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Abstract

In this paper, we first introduce the notion of generalized pair weights of an [n, k]-
linear code over the finite field Fq and the notion of pair r-equiweight codes, where
1 ≤ r ≤ k−1. Some basic properties of generalized pair weights of linear codes over
finite fields are derived. Then we obtain a necessary and sufficient condition for an
[n, k]-linear code to be a pair equiweight code, and we characterize pair r-equiweight
codes for any 1 ≤ r ≤ k−1. Finally, a necessary and sufficient condition for a linear
isomorphism preserving pair weights between two linear codes is obtained.
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1 Introduction

In 1950, Hamming introduced the notions of Hamming weight (usually written wH) and
Hamming distance (usually written dH) which would serve as the basis for modern coding
theory. The notion of generalized Hamming weights appeared in the 1970’s and has
become an important research object in coding theory after Wei’s work [19] in 1991. More
specifically, let Fq be the finite field with q elements, where q = pe and p is a prime. An
[n, k]-linear code C of length n over Fq is an Fq-subspace of dimension k of Fn

q . Let r be an
integer with 1 ≤ r ≤ k and let V be a subspace of dimension r of C. The Hamming support
of V is defined by χH(V ) = {i | 0 ≤ i ≤ n − 1, ∃(c0, · · · , cn−1) ∈ V such that ci 6= 0}.
Consequently, the rth generalized Hamming weight of a linear code C over Fq is defined
by drH(C) = min{|χH(V )| | V is an r-dimensional subpace of C}. It is obvious that d1H(C)
is just the minimum Hamming distance dH(C) and the set {d1H(C), d2H(C), · · · , dkH(C)}
is called the generalized Hamming weight hierarchy of C.

∗E-Mail addresses: hwliu@mail.ccnu.edu.cn (H. Liu), panxu@mails.ccnu.edu.cn (X. Pan)
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Wei [19] showed that the generalized Hamming weight hierarchy of a code is of great
importance in the sense that it features the performance of a linear code completely and
has a close connection with cryptography; a series of good properties on the generalized
Hamming weight hierarchy of a code were also exhibited in [19]. Since then, lots of works
have been done in computing and describing the generalized Hamming weight hierarchies
of certain codes, see, for example, [1], [13], [18] and [26].

The MacWilliams extension theorem plays a central role in coding theory. MacWilliams
[17] and later Bogart, Goldberg, and Gordon [2] proved that, every linear isomorphism
preserving the Hamming weight between two linear codes over finite fields can be extended
to a monomial transformation. This classical result was known as MacWilliams extension
theorem. In [21], Wood proved MacWilliams extension theorem for all linear codes over
finite Frobenius rings equipped with the Hamming weight. In the commutative case, the
author showed that the Frobenius property was not only sufficient but also necessary. In
the non-commutative case, the necessity of the Frobenius property was proved in [23].

With the development of information theory, a number of new metrics have been in-
troduced to coding theory, for example, the Lee metric, the burst metric, homogeneous
metric etc. In 2011, motivated by the limitations of the reading process in high den-
sity data storage systems, Cassuto and Blaum [3] introduced a new metric framework,
named symbol-pair distance, to protect against pair errors in symbol-pair read channels,
where the outputs are overlapping pairs of symbols. The seminal work [3] has established
relationships between the minimum Hamming distance of an error-correcting code and
the minimum pair distance, has found methods for code constructions and decoding, and
has obtained lower and upper bounds on the code sizes. In [4], the authors established
a Singleton-type bound for symbol-pair codes and constructed MDS symbol-pair codes
(meeting this Singleton-type bound), which is called the maximum pair distance separable
(MPDS) code in this paper. Several works have been done on the constructions of MPDS
codes, see, for example, [14], [15], [7] and [5]. In [16], Liu, Xing and Yuan presented
the list decodability of symbol-pair codes and a list decoding algorithm of Reed-Solomon
codes beyond the Johnson-type bound in the pair weight. In [8] and [9], the authors
calculated the symbol-pair distances of repeated-root constacyclic codes of lengths ps and
2ps, respectively. Yaakobi, Bruck and Siegel [24] generalized the notion of symbol-pair
weight to b-symbol weight. Yang, Li and Feng [25] showed the Plotkin-like bound for the
b-symbol weight and presented a construction on irreducible cyclic codes and constacyclic
codes meeting the Plotkin-like bound.

As mentioned above, symbol-pair distance is a new metric model compared to the
classical Hamming distance. Therefore, it is natural to ask how theorems surrounding
classical coding theory generalize to the current symbol-pair framework. This general-
ization would have some potential applications in cryptography. Indeed, as indicated in
the proceeding paragraph, several bounds on the minimum symbol-pair distance have
been established, including the Singleton-type bound, the Johnson-type bound and the
Plotkin-like bound.

In this paper, we introduce the notion of generalized pair weights of linear codes over
finite fields, basic properties of generalized pair weights are derived. In particular, the
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Singleton Bound respect to generalized pair weights are established, and a necessary and
sufficient condition for a linear code to be an MPDS code is obtained. For an [n, k]-linear
code, we introduce the notion of the pair equiweight code and the pair r-equiweight code
for any 1 ≤ r ≤ k − 1. A necessary and sufficient condition for a linear code to be
a pair equiweight code is derived. Moreover, we characterize pair r-equiweight codes.
Note that MacWilliams extension theorem tells that every linear isomorphism preserving
the Hamming weight bewteen two lienar codes can be induced by a monomial matrix.
Unfortunately, a linear isomorphism induced by a permutation matrix may not preserve
the pair weight between two linear codes. In this paper, we provide a necessary and
sufficient condition for a linear isomorphism preserving pair weights between two linear
codes.

This paper is organized as follows. Section 2 provides some preliminaries, and we
introduce generalized pair weights of linear codes, and give a characterization of the
pair weight of arbitrary codeword of a linear code. In Section 3, basic properties of
generalized pair weights of linear codes are provided, and some other results are also
given. In Section 4, we give a necessary and sufficient condition for a linear code to be a
pair equiweight code. We obtain a necessary condition and a sufficient condition for an
[n, k]-linear code to be a pair r-equiweight code. Section 5 studies linear isomorphisms
preserving pair weights of linear codes, we obtain a necessary and sufficient condition for
a linear isomorphism preserving pair weights. In particular, we provide an algorithm to
determine whether a linear code is a pair equiweight code, and whether an isomorphism
between two linear codes preserves pair weights. We explain why this algorithm is more
efficiently.

2 Preliminaries

Throughout this paper, let Fq be the finite field of order q, where q = pe and p is a prime
number. Let n be a positive integer, and let Fn

q be the n-dimensional vector space over
Fq. An Fq-subspace C of dimension k of Fn

q is called an [n, k]-linear code. The dual code
C⊥ of C is defined as

C⊥ = {x ∈ Fn
q | c · x = 0, ∀ c ∈ C},

where “ − · − ” is the standard Euclidean inner product. We assume all codes in this
paper are nonzero linear codes.

