℓ
I

(71)

where Ī = 1
|S′|

∑

an∈S′ X (πan‖QA) and therefore Ī < I .

Now consider ℓ as a continuous variable and compute

∂

∂ℓ
D (UK‖Qn

A
) = − 1

(ln 2)(|S ′|+ ℓ)
+

n|S ′|
(|S ′|+ ℓ)2

∆I (72)

∂2

∂ℓ2
D (UK‖Qn

A) =
1

(ln 2)(|S ′|+ ℓ)2
− 2n|S ′|

(|S ′|+ ℓ)3
∆I (73)

with ∆I = I − Ī > 0. The first derivative is zero only at

ℓ0 =|S ′| ((ln 2)n∆I − 1) (74)

which means that there is only one extreme point. Note that ℓ0
can be negative but is larger than −|S ′|. The second derivative

at ℓ = ℓ0 evaluates to

∂2

∂ℓ2
D (UK‖Qn

A
)
∣
∣
∣
ℓ=ℓ0

=− 1

(ln 2)3|S ′|2n2∆I2
(75)

0 2 4 6 8 10 12 14 16

1
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4

codebook size |S|

I-
d
iv

er
g
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ce
D
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A
n
‖
Q

n A
)

q = 0.05

q = 0.15

q = 0.23

Fig. 3: I-divergence (45) vs. |S| for n = 4 and various q.

which is negative and therefore the I-divergence (assuming ℓ
is continuous) is maximum at ℓ = ℓ0.

We now find the integer ℓ̂ ∈ {0, 1, . . . , ℓmax} that minimizes

D (UK‖Qn
A
) where ℓmax is the number of length n code strings

that have cross entropy I . We distinguish three cases.

• ℓ0 ∈ [0, ℓmax]: D (UK‖Qn
A
) increases with ℓ for 0 ≤ ℓ ≤

ℓ0 and decreases with ℓ for ℓ0 ≤ ℓ ≤ ℓmax.

• ℓ0 < 0: D (UK‖Qn
A
) decreases with ℓ for 0 ≤ ℓ ≤ ℓmax.

• ℓ0 > ℓmax: D (UK‖Qn
A
) increases with ℓ for 0 ≤ ℓ ≤ ℓmax.

In all cases we have ℓ̂ = 0 or ℓ̂ = ℓmax. Thus, the best code

has all strings up to cross entropy Î or I .

Proposition 3 is certainly not obvious, e.g., it implies that

optimal DM codes have all strings of any empirical pmf that

they contain.

Example 3. For |A| = 2 there are only n + 1 possible

optimal codes although K ranges from 1 to 2n. Fig. 3 shows

the I-divergence behavior for a binary alphabet, block length

n = 4, and various q. The minimal I-divergence is achieved

at one of the n+ 1 = 5 values K = 1, 5, 11, 15, 16.

Proposition 3 helps to prove the following basic result for

binary strings.

Theorem 1 ( [11]). Binary DM codes and encoders that mini-

mize the I-divergence have D (PAn‖Qn
A
) that grows as 1

2 log2 n
with n. Moreover, for binary alphabets CCDM achieves this

growth.

Proof. See Appendix B.

VI. MLF AND LLF ALGORITHMS

Since DM cannot achieve low divergence in general, we

now study one-to-many mappings. We propose two algorithms

that generate encoder sets Sw, w = 1, . . . ,K . Consider a code

S and initialize Sw = ∅ for all w. Order the strings in S from

the most likely to the least likely. We consider two greedy

approaches to populate the Sw:

• Most-Likely First (MLF): Successively insert the most-

likely string into the set that has accumulated the least

probability.
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Algorithm 1 MLF and LLF Algorithms

1: procedure PARTITION(S, K , QA, Algo)

2: Sw ← ∅, w = 1, . . . ,K
3: Sort S = {an1 , . . . , an|S|} so that Qn

A
(ani ) ≥ Qn

A
(anj )

for i ≤ j
4: while S 6= ∅ do

5: if Algo = MLF then

6: an ← first string(S)
7: else

8: an ← last string(S)
9: end if

10: w ← argmink Q
n
A
(Sk)

11: Sw ← Sw ∪ {an}
12: S ← S \ {an}
13: end while

14: return S1, . . . ,SK
15: end procedure

• Least-Likely First (LLF): Successively insert the least-

likely string into the set that has accumulated the least

probability.