Definition 2.1. ([3]) For any x,y ∈ Fn
q , the pair distance between x and y is defined as

dp(x,y) =
∣

∣{0 ≤ i ≤ n− 1|(xi, xi+1) 6= (yi, yi+1)}
∣

∣,

where the indices are taken modulo n. The pair weight of x is defined as wp(x) = dp(x, 0).

The minimal pair distance of a code C over Fq is defined as

dp(C) = min
c6=c′∈C

dp(c, c
′).
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The minimal pair weight of C is defined as min{wp(c) | 0 6= c ∈ C}. Note that if C is an
[n, k]-linear code, then dp(C) = min{wp(c) | 0 6= c ∈ C}.

An [n, k]-linear code C over Fq is called a pair equiweight code if any nonzero codeword
of C has the same pair weight.

The generalized Hamming weights of any Fq-subspace of Fn
q and the r-minimal Ham-

ming weight of an [n, k]-linear code C over Fq for 1 ≤ r ≤ k were defined by Wei [19].

Definition 2.2. ([19]) Let D be an Fq-subspace of Fn
q . The Hamming support of D,

denoted by χH(D), is the set of all non-always-zero bit positions of D, i.e.,

χH(D) = {0 ≤ i ≤ n− 1 | ∃x = (x0, x1, · · · , xn−1) ∈ D, xi 6= 0},

and the generalized Hamming weight of D is defined as wH(D) = |χH(D)|.

It is quite natural that we can assume χH(D) ⊆ Z/nZ, the ring of integers modulo n.

Definition 2.3. ([19]) Let C be an [n, k]-linear code over Fq. For 1 ≤ r ≤ k, the r-
minimal Hamming weight of C is defined as d r

H(C) = min{wH(D) |D ≤ C, dim(D) = r}.

Note that if r = 1, the 1-minimal Hamming weight of C is just the minimal Hamming
weight of C. In [19], the following result was proved.

Lemma 2.4. ([19, Theorem 1]) Let C be an [n, k]-linear code over Fq. Then we have

1 ≤ d 1
H(C) < d 2

H(C) < · · · < d k−1
H (C) < d k

H(C) ≤ n.

The set {d 1
H(C), d 2

H(C), · · · , d k
H(C)} is called the generalized Hamming weight hierar-

chy of C.

In 2003, Fan and Liu [11] introduced the Hamming r-equiweight code for an [n, k]
linear code over Fq, where 1 ≤ r ≤ k − 1.

Definition 2.5. Let C be an [n, k]-linear code over Fq and 1 ≤ r ≤ k− 1. The code C is
called a Hamming r-equiweight code if d r

H(C) = wH(D) for any subspace D of dimension
r of C.

Note that if r = 1, the Hamming r-equiweight code is just the Hamming equiweight
code as usual. The properties of this class of codes are also obtained in [11].

In this paper, we introduce the notion of generalized pair weights of any Fq-subspace
of Fn

q and r-minimal pair weight of [n, k]-linear codes over Fq, where 1 ≤ r ≤ k. We will
study their properties in this paper.

Definition 2.6. Let D be an Fq-subspace of Fn
q . The pair support of D is defined as

χp(D) = {0 ≤ i ≤ n− 1 | ∃x = (x0, · · · , xn−1) ∈ D, (xi, xi+1) 6= (0, 0)},

where the indices are taken modulo n. The generalized pair weight of D is defined as
wp(D) = |χp(D)|.
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Definition 2.7. Let C be an [n, k]-linear code over Fq. For 1 ≤ r ≤ k, the r-minimal
pair weight of C is defined as d r

p (C) = min{wp(D) |D ≤ C, dim(D) = r}. The set
{d 1

p (C), d 2
p (C), · · · , d k

p (C)} is called the generalized pair weight hierarchy of C.

Remark 2.8. If r = 1, the 1-minimal pair weight d 1
p (C) of the code C is just the minimal

pair weight dp(C) of C. In [4], we know dp(C) ≤ n−k+2. If C satisfies dp(C) = d 1
p (C) =

n− k + 2, then we call C a maximum pair distance separable (MPDS) code.

Let J be a subset of {0, 1, · · · , n−1}. The subcode CJ of a code C of length n for pair
weights is defined to be:

CJ = {c = (c0, c1, · · · , cn−1) ∈ C | (ci, ci+1) = (0, 0) ∀ i /∈ J}.

By the definition of CJ , we know that CJ = C when J = {0, 1, · · · , n−1} and CJ = 0
when J = ∅. Also we have CJ1 ⊆ CJ2 if J1 ⊆ J2.

Definition 2.9. Let C be an [n, k]-linear code over Fq, let J ⊆ {0, 1, · · · , n − 1}. Let
CJ be defined as above. For 1 ≤ r ≤ k, let mr(C) = min

J
{|J | | dim(CJ) = r}. Then the

following sequence is called the length/ dimension profile (LDP) for the pair weight of C:

m(C) = {m1(C), m2(C) · · · , mk(C)}.

Let U be an Fq-vector space of dimension k. We denote by 〈V,W 〉 the subspace
generated by the subspaces V,W of U , and let U/W denote the quotient space modulo
W . For any r, k ∈ N, let

PGr(U) = {V ≤ U | dim(V ) = r}, PG≤r(U) = {V ≤ U | dim(V ) ≤ r}.

If V = {0}, then dim({0}) = 0 and PG0(U) = {{0}}. Let nr,k denote the number of all
r-dimensional subspaces of an k-dimensional vector space. When r > k, we let nr,k = 0.
Then it is easy to see that

nr,k =















1, if r = 0 ;
r−1
∏

i=0

qk−qi

qr−qi
, if 1 ≤ r ≤ k;

0, if r > k.

Let C be an [n, k]-linear code with a generator matrix G = (G0, · · · , Gn−1), where Gi is
the column vector of G. For any V ∈ PG≤2(Fk

q), the function mG : PG≤2(Fk
q) → N is

defined as follows.

mG(V ) =
∣

∣{0 ≤ i ≤ n− 1 | 〈Gi, Gi+1〉 = V }
∣

∣,

where the indices are taken modulo n. We define the function θG : PG≤k(Fk
q ) → N to be

θG(U) =
∑

V ∈PG≤2(U)

mG(V )
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for any U ∈ PG≤k(Fk
q).

For an [n, k]-linear code C over Fq with a generator matrix G, we know that for any
1 ≤ r ≤ k and a subspace D of dimension r of C, there exists an unique subspace D̃ of
dimension r of Fk

q such that D = D̃G = {yG |y ∈ D̃}. In particular, for any nonzero
codeword c ∈ C, there exists an unique nonzero vector y ∈ Fk

q such that c = yG =
(yG0,yG1, · · · ,yGn−1), where G = (G0, · · · , Gn−1).

Proposition 2.10. Assume the notations are given above. Then wp(D) = n−θG(D̃
⊥) for

any subspace D of C, where D̃ is the unique corresponding subspace of D. In particular,
wp(c) = n− θG(〈y〉

⊥) for any 0 6= c ∈ C.

Proof. By the definition of wp and the function θG, we have

wp(D) =
∣

∣{0 ≤ i ≤ n− 1 | ∃ c = (c0, c1, · · · , cn−1) ∈ D, (ci, ci+1) 6= (0, 0)}
∣

∣

= n−
∣

∣{0 ≤ i ≤ n− 1 | ∀ c = (c0, c1, · · · , cn−1) ∈ D, (ci, ci+1) = (0, 0)}
∣

∣

= n−
∣

∣{0 ≤ i ≤ n− 1 | ∀y ∈ D̃, yGi = yGi+1 = 0 }
∣

∣

= n−
∣

∣{0 ≤ i ≤ n− 1 | 〈Gi, Gi+1〉 ⊆ D̃⊥}
∣

∣

= n−
∑

V ∈PG≤2(D̃⊥)

∣

∣{0 ≤ i ≤ n− 1 | 〈Gi, Gi+1〉 = V }
∣

∣

= n−
∑

V ∈PG≤2(D̃⊥)

mG(V ) = n− θG(D̃
⊥).

In particular, when we take D = 〈c〉 to be the 1-dimensional subspace generated by the
codeword c ∈ C, then wp(〈c〉) = wp(c) = n− θG(〈y〉

⊥).

Definition 2.11. Let C be an [n, k]-linear code over Fq and 1 ≤ r ≤ k − 1, we say that
C is a pair r-equiweight code if d r

p (C) = wp(D) for any subspace D of dimension r of C.

Remark 2.12. If r = 1, the pair 1-equiweight code is just the pair equiweight code.
However, a Hamming equiweight code is not a pair equiweight code in general.

Example 2.13. Let C1 be the linear code with a generator matrix

(

1 0 1 0
0 1 0 1

)

over

F2. Then C1 is a pair equiweight code but not a Hamming equiweight code. Let C2 be

the linear code with a generator matrix

(

1 1 0 0
0 1 1 0

)

over F2. Then C2 is a Hamming

equiweight code but not a pair equiweight code.

The following proposition provides a method to construct a pair equiweight code from
a Hamming equiweight code.

Proposition 2.14. Let C be an [n, k]-linear code over Fq with a generator matrix G =

(G0, · · · , Gn−1), and let Ĉ be a [2n, k]-linear code over Fq with a generator matrix Ĝ =
(G0, O, · · · , Gn−1, O), where O is the column zero vector of length k. Then for any 1 ≤
r ≤ k− 1, C is a Hamming r-equiweight code if and only if Ĉ is a pair r-equiweight code.
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Proof. Let ϕ be a map from C to Ĉ such that ϕ(c) = (c0, 0, · · · , cn−1, 0) ∈ Ĉ for any
c = (c0, · · · , cn−1) ∈ C. Then ϕ is an Fq-linear isomorphism and wp(ϕ(c)) = 2wH(c).
The rest part of the proof is trivial.

3 Generalized pair weights of linear codes

In this section, we give general properties of generalized pair weights of linear codes. Some
bounds about generalized pair weights of linear codes are obtained in this section.

We first give a characterization on the relationship between the generalized Hamming
weight wH(D) and the generalized pair weight wp(D) for any Fq-subspace D of Fn

q . If
wH(D) = n, then wp(D) = n. If wH(D) < n, we have the following lemma.

Lemma 3.1. Let D be an Fq-subspace of Fn
q , and suppose wH(D) < n. Assume that

χH(D) =

L
⋃

l=1

{sl, sl + 1, · · · , sl + el} ⊆ Z/nZ

and |sl − sl−1 − el−1| ≥ 2 for 1 ≤ l ≤ L where s0 = sL and e0 = eL. Then wp(D) =
wH(D) + L.

Proof. If i ∈ χH(D), there exists x = (x0, · · · , xn−1) ∈ D such that xi 6= 0. Then the
two pairs (xi−1, xi) and (xi, xi+1) both are not (0, 0) and {i− 1, i} ⊆ χp(D). Here, when
i = 0, i− 1 = n− 1. Hence

χp(D) = ∪L
l=1{sl − 1, sl, sl + 1, · · · , sl + el}.

Since |sl − sl−1 − el−1| ≥ 2, we have

{sl−1 − 1, sl−1, sl−1 + 1, · · · , sl−1 + el−1} ∩ {sl − 1, sl, sl + 1, · · · , sl + el} = ∅

for 1 ≤ l ≤ L, where s0 = sL and e0 = eL. Hence wp(D) = |χp(D)| = |χH(D)| + L =
wH(D) + L.

Theorem 3.2. Let C be an [n, k]-linear code over Fq. Then we have

(a) If 1 ≤ r ≤ k − 1, or r = k and d k
H(C) < n, then d r

H(C) + 1 ≤ d r
p (C) ≤ 2d r

H(C).

(b) If r = k and d k
H(C) = n then d k

p (C) = n.

Proof. (a) Suppose 1 ≤ r ≤ k − 1. Let D be an Fq-subspace of C such that dim(D) = r
and d r

p (C) = wp(D). If wH(D) = |χH(D)| = n, then

d r
p (C) = wp(D) = |χp(D)| = n.
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By Lemma 2.4, there exists an Fq-subspace D̃ of C such that dim(D̃) = r and wH(D̃) =
d r
H(C) < n. Then n = wp(D) = d r

p (C) ≤ wp(D̃) and hence

wp(D) = d r
p (C) = wp(D̃)

with wH(D̃) = d r
H(C) < n. Therefore, without loss of generality, we can assume that

wH(D) < n. Then by Lemma 3.1, we have wp(D) = wH(D) + L. Hence

d r
p (C) = wp(D) = wH(D) + L ≥ wH(D) + 1 ≥ d r

H(C) + 1.

Let E be an Fq-subspace of C such that dim(E) = r and d r
H(C) = wH(E). Since

d r
H(C) = wH(E) < n, by Lemma 3.1, we have wp(E) = wH(E) + L1. Hence d r

p (C) ≤
wp(E) = wH(E) + L1 ≤ 2wH(E) = 2d r

H(C).

If r = k and d k
H(C) < n, we have wp(C) = wH(C)+L2 by Lemma 3.1 since |χH(C)| =

d k
H(C) < n. Hence

d k
H(C) + 1 = wH(C) + 1 ≤ d k

p (C) = wp(C) = wH(C) + L2 ≤ 2wH(C) = 2d k
H(C).

(b) If d k
H(C) = |χH(C)| = n, then d k

p (C) = |χp(C)| = n.

Note that, if r = 1, we have d 1
H(C)+1 ≤ d 1

p (C) ≤ 2d 1
H(C), this is the usual relationship

between the minimal pair weight and minimal Hamming weight of the linear code C.

Theorem 3.3. Let C be an [n, k]-linear code over Fq with n ≥ 2. Then we have

2 ≤ d 1
p (C) < d 2

p (C) < · · · < d k−1
p (C) ≤ d k

p (C) ≤ n.