The MLF and LLF approaches are specified in Algorithm 1

where the choice of algorithm is reflected in steps 5 to 9.

A. One Bit of Information per String

Consider transmitting one bit of information so that (45)

is D (U2‖[qS1 , qS2 ]). The MLF and LLF algorithms are not

optimal in general.

Example 4. Suppose the string probabilities are

[ 3
10 ,

2
10 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ]. Both algorithms arrive at the set

probabilities [qS1 , qS2 ] = [11/20, 9/20] but here it is best to

group the strings to obtain [qS1 , qS2 ] = [1/2, 1/2].

The LLF algorithm suggests a simple upper bound on

D (U2‖[qS1 , qS2 ]). The worst case has both sets equally likely

just before inserting the last (most probable) string. For

S = supp(QA)
n, this string has n occurrences of the most

probable letter(s), i.e., its probability is qnmax where qmax is

the largest probability of any letter. The worst case pmf is thus

[(1 + qnmax)/2, (1− qnmax)/2] and we have

D (U2‖[qS1 , qS2 ]) =
1

2
log2

1

1− q2nmax

≤ 1

2 ln 2

q2nmax

1− q2nmax

(76)

where the bound follows by ln(1 + x) ≤ x. The relation (76)

means that we can encode one bit of information with expo-

nentially decreasing I-divergence in n. However, from (38)

and Rinfo = 1/n we find that the RNG rate must satisfy

Rrng ≥ Hrng ≥ H (QA)− 1/n.

B. MLF Encoder Properties

We first develop a special property of the MLF algorithm.

Definition 1 (Pareto-optimal sets). The assignment of strings

to sets is Pareto-optimal if moving any individual string from

one set to another does not decrease the I-divergence (45).

Proposition 4. The MLF algorithm generates Pareto-optimal

sets. The LLF algorithm does not generate Pareto-optimal sets

in general.

Proof. Consider first the LLF algorithm with the ordered

string probabilities [0.8, 0.1, 0.1] and K = 2. LLF assigns the

third and first strings to one set and the second string to the

other. By moving the third string (i.e., the first string that LLF

assigns) to the second set we obtain a better encoder.

Consider next the MLF algorithm. Moving an from Sv to

Sw is Pareto efficient for (45) if and only if

log2
1

(qSv −Qn
A
(an))(qSw +Qn

A
(an))

≤ log2
1

qSvqSw

(77)

which is equivalent to qSv − qSw ≥ Qn
A
(an). Assuming qSv >

qSw , the difference qSv − qSw is at most the probability of the

last string ãn that was assigned to Sv . Otherwise ãn would

have been assigned to Sw. Therefore, moving ãn from Sv to

Sw does not improve I-divergence (45). All other strings in

Sv have at least the same probability as ãn.

Next, consider the code S and let pi, i = 1, . . . , |S|, be the

probabilities of the ordered strings in S, i.e., we have pi ≥ pj
for i ≤ j. Let ∆i be the difference in probability of the most

likely set and least likely set after the ith (most likely) string

from S has been assigned to a message.

Lemma 14. MLF has ∆i ≤ p1 for all i ≥ 0.

Proof. We have ∆0 = 0 ≤ p1 and proceed by induction.

Suppose that ∆i−1 ≤ p1 and i ≥ 1.

Consider first the case pi ≥ ∆i−1 so that the set to which

string i is assigned will have the most accumulated probability.

We thus have ∆i ≤ pi with equality if the probability of the

two least likely sets was the same before assigning string i.
But then ∆i ≤ p1 by the string ordering.

Consider next the case pi < ∆i−1 so that the most likely

set did not change. Now we have ∆i ≤ ∆i−1 with equality if

the two least likely sets was the same before assigning string

i. But then we have ∆i ≤ p1 by the inductive hypothesis.