Proof. The inequlaity d r
p (C) ≤ d r+1

p (C) is trivial for 1 ≤ r ≤ k − 1. For any subspace D
of dimension one of C over Fq, there exists 0 6= x = (x0, · · · , xn−1) ∈ D such that xi 6= 0.
Hence wp(D) ≥ 2 and d 1

p (C) ≥ 2.

For any 2 ≤ r ≤ k − 1, by Lemma 2.4, we have d r
H(C) < n. Note that there exists

a subspace D of C such that dim(D) = r and wp(D) = d r
p (C) by the definition of the

r-minimal pair weight of C. If wH(D) = |χH(D)| = n, then

d r
p (C) = wp(D) = |χp(D)| = n.

There exists an Fq-subspace D̃ of C such that dim(D̃) = r and wH(D̃) = d r
H(C) < n

by Lemma 2.4 again. Then n = wp(D) = d r
p (C) ≤ wp(D̃) and hence wp(D) = d r

p (C) =

wp(D̃). Therefore, without loss of generality, we can assume wH(D) < n. Then there
exists an index i ∈ χH(D) such that i+ 1 6∈ χH(D), where i+ 1 is taken modulo n when
i = n− 1. Let D̂ = {x ∈ D |x = (x0, · · · , xn−1), xi = 0}. We know that dim(D̂) = r − 1,
i 6∈ χH(D̂) and χH(D̂)

⋃

{i} = χH(D). Hence i 6∈ χp(D̂) and i ∈ χp(D). Therefore,

d r−1
p (C) ≤ |χp(D̂)| < |χp(D)| = d r

p (C) for 2 ≤ r ≤ k − 1.
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Remark 3.4. There exists a linear code C of length n such that d k−1
p (C) = d k

p (C) = n.

For example, let C be the linear code over F2 with generator matrix

(

1 1 0
0 1 1

)

. Then

we have d 1
p (C) = d 2

p (C) = 3 = n.

Corollary 3.5. Let C be an [n, k]-linear code over Fq with k ≥ 2. Then

(a) if d k−1
p (C) = d k

p (C) then d k
H(C) = n.

(b) d k−1
p (C) = d k

p (C) if and only if d k−1
p (C) = d k

p (C) = n.

Proof. (a) Suppose otherwise that d k
H(C) < n. Then there exists an index i ∈ χH(C)

such that i+ 1 6∈ χH(C), where the indices are taken modulo n. Let

Ĉ = {x ∈ C |x = (x0, · · · , xn−1), xi = 0}.

We know dim(Ĉ) = k − 1, i 6∈ χH(Ĉ) and χH(Ĉ)
⋃

{i} = χH(C). Hence i 6∈ χp(Ĉ) and
i ∈ χp(C). Therefore, we have

d k−1
p (C) ≤ |χp(Ĉ)| < |χp(C)| = d k

p (C),

which is a contradiction.

(b) We only need to prove the necessity. By (a), d k
H(C) = n = |χH(C)|, hence

d k
p (C) = |χp(C)| = n. Therefore, d k−1

p (C) = d k
p (C) = n.

The claim “d k
H(C) = n implies d k−1

p (C) = d k
p (C)” is not true in general. For example,

let C be a [4, 2]-linear code over F2 with the generator matrix G =

(

1 1 0 0
0 0 1 1

)

. Then

d 2
H(C) = 4, d 1

p (C) = 3 and d 2
p (C) = 4.

By using Theorem 3.3, we can give a bound for generalized pair weight hierarchies
{d 1

p (C), d 2
p (C), · · · , d k

p (C)} and a relationship between this bound and MPDS codes de-
fined in Remark 2.8. For two real number sequences {a1, a2, · · · , ak} and {b1, b2, · · · , bk},

{a1, a2, · · · , ak} ≤ {b1, b2, · · · , bk}

means ai ≤ bi for any 1 ≤ i ≤ k.

Theorem 3.6 (Singleton Bound respect to generalized pair weights). Let C be an [n, k]-
linear code over Fq. Then

{d 1
p (C), d 2

p (C), · · · , d k−1
p (C), d k

p (C)} ≤ {n− k + 2, n− k + 3, · · · , n, n}.

These bounds are met with equality everywhere if and only if C is an MPDS code.

Proof. By Theorem 3.3, for all 1 ≤ r ≤ k − 1, we get

d r
p (C) ≤ d r+1

p (C)− 1 ≤ · · · ≤ d k−1
p (C) + r − k + 1 ≤ n+ r − k + 1.

The remaining part of the proof is obvious.
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Example 3.7. Let C be the linear code with a generator matrix

(

1 0 1 1
0 1 −1 1

)

over

F3. Then we know that C is an MPDS code by Proposition 4.1 of [4]. On the other hand,
we have d i

p(C) = 4 for any 1 ≤ i ≤ 2 by directly calculating.

By using Theorem 3.6, it is easy to know that a linear code is not an MPDS code
when there exists an index r such that 1 ≤ r ≤ k − 1 and d r

p (C) < n− k + r + 1. Then
we prove that the definition of the LDP for the pair weight which is essentially the same
as the generalized pair weight hierarchy.

Theorem 3.8. Assume the notations are given above. Then drp(C) = mr(C) for all
1 ≤ r ≤ k.

Proof. Assume 1 ≤ r ≤ k. There is a subset J0 of {0, 1, · · · , n−1} such that dim(CJ0) = r
and |J0| = mr(C) by the definition of mr(C). By the definition of d r

p (C), we have

d r
p (C) ≤ wp(CJ0) ≤ |J0| = mr(C). (3.1)

On the other hand, there is a subspace D of C such that dim(D) = r and d r
p (C) =

wp(D) by the definition of d r
p (C). Assume J1 = χp(D), then D ≤ CJ1.

If D = CJ1, then mr(C) ≤ |J1| = wp(D) = d r
p (C). Hence d r

p (C) = mr(C).

If D $ CJ1, we get
r̂ = dim(CJ1) > dim(D) = r.

Hence d r̂
p (C) ≤ wp(CJ1) ≤ |J1| = wp(D) = d r

p (C). By Theorem 3.3, we get r = k − 1 =
r̂ − 1 and d k−1

p (C) = d k
p (C). Then d k−1

p (C) = d k
p (C) = n by Corollary 3.5. Hence

d r
p (C) = mr(C) by Inequality 3.1 and mr(C) ≤ n.

4 Pair r-equiweight codes

In this section, we study pair r-equiweight codes. Before we provide our main theorems
in this section, we give some notions and a key lemma.

Recall that nr,k is the number of all subspaces of dimension r of a vector space of
dimension k. Let PGr(Fk

q ) = {V r
1 , V

r
2 , · · · , V

r
nr,k

} be the set of all subspaces of dimension

r of Fk
q . There is a bijection between PGk−r(Fk

q ) and PGr(Fk
q), which is defined by

PGk−r(Fk
q ) → PGr(Fk

q), V
k−r 7→ (V k−r)⊥, ∀ V k−r ∈ PGk−r(Fk

q).