C. LLF Encoder Properties

We begin with an observation concerning the LLF encoder.

Proposition 5. LLF assigns the (K−i)-th string of the ordered

list to the set S(i mod K)+1.

Proof. At any step of the LLF Algorithm, the difference of the

most likely set probability and the least likely set probability

is at most the probability of the next string to assign. After

the assignment, the least probable set becomes (one of) the

most probable set(s). In case of a tie, we order the new set

last among the most probable sets.

We remark that LLF lets the decoder calculate the position

in the ordered list and apply a modulo operation on the list.

Algorithms that can accomplish this task include enumerative

source encoding [41] and shell mapping [9], [10].

Let ∆i again be the difference in probability of the most

likely set and least likely set after the ith (least likely) string

from S has been assigned to a message.
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Lemma 15. LLF has ∆i ≤ pK−i+1 for all i ≥ 0. In

particular, LLF has ∆i ≤ p1 for all i ≥ 0.

Proof. Define pK+1 = 0. We have ∆0 = 0 ≤ pK+1 and

proceed by induction. Suppose ∆i−1 ≤ pK−i+2 and i ≥ 1.

Consider first the case pK−i+1 ≥ ∆i−1 so that the set

to which string K − i + 1 is assigned will have the most

accumulated probability. We thus have ∆i ≤ pK−i+1 with

equality if the probability of the two least likely sets was the

same before assigning string i.
Consider next the case pK−i+1 < ∆i−1 so that the most

likely set did not change. Now we have ∆i ≤ ∆i−1 with

equality if the two least likely sets was the same before

assigning string i. But then we have ∆i ≤ pK−i+1 by the

string ordering.

D. Achievable Rates

We next analyze the information rate and I-divergence

(45) of the MLF and LLF algorithms. This section treats

binary alphabets for simplicity and Appendix C treats general

alphabets. Suppose that QA(1) = q = 1−QA(0) < 1/2.

To prove our main result in Theorem 2 below, we will use

the code S = Tǫ(QA). However, to facilitate the development

and to gain insight, consider first the code S of binary strings

with at most n − k zeros. This means that the most likely

string has probability p1 = qk(1 − q)n−k. We remark that

Proposition 2 lets one reduce the I-divergence (45) by later

assigning the remaining strings in supp(QA)
n. The LLF algo-

rithm fits naturally into this framework. The MLF algorithm

does not fit, strictly speaking, because if we begin the MLF

assignment with the strings with n−k zeros and later add the

remaining strings in supp(QA)
n then we do not have an MLF

algorithm. We will see, however, that the remaining strings can

have an accumulated probability that vanishes exponentially in

n, so the distinction makes little difference.

Consider the code S as specified and the iid string An where

A1 has pmf QA. We may write

qS = Pr

[

Sn ≤
n− k

n

]

(78)

where Sn =
∑n

i=1(1− Ai)/n. Lemma 6 with (k − 1)/n < q
gives the exponentially decaying bound

1− qS = Pr

[

Sn − (1− q) ≥ q − k − 1

n

]

≤ exp

(

−2n
(

q − k − 1

n

)2
)

. (79)

By Lemmas 14 and 15, we have ∆|S| ≤ qk(1− q)n−k and

K
(

max
w

qSw − qk(1− q)n−k
)

≤ qS ≤ K
(

min
w

qSw + qk(1 − q)n−k
)

. (80)

We thus have

qS
K
− qk(1 − q)n−k ≤ qSw ≤

qS
K

+ qk(1− q)n−k (81)

for all w = 1, . . . ,K and

D (UK‖[qS1 , . . . , qSK )]

≤
∑

w

1

K
log2

1/K

qS/K − qk(1− q)n−k

= log2
1

1− [(1− qS) +Kqk(1 − q)n−k]
(82)

(a)

≤ 2
[
(1− qS) +Kqk(1 − q)n−k

]
(83)

where (a) follows if the term in square brackets is at most

1/2, since − log2(1− x) ≤ 2x if 0 ≤ x ≤ 1/2.