Hence nr,k = nk−r,k. For convenience, if
k
2
< r ≤ k, we assume

PGr(Fk
q) = {V r

1 = (V k−r
1 )⊥, V r

2 = (V k−r
2 )⊥, · · · , V r

nr,k
= (V k−r

nr,k
)⊥}.

Let Q be the rational number field. For 0 ≤ r ≤ s ≤ k, let Tr,s be a matrix in
Mnr,k×ns,k

(Q) such that

Tr,s = (tij)nr,k×ns,k
, where tij =

{

1, if V r
i ⊆ V s

j ;
0, if V r

i * V s
j .

10



Let AT denote the transpose matrix of the matrix A. Let Jm×n be the m×n matrix with

all entries being 1. i.e, Jm×n =







1 · · · 1
...

. . .
...

1 · · · 1






. In particular, J1×n = 1 = (1, · · · , 1).

Lemma 4.1. Assume the notations are given above, and let k ≥ 2. Then

(a) The sum of all rows of Tr,s is the constant row vector nr,s1.

(b) The matrix T1,k−1 is an invertible matrix and T−1
1,k−1 =

1
qk−2 (T1,k−1−

qk−2−1
qk−1−1

Jn1,k×n1,k
).

The sum of all rows of T−1
1,k−1 is a constant row vector.

(c) Tr,k−1T1,k−1 = (qk−r−1)T T
1,r +

qk−r−1−1
q−1

Jnr,k×n1,k
and

Tr,k−1T
−1
1,k−1 =

1

qr−1
T T
1,r −

qr−1 − 1

qr−1(qk−1 − 1)
Jnr,k×n1,k

, for k ≥ r + 1.

(d) Tr,sTs,z = ns−r,z−rTr,z for 1 ≤ r ≤ s ≤ z ≤ k.

Proof. (a) Since the number of all subspaces of dimension r of V s
i is nr,s for any 1 ≤ i ≤

ns,k, we know that the sum of the rows of Tr,s is the constant row vector nr,s1.

(b) By (a), we know Jn1,k×n1,k
T1,k−1 = n1,k−1Jn1,k×n1,k

. Since V k−1
i = (V 1

i )
⊥ for any

1 ≤ i ≤ n1,k−1, we get T1,k−1 = T T
1,k−1. Then

T1,k−1T1,k−1 = T T
1,k−1T1,k−1 = (bij)n1,k×n1,k

, bij =

{

n1,k−1, if i = j;
n1,k−2, if i 6= j.

,

since bij is the number of all subspace of dimension one of V k−1
i

⋂

V k−1
j for 1 ≤ i, j ≤ n1,k.

Then
1

n1,k−1 − n1,k−2
(T1,k−1 −

n1,k−2

n1,k−1
Jn1,k×n1,k

)T1,k−1

is identity matrix. Hence T1,k−1 is an invertible matrix and

T−1
1,k−1 =

1

n1,k−1 − n1,k−2

(T1,k−1 −
n1,k−2

n1,k−1

Jn1,k×n1,k
)

=
1

qk−2
(T1,k−1 −

qk−2 − 1

qk−1 − 1
Jn1,k×n1,k

).

Since the sum of all rows of T1,k−1 and the sum of all rows of Jn1,k×n1,k
are constant

row vectors, the sum of all rows of T−1
1,k−1 is a constant row vector.

(c) By the definition of T1,k−1 and Tr,k−1, we have

Tr,k−1T1,k−1 = Tr,k−1T
T
1,k−1 = (cij)nr,k×n1,k

11



such that
cij =

∣

∣{V k−1
s |1 ≤ s ≤ n1,k, 〈V

1
j , V

r
i 〉 ≤ V k−1

s }
∣

∣

for 1 ≤ i ≤ nr,k and 1 ≤ j ≤ n1,k. If V
1
j ≤ V r

i ,

cij =
∣

∣{V k−1
s |1 ≤ s ≤ n1,k, V

r
i ≤ V k−1

s }
∣

∣

=
∣

∣{M |M ≤ Fk
q/V

r
i , dim(M) = k − r − 1}

∣

∣

= n1,k−r.

If V 1
j * V r

i ,

cij =
∣

∣{V k−1
s | 1 ≤ s ≤ n1,k, 〈V

1
j , V

r
i 〉 ⊆ V k−1

s }
∣

∣

=
∣

∣{M |M ≤ Fk
q/〈V

1
j , V

r
i 〉, dim(M) = k − r − 2}

∣

∣

= n1,k−r−1.

Hence cij =

{

n1,k−r, if V 1
j ⊆ V r

i ;
n1,k−r−1, if V 1

j * V r
i .

And

Tr,k−1T1,k−1 = (n1,k−r − n1,k−r−1)T
T
1,r + n1,k−r−1Jnr,k×n1,k

= qk−r−1T T
1,r +

qk−r−1 − 1

q − 1
Jnr,k×n1,k

.

Since Tr,k−1Jn1,k×n1,k
= n1,k−rJnr,k×n1,k

, we have

Tr,k−1T
−1
1,k−1 =

1

n1,k−1 − n1,k−2
Tr,k−1(T1,k−1 −

n1,k−2

n1,k−1
Jn1,k×n1,k

)

=
1

qr−1
T T
1,r −

qr−1 − 1

qr−1(qk−1 − 1)
Jnr,k×n1,k

.

(d) By the definition of Tr,s and Ts,z, we have Tr,sTs,z = (dij)nr,k×nz,k
such that

dij = |{V s
l | 1 ≤ l ≤ ns,k, V

r
i ≤ V s

l ≤ V z
j }|

for 1 ≤ i ≤ nr,k and 1 ≤ j ≤ nz,k. If V
r
i ⊆ V z

j ,

dij =
∣

∣{V s
l | 1 ≤ l ≤ ns,k, V

r
i ≤ U ≤ V z

j }
∣

∣

=
∣

∣{U |U ≤ V z
j /V

r
i , dim(U) = s− r}

∣

∣

= ns−r,z−r.

If V r
i * V z

j , dij = 0. Hence Tr,sTs,z = (dij)nr,k×nz,k
= ns−r,z−rTr,z.

It is easy to see that when k = 1, any [n, 1]-linear code is a pair equiweight code. In
the following we assume k ≥ 2, and study pair equiweight linear codes.
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Theorem 4.2. Assume the notations are given above. Let C be an [n, k]-linear code over
Fq with a generator matrix G = (G0, · · · , Gn−1) for k ≥ 2. Then C is a pair equiweight
code if and only if

∑

V ∈Ωi

1
|V |

mG(V ) is constant for any 1 ≤ i ≤ n1,k, where s = min{2, k−1}

and Ωi = {V ∈ PG≤s(Fk
q ) | V

1
i ⊆ V }.

Proof. For 0 ≤ r ≤ 2, let ∆r = (mG(V
r
1 ), mG(V

r
2 ), · · · , mG(V

r
nr,k

)), and let

Γk−1 = (θG(V
k−1
1 ), θG(V

k−1
2 ), · · · , θG(V

k−1
n1,k−1

)).