Consider the two summands in (83). We have already seen

that the term 1 − qS vanishes exponentially in n as long as

q > (k − 1)/n. In particular, neglecting quantization issues,

we set k = n(q − ǫ) for small ǫ and (79) gives

1− qS ≤ exp
(
−2nǫ2

)
. (84)

Next, consider a δ with 0 < δ < 1 and choose K so that

Kqk(1− q)n−k = (1− δ)n. (85)

Taking logarithms and normalizing, one obtains

Rinfo = X (QA + [−ǫ, ǫ]‖QA) + log2(1 − δ). (86)

We combine (83)-(86), choose small positive ǫ and δ, and

choose n sufficiently large so that the term in square brackets

in (83) is at most 1/2.

More generally, we have the following result for binary and

non-binary alphabets, but with a different code S = Tǫ(QA).
The reason for the change is to show that Rrng can be made

to vanish with n.

Theorem 2. The MLF and LLF algorithms generate encoders

with Rinfo → H (QA), exponentially decaying D (PAn‖Qn
A
),

and Rrng → 0 in n by using S = Tǫ(QA).

Proof. See Appendix C.

E. Discussion

The two key steps to show that the MLF and LLF algorithms

have Rinfo → H (QA) and D (PAn‖Qn
A
) → 0 for large n are

establishing that qS is close to one, see (79), and that the

qSw are close to 1/K , see (81). There are several codes and

encoders that meet these requirements. For example, for binary

alphabets one may choose the code above that has all strings

with at most n − k zeros. Alternatively, one may use S =
Tǫ(QA) as for Theorem 2. In both cases, one satisfies (81) by

choosing any partition of S into K subsets with qSw ≈ 1/K
for all w. The MLF and LLF algorithms are two methods to

accomplish this task.

VII. I-DIVERGENCE LOWER BOUNDS

Consider the target pmf QA with qmax as the largest

letter probability. Fig. 4 shows an example of K bins where

qnmax > 1/K . The N↑ blue bins have exactly one string whose

probability is at least 1/K; the N↓ = K −N↑ red bins have

accumulated at most 1/K in probability and have one or more



10

1

K

w = 1 w = K

K = 2nRinfo bins

N↑ bins with an ∈ S↑

Fig. 4: Example bins after after applying the MLF Algorithm.

The bin heights represent the bin probabilities qSw = Qn
A
(Sw).

q↑

q↓

N↑ bins N↓ bins

Fig. 5: Equalized bins.

strings. Let the subsets S↑ and S↓ collect all strings of the blue

and red bins, respectively.

Define the pmf

Q̄ = [q↑, . . . , q↑
︸ ︷︷ ︸

N↑ times

, q↓, . . . , q↓
︸ ︷︷ ︸

N↓ times

] (87)

obtained by spreading the probability qS↑
equally over the N↑

bins with an ∈ S↑, and similarly for the N↓ bins with an ∈ S↓.

The convexity of I-divergence (see Lemma 2) implies

D (UK‖[qS1 , . . . , qSK ]) ≥ D
(
UK‖Q̄

)
. (88)

We expand the right-hand side of (88) as

D
(
UK‖Q̄

)
=

N↑

K
log2

1
K

q↑
+

N↓

K
log2

1
K

q↓

= D

([
N↑

K
,
N↓

K

]

‖
[
qS↑

, qS↓

]
)

. (89)

In fact, it is not necessary to group the first N↑ bins; any num-

ber N ′ of grouped sets with N ′ ≤ N↑ and with accumulated

probabilities q′S↑
, q′S↑

works for the following result.

Theorem 3. The I-divergence (45) generated with one-to-

many mappings into disjoint sets satsifies

D (UK‖[qS1 , . . . , qSK ])

≥ max
N ′≤N↑

D

([
N ′

K
, 1− N ′

K

]

‖
[

q′S↑
, q′S↓

])

. (90)

A. Binary Alphabet

Consider |A| = 2, S = supp(QA)
n, and q < 1/2. Let k

be the maximum integer for which qk(1 − q)n−k ≥ 1/K =
2−nRinfo , or equivalently

k =

⌊

n · log2(1− q) +Rinfo

log2(1 − q)− log2 q

⌋

. (91)
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Fig. 6: I-divergence (45) vs. Rinfo for QA = [0.11, 0.89] and

different block lengths n. Note that H (QA) ≈ 0.5.