Assume s = min{2, k − 1}. By the definition of θG, we can verify that

Γk−1 = (
∑

W∈PG≤2(V k−1

1
)

mG(W ), · · · ,
∑

W∈PG≤2(V k−1
n1,k−1

)

mG(W )) =

s
∑

r=0

∆rTr,k−1. (4.1)

By Lemma 4.1 (b), the above equation is

Γk−1 −mG(0)1 = (

s
∑

r=1

∆rTr,k−1T
−1
1,k−1)T1,k−1. (4.2)

By Lemma 4.1 (c), the element in the ith position of the vector

s
∑

r=1

∆rTr,k−1T
−1
1,k−1 =

s
∑

r=1

∆r(
1

qr−1
T T
1,r −

qr−1 − 1

qr−1(qk−1 − 1)
Jnr,k×n1,k

)

is

mG(V
1
i ) +

s
∑

r=2

(
1

qr−1

∑

V r∈PGr(Fk
q ),V

1

i ⊆V r

mG(V
r)−

qr−1 − 1

qr−1(qk−1 − 1)

∑

V r∈PGr(Fk
q )

mG(V
r))

= mG(V
1
i ) +

s
∑

r=2

∑

V r∈PGr(Fk
q ),V

1

i ⊆V r

1

qr−1
mG(V

r)−
s

∑

r=2

∑

V r∈PGr(Fk
q )

qr−1 − 1

qr−1(qk−1 − 1)
mG(V

r)

= q
∑

V ∈Ωi

1

|V |
mG(V )−

s
∑

r=2

∑

V r∈PGr(Fk
q )

qr−1 − 1

qr−1(qk−1 − 1)
mG(V

r), (4.3)

where Ωi = {V ∈ PG≤s(Fk
q) | V

1
i ⊆ V }.

Now suppose
∑

V ∈Ωi

1
|V |

mG(V ) is constant for all 1 ≤ i ≤ n1,k. Then

q
∑

V ∈Ωi

1

|V |
mG(V )−

s
∑

r=2

∑

V r∈PGr(Fk
q )

qr−1 − 1

qr−1(qk−1 − 1)
mG(V

r)
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is constant for all 1 ≤ i ≤ n1,k and
∑s

r=1∆rTr,k−1T
−1
1,k−1 is a constant vector by Equa-

tion 4.3. Since the sum of all rows of T1,k−1 is a constant row vector by Lemma 4.1 (a),
we get

Γk−1 −mG(0)1

and Γk−1 are constant vectors by Equation 4.2. Then θG is a constant function.

Since the Fq-linear map φ : Fk
q → C such that φ(y) = yG for any y ∈ Fk

q is a linear
isomorphism, there is nonzero vector y in Fk

q such that c = φ(y) for any nonzero codeword
c in C. By Proposition 2.10, we have

wp(c) = n− θG(〈y〉
⊥).

Hence C is a pair equiweight code.

On the contrary, suppose C is a pair equiweight code. Then Γk−1, Γk−1 − mG(0)1

and
s
∑

r=1

∆rTr,k−1T
−1
1,k−1 are all constant vectors by Proposition 2.10, Lemma 4.1 (b) and

Equation 4.2. Then
∑

V ∈Ωi

1
|V |

mG(V ) is constant for all 1 ≤ i ≤ n1,k, since the element in

the ith position of the vector
s
∑

r=1

∆rTr,k−1T
−1
1,k−1 is

q
∑

V ∈Ωi

1

|V |
mG(V )−

s
∑

r=2

∑

V r∈PGr(Fk
q )

qr−1 − 1

qr−1(qk−1 − 1)
mG(V

r).

In particular, if k ≥ 3 and the function mG is constant restricted on PG2(Fk
q), then

we have the following corollary.

Corollary 4.3. Assume the notations are given above. Let C be an [n, k]-linear code over
Fq with a generator matrix G = (G0, · · · , Gn−1). Then C is a pair equiweight code if and
only if the function mG restricted on PG1(Fk

q ) is a constant.

Proof. Suppose the function mG is constant function on PG2(Fk
q) with value a ∈ N, then

∑

V ∈Ωi

1

|V |
mG(V ) = mG(V

1
i ) +

|Ωi| − 1

q2
a,

where Ωi = {V ∈ PG≤2(Fk
q) | V

1
i ⊆ V }. Hence the function mG for G is a constant

function on PG1(Fk
q ) if and only if

∑

V ∈Ωi

1

|V |
mG(V )

is constant for all 1 ≤ i ≤ n1,k, if and only if C is a pair equiweight code by statement
(b) in Theorem 4.2.
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We can get the following example by using Corollary 4.3.

Example 4.4. Let α1 = (011000001010001001011), α2 = (001011000001011001010) and
α3 = (000001011001001011001) ∈ F21

2 . Let C be the linear code with a generator matrix




α1

α2

α3



 over F2. Then C is a pair equiweight code and the value of the pair weight of C

is 14 by Corollary 4.3. Also we can directly calculate to get the following table such that
the first and the second column are non-zero vectors in C and the third column is the pair
weight of the vector which is at the same row.

α1 (011000001010001001011) 14
α2 (001011000001011001010) 14
α3 (000001011001001011001) 14

α1 + α2 (010011001011010000001) 14
α1 + α3 (011001010011000010010) 14
α2 + α3 (001010011000010010011) 14

α1 + α2 + α3 (010010010010011011000) 14

In the next theorem, we obtain a necessary condition and a sufficient condition of that
C is a pair r-equiweight code.

Theorem 4.5. Assume the notations are given above. Let C be an [n, k]-linear code over
Fq with a generator matrix G = (G0, · · · , Gn−1), k ≥ 2 and 1 ≤ r ≤ k − 1.

(a) If C is a pair r-equiweight code, then

∑

V ∈Ωi

nk−r−dim(V ),k−1−dim(V )

|V |
mG(V )

is constant for any 1 ≤ i ≤ n1,k, where s = min{2, k−r}, Ωi = {V ∈ PG≤s(Fk
q) | V

1
i ⊆

V }.

(b) When r = k−1, C is a pair r-equiweight code if and only if the function mG restricted
on PG1(Fk

q ) is a constant.

(c) When 2 ≤ r ≤ k − 2, if mG(V
2
i ) +

1
n1,k−r−1

∑

V 1∈PG1(V 2

i )mG(V
1) is constant for

1 ≤ i ≤ n2,k, then C is a pair r-equiweight code.

Proof. (a) Since the Fq-linear map φ : Fk
q → C such that φ(y) = yG for any y ∈ Fk

q is a

linear isomorphism, there is an unique Fq-subspace D̃ of Fk
q such that D = φ(D̃) for any

Fq-subspace D with dim(D) = r of C. By Proposition 2.10, we have

wp(D) = n− θG(D̃
⊥).

15



Let ∆l = (mG(V
l
1 ), mG(V

l
2 ), · · · , mG(V

l
nl,k

)) for 0 ≤ l ≤ s and

Γk−r = (θG(V
k−r
1 ), θG(V

k−r
2 ), · · · , θG(V

k−r
nr,k−1

)).