We then have

N↑ =

k∑

i=0

(
n

i

)

(92)

qS↑
=

k∑

i=0

(
n

i

)

qi(1− q)n−i. (93)

Suppose Rinfo = h(q) which implies k = ⌊nq⌋ according

to (91). We use Lemmas 9 and 10 to obtain

N↑

K
≤ 1− q + 2

n

1− 2q + 1
n

· 1
√

2πnq(1− q)
(94)

which decreases as 1/
√
n in n so that

lim
n→∞

N↑

K
= 0. (95)

For the probability qS↑
, observe that the median of a bino-

mial distribution is either ⌊nq⌋ or ⌈nq⌉ so qS↑
converges

to 1/2. The I-divergence (89) thus evaluates to 1 for large

n because the first pmf converges to [0, 1] and the second

pmf converges to [1/2, 1/2]. This means that the code cannot

have I-divergence (45) below 1 bit for large n. For Rinfo ≤
− log2(1− q) the lower bound is zero because S↑ = ∅.

VIII. NUMERICAL RESULTS

We evaluate the performance of the MLF and LLF algo-

rithms with S = supp(QA)
n. Fig. 6 plots the I-divergence

(45) against Rinfo, as well as an upper bound based on (82) and

(86), and the lower bound (90). For all simulations, the target

pmf is QA = [0.11, 0.89]. We evaluate the lower bound (90)

for N ′ =
∑k′

i=0

(
n
i

)
, where k′ is integer and k′ ≤ k.

Note that the MLF and LLF algorithms sort binary strings

of length n so their complexity grows exponentially in n. The
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simulation results are restricted to string lengths with n ≤ 20.

As a reference, we plot the I-divergence of the optimal DMs

for n = 10 and n = 16. Observe that MLF outperforms LLF

and has the same I-divergence as the lower bound for small

rates.

IX. CONCLUSIONS AND OUTLOOK

We showed that ILD coding is possible at rates approaching

the entropy of a target pmf with exponentially decaying

I-divergence and vanishing RNG rate in the block length. The

key step was to introduce invertible one-to-many mappings.

For such mappings, an encoder was proposed that first chooses

a subset of strings followed by an RNG that chooses a string

from the subset. The first step uses subsets that are generated

by either an MLF or LLF algorithm. The second step uses a

good RC.

An interesting direction for future work is designing practi-

cal algorithms that approach the performance predicted by the

theory.
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APPENDIX A

PROOF OF LEMMA 4

Consider the pmfs P and Q = P + ∆ where
∑

i∆(i) = 0
and

∑

i |∆(i)| = d1. Define

∆+ =
∑

i: ∆(i)>0

∆(i), ∆− =
∑

i: ∆(i)<0

∆(i) (96)

and observe that ∆+ = −∆− = d1/2. We expand

H (P )−H (Q)

= −D (P‖Q) +
∑

i

∆(i) log2(P (i) + ∆(i)) (97)

and using pmin ≤ P (i) ≤ pmax and |∆(i)| ≤ d1/2 we have

∑

i:∆(i)>0

∆(i) log2(P (i) + ∆(i))
︸ ︷︷ ︸

≤log2(pmax+d1/2)

≤ d1
2

log2(pmax + d1/2)

(98)
∑

i:∆(i)<0

∆(i) log2(P (i) + ∆(i))
︸ ︷︷ ︸

≥log2(pmin−d1/2)

≤ −d1
2

log2(pmin − d1/2).

(99)

Now insert (98) and (99) into (97) and apply Lemma 1.

APPENDIX B

PROOF OF THEOREM 1

This appendix reviews results on binary DM from [11].