By the definition of the function θG, we get

Γk−r =

s
∑

l=0

∆lTl,k−r (4.4)

and

Γk−r −mG(0)1 =

s
∑

l=1

∆lTl,k−r.

By Lemma 4.1 (b) and (d), we have

(Γk−r −mG(0)1)Tk−r,k−1T
−1
1,k−1 =

s
∑

l=1

∆lTl,k−rTk−r,k−1T
−1
1,k−1

=
s

∑

l=1

nk−l−r,k−l−1∆lTl,k−1T
−1
1,k−1. (4.5)

Also we know the element in the ith position of the vector

s
∑

l=1

nk−l−r,k−l−1∆lTl,k−1T
−1
1,k−1 =

s
∑

l=1

nk−l−r,k−l−1∆l(
1

ql−1
T T
1,l −

ql−1 − 1

ql−1(qk−1 − 1)
Jnl,k×n1,k

)

is

q
∑

V ∈Ωi

nk−r−dim(V ),k−1−dim(V )

|V |
mG(V )−

s
∑

l=2

∑

V l∈PGl(Fk
q )

nk−l−r,k−l−1
ql−1 − 1

ql−1(qk−1 − 1)
mG(V

l)

(4.6)

by Lemma 4.1 (c), where Ωi = {V ∈ PG≤s(Fk
q ) | V

1
i ⊆ V }.

Now suppose C is a pair r-equiweight code. Then Γk−1, Γk−1 −mG(0)1 and

s
∑

l=1

nk−l−r,k−l−1∆lTl,k−1T
−1
1,k−1

are both constant vectors by Proposition 2.10, Lemma 4.1 (a) and (b), and Equation 4.5.
Then

∑

V ∈Ωi

nk−r−dim(V ),k−1−dim(V )

|V |
mG(V )

is constant for all 1 ≤ i ≤ n1,k by Equation 4.6.
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(b) When r = k − 1, then s = 1 and

∑

V ∈Ωi

nk−r−dim(V ),k−1−dim(V )

|V |
mG(V ) =

1

q
mG(V

1
i ).

Then we use (a).

(c)When 2 ≤ r ≤ k − 2, then s = 2 and Equation 4.4 is

Γk−r −mG(0)1 = ∆1T1,k−r +∆2T2,k−r = (
1

n1,k−r−1
∆1T1,2 +∆2)T2,k−r. (4.7)

Since the element in the ith position of the vector 1
n1,k−r−1

∆1T1,2 +∆2 is

mG(V
2
i ) +

1

n1,k−r−1

∑

V 1∈PG1(V 2

i )

mG(V
1)

which is constant for 1 ≤ i ≤ n2,k as assumption, we have

1

n1,k−r−1

∆1T1,2 +∆2,

Γk−r −mG(0)1 and Γk−r are both constant vectors by Lemma 4.1 (a). Hence C is a pair
r-equiweight code by Proposition 2.10.

5 Linear isomorphisms preserving pair weights

MacWilliams [17] and later Bogart, Goldberg, and Gordon [2] proved that every linear
isomorphism preserving Hamming weights between two linear codes over finite fields can
be induced by a monomial matrix. Unfortunately, a linear isomorphism induced by a
permutation matrix may not preserve pair weights of linear codes. In this section, we
obtain a necessary and sufficient condition for a linear isomorphism preserving pair weights
between two linear codes.

Let C and C̃ be two [n, k]-linear code over Fq and G =





g1

· · ·
gk



 be a generator

matrix of C for some gi ∈ Fn
q . Let ϕ be an Fq-linear isomorphism from C to C̃. Then

G̃ =





ϕ(g1)
· · ·

ϕ(gk)



 is a generator matrix of C̃. Before we give a necessary and sufficient

condition of that wp(c) = wp(ϕ(c)) for any c ∈ C, we need following theorem.

Theorem 5.1. Assume the notations are given above. Then wp(c)−wp(ϕ(c)) is constant
for any nonzero c ∈ C if and only if

∑

V ∈Ωi

1
|V |

(mG(V ) − mG̃(V )) is constant for any

1 ≤ i ≤ n1,k, where s = min{2, k − 1}, Ωi = {V ∈ PG≤s(Fk
q) | V

1
i ⊆ V }.
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Proof. Let φ be the Fq-linear isomorphism from Fk
q to C such that φ(y) = yG for any

y ∈ Fk
q . And let φ̃ be the Fq-linear isomorphism from Fk

q to C̃ such that φ̃(y) = yG̃ for

any y ∈ Fk
q . Then φ̃ = ϕφ by the definition of G̃. For any nonzero c ∈ C, there is a y

such c = φ(y) and let c̃ = ϕ(c) = φ̃(y). Then by Proposition 2.10, we have

wp(c) = n− θG(〈y〉
⊥) (5.1)

and
wp(c̃) = n− θG̃(〈y〉

⊥). (5.2)

For 0 ≤ r ≤ s, let ∆r = (mG(V
r
1 ), mG(V

r
2 ), · · · , mG(V

r
nr,k

)), and let

∆̃r = (mG̃(V
r
1 ), mG̃(V

r
2 ), · · · , mG̃(V

r
nr,k

)).

Let Γk−1 = (θG(V
k−1
1 ), θG(V

k−1
2 ), · · · , θG(V

k−1
n1,k−1

)), and let

Γ̃k−1 = (θG̃(V
k−1
1 ), θG̃(V

k−1
2 ), · · · , θG̃(V

k−1
n1,k−1

)).

Then we get

Γk−1 =

s
∑

r=0

∆rTr,k−1 = mG(0)1+

s
∑

r=1

∆rTr,k−1 (5.3)

and

Γ̃k−1 =
s

∑

r=0

∆̃rTr,k−1 = mG̃(0)1+
s

∑

r=1

∆̃rTr,k−1 (5.4)

by the definition of θG.

Suppose a = wb(c)−wb(c̃) for any nonzero c ∈ C. By Equation 5.1 and Equation 5.2,
we have θG(〈y〉

⊥)− θG̃(〈y〉
⊥) = −a for any nonzero y ∈ Fk

q and

Γk−1 − Γ̃k−1 = −a1.

By Equation 5.3 and Equation 5.4, we have

s
∑

r=1

(∆r − ∆̃r)Tr,k−1 = (mG̃(0)−mG(0)− a)1

and
s

∑

r=1

(∆r − ∆̃r)Tr,k−1T
−1
1,k−1 =

mG̃(0)−mG(0)− a

n1,k−1
1.

By Lemma 4.1 (c), the element in the ith position of the vector
∑s

r=1(∆r−∆̃r)Tr,k−1T
−1
1,k−1

is

q
∑

V ∈Ωi

1

|V |
(mG(V )−mG̃(V ))−

s
∑

r=2

∑

V r∈PGr(Fk
q )

qr−1 − 1

qr−1(qk−1 − 1)
(mG(V

r)−mG̃(V
r)),
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where Ωi = {V ∈ PG≤s(Fk
q) | V

1
i ⊆ V }. Then we have

q
∑

V ∈Ωi

1

|V |
(mG(V )−mG̃(V ))−

s
∑

r=2

∑

V r∈PGr(Fk
q )

qr−1 − 1

qr−1(qk−1 − 1)
(mG(V

r)−mG̃(V
r))

=
mG̃(0)−mG(0)− a

n1,k−1
.