Consider A = {0, 1} and observe that Proposition 3 lets one

restrict attention to the n+ 1 code books S consisting of all

strings with weight at most k for 0 ≤ k ≤ n. We have

K = |S| =
k∑

i=0

(
n

i

)

.

The fraction of 1s in S is

p̄ =

∑k
i=0

(
n
i

)
i

|S|n (100)

which increases monotonically in k and reaches its maximum

p̄ = 1/2 for k = n. Let p = k/n. The next lemma shows that

p̄→ p for large n as long as p < 1/2.

Lemma 16. For every positive integer n and every integer k,

0 ≤ k < n/2, we have

0 ≤ k

n
− p̄ ≤ 1− k/n

n(1− 2k/n)
+

1

2n2(1− 2k/n)2
. (101)

Proof. The lower bound is trivial. For the upper bound, we

use Lemma 8 to write

p̄ =
1

2
−
∑k

i=0

(
n
i

)
(n2 − i)

∑k
j=0

(
n
j

)
n

=
1

2
−

n−k
2

(
n
k

)

∑k
j=0

(
n
j

)
n

=
1

2
−
(
1

2
− k

2n

) (
n
k

)

∑k
j=0

(
n
j

) . (102)

Let p = k/n and insert the lower bound in (22) to obtain

p̄ ≥ 1

2
−
(
1

2
− p

2

)
1− 2p+ 1/n

1− p+ 1/n

(

1 +
1

n(1− 2p)2

)

≥ 1

2
− 1− 2p+ 1/n

2

(

1 +
1

n(1− 2p)2

)

= p− 1− p

n(1− 2p)
− 1

2n2(1 − 2p)2
(103)

which establishes the upper bound of (101).

Let P̄ = [p̄, 1− p̄] and QA = [q, 1− q] where 0 < q < 1/2.

Recall that (54) gives

D (UK‖Qn
A
) = nX

(
P̄‖QA

)
− log2 |S|. (104)

For small n, the best k may have k ≥ n/2. For example,

Fig. 3 shows that k = 4 gives the maximum Rinfo = 1 and

the minimum D (UK‖Qn
A
) for q = 0.23 and n = 4. However,

the following lemma shows that k ≥ n/2 is not interesting for

large n.

Lemma 17. D (UK‖Qn
A
) grows linearly with n if

k

n
> p1 :=

1 + log2(1 − q)

− log2 q + log2(1− q)
(105)

and p1 satisfies q < p1 < 1/2.

Proof. As already stated, p̄ increases with p = k/n. Now

choose p so that p̄ = p1 so that X
(
P̄‖QA

)
= 1. For this

p and large n, we have 1
n log2 |S| < h(p1) < 1 and the

I-divergence (104) grows linearly with n. Increasing p further

gives X
(
P̄‖QA

)
> 1 and (104) also grows linearly with n.

Moreover, if p1 < p < 1/2 then Lemma 16 shows that p̄→ p
and (104) grows linearly in n. The bounds q < p1 < 1/2
follow by using 1 > h(q) and by showing that p1 increases

with q to p1 = 1/2 when q = 1/2.

Recall that CCDM achieves 1
2 log2 n growth, see Sec. V-A.

Lemma 17 thus implies that we can focus on k < np1 < n/2
for large n. We remark that the bounds (34) and (38) imply

that for 1
nD (UK‖QA) → 0 we must have 1

n log2 |S| → h(q)
and therefore p→ q for large n.

Now for p < 1/2, we obtain the following bounds from

(21) and (22):

|S| ≤
(
n

np

)
1− p

1− 2p
≤ 2nh(p)
√

2πnp(1− p)
· 1− p

1− 2p
. (106)

Inserting into (104), we have

D (UK‖Qn
A
) ≥ 1

2
log2 n− n [h(p)− h(p̄)] + nD

(
P̄‖QA

)

− 1

2
log2

1− p

2πp(1− 2p)2
. (107)

Define

ǫ(n) =
1− p

n(1− 2p)
+

1

2n2(1− 2p)2
. (108)

For sufficiently large n, Lemmas 4 and 16 give

n [h(p)− h(p̄)]