Hence

q
∑

V ∈Ωi

1

|V |
(mG(V )−mG̃(V )) =

s
∑

r=2

∑

V r∈PGr(Fk
q )

qr−1 − 1

qr−1(qk−1 − 1)
(mG(V

r)−mG̃(V
r))

+
mG̃(0)−mG(0)− a

n1,k−1
.

This implies that
∑

V ∈Ωi

1
|V |

(mG(V )−mG̃(V )) are constant vectors for any 1 ≤ i ≤ n1,k.

Suppose
∑

V ∈Ωi

1
|V |

(mG(V ) − mG̃(V )) = b for any 1 ≤ i ≤ n1,k. Then
∑s

r=1(∆r −

∆̃r)Tr,k−1T
−1
1,k−1 and

∑s

r=1(∆r − ∆̃r)Tr,k−1 are constant vectors by Lemma 4.1 (a), since

the element in the ith position of the vector
∑s

r=1(∆r − ∆̃r)Tr,k−1T
−1
1,k−1 is

q
∑

V ∈Ωi

1

|V |
(mG(V )−mG̃(V ))−

s
∑

r=2

∑

V r∈PGr(Fk
q )

qr−1 − 1

qr−1(qk−1 − 1)
(mG(V

r)−mG̃(V
r))

= qb−
s

∑

r=2

∑

V r∈PGr(Fk
q )

qr−1 − 1

qr−1(qk−1 − 1)
(mG(V

r)−mG̃(V
r)).

By Equation 5.3 and Equation 5.4, we get

Γk−1 − Γ̃k−1 =
s

∑

r=1

(∆r − ∆̃r)Tr,k−1 + (mG̃(0)−mG(0))1

is a constant vectors and θG(〈y〉
⊥)− θG̃(〈y〉

⊥) is constant for any nonzero y ∈ Fk
q . There-

fore, wb(c) − wb(ϕ(c)) is constant for any nonzero c ∈ C by Equation 5.1 and Equa-
tion 5.2.

It is easy to get following result.

Corollary 5.2. Assume the notations are given above. Then wp(c) = wp(ϕ(c)) for any
c ∈ C if and only if

∑

V ∈Ωi

1
|V |

(mG(V ) − mG̃(V )) is constant for any 1 ≤ i ≤ n1,k and

there exists a nonzero c0 ∈ C such that wp(c0) = wp(ϕ(c0)).
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From Theorems 4.2 and 5.1, we know that if we want to determine a linear code C is
or not a pair equiweight code and a linear isomorphism is or not preserving pair weights
of codes, it is crucial to calculate the following value

∑

V ∈Ωi

1

|V |
mG(V )

for an [n, k]-linear code C with a generator matrix G, where s = min{2, k − 1} and
Ωi = {V ∈ PG≤s(Fk

q) | V
1
i ⊆ V }.

Recall we assume that G = (G0, · · · , Gn−1) is a generator matrix of an [n, k]-linear
code C over Fq. Let

Sj = FqGj + FqGj+1

which is an Fq-subspace of Fk
q and let

S̃j = [Gj , Gj+1]

is an k × 2 submatrix of G for 0 ≤ j ≤ n− 1. We know that dim(Sj) = rank(S̃j), where
rank(S̃j) denotes the rank of S̃j .

The following theorem gives an algorithm to calculate the value
∑

V ∈Ωi

1
|V |

mG(V ) in
this section.

Theorem 5.3. Let κij =

{

1, if V 1
i ⊆ Sj ;

0, if V 1
i * Sj .

for 1 ≤ i ≤ n1,k and 1 ≤ j ≤ n. Then

∑

V ∈Ωi

1

|V |
mG(V ) =

n
∑

j=1

κijq
−rank(S̃j).

Proof. It is easy to prove this theorem by using the definition of the function mG.

Remark 5.4. Let C be an [n, k]-linear code over Fq with a generator matrix G =

(G0, · · · , Gn−1), then we can calculate fi =
∑n

j=1 κijq
−rank(S̃j) for 1 ≤ i ≤ n1,k. First

we can calculate {S0, S1, · · · , Sn−1}, and |PG1(Si)| ≤ q + 1. Assume T =
⋃n

i=1 PG
1(Si),

we have |T | ≤ n(q + 1). If V 1
i /∈ T , then fi = 0 by Theorem 5.3. So we only need to

calculate |T | subspaces of one dimension of Fk
q for fi.

However, if we simply look at all qk codewords of C and check their pair weights, then

we need to calculate qk−1
q−1

subspaces of dimension one of Fk
q for their pair weights since c

and λc have same pair weight for c ∈ C and λ ∈ F∗
q. So using our characterization to

decide if C is a pair equiweight code or if a linear isomorphism preserve pair weight is

more efficiently, since |T | ≤ n(q + 1) << qk−1
q−1

when q is large. For example, when C is

a [10, 5]-linear code C over F31, |T | = 320 is much less than 315−1
31−1

≈ 28629151.

Example 5.5. Let C,C1, C2 be linear codes of length 4 with generator matrices

G =





1 0 0 0
0 1 0 1
0 0 1 0



 ,

20



G1 =





0 0 1 0
0 1 0 1
1 0 0 0



 ,

G2 =





1 0 0 0
0 0 1 1
0 1 0 0





over F2, respectively. And let ϕ1 : C → C1 and ϕ2 : C → C2 be linear isomorphisms such
that

ϕ1((c0, c1, c2, c3)) = (c2, c1, c0, c3)

and
ϕ2((c0, c1, c2, c3)) = (c0, c2, c1, c3)

for any (c0, c1, c2, c3) ∈ C. Assume

V 1
1 =





1
0
0



 , V 1
2 =





0
1
0



 , V 1
3 =





0
0
1



 , V 1
4 =





1
1
0



 ,

V 1
5 =





0
1
1



 , V 1
6 =





1
0
1



 , V 1
7 =





1
1
1



 .

By Theorem 5.3, we get following sequences such that

{
∑

V ∈Ωi

1

|V |
mG(V ), 1 ≤ i ≤ 7} = {

1

2
, 1,

1

2
,
1

2
,
1

2
, 0, 0},

{
∑

V ∈Ωi

1

|V |
mG1

(V ), 1 ≤ i ≤ 7} = {
1

2
, 1,

1

2
,
1

2
,
1

2
, 0, 0}

and

{
∑

V ∈Ωi

1

|V |
mG2

(V ), 1 ≤ i ≤ 7} = {
1

2
, 1,

1

2
,
1

4
,
1

4
,
1

4
, 0}.

Hence ϕ1 preserves the pair weight, but ϕ2 does not preserves the pair weight by Corol-
lary 5.2. On the other hand, we can get same result by calculate directly.
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