≤
(

1− p

1− 2p
+

1

2n(1− 2p)2

)

log2
1− p+ ǫ(n)

p− ǫ(n)
. (109)
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Since ǫ(n)→ 0 for n→∞, we have

lim inf
n→∞

(

D (UK‖Qn
A)−

1

2
log2 n− nD ([p, 1− p]‖QA)

)

≥ − 1− p

1− 2p
log2

1− p

p
− 1

2
log2

1− p

2πp(1− 2p)2
. (110)

The I-divergence thus grows at least as 1
2 log2 n with n. More-

over, CCDM achieves this growth by choosing p = ⌊nq⌋/n
so that d1([p, 1− p], QA) ≤ 1/n and nD ([p, 1− p]‖QA)→ 0
for large n, see Sec. V-A. Note that Rinfo → h(q) for large n.

APPENDIX C

PROOF OF THEOREM 2

This appendix extends the analysis of Sec. VI-D to non-

binary discrete alphabets. The key steps are to choose a code

S with probability close to one and to show that all subset

probabilities qSw are close to 1/K .

Consider the code S = Tǫ(QA). The left-hand side of (17)

in Lemma 7 gives

1− qS ≤ 2|A| exp
(
−2n q2min ǫ

2
)
. (111)

By Lemmas 14 and 15, we have ∆|S| ≤ Qn
A
(an) for the an

with the largest probability in the typical set. For this an, we

can bound (see (81))

qS
K
−Qn

A
(an) ≤ qSw ≤

qS
K

+Qn
A
(an). (112)

Following the same steps as in (83), we have

D (UK‖[qS1 , . . . , qSK ]) ≤ 2 [(1− qS) +KQn
A
(an)] (113)

if the scalar in square brackets is at most 1/2.

Consider the two summands in (113). We have already seen

that the term 1−qS vanishes exponentially in n. Next, consider

a δ with 0 < δ < 1 and choose K so that

KQn
A(a

n) = (1− δ)n. (114)

Taking logarithms and normalizing, we have

1

n
log2 K = − 1

n
log2 Q

n
A
(an) + log2(1 − δ)

≥ H (QA) (1− ǫ) + log2(1 − δ) (115)

where the inequality follows by the right-hand side of (18)

in Lemma 7. We thus choose

Rinfo = H (QA) (1− ǫ)− γ (116)

where γ = − log2(1− δ), and (113)-(115) guarantee that this

rate gives vanishing I-divergence (113). Note that the term in

square brackets in (113) is less than 1/2 for large n. Finally,

choose small positive ǫ and δ and large n to complete the first

part of the proof.

Next, consider the RNG and the bound (49). The bounds

(18) in Lemma 7 and qSw =
∑

an∈Sw
Qn

A
(an) give

qSw2
nH(QA)(1−ǫ) ≤ |Sw| ≤ qSw2

nH(QA)(1+ǫ). (117)

The left-hand side of (18) also gives

qmin(w) ≥
2−nH(QA)(1+ǫ)

qSw

. (118)

Inserting (117) and (118) into (49), we have

D
(

PAn|W(·|w)‖Qn
A|Sw

)

≤ q2Sw
22nH(QA)(1+ǫ)

(2 ln 2) 22nRrng

(a)

≤ 24nǫH(QA)+2nγ+2

(2 ln 2) 22nRrng
(119)

where step (a) follows by applying (112), the right-hand side

of (18), and (115) to bound

qSw ≤
1

K
+ 2−nH(QA)(1−ǫ)

≤ 2 · 2−nH(QA)+nǫH(QA)+nγ . (120)

We may thus choose

Rrng = 2ǫH (QA) + 2γ (121)

which may vanish with n because we can choose ǫ and γ to

vanish with n. Note that the rate (121) suffices for each w,

i.e., one need not average over w to achieve small Rrng.

Finally, both the I-divergences on the left-hand sides of

(113) and (119) decay exponentially with n if Rinfo and Rrng

are given by (116) and (121), respectively. This implies hat

D (PAn‖Qn
A
) decays exponentially with n.
